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Abstract
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1 Introduction.

The classical Cramér-Lundberg risk process X is defined as X(t) = x +
ct − C(t) where C is a compound Poisson process with i.i.d. jumps with
distribution F and the intensity of the underlying Poisson process equal to
λ. The value x ≥ 0 is referred to as the initial capital and c as the premium
rate. The ruin probability is defined as

ϑ(x) = P(X(t) < 0 for some t ≥ 0) .

Let µ be the mean of the distribution F . Then E(C(1)) = λµ. Usually one
assumes the net profit condition λµ < c since otherwise ruin is certain. The
ruin probability is given by the classical Pollaczek-Hinchin formula

1− ϑ(x) = (1− ρ)
∞∑

n=0

ρnF n∗
I (x) , (1.1)

where ρ = 1− λµ/c and

FI(x) =
1

µ

∫ x

0

(1− F (u)) du

is the integrated tail distribution of F . See e.g. [RSST].
Risk processes can be generalised in many ways. In Section 2 of this

paper the compound Poisson process is replaced by a sum of subordinators.
More precisely, C(t) = C1(t) + · · · + Cm(t), where the Ci are independent
subordinators with finite expectations. One can think of the Ci as indepen-
dent risk portfolios competing to cause ruin. Formulae for the overall ruin
probability given the initial capital x ≥ 0 are well known. One can, however,
ask about probabilities that ruin will be caused by an individual risk port-
folio. These probabilities are given in Section 2. For related computations
involving subordinators rather than risk processes see [Win].

Many recent papers in risk theory consider further generalisations of the
classical risk process. An interesting generalisation arises when the risk pro-
cess is perturbed by an independent Lévy process Z with no positive jumps.
Dufresne and Gerber [DG] consider the case when Z = ςW for ς > 0 and
W being standard Brownian motion. Furrer [Fur] takes a stable process of
index α ∈ (1, 2) with no positive jumps. These authors derive various forms
of Pollaczek-Hinchin type formulae for such perturbed processes. Huzak,
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Perman, Šikić and Vondraček [HPSV] give explicit expressions for ruin prob-
abilities for general perturbed risk process. For perturbed processes ruin can
either occur by a jump of one of the subordinators Ci, or at an instant when
none of the Ci’s have a jump. Section 3 gives formulae for these individual
ruin probabilities. The computations will rely on results derived in [HPSV].
The methods are more general than those used in Section 2.

In Section 4 explicit formulae are given for ruin probabilities when the
perturbation is a multiple of Brownian motion and the risk processes are
compound Poisson.

2 Ruin probabilities.

Let C1, . . . , Cm be independent subordinators without drift with Lévy mea-
sures Λ1,Λ2, . . . ,Λm. Assume that

E(Ci(1)) =

∫ ∞

0

xΛi(dx) <∞ (2.1)

for i = 1, . . . ,m. Denote C = C1 + · · · + Cm. It is clear that the Lévy mea-
sure Λ of the subordinator C is the sum of the Lévy measures of individual
summands. Let µi = E(Ci(1)) for i = 1, . . . ,m and µ = µ1 + · · ·+µm. Define
the risk process X(t) = ct− C(t). As usual assume the net profit condition
c > µ to avoid the trivial case of certain ruin.

Let (Ft) be the natural filtration generated by the subordinators Ci aug-

mented in the usual way. The dual X̂(t) = −ct+C(t) is a Lévy process with
respect to (Ft). We always assume right continuous paths with left limits.
For x ≥ 0 let

τ̂x = inf{t ≥ 0: X̂(t) > x} . (2.2)

Define ∆C(t) = C(t) − C(t−) and similarly ∆Ci(t) = Ci(t) − Ci(t−) for
i = 1, . . . ,m.

The computations will be based on two known results. The first is a
remarkable formula for conditional probabilities of ruin sometimes referred
to as the magic formula. See [Tak], p. 37, for details.

Theorem 2.1 Let X̂ be the dual risk process with X̂(0) = 0. Then

P
(

sup
0≤s≤t

X̂(s) > 0
∣∣ X̂(t)) = 1−

(
−X̂(t)

ct

)
+

. (2.3)
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By continuity in probability of Lévy processes one can replace X̂(t) in

the above formula by X̂(t−). The other computational means comes from
fluctuation theory for Lévy processes. See [Ber], p. 190.

Lemma 2.2 Let X̂ be the dual risk process with X̂(0) = 0. Let T̂y = inf{t ≥
0: X̂(t) = y}. Then the measures tP(T̂y ∈ dt) dy and (−y) P(X̂(t) ∈ dy) dt
coincide on [0,∞)× (−∞, 0].

In more explicit terms the above equality of measures implies that for any
measurable f : [0,∞)× (−∞, 0] → R+∫
(−∞,0]

dy

∫
[0,∞)

f(t, y) tP(T̂y ∈ dt) =

∫
[0,∞)

dt

∫
(−∞,0]

f(t, y) (−y) P(X̂(t) ∈ dy) .

(2.4)
Lemma 2.2 is all that is needed from the power of fluctuation theory to derive
ruin probabilities in this section.

Let us turn to ruin probabilities. Let y ≤ 0 and x > 0. Intuitively, one
can compute

P
(
τ̂0 ∈ dt, X̂(t−) ∈ dy, X̂(t) ∈ dx

)
= P(X̂(t−) ∈ dy) P(τ̂0 ∈ dt,∆C(t) ∈ −y + dx |X̂(t−) ∈ dy) .

By Markov property the events {τ̂0 ∈ dt} and {∆C(t) ∈ −y + dx} are

conditionally independent given {X̂(t−) ∈ dy}. Moreover, the jump ∆C(t)

and X̂(t−) can be thought of as independent. One gets

P
(
τ̂0 ∈ dt, X̂(t−) ∈ dy, X̂(t) ∈ dx

)
= P(X̂(t−) ∈ dy) P(τ̂0 ∈ dt|X̂(t−) ∈ dy) P(∆C(t) ∈ −y + dx)

= P(X̂(t) ∈ dy)
(−y)
ct

Λ(−y + dx) .

Formula (2.3) has been used to obtain the last line. Integrating over (0,∞)
with respect to t and using Lemma 2.2 one gets the severity of ruin formula
which is well known in the case when the claim process is compound Poisson,
cf. [RSST], p. 164,

P(τ̂0 <∞, X̂(τ̂0−) ∈ dy, X̂(τ̂0) ∈ dx) =
1

c
Λ(−y + dx) dy .

4



Note that P(τ̂0 > 0) = 1 since C(t)/t→ 0 as t ↓ 0 for arbitrary subordinators
without drift.

A rigorous argument is based on master formulae for Poisson point pro-
cesses. The vector valued process ∆C = (∆C1(t), . . . ,∆Cm(t)) can be seen
as a Poisson point process on [0,∞)m ∪ {∂} with respect to (Ft) where ∂ is
an added point representing the value of ∆C whenever none of the subordi-
nators have a jump. Denote the characteristic measure of this process by Υ.
By definition Υ(∂) = 0. Further, Υ is concentrated on positive coordinate
axes only and the restriction of Υ to the i-th positive axis is equal to Λi.

Let H(t, ·) be a non-negative predictable process taking values in the
space of measurable functions on [0,∞)m ∪ {∂} and such that H(t, ∂) = 0.
The master formula for Poisson point processes asserts that

E

( ∑
0<t<∞

H(t,∆C(t))

)
= E

(∫ ∞

0

dt

∫
[0,∞)m

H(t, ε) Υ(dε)

)
. (2.5)

See [RY], p. 452 for details. In order to properly formulate the results in
this section we need to prove that ruin can only occur by a jump of one of
the subordinators taking the process strictly over the level x. Define

Ŝ(t) = sup
0≤s≤t

X̂(s) and Ŝ(∞) = sup
s≥0

X̂(s) . (2.6)

Lemma 2.3 Let X̂ be the dual risk process and assume X̂(0) = 0. For x ≥ 0

one has P(τ̂x > 0) = 1 and P(τ̂x <∞, X̂(τ̂x−) ≤ x = X̂(τ̂x)) = 0.

Proof: For a subordinator witout drift one has C(t)/t→ 0 as t ↓ 0. See [Ber],

p. 84. Hence X̂(t)/t → −c < 0 as t ↓ 0. It follows that P(τ̂x > 0) = 1. To
prove the second assertion note that τ̂x is a stopping time. Conditionally on
{τ̂x <∞} the process (X̂(τ̂x+s)−X̂(τ̂x) : s ≥ 0) has the law of (X̂(s) : s ≥ 0).

Applying the first assertion for x = 0 it follows that X̂(τ̂x + s)− X̂(τ̂x) < 0
for small enough values of s. By the very definition of τ̂x, however, there are
arbitrarily small values s > 0 for which X̂(τ̂x +s) > x. This forces X̂(τ̂x) > x
which proves the second assertion. 2

Using the strong Markov property Lemma 2.3 asserts that the points of
increase of Ŝ are discrete. More precisely, if whe denote

σ(1) = inf{t > 0: Ŝ(t) > 0} and σ(k) = inf{t > σ(k−1) : Ŝ(t) > Ŝ(σ(k−1))}
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with the usual convention inf ∅ = ∞ we have 0 < σ(1) < σ(2) < · · · . Fur-
thermore, the differences σ(1), σ(2)−σ(1), . . . are i.i.d random variables. As X̂
drifts to −∞ only finitely many σ(k) are finite. This also proves that the abso-
lute supremum Ŝ(∞) will be attained by a jump of one of the subordinators
C1, C2, . . . , Cm.

The quantities of interest in this section will be the probabilities of ruin
caused by individual subordinators. We define the probability that ruin is
caused by a jump of subordinator Ci by

ϑi(x) = P
(
τ̂x <∞,∆C(τ̂x) = ∆Ci(τ̂x)) . (2.7)

The probabilities are well defined as jumps of subordinators do not occur
simultaneously with probability 1. Furthermore, Lemma 2.3 ensures that
there is a jump at the instant of ruin. As mentioned in the introduction, the
subordinators Ci can be thought of as independent risk portfolios. The main
result of this section is the following:

Theorem 2.4 Let X̂, Ŝ and C1, C2, . . . , Cm and τ̂x be defined as at the be-
ginning of this section.

(i) Let X̂(0) = 0. For y ≤ 0, x > 0 and i = 1, 2, . . . ,m one has

P
(
τ̂0 <∞, X̂(τ̂0−) ∈ dy, X̂(τ̂0) ∈ dx,∆C(τ̂0) = ∆Ci(τ̂0)

)
(2.8)

=
1

c
Λi(−y + dx) dy ,

and consequently

P
(
τ̂0 <∞,∆C(τ̂0) = ∆Ci(τ̂0)

)
=
µi

c
. (2.9)

(ii) Let γ = inf{t > 0: X̂(t) = Ŝ(∞)}. Then

P
(
τ̂0 <∞,∆C(γ) = ∆Ci(γ)

)
=
µi

c
. (2.10)

Proof: To prove the first formula take

H(t, ε) = 1(X̂(t−) ∈ dy, Ŝ(t−) ≤ 0) 1(εi ∈ −y + dx) .
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where ε = (ε1, . . . , εm) ∈ [0,∞)m. The left side in the (2.5) is the desired
probability. The right side transforms into

E
(∫ ∞

0

dt

∫
[0,∞)m

H(t, ε) Υ(dε)

)
= E

(∫ ∞

0

1(X̂(t−) ∈ dy, Ŝ(t−) ≤ 0)Υ(εi ∈ −y + dx)

)
=

∫ ∞

0

dtP(X̂(t−) ∈ dy, Ŝ(t−) ≤ 0) Λi(−y + dx)

=

∫ ∞

0

dtP(X̂(t−) ∈ dy)
(−y)
ct

Λi(−y + dx) .

The last line follows by Theorem 2.1. By the equality of measures in Lemma
2.2, and since P(T̂y <∞) = 1, it follows that∫ ∞

0

dtP(X̂(t−) ∈ dy)
(−y)
ct

Λi(−y + dx) =
1

c
Λi(−y + dx) dy

which proves (2.8). Integrate by parts to get

µi =

∫ ∞

0

Λi(u,∞) du .

Integrate (2.8) over y to get

P
(
τ̂0 <∞, X̂(τ̂0) ∈ dx,∆C(τ̂0)) = ∆Ciτ̂0)

)
=

1

c
Λi(x,∞) dx . (2.11)

Integration over (0,∞) with respect to x yields (2.9) concluding the proof of
the first part of the theorem.

To prove the second part first note that by Lemma 2.3 the supremum
will be attained by a jump of one of the subordinators. Denote Ai = {τ̂0 <
∞,∆C(τ̂0) = ∆Ci(τ̂0)} and Bi = {τ̂0 < ∞,∆C(γ) = ∆Ci(γ)}. By the
strong Markov property at τ̂0 one has

P(Bi) = P(Bi, γ = τ̂0) + P(Bi, γ > τ̂0)

= P(Ai)P(τ̂0 = ∞) + P(τ̂0 <∞)P
(
Bi) .

Integrating over (0,∞) with respect to x in (2.11) and adding over i =
1, . . . ,m one finds that P(τ̂0 = ∞) = 1 − µ/c. Note that by (2.9), P(Ai) =
µi/c. A straightforward calculation concludes the proof. 2
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Remark 2.5 Note that adding over i in (2.8) gives the severity of ruin for-
mula when the claim process is C.

Theorem 2.4 says that conditionally on {τ̂0 <∞} the supremum Ŝ(∞) will be
achieved by a jump of Ci with probability µi/µ. Turning to ruin probabilities,
recall that ϑ(x) is given by the Pollaczek-Hinchin formula (1.1). This formula,
however, does not give the probability ϑi(x) that ruin will be caused by a

jump of individual subordinators. Let J := X̂(τ̂0) on {τ̂0 <∞}. From (2.11)
it follows that

P(τ̂0 <∞, J ∈ dx,∆C(τ̂0) = ∆Ci(τ̂0)) =
1

c
Λi(x,∞) dx .

By the strong Markov property one can compute

ϑi(x) = P
(
τ̂0 <∞, J > x,∆C(τ̂0) = ∆Ci(τ̂0)

)
(2.12)

+

∫
(0,x]

P
(
τ̂0 <∞, J ∈ du)ϑi(x− u) .

Denote

H(x) =
1

µ

∫ x

0

Λ(u,∞) du and Hi(x) =
1

µi

∫ x

0

Λi(u,∞) du .

and let H̄i(x) = 1−Hi(x). Let ρi = µi/c and ρ = µ/c. Rewriting (2.12) one
gets

ϑi(x) = ρi H̄i(x) + ρ

∫ x

0

ϑi(x− u)H(dx) (2.13)

which is a defective renewal equation. See [RSST], p. 213. The solution is
given by

ϑi(x) =
∞∑

k=0

ρi ρ
k(H̄i ∗H∗k)(x) . (2.14)

In case of only one subordinator this formula translates into the standard
formula (1.1).

3 Extension to perturbed risk processes.

As mentioned in the introduction the Cramér-Lundberg process has been
generalised in many directions. Here the focus will be on perturbing the
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risk process by an independent Lévy process with finite expectation and no
positive jumps. It will be shown that most of the formulae in section 2 can
be generalised to this case. In particular formulae that ruin is caused by a
jump of the particular subordinator will be derived, as well as the probability
that ruin is not caused by a jump of any subordinator.

Let again C1, C2, . . . , Cm be independent subordinators and C their sum.
Let µi = E(Ci(1)) and µ = µ1 + · · · + µm as before. Let Z be an inde-
pendent spectrally negative Lévy process such that E(Z(t)) = 0 for each
t ≥ 0. Note that the assumption E(Z(t)) = 0 does not reduce the gener-
ality as any drift can simply be “moved” to the premium rate c. The exis-
tence of the expectation is necessary as for spectrally negative Lévy processes
limt→∞ X̂(t) = −∞ if and only if E(X̂(1)) exists and is strictly negative. See
[DM] for details. If ΠZ denotes the Lévy measure of Z the assumptions imply
that ΠZ is concentrated on (−∞, 0) and satisfies the integrability condition∫

(−∞,−1)

|x|ΠZ(dx) <∞ . (3.1)

This in turn implies that the Laplace exponent of Z is given by

ψZ(β) =
ς2β2

2
+

∫
(−∞,0)

(e−βx − 1− βx) ΠZ(dx)

where the existence of the integral is ensured by (3.1). Furthermore, the net
profit condition µ = µ1 + · · ·+ µm < c will be assumed. Define

X(t) = ct− C(t) + Z(t) (3.2)

and let X̂ = −X be the dual process. Assume right continuous paths with
left limits.

Formulae for the ruin probabilities for the perturbed process were given in
[HPSV]. Here the formulae will be extended in several directions: formulae
for the probability that ruin will be caused by a jump of Ci will be derived.
As ruin can also occur when none of the subordinators has a jump leading
to ruin, one can ask about the probability of such an event. Recall that
τ̂x = inf{t > 0: X̂(t) > x} is the entrance time into (x,∞). For x ≥ 0 define

ϑi(x) = P
(
τ̂x <∞, X̂(τ̂x−) < x,∆Ci(τ̂x) > x− X̂(τ̂x−)

)
and

ϑ̄(x) = P
(
τ̂x <∞,∆C(τ̂x) = ∂

)
.
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Furthermore, define

σi = inf{t > 0: ∆Ci(t) > Ŝ(t−)− X̂(t−)}

for i = 1, 2, . . . ,m, with the usual convention inf ∅ = ∞. In words, σi is the
first time a new supremum of the dual process X̂ is attained by a jump of
the subordinator Ci. Let

σ = σ1 ∧ · · · ∧ σm .

It is a consequence of Theorem 4.1 in [HPSV] that P(σ > 0) = 1. Recall that

Ŝ(t) = sup
0≤s≤t

X̂(s) and Ŝ(∞) = sup
s≥0

X̂(s) .

Denote ρ := µ/c, and let G(y) = P(Ŝ(σ−) ≤ y|σ <∞).

Proposition 3.1 Let X̂ be the dual risk process. Let x > 0 and y > 0. The
expected occupation measure of the reflected process Ŝ− X̂ up to the stopping
time σ ∧ τ̂y is given by

E
(∫ τ̂y∧σ

0

1(Ŝ(t)−X̂(t)≤x) dt

)
=

1

µ
P(σ <∞)G(y)x .

Furthermore, P(σ <∞) = ρ.

See [HPSV], Proposition 4.2 and Corollary 4.5 for a proof.
The master formula for Poisson processes can now be used to derive

several probabilities. Define

Ji := ∆Ci(σi)− (Ŝ(σi−)− X̂(σi−))

on {σi <∞} and Ji := 0 else. Define

J := ∆C(σ)− (Ŝ(σ−)− X̂(σ−))

on {σ <∞} and 0 else.

Proposition 3.2 For x, y, z > 0

P(σ <∞, Ŝ(σ−) ≤ y, Ŝ(σ−)− X̂(σ−) > z, Ji > x) =

=
1

µ
P(σ <∞)G(y)

∫ ∞

x+z

Λi(u,∞) du . (3.3)

10



Proof: Define

H(t, ε) = 1(Ŝ(t−)<y)1(Ŝ(t−)−X̂(t−)>z)1(t≤σ)1(εi−(Ŝ(σ−)−X̂(σ−))>x) .

The functional is predictable with respect to (Ft). The left hand side in
the master formula (2.5) is the desired probability. For the right hand side
compute

E
(∫ ∞

0

dt

∫
[0,∞)m

H(t, ε) Υ(dε)

)
= E

(∫ σ

0

dt 1(Ŝ(t−)<y)1(Ŝ(t−)−X̂(t−)>z) Λi

(
x+ Ŝ(σ−)− X̂(σ−),∞

))
= E

(∫ σ∧τ̂y

0

dt 1(Ŝ(t−)−X̂(t−)>z) Λi

(
x+ Ŝ(σ−)− X̂(σ−),∞

))
=

1

µ
P(σ <∞)G(y)

∫ ∞

0

1(z,∞)(u)Λi(x+ u,∞) du

=
1

µ
P(σ <∞)G(y)

∫ ∞

x+z

Λi(u,∞) du .

Note that continuity in probability of Lévy processes was used to conclude
that the expected occupation measure of Ŝ(t−)− X̂(t−) is the same as the

expected occupation measure of Ŝ(t) − X̂(t). Proposition 3.1 was used to
pass from the third to the fourth line. 2

Let us now turn to the computation of ruin probabilities ϑi and ϑ̄ for
perturbed risk processes. We will assume that the perturbation is not of the
form Z(t) = at − U(t) for a compound Poisson process or subordinator U .

This case has been dealt with in Section 2. With these assumptions X̂ is
of unbounded variation and hence the interval (0,∞) is regular for X̂. This

implies that P(Ŝ(t) > 0) = 1 for all t > 0. As we know P(σ > 0) = 1, one
can infer that ϑi(0) = 0 and ϑ̄(0) = 1. Using the strong Markov property for

X̂ we have for x > 0

ϑi(x) = P(σ <∞, Ŝ(σ−) ≤ x, Ji > x− Ŝ(σ−)) (3.4)

+

∫
(0,x]

P(σ <∞, Ŝ(σ) ∈ du)ϑi(x− u) .

Let

H(x) =
1

µ

∫ x

0

Λ(u,∞) du and Hi(x) =
1

µi

∫ x

0

Λi(u,∞) du .
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Note that by Proposition 3.2 one has

H(x) = P(J ≤ x|σ <∞) and Hi(x) = P(Ji ≤ x|σi = σ <∞) .

Proposition 3.2 will be used to write the probabilities in (3.4) more explicitly.

Note that conditionally on {σ <∞}, the random variables Ji and Ŝ(σ−) are
independent. We get

P(σ <∞, Ŝ(σ−) ≤ x, Ji > x− Ŝ(σ−)) =

=
µi

µ
P(σ <∞)

∫
(0,x]

G(du) (1−Hi(x− u)) , (3.5)

and for 0 < u ≤ x

P(σ <∞, Ŝ(σ) ∈ du) = (3.6)

=

∫
(0,u]

P(σ <∞, Ŝ(σ−) ∈ dv, J ∈ (du− v))

= P(σ <∞)

(∫
(0,u]

G(dv)H(du− v)

)
Recall that ρ = P(σ <∞). Define ρi := µi/c and

H̄i(x) = 1−Hi(x) and H̄(x) = 1−H(x) . (3.7)

Equation (3.4) is transformed into

ϑi(x) = ρi

∫
(0,x]

G(du) H̄i(x− u) + (3.8)

+ ρ

∫
(0,x]

(∫
(0,u]

G(dv)H(du− v)

)
ϑi(x− u) .

To solve (3.8) Laplace transforms will be used. Some care is needed with
definitions. Let

LG(β) =

∫ ∞

0

e−βxG(dx) and LH(β) =

∫ ∞

0

e−βxH(dx) .

For functions ϑi and H̄i we define using the same notation

Lϑi(β) =

∫ ∞

0

e−βx ϑi(x) dx and LH̄i(β) =

∫ ∞

0

e−βx H̄i(x) dx .
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Taking Laplace transforms on both sides of (3.8) one finally gets

Lϑi = ρi LG · LH̄i + ρLG · LH · Lϑi .

Solving for Lϑi and inverting gives the probability that ruin is caused by Ci:

ϑi(x) =
∞∑

k=0

ρi ρ
k (H̄i ∗Hk∗ ∗G(k+1)∗)(x) . (3.9)

Remark 3.3 The convolutions in the sum (3.9) are to be interpreted as

(H̄i ∗Hk∗ ∗G(k+1)∗)(x) =

∫
(0,x]

H̄i(x− u) (Hk∗ ∗G(k+1)∗)(du) .

As usual, also, H0∗ and G0∗ are understood as δ0.

Remark 3.4 The sum

ϑJ(x) =
m∑

k=1

ϑi(x)

gives the overall probability that ruin will be caused by a jump of a subordi-
nator. Taking into account that

∑m
i=1 ρiH̄i = ρH̄ one obtains

ϑJ(x) =
∞∑

k=0

ρk+1(H̄ ∗Hk∗ ∗G(k+1)∗)(x) .

Formula (3.9) can only be of use if the functions G, H and Hi are known

as explicitly as possible. For the distribution of Ŝ(σ−) conditionally on
{σ <∞} note the proposition:

Proposition 3.5 The function G is the distribution function of the variable

sup
t≥0

(−ct− Z(t)) .

It is an infinitely divisible distribution with Laplace exponent∫ ∞

0

e−βy G(dy) =
cβ

cβ + ψZ(β)

where ψZ is the Laplace exponent of Z.

13



See [HPSV], Corollary 4.9. Recall that ϑ(x) = P(X(t) < 0 for some t > 0).

Proposition 3.6 The ruin probability for X is given by the formula

1− ϑ(x) = (1− ρ)
∞∑

k=0

ρk (G(k+1)∗ ∗Hk∗)(x) , x ≥ 0 .

See [HPSV], Proposition 3.6. for a proof. Summarizing we have:

Theorem 3.7 Let X(t) = ct − C(t) + Z(t) be the risk process. Let x ≥ 0.
We have:

(i) The probabilities that ruin will be caused by a jump of the subordinator
Ci are given by

ϑi(x) =
∞∑

k=0

ρi ρ
k (H̄i ∗Hk∗ ∗G(k+1)∗)(x) .

for i = 1, 2, . . . ,m.

(ii) The probability that ruin will occur but will not be caused by a jump of
one of the subordinators equals

ϑ̄(x) =
∞∑

k=0

ρk(Ḡ ∗Hk∗ ∗Gk∗)(x) .

where Ḡ(y) = 1−G(y).

Proof: Part (i) has already been proved. For part (ii) recall the definition
of H̄ from (3.7). Compute

ϑJ(x) + ϑ̄(x) =

=
∞∑

k=0

ρk+1(Hk∗ ∗G(k+1)∗)(x)−
∞∑

k=0

ρk+1(H(k+1)∗ ∗G(k+1)∗)(x) +

+
∞∑

k=0

ρk(Hk∗ ∗Gk∗)(x)−
∞∑

k=0

ρk(Hk∗ ∗G(k+1)∗)(x)

= 1− (1− ρ)
∞∑

k=0

ρk(Hk∗ ∗G(k+1)∗)(x)

= ϑ(x) .
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Here ϑ(x) is the overall ruin probability given in Proposition 3.6. This proves
the assertion. 2

Remark 3.8 Note that the question how the overall supremum Ŝ(∞) will be

attained has not been asked. Because of unbounded variation of X̂ it will not
be achieved by jump of C a.s.

4 Example.

This section contains an explicit example of computations with formulae
from Section 3. In particular, we compute ruin probabilities for processes
perturbed by a multiple of Brownian motion.

Example 4.1 Let W be standard Brownian motion and let ς > 0. Consider
the risk process

X(t) = ct−
m∑

i=1

Ci(t) + ς W (t) .

Let us first compute the distribution G. By Proposition 3.5 this distribution
does not depend on the subordinators. As Z = ςW one has ψZ(β) = ς2β2/2.
Denote γ = 2c/ς2. The Laplace transform of G is given by

LG(β) =
γ

γ + β

so G is an exponential distribution with parameter γ.
Let consider the case when the Ci are compound Poisson processes with

Lévy measures Λi(dx) = µiγ
2e−γx dx. A straightforward computation gives

Hi(dx) = γe−γx dx and H(dx) = γe−γx dx .

Note that H̄i(x) = e−γx. By elementary properties of gamma distributions

(Hk∗ ∗G(k+1)∗)(du) =
γ2k+1

Γ(2k + 1)
u2ke−γu du

15



and hence

ϑi(x) =
∞∑

k=0

ρi ρ
k

∫ x

0

e−γ(x−u) γ2k+1

Γ(2k + 1)
u2ke−γu du

= ρi γe
−γx

∫ x

0

cosh(γ
√
ρ u) du

=
ρi√
ρ
e−γx sinh(γ

√
ρ x) .

The sum C has Lévy measure Λ(dx) = µγ2e−γx dx. The overall probability
that ruin will be caused by a jump of one of the subordinators is given by

ϑJ(x) =
√
ρ e−γx sinh(γ

√
ρ x) .

By a similar computation using Theorem 3.7 (ii),

ϑ̄(x) = e−γx cosh(γ
√
ρ x) .

The overall ruin probability is the sum

ϑ(x) = e−γx[
√
ρ sinh(γ

√
ρ x) + cosh(γ

√
ρ x)] .
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