Publications

  1. P.Kim, R.Song and Z.Vondraček. Potential theory of Dirichlet forms with jump kernels blowing up at the boundary. J. Funct. Anal. 289 110934 2025. Math. Review
  2. P.Kim, R.Song and Z.Vondraček. Sharp two-sided Green function estimates for Dirichlet forms degenerate at the boundary. J. European Math. Soc. 26 (2249-2300) 2024. Math. Review
  3. P.Kim, R.Song and Z.Vondraček. Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential. Math. Ann. 388 (511-542) 2024. Math. Review
  4. P.Kim, R.Song and Z.Vondraček. Harnack inequality and interior regularity for Markov processes with degenerate jump kernels. J. Differential Equations 357 (138-180) 2023. Math. Review
  5. P.Kim, R.Song and Z.Vondraček. Positive self-similar Markov processes obtained by resurrection. Stoch. Processes Appl. 156 (379-420) 2023. Math. Review
  6. S.Cho, P.Kim, R.Song and Z.Vondraček. Heat kernel estimates for subordinate Markov processes and their applications. J. Differential Equations 316 (28-93) 2022. Math. Review
  7. P.Kim, R.Song and Z.Vondraček. On potential theory of Markov processes with jump kernels decaying at the boundary. Potential Analysis 58 (465-528) 2023. Math. Review
  8. I.Biočić, Z.Vondraček and V.Wagner: Semilinear equations for non-local operators: Beyond the fractional Laplacian. Nonlinear Analysis 207 (112303) 2021. Math. Review
  9. Z.Vondraček. A probabilistic approach to non-local quadratic from and its connection to the Neumann boundary condition problem. Math. Nachrichten 294 (177-194) 2021. Math. Review
  10. S.Cho, P.Kim, R.Song and Z.Vondraček. Factorization and estimates of Dirichlet heat kernels for non-local operators with critical killings. J. Math. Pures Appl. 143 (208-256) 2020. Math. Review
  11. P.Kim, R.Song and Z.Vondraček. On boundary theory of subordinate killed Lévy processes. Potential Analysis 53 (131-181) 2020. Math. Review
  12. P.Kim, R.Song and Z.Vondraček. Potential theory of subordinate killed Brownian motion. Trans. Amer. Math. Soc. 371 (3917-3969) 2019. Math. Review
  13. P.Kim, R.Song and Z.Vondraček Heat kernels of non-symmetric jump processes: beyond the stable case. Potential Analysis 49 (37-90) 2018. Math. Review
  14. Z.Vondraček and V.Wagner. On purely discontinuous additive functionals of subordinate Brownian motions. Stochastic Process. Appl. 128 (707-725) 2018. Math. Review
  15. P.Kim, R.Song and Z.Vondraček. Accessibility, Martin boundary and minimal thinness for Feller processes in metric measure spaces. Revista Matematica Iberoamericana 34 (541-592) 2018. Math. Review
  16. P.Kim, R.Song and Z.Vondraček. Scale invariant boundary Harnack principle at infinity for Feller processes. Potential Analysis 47 (337-367) 2017. Math. Review
  17. R.L.Schilling and Z.Vondraček. Absolute continuity and singularity of probability measures induced by a purely discontinuous Girsanov transform of a stable process. Trans. Amer. Math. Soc. 369 (1547-1577) 2017. Math. Review
  18. P.Kim, R.Song and Z.Vondraček. Martin boundary of unbounded sets for purely discontinuous Feller processes. Forum Mathematicum 28 (1067-1086) 2016. Math. Review
  19. P.Kim, R.Song and Z.Vondraček. Minimal thinness with respect to subordinate killed Brownian motions. Stochastic Process. Appl.126 (1226-1263) 2016. Math. Review
  20. I.Geček Tuđen and Z.Vondraček. A distributional equality for suprema of spectrally positive Levy processes. Journal of Theoretical Probability 29 (826-842) 2016. Math. Review
  21. P.Kim, R.Song and Z.Vondraček. Minimal thinness with respect to symmetric Levy processes. Trans. Amer. Math. Soc. 368 (8787-8822) 2016. Math. Review
  22. A.Mimica and Z.Vondraček. Unavoidable collections of balls for censored stable processes. J.Math.Anal.Appl. 419 (938-958) 2014. Math. Review
  23. P.Kim, R.Song and Z.Vondraček. Martin boundary for some symmetric Levy processes. In: Festschrift Masatoshi Fukushima, Eds. Z.-Q.Chen, N.Jacob, M.Takeda, T.Uemura, World Scientific (307-342) 2015. Math. Review
  24. A.Mimica and Z.Vondraček. Unavoidable collections of balls for isotropic Levy processes. Stochastic Process. Appl. 124 (1303-1334) 2014. Math. Review
  25. P.Kim, R.Song and Z.Vondraček. Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions. Potential Analysis 41 (407-441) 2014. Math. Review
  26. P.Kim, R.Song and Z.Vondraček. Global uniform boundary Harnack principle with explicit decay rate and its application. Stochastic Process. Appl. 124 (235-267) 2014. Math. Review
  27. P.Kim, R.Song and Z.Vondraček. Potential theory of subordinate Brownian motions with Gaussian components. Stochastic Process. Appl. 123 (764-795) 2013. Math. Review
  28. P.Kim, R.Song and Z.Vondraček. Uniform boundary Harnack principle for rotationally symmetric Levy processes in general open sets . Science China Math. 55 (2317-2333) 2012. Math. Review
  29. P.Kim, R.Song and Z.Vondraček. Potential theory for subordinate Brownian motions revisited. In: Stochastic analysis and applications to finance. Essays in honour of Jia-an Yan, T. Zhang, X.Zhou, editors. World Scientific, Singapore, (243-290) 2012. Math. Review
  30. P.Kim, R.Song and Z.Vondraček. Two-sided Green function estimates for killed subordinate Brownian motions. Proc. London Math. Soc. 104 (927-958) 2012. Math. Review
  31. P.Kim, R.Song and Z.Vondraček. Minimal thinness for subordinate Brownian motion in half space. Ann. Inst. Fourier 62 (1045-1080) 2012. Math. Review
  32. Z.-Q.Chen, P.Kim, R.Song and Z.Vondraček. Sharp Green function estimates for Δ+ Δ^α/2 in C^1,1 open sets and their applications. Illinois Journal Math. 54 (981-1024) 2010. Math. Review
  33. Z.-Q.Chen, P.Kim, R.Song and Z.Vondraček. Boundary Harnack principle for Δ+ Δ^α/2. Trans. Amer. Math. Soc. 364 (4169-4205) 2012. Math. Review
  34. P.Kim, R.Song and Z.Vondraček. On harmonic functions for trace processes. Mathematische Nachrichten 284 (1889-1902) 2011. Math. Review
  35. R.Schilling, R.Song and Z.Vondraček. Bernstein Functions: Theory and Applications. de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin 2010 Math. Review
  36. P.Kim, R.Song and Z.Vondraček. On the potential theory of one-dimensional subordinate Brownian motions with continuous components. Potential Analysis 33 (153-173) 2010. Math. Review
  37. R.Song and Z.Vondraček. Some remarks on special subordinators. Rocky Mountain Journal of Mathematics 40 (321-337) 2010. Math. Review
  38. R.Song and Z.Vondraček. Potential theory of subordinate Brownian motion. In: Potential Analysis of Stable Processes and its Extensions, P. Graczyk, A. Stos, editors, Lecture Notes in Mathematics 1980, (87-176) 2009. Math. Review
  39. P.Kim, R.Song and Z.Vondraček. Boundary Harnack principle for subordinate Brownian motion. Stochastic Process. Appl. 119 (1601-1631) 2009. Math. Review
  40. R.Song and Z.Vondraček. On the relationship between subordinate killed and killed subordinate process. Electronic Communications in Probability 13 (325-336) 2008. Math. Review
  41. R.Song and Z.Vondraček. On suprema of Levy processes and applications in risk theory. Annales de l'Institut Henri Poincare - Probabilites et Statistiques 44 (977-986) 2008. Math. Review
  42. R.Song and Z.Vondraček. Parabolic Harnack Inequality for the Mixture of Brownian Motion and Stable Process. Tohoku Math. Journal 59 (1-19) 2007. Math. Review
  43. R.Song and Z.Vondraček. On the monotonicity of a function related to the local time of a symmetric Levy process. Statistics and Probability Letters, 76 (1522-1528) 2006. Math. Review
  44. H.Šikić, R.Song and Z.Vondraček. Potential theory of geometric stable processes. Probability Theory and Related Fields, 135 (547-575) 2006. Math. Review
  45. M.Rao, R.Song and Z.Vondraček. Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Analysis 25 (1-27) 2006. Math. Review
  46. R.Song and Z.Vondraček. Potential theory of special subordinators and subordinate killed stable processes. Journal of Theoretical Probability, 19 (817-847) 2006. Math. Review
  47. R.Song and Z.Vondraček. Harnack inequality for some discontinuous Markov processes with a diffusion part. Glasnik Matematički, 40(60), (177-187) 2005. Math. Review
  48. R.Song and Z.Vondraček. Sharp bounds for Green functions and jumping functions of subordinate killed Brownian motions in bounded $C^{1, 1}$ domains. Electronic Communications in Probability, 9 (96-105) 2004. Math. Review
  49. J.Glover, Z.Pop-Stojanovic, M.Rao, H.Šikić, R.Song and Z.Vondraček. Harmonic functions of subordinate killed Brownian motion. Journal of Functional Analysis, 215 (399-426) 2004. Math. Review
  50. M.Huzak, M.Perman, H.Šikić and Z.Vondraček Ruin probabilities for competing claim processes. Journal of Applied Probability, 41 (679-690) 2004. Math. Review
  51. M.Huzak, M.Perman, H.Šikić and Z.Vondraček Ruin probabilities and decompositions for general perturbed risk processes. Annals of Applied Probability, 14 (1378-1397) 2004. Math. Review
  52. R.Song and Z.Vondraček. Harnack inequality for some classes of Markov processes. Mathematische Zeitschrift, 246 (177-202) 2004. Math. Review
  53. R.Song and Z.Vondraček. Potential theory of subordinate killed Brownian motion in a domain. Probability Theory and Related Fields, 125 (578-592) 2003. Math. Review
  54. Z.Vondraček. Basic potential theory of certain nonsymmetric strictly $\alpha$-stable processes. Glasnik Matematički, 37(57), (193-215) 2002. Math. Review
  55. M.Rao and Z.Vondraček. Nonlinear potentials in function spaces. Nagoya Mathematical Journal 165, (91-116) 2002. Math. Review
  56. Z.Vondraček. Asymptotics of first-passage time over a one-sided stochastic boundary. Journal of Theoretical Probability 13, 1 (279-309) 2000. Math. Review
  57. I.Rubelj and Z.Vondraček. Stochastic mechanism of cellular aging: Abrupt telomere shortening as a model for stochastic nature of cellular aging Journal of Theoretical Biology 197, (425-438) 1999.
  58. Z.Vondraček. An estimate for the $L^2$-norm of quasi-continuous functions with respect to a smooth measure. Archiv der Mathematik 67, (408-414) 1996. Math. Review
  59. Z.Vondraček. A characterization of certain diffusions on the Sierpinski gasket by the exit distributions. Journal of Theoretical Probability, Vol.9, No.2 (335-352) 1996. Math. Review
  60. Z.Vondraček. A characterization of Markov chains on infinite graphs by limiting distributions. Archiv der Mathematik 65, No.5, (449-460) 1995. Math. Review
  61. Z.Vondraček. Some Markov processes with Brownian exit distributions. Probability Theory and Related Fields 101 (393-407) 1995. Math. Review
  62. Z.Vondraček. Markov functions of a time-changed recurrent diffusion. Journal of Theoretical Probability, 6, No.3 (485-497) 1993. Math. Review
  63. Z.Vondraček. Martin kernel and infima of positive harmonic functions. Transactions Amer. Math. Soc. 335, No.2, (547-557) 1993. Math. Review
  64. Z.Vondraček. A characterization of Brownian motion on Sierpinski spaces. In Seminar on Stochastic Processes 1991, Eds. S. Port, T. Liggett, P. Fitzsimmons, (233-243) Birkhäuser, 1992. Math. Review
  65. Z.Vondraček. On some extremal elements in the cone ${\cal H}^{\inf}$., Glasnik Matematički Vol.27(47), (241-250) 1992. Math. Review
  66. Z.Vondraček. A characterization of h-Brownian motion by its exit distributions. Probability Theory and Related Fields 92 (41-50) 1992. Math. Review
  67. Z.Vondraček.A characterization of Brownian motion in a Lipschitz domain by its killing distributions. Journal of Theoretical Probability, 4, No.2 (457-464) 1991. Math. Review
  68. Z.Vondraček. The excessive domination principle is equivalent to the weak sector condition. In Seminaire de Probabilites XXIV, Eds. J.Azema, P.A.Meyer, M.Yor, Lecture Notes in Mathematics 1426 (466-472), Springer-Verlag, Berlin 1990. Math. Review