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Abstract. In this paper we study interior potential-theoretic properties of purely discon-
tinuous Markov processes in proper open subsets D ⊂ Rd. The jump kernels of the processes
may be degenerate at the boundary in the sense that they may vanish or blow up at the
boundary. Under certain natural conditions on the jump kernel, we show that the scale in-
variant Harnack inequality holds for any proper open subset D ⊂ Rd and prove some interior
regularity of harmonic functions. We also prove a Dynkin-type formula and several other
interior results.
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1. Introduction and setting

The goal of this paper is to study interior potential-theoretic properties of purely discontinu-
ous symmetric Markov processes in proper open subsets D ⊂ Rd, d ≥ 1. The main assumption
is that we allow the jump kernels of the processes to be degenerate at the boundary ∂D. This
includes the case when the jump kernels decay to zero at the boundary, as well as the case
when they explode at the boundary. Examples of the former are subordinate killed Lévy
processes in smooth open sets D studied in [23, 24]. An abstract approach to jump kernels
that decay at the boundary is given in [25, Section 3]. Compared with previous works, the
main novelty of this paper is that we also allow the possibility that the jump kernels blow up
at the boundary. An example of such a case is the trace (or path-censored) process in D of
a nice isotropic Lévy process in Rd. In case D is the half-space or an exterior C1,1-open set,
it can be deduced from [4, Theorems 6.1 and 2.6] that if J(x, y) denotes the jump kernel of
the trace process, then limD∋x→z J(x, y) = +∞ for all z ∈ ∂D and y ∈ D. We will explain
this example in much more detail in Subsection 7.1 in the context of resurrected processes. A
comprehensive study of potential-theoretic properties of such processes in the half-space with
a scale-invariant assumption is given in [29], while the connection between these processes and
positive self-similar Markov processes is given in [28].

We now describe our setup more precisely. Let j : (0,∞) → (0,∞] be a Borel function such
that ∫ ∞

0

min(1, r2)j(r)rd−1dr < ∞. (1.1)
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We associate to j an isotropic pure jump Lévy process X = (Xt,Px) in Rd with Lévy measure
j(|x|)dx. We further assume that

j(r) ≍ r−dΨ(r)−1, for all r > 0, (1.2)

where Ψ is an increasing function satisfying the following weak scaling condition: There exist
constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1(R/r)2δ1 ≤ Ψ(R)

Ψ(r)
≤ a2(R/r)2δ2 , 0 < r < R < ∞. (1.3)

Here and throughout the paper, the notation f ≍ g for non-negative functions f and g means
that there exists a constant c ≥ 1 such that c−1g ≤ f ≤ cg. A prototype of such a process
X is the isotropic α-stable process in which case Ψ(r) = rα. This particular case already
contains all the essential features of our results.

Throughout the paper, a ∧ b := min{a, b}, a ∨ b := max{a, b}, and we use δD(x) to denote
the distance between x and the boundary ∂D. Let, also, j(x, y) := j(|x− y|).

For a given proper open subset D of Rd, we will consider a process on D associated with a
pure jump Dirichlet form whose jump kernel has the form

J(x, y) = B(x, y)j(|x− y|). (1.4)

Here B(x, y) may depend on δD(x), δD(y) and |x−y|, and is allowed to vanish at the boundary
or to explode at the boundary. The main concern of this paper is on interior results, so we do
not need to impose any regularity assumption on the boundary ∂D.
We remark here that, when D is bounded, it suffices to assume that the function Ψ satisfies

the property (1.3) for all 0 < r ≤ R ≤ diam(D). Indeed, in this case, Ψ can be extended
to satisfies the property (1.3) for all 0 < r ≤ R < ∞ trivially. Then for any Borel function
j : (0, diam(D)] → (0,∞] such that j(r) ≍ r−dΨ(r)−1 for all 0 < r ≤ diam(D), we extend j
so that (1.1) and (1.2) hold.

Throughout this paper, we will assume that B : D × D → [0,∞) satisfies the following
hypothesis:

(H1) B(x, y) = B(y, x) for all x, y ∈ D.

(H2) For any a ∈ (0, 1) there exists C1 = C1(a) ≥ 1 such that for all x, y ∈ D satisfying
δD(x) ∧ δD(y) ≥ a|x− y|, it holds that

C−1
1 ≤ B(x, y) ≤ C1.

Without loss of generality, we assume that a 7→ C1(a) is decreasing on (0, 1).

(H3) For any a > 0 there exists C2 = C2(a) > 0 such that∫
D,|y−x|>aδD(x)

J(x, y)dy ≤ C2Ψ(δD(x))
−1 . (1.5)

The assumption (H3) states that the tail of the jump measure depends only on the distance
to the boundary of D and Ψ (or j), and clearly provides sufficient integrability of the function
y 7→ J(x, y) away from the point x. We also note that it follows from (H2) that D ∋ x 7→
B(x, x) is bounded between two positive constants.

The assumption (H3) clearly holds when B(x, y) is bounded above by a positive constant,
see (2.4). In Subsection 7.2, we give examples of B(x, y), satisfying (H3), that may explode
at the boundary.

Assumptions (H2)-(H3) are scale invariant. For some of the results their weaker and
non-scale invariant versions will suffice. Therefore we introduce
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(H2-w) For any relatively compact open subset U of D, there exists a constant C3 = C3(U) ≥
1 such that C−1

3 ≤ B(x, y) ≤ C3 for all x, y ∈ U .

(H3-w) For any relatively compact open set U ⊂ D and open set V with U ⊂ V ⊂ D,

sup
x∈U

∫
D\V

J(x, y) dy < ∞. (1.6)

It is easy to deduce that (H2), respectively (H3), implies (H2-w), respectively (H3-w),
see Lemma 2.1.

For functions u, v : D → R, define

ED(u, v) :=
1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))J(x, y) dy dx. (1.7)

Assumptions (H1), (H2-w)-(H3-w) are sufficient to conclude, see Lemma 2.4, that ED(u, v)
is well defined for all u, v ∈ C∞

c (D). By Fatou’s lemma, (ED, C∞
c (D)) is closable in L2(D, dx).

Let FD be the closure of C∞
c (D) under ED

1 := ED + (·, ·)L2(D,dx). Then (ED,FD) is a regular
Dirichlet form on L2(D, dx).

Let κ : D → [0,∞) be a function satisfying

κ(x) ≤ C4
1

Ψ(δD(x))
, x ∈ D , (1.8)

for some constant C4 > 0. Then κ is locally bounded in D. Set

ED,κ(u, v) := ED(u, v) +

∫
D

u(x)v(x)κ(x) dx .

Since κ is locally bounded, the measure κ(x)dx is a positive Radon measure charging no set of

zero capacity. Let FD,κ := F̃D∩L2(D, κ(x)dx), where F̃D is the family of all quasi-continuous
functions on FD. By [18, Theorems 6.1.1 and 6.1.2], (ED,κ,FD,κ) is a regular Dirichlet form
on L2(D, dx) having C∞

c (D) as a special standard core. Let ((Y κ
t )t≥0, (Px)x∈D\N ) be the

associated Hunt process with lifetime ζ, where N is an exceptional set. We add a cemetery
point ∂ to the state space D and define Y κ

t = ∂ for t ≥ ζ. We will write D∂ = D ∪ {∂}. Any
function f on D is automatically extended to D∂ by setting f(∂) = 0. In Section 3, we will
show that we can remove the exceptional set N so the process Y κ can start from every point
in D, see Proposition 3.4.
Our process may not be Feller but the next hypothesis will allow us to establish a Dynkin-

type formula on any relatively compact open set of D, see Theorem 4.8.

(H4) If δ2 ≥ 1/2, then there exists θ > 2δ2 − 1 with the property that for any a > 0 there
exists C5 = C5(a) > 0 such that

|B(x, x)− B(x, y)| ≤ C5

(
|x− y|

δD(x) ∧ δD(y)

)θ

for all x, y ∈ D with δD(x) ∧ δD(y) ≥ a|x− y|.

The final hypothesis ensures that jumping from two points close to each other to a faraway
point is comparable:

(H5) For any ϵ ∈ (0, 1) there exists C6 = C6(ϵ) ≥ 1 with the following property: For all
x0 ∈ D and r > 0 with B(x0, (1 + ϵ)r) ⊂ D, we have

C−1
6 B(x1, z) ≤ B(x2, z) ≤ C6B(x1, z) , for all x1, x2 ∈ B(x0, r), z ∈ D \B(x0, (1 + ϵ)r) .
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An immediate consequence of (H5) is the following: For any ϵ ∈ (0, 1) there exists C7 =
C7(ϵ) ≥ 1 with the property that, for all x0 ∈ D and r > 0 with B(x0, (1 + ϵ)r) ⊂ D, we have

C−1
7 J(x1, z) ≤ J(x2, z) ≤ C7J(x1, z) , for all x1, x2 ∈ B(x0, r), z ∈ D \B(x0, (1 + ϵ)r) .

(1.9)
Indeed, by (H5) we have J(z, x1) = B(z, x1)j(|z−x1|) ≤ C6B(z, x2)j(|z−x1|). Since |x1−z| ≤
|x2 − z| + |x1 − x2| ≤ |x2 − z| + 2r ≤ |x2 − z| + (2/ϵ)|x2 − z| = (1 + 2/ϵ)|x2 − z|, it follows
from (1.3) that j(|z − x1|) ≤ c1j(|z − x2|). This proves (1.9).

We now compare hypotheses (H1)-(H5) with the hypotheses [25, (B1)-(B5)]. The sym-
metry hypothesis (H1) is the same as [25, (B1)]. Also, (H4)-(H5) are precisely [25, (B4)-
(B5)]. The key difference is that here we do not assume that B(x, y) is bounded from above
on D × D by a positive constant which was [25, (B2)]. Instead, we assume (H2) which is
a two-sided version of [25, (B3)]. Finally, (H3), which implies that J(x, y) is sufficiently
integrable, is automatically satisfied under the boundedness condition [25, (B2)].

Recall that a Borel function f defined on D is said to be harmonic in an open set U ⊂ D
with respect to the process Y κ if, for every bounded open set V ⊂ V ⊂ U , it holds that

Ex[|f(Y κ
τV
)|; τV < ∞] < ∞ and f(x) = Ex[f(Y

κ
τV
); τV < ∞], for all x ∈ V,

where τV = inf{t > 0 : Y κ
t /∈ V } is the first exit time from V .

Here are our main results under the scale invariant hypotheses (H1)-(H5). The first one
is the scale invariant Harnack inequality.

Theorem 1.1 (scale invariant Harnack inequality). Suppose D is a proper open subset of Rd

and assume that (H1)-(H5), (1.2)-(1.3) and (1.8) hold.

(a) There exists a constant C8 > 0 such that for any r ∈ (0, 1], B(x0, r) ⊂ D and any
non-negative function f in D which is harmonic in B(x0, r) with respect to Y κ, we
have

f(x) ≤ C8f(y), for all x, y ∈ B(x0, r/2).

(b) There exists a constant C9 > 0 such that for any L > 0, any r ∈ (0, 1], all x1, x2 ∈ D
with |x1 − x2| < Lr and B(x1, r) ∪ B(x2, r) ⊂ D and any non-negative function f in
D which is harmonic in B(x1, r) ∪B(x2, r) with respect to Y κ we have

f(x2) ≤ C9C1(
1

2(L+1)
)Ld+2δ2f(x1) .

The second result is Hölder continuity of bounded harmonic functions.

Theorem 1.2. Suppose D is a proper open subset of Rd and assume that (H1)-(H4), (1.2)-
(1.3) and (1.8) hold. Then there exist C10 > 0 and β > 0 such that for any (r, x0) ∈ (0,∞)×D
with B(x0, 6r) ⊂ D and any bounded function in D which is harmonic in B(x0, r) with respect
to Y κ,

|f(x)− f(y)| ≤ C10∥f∥∞
(
|x− y|

r

)β

, for all x, y ∈ B(x0, r/2).

Study of Harnack inequality and regularity of harmonic functions of general discontinuous
processes started with the paper [2]. There have been many papers on this subject since
then, see [1, 8, 9, 10, 15, 20, 21, 22, 31] and the references therein. Almost all these papers
assume that the jump kernels of the processes are non-degenerate. Some of the exceptions are
[23, 24, 25, 27], where the jump kernels are allowed to decay to zero at the boundary. The
main assumption of this paper is (H3), which, together with (H2), implies an upper bound
on the tail of the jump measure for r < δD(x). A similar condition appeared in [11, Definition
1.5] in the study of law of iterated logarithm for general Markov processes, see also [8] for a
global version of this condition. In our setup, the jump kernel is allowed to be degenerate at
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the boundary of D, including the possibility of decay to 0 or blow up to infinity. The case
of the jump kernel decaying to 0 at the boundary has been studied in [23, 24, 25, 27]. The
possibility of the jump kernel blowing up at the boundary leads to some complications in
proving the results above.

We note that results obtained in this paper, in particular Theorem 1.1, will be used [29].
Organization of the paper: In Section 2 we collect some preliminary results that follow

from (H1) and (H2)-(H3), respectively (H2-w)-(H3-w), which allow the construction of
the process.

In Section 3 we first show that, for any relatively compact open set U ⊂ D, the Dirichlet
forms of the killed processesXU and Y κ,U are comparable. Using this and some pretty involved
analysis, we then show that Y κ,U can be identified with a process which can start from any
point in U . This allows us to remove the exceptional set N , see Proposition 3.4.

Section 4 is devoted to the study of the generator of the process Y κ. In order to handle
the singularity of the jump kernel, we need hypothesis (H4), see the proof of Proposition 4.2.
Different from all previous works, it turns out that, due to the possible blow-up of the jump
kernel at the boundary, the action of the generator on a function compactly supported in D
need not be bounded. This makes the task of proving the Dynkin-type formula (Theorem 4.8)
difficult.

In Section 5 we establish all necessary ingredients for the proof of Harnack’s inequality in-
cluding the exit time estimates from balls (Proposition 5.3) and Krylov-Safonov-type estimate
(Lemma 5.4), and give the proofs of Theorems 1.1 and 1.2. We also give a sketch of the proof
of a non-scale invariant Harnack inequality (Proposition 5.6).

Building up on standard theory and some results from Section 3, we show in Section 6 that,
in the transient case, Y κ has a Green function. We also prove the natural result that if the
killing function κ is strictly positive, then Y κ is transient.

Finally, in Section 7, we give several families of jump kernels satisfying our hypotheses. The
main examples are trace processes and more general resurrection processes given in Subsection
7.1. In Subsection 7.2, we first give examples of jump kernels satisfying our hypotheses, which
may blow up at the boundary, and then we look at the setting of [29, Section 4] in case of the
half-space, and show that all hypotheses are satisfied. This section can be read independently
of the rest of the paper and provides further motivation for studying jump kernels exploding
at the boundary through some concrete examples. Some readers may want to glance through
it before reading the main body of the paper.

Throughout this paper, the positive constants δ1, δ2, θ, a1 and a2 will remain the same.
We will use the following convention: Capital letters Ci, i = 1, 2, . . . will denote constants
in the statements of results and assumptions. The labeling of these constants will remain
the same. Lower case letters ci, i = 1, 2, . . . are used to denote the constants in the proofs
and the labeling of these constants starts anew in each proof. The notation ci = ci(a, b, . . .),
i = 0, 1, 2, . . . indicates constants depending on a, b, . . ..

2. Preliminary results

Throughout this section we assume that (H1) and (1.2)-(1.3) hold. First note that by
(1.2)-(1.3), ∫

|x−y|>a

j(x, y)dy ≤ c1Ψ(a)−1a2δ1
∫
|x−y|>a

|x− y|−d−2δ1dy ≤ c2Ψ(a)−1 (2.1)

and∫
|x−y|<a

|x− y|2j(x, y)dy ≤ c3Ψ(a)−1a2δ2
∫
|x−y|<a

|x− y|−d−2δ2+2dy ≤ c4a
2Ψ(a)−1. (2.2)
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We will use the following notation: For U ⊂ D, dU := diam(U) and δU := dist(U, ∂D).

Lemma 2.1. (a) If (H2) holds, then (H2-w) also holds with C3 = C1

(
δU

dU+δU

)
≥ 1.

(b) If (H3) holds, then (H3-w) also holds.

Proof. (a) Let U be a relatively compact open subset of D. For x, y ∈ U , we have

δD(x) ∧ δD(y) ≥ δU ≥ δU
dU

|x− y| ≥
(

δU
dU + δU

)
|x− y|.

Hence, with a := δU
dU+δU

∈ (0, 1), we get C1(a)
−1 ≤ B(x, y) ≤ C1(a) for all x, y ∈ U .

(b) Let U be a relatively compact open subset of D and V an open set with U ⊂ V ⊂ D.
Let a := dist(U,D \ V )/ supz∈U δD(z). Then for all x ∈ U and y ∈ D \ V , it holds that
|y − x| > dist(U,D \ V ) = a supz∈U δD(z) > aδD(x). Therefore, by (H3), we have that∫

D\V
J(x, y) dy ≤

∫
D,|y−x|>aδD(x)

J(x, y) dy ≤ c1(a)Ψ(δD(x))
−1, x ∈ U,

implying that

sup
x∈U

∫
D\V

J(x, y) dy ≤ c1(a)Ψ(δU)
−1 < ∞.

Hence, (H3-w) holds. 2

Lemma 2.2. Suppose (H2)-(H3) hold. There exists a constant C11 > 0 such that for all
x ∈ D and r ∈ (0, δD(x)], ∫

D, |y−x|>r

J(x, y) dy ≤ C11Ψ(r)−1. (2.3)

Proof. If |y−x| ≤ δD(x)/2, then δD(y) ≥ δD(x)−|y−x| ≥ δ(x)/2 so |y−x| ≤ δD(y)∧δD(x).
Thus, by (H2)-(H3) and (2.1), for r ≤ δD(x),∫

D,|y−x|>r/2

J(x, y) dy ≤
∫
D,|y−x|>δD(x)/2

J(x, y)dy + C1

∫
D,δD(x)/2≥|y−x|>r/2

j(x, y) dy

≤ C2(1/2)Ψ(δD(x))
−1 + C1

∫
|y−x|>r/2

j(x, y) dy

≤ C2(1/2)Ψ(r)−1 + c1Ψ(r)−1 = c2Ψ(r)−1.

2

We note here that if B(x, y) ≤ c1 for all x, y ∈ D, then J(x, y) ≤ c1j(|y − x|), and thus by
(2.1), ∫

|y−x|>aδD(x)

J(x, y)dy ≤ c1

∫
|y−x|>aδD(x)

j(|y − x|)dy ≤ c2(a)Ψ(δD(x))
−1. (2.4)

Therefore, (H3) holds true. This fact was already mentioned in the introduction.

Lemma 2.3. Suppose that (H2-w) and (H3-w) hold.
(a) For any relatively compact open subset U of D,

sup
x∈U

∫
D

(1 ∧ |x− y|2)J(x, y) dy < ∞.

(b) For any compact set K and open set V with K ⊂ V ⊂ D,∫∫
K×K

|x− y|2J(x, y) dy dx < ∞,

∫
K

∫
D\V

J(x, y) dy dx < ∞. (2.5)
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Proof. (a) Let V be a relatively compact open set such that U ⊂ V ⊂ D. By (H3-w), we
only need to check supx∈U

∫
V
(1 ∧ |x− y|2)J(x, y) dy < ∞.

Since V is relatively compact, by (H2-w), B(x, y) ≤ c1 for x, y ∈ V for some c1 = c1(V ).
Therefore, using (2.2), for x ∈ U ,∫

V

(1 ∧ |x− y|2)J(x, y) dy ≤ c1

∫
V

|x− y|2J(x, y) dy ≤ c1

∫
V

|x− y|2j(|x− y|) dy

≤ c1

∫
B(x,dV )

|x− y|2j(|x− y|) dy ≤ c2d
2
VΨ(dV )

−1 < ∞.

(b) Let U be a relatively compact open set such that K ⊂ U ⊂ U ⊂ V ⊂ D. For x, y ∈ K, it
holds that |x− y|2 ≤ (dK ∨ 1)2(1 ∧ |x− y|2). Therefore,∫

K

∫
K

|x− y|2J(x, y) dy dx ≤ (dK ∨ 1)2
∫
K

∫
K

(1 ∧ |x− y|2)J(x, y) dy dx

≤ (dK ∨ 1)2
∫
K

∫
D

(1 ∧ |x− y|2)J(x, y) dy dx

≤ (dK ∨ 1)2|K| sup
x∈U

∫
D

(1 ∧ |x− y|2)J(x, y) dy < ∞,

where the finiteness of the integral follows from part (a). For the second integral in (2.5), let
b := dist(K,D \ V ). Then for x ∈ K, y ∈ D \ V , |x− y| ≥ b ≥ b ∧ 1. Therefore,∫

K

∫
D\V

J(x, y) dy dx ≤ 1

(b ∧ 1)2

∫
K

∫
D\V

(1 ∧ |x− y|2)J(x, y) dy dx

≤ 1

(b ∧ 1)2

∫
K

∫
D

(1 ∧ |x− y|2)J(x, y) dy dx

≤ 1

(b ∧ 1)2
|K| sup

x∈K

∫
D

(1 ∧ |x− y|2)J(x, y) dy < ∞

by part (a). 2

Recall that ED is defined in (1.7). Condition (2.5) is sufficient and necessary for ED(u, u) <
∞ for all u ∈ C∞

c (D), see [18, p.7]. Therefore, under (H1), (H2-w)-(H3-w), ED(u, u) is
finite for all u ∈ C∞

c (D). In particular, (1.7) is well defined for all u, v ∈ C∞
c (D). In fact, we

will need a little bit more.

Lemma 2.4. For all u ∈ C2
c (Rd) and v ∈ C2

c (D),∫
D

∫
D

|(u(x)− u(y))(v(x)− v(y))|J(x, y) dy dx < ∞.

Proof. Let K = supp(v) and V be a relatively compact open subset of D with K ⊂ V ⊂
V ⊂ D. Then ∫

D

∫
D

|(u(x)− u(y))(v(x)− v(y))|J(x, y) dy dx

=

∫
V

∫
V

+

∫
D\V

∫
V

+

∫
V

∫
D\V

+

∫
D\V

∫
D\V

=: I + II + III + IV.

By (2.5), we have

I ≤ ∥∇u∥∞∥∇v∥∞
∫
V

∫
V

|x− y|2J(x, y) dy dx < ∞.
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Next,

II =

∫
D\V

∫
K

|(u(x)− u(y))v(y)|J(x, y) dy dx ≤ 2∥u∥∞∥v∥∞
∫
D\V

∫
K

J(x, y) dy dx < ∞

again by (2.5). The integral III is estimated in the same way as II, while IV = 0. 2

3. Regularization of the process

In this section we will show that, under (H1), (H2-w), (H3-w), (1.2)-(1.3) and the con-
dition that for any relatively compact open set U ,

∥κ|U∥∞ < ∞ , (3.1)

we can remove the exceptional set N and so the process Y κ can start from every point x ∈ D.
For this purpose, we will use an auxiliary process Z on Rd, with jump kernel Jγ defined below.
The process Z can start from every point in Rd. We will first prove a result stating that, for
a relatively compact open subset U of D, the Dirichlet forms of the parts of the processes X
and Y κ on U are comparable. Recall from Section 1 that X is a Lévy process in Rd with Lévy
measure j(|x|)dx, so that its jump kernel is precisely j(x, y).

For a relatively compact open subset U of D, let Y κ,U be the process Y κ killed upon exiting
U , that is, the part of the process Y κ in U . The Dirichlet form of Y κ,U is (ED,κ,FD,κ

U ),

where FD,κ
U = {u ∈ FD,κ : u = 0 q.e. on D \ U}. Here q.e. means that the equality holds

quasi-everywhere, that is, except on a set of capacity zero with respect to Y κ. Let

κU(x) =

∫
D\U

J(x, y) dy and κU(x) = κU(x) + κ(x) , x ∈ U . (3.2)

Then, for u, v ∈ FD,κ
U ,

ED,κ(u, v) =
1

2

∫
U

∫
U

(u(x)− u(y))(v(x)− v(y))J(x, y) dy dx+

∫
U

u(x)v(x)κU(x) dx . (3.3)

Note that it follows from (H3-w) and (3.1) that κU(x) < ∞ for all x ∈ U . Further, since

C∞
c (D) is a special standard core of (ED,κ,FD,κ), C∞

c (U) is a core of (ED,κ,FD,κ
U ).

For u, v : Rd → R, let

Q(u, v) :=
1

2

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))j(|x− y|) dy dx ,

D(Q) := {u ∈ L2(Rd, dx) : Q(u, u) < ∞}.

Then (Q,D(Q)) is the regular Dirichlet form corresponding to X. Let XU denote the part of
the process X in U . The Dirichlet form of XU is (QU ,DU(Q)), where

QU(u, v) =
1

2

∫
U

∫
U

(u(x)− u(y))(v(x)− v(y))j(|x− y|) dy dx+

∫
U

u(x)v(x)κX
U (x) dx, (3.4)

κX
U (x) :=

∫
Rd\U

j(|y − x|) dy, x ∈ U (3.5)

and DU(Q) = {u ∈ D(Q) : u = 0 q.e. on Rd\U}. Here q.e. means, except on a set of capacity
zero with respect to X.

Recall that δU = dist(U, ∂D) and dU = diam(U). By (H2-w), there exists a constant
c1 = c1(U) ≥ 1 such that c−1

1 ≤ B(x, y) ≤ c1 for all x, y ∈ U . We note that if the stronger

(H2) holds, then by Lemma 2.1(i), the constant c1 is equal to C1

(
δU

dU+δU

)
, and thus only
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depends on δU
dU+δU

. This fact that will be important in Lemma 3.2. Together with (1.2), the

boundedness of B(·, ·) on U × U implies that there exist c2 > 0 and c3 > 0 such that

c2
|x− y|dΨ(|x− y|)

≤ J(x, y) ≤ c3
|x− y|dΨ(|x− y|)

, x, y ∈ U . (3.6)

This can be written equivalently as

c−1
4 j(|x− y|) ≤ J(x, y) ≤ c4j(|x− y|) , x, y ∈ U , (3.7)

for some c4 ≥ 1. Let V be the δU/2-neighborhood of U , that is, V := {x ∈ D : dist(x, U) <
δU/2}. Then

κU(x) = κU(x) + κ(x) =

∫
D\V

J(x, y) dy +

∫
V \U

J(x, y) dy + κ(x), x ∈ U. (3.8)

Similarly as above we conclude that c−1
5 j(|x−y|) ≤ J(x, y) ≤ c5j(|x−y|) for all x, y ∈ V with

c5 := c5(U) ≥ 1. If the stronger (H2) holds, then the constant is equal to C1

(
δV

dV +δV

)
=

C1

(
δU

2dU+5δU

)
≤ C1

(
1
5

δU
dU+δU

)
, and thus depends only on δU

dU+δU
. Moreover, by (H3-w),

supx∈U
∫
D\V J(x, y) dy =: c6 < ∞, with c6 = c6(U). By setting c7 := ∥κ|U∥∞, we get

c−1
5

∫
V \U

j(|x− y|) dy ≤ κU(x) ≤ c6 + c5

∫
V \U

j(|x− y|)dy + c7 , x ∈ U .

Since

inf
x∈U

∫
V \U

j(|x− y|) dy ≥ |V \ U |j(diam(V )) =: c8 > 0 ,

we conclude that

c−1
5

∫
V \U

j(|x− y|) dy ≤ κU(x) ≤ c9

∫
V \U

j(|x− y|) dy , x ∈ U .

Further, since

κX
U (x) =

∫
Rd\V

j(|x− y|) dy +
∫
V \U

j(|x− y|) dy , x ∈ U (3.9)

and supx∈U
∫
Rd\V j(|x− y|) dy =: c10 < ∞, we see that there is a constant c11 > 0 such that∫

V \U
j(|x− y|) dy ≤ κX

U (x) ≤ c11

∫
V \U

j(|x− y|) dy , x ∈ U .

It follows that

c−1
9 κU(x) ≤ κX

U (x) ≤ c11c5κU(x), (3.10)

with constants c5, c9 and c11 depending on U .

Let CapY κ,U

and CapXU

denote the capacities with respect to the killed processes Y κ,U , and
XU respectively.

Lemma 3.1. Assume that (H1), (H2-w), (H3-w), (1.2)-(1.3) and (3.1) hold. Let U be a
relatively compact open subset of D. (a) There exists a constant C12 = C12(U) ≥ 1 such that

C−1
12 ED,κ(u, u) ≤ Q(u, u) ≤ C12ED,κ(u, u) for all u ∈ C∞

c (U). (3.11)

(b) For any Borel A ⊂ U ,

C−1
12 Cap

Y κ,U

(A) ≤ CapXU

(A) ≤ C12Cap
Y κ,U

(A), (3.12)

where C12 is the constant from part (a).
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Proof. (a) This follows immediately from (3.3), (3.4), (3.7) and (3.10).

(b) Since C∞
c (U) is a core for both (QU ,DU(Q)) and (ED,κ,FD,κ

U ) by using the definition of
capacity as in [18, 2.1], the claim follows from part (a). 2

Lemma 3.2. Assume that (H2)-(H3), (1.2)-(1.3) and (1.8) hold. Let U be a relatively
compact open subset of D. Then the constant C12 in Lemma 3.1 depends only on δU

dU+δU
and

is decreasing in δU
dU+δU

.

Proof. Let V be the δU/2-neighborhood of U . Recall that by (H2), Lemma 2.1(a) and (1.2),
we have with c1 > 1, depending on U only through δU

dU+δU
and being a decreasing function of

δU
dU+δU

, so that

c−1
1

|x− y|dΨ(|x− y|)
≤ J(x, y) ≤ c1

|x− y|dΨ(|x− y|)
, x, y ∈ V. (3.13)

By Lemma 2.2, for all x ∈ U ,∫
D\V

J(x, y) dy ≤
∫
D, |y−x|>δU/2

J(x, y) dy ≤ C11

Ψ(δU)
.

Using (1.8) and the fact that Ψ(δD(x)) ≥ Ψ(δU) for x ∈ U , we get

c−1
1

∫
V \U

j(|x− y|) dy ≤ κU(x) ≤
C11

Ψ(δU)
+ c1

∫
V \U

j(|x− y|)dy + C4

Ψ(δU)
, x ∈ U .

If x ∈ U and y ∈ V , then |x− y| ≤ dU + δU , hence j(|x− y|) ≥ j(dU + δU). Moreover, we can
find a point z so that B(z, δU/4) ⊂ V \ U , to obtain that

inf
x∈U

∫
V \U

j(|x− y|) dy ≥ |B(z, (δU/4)|j(dU + δU) ≥ c2
δdU

(dU + δU)dΨ(dU + δU)
,

where c2 is independent of x and U . Thus,

c−1
1

∫
V \U

j(|x− y|) dy ≤ κU(x) ≤ (c1 + c3
(dU + δU)

dΨ(dU + δU)

δdUΨ(δU)
)

∫
V \U

j(|x− y|)dy , x ∈ U ,

with c3 = (C11 + C4)/c2.
Recall that

κX
U (x) =

∫
Rd\V

j(|x− y|) dy +
∫
V \U

j(|x− y|) dy , x ∈ U.

Since Rd \ V ⊂ Rd \B(x, δU/2) for x ∈ U , by (2.1) we have∫
Rd\V

j(|x− y|) dy ≤
∫
Rd\B(x,δU/2)

j(|x− y|) dy ≤ c4Ψ(δU)
−1

for some c4 independent of x and U . Thus∫
V \U

j(|x− y|) dy ≤ κX
U (x) ≤ (1 + c5

(dU + δU)
dΨ(dU + δU)

δdUΨ(δU)
)

∫
V \U

j(|x− y|) dy , x ∈ U ,

with c5 = c4/c2. It follows that

(c1 + c3
(dU + δU)

dΨ(dU + δU)

δdUΨ(δU)
)−1κU(x) ≤ κX

U (x) ≤ c1(1 + c5
(dU + δU)

dΨ(dU + δU)

δdUΨ(δU)
)κU(x),
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where c1 depends on U only through δU
dU+δU

and is a decreasing function of δU
dU+δU

, and c3 and

c5 are independent of U . This and (1.3) imply that

c−1
6 κU(x) ≤ κX

U (x) ≤ c6κU(x), (3.14)

where c6 depends on U only through δU
dU+δU

and is a decreasing function of δU
dU+δU

. Using (3.3),

(3.4) and (3.13), the statement of the lemma follows from (3.14) in the same way as in the
proof of Lemma 3.1. 2

In the remainder of this section we assume that (H1), (H2-w), (H3-w), (1.2)-(1.3) and
(3.1) hold.

Lemma 3.3. Let U be a relatively compact open subset of D. The process Y κ,U can be refined
to start from every point in U . Moreover, it is strongly Feller.

Proof. Define a kernel Jγ(x, y) on Rd ×Rd by Jγ(x, y) = J(x, y) for x, y ∈ U , and Jγ(x, y) =
γj(|x − y|) otherwise, where γ > 0 is a positive constant to be chosen later. Using Jγ, we
define

C(u, u) := 1

2

∫
Rd

∫
Rd

(u(x)− u(y))2Jγ(x, y) dx dy and D(C) := {u ∈ L2(Rd) : C(u, u) < ∞} .

Note that C∞
c (Rd) is a special standard core of D(C). By (1.2) and (3.6), Jγ(x, y) ≍

1
|x−y|dΨ(|x−y|) for all x, y ∈ Rd . It is now straightforward to check that all the conditions

of [7, Theorem 1.2] (as well as the geometric condition of [7]) are satisfied. Let

q̃(t, x, y) := Ψ(t)−d ∧ t

|x− y|dΨ(|x− y|)
, t > 0, x, y ∈ Rd.

It follows from [7] that there exists a conservative Feller and strongly Feller process Z asso-
ciated with (C,D(C)) that can start from every point in Rd. Moreover, the process Z has
a continuous transition density p(t, x, y) on (0,∞) × Rd × Rd (with respect to the Lebesgue
measure) which satisfies the following estimates: There exists c1 ≥ 1 such that

c−1
1 q̃(t, x, y) ≤ p(t, x, y) ≤ c1q̃(t, x, y) , t > 0, x, y ∈ Rd .

Denote the part of the process Z killed upon exiting U by ZU . Then the Dirichlet form of
ZU is (C,DU(C)) where DU(C) = {u ∈ D(C) : u = 0 q.e. on Rd \ U}. By [5, Theorem 3.3.9],
C∞

c (U) is a core of (C,DU(C)). By the definition of Jγ, we have that for u, v ∈ DU(C),

C(u, v) =
1

2

∫
U

∫
U

(u(x)− u(y))(v(x)− v(y))Jγ(x, y) dy dx+

∫
U

u(x)v(x)κZ
U(x) dx

=
1

2

∫
U

∫
U

(u(x)− u(y))(v(x)− v(y))J(x, y) dy dx+

∫
U

u(x)v(x)κZ
U(x) dx

with

κZ
U(x) =

∫
Rd\U

Jγ(x, y) dy = γ

∫
Rd\U

j(|x− y|) dy = γκX
U (x) , x ∈ U . (3.15)

It follows from (3.10) that c2κU(x) ≤ γ−1κZ
U(x) ≤ c3κU(x) for all x ∈ U with positive

constants c2 and c3 independent of γ. Let γ = 1/c3 and fix it. Then with c4 := γc2 we see
that

c4κU(x) ≤ κZ
U(x) ≤ κU(x) , x ∈ U . (3.16)

It follows that for u ∈ C∞
c (U),

ED,κ
1 (u, u) = ED,κ(u, u) +

∫
U

u(x)2 dx
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=
1

2

∫
U

∫
U

(u(x)− u(y))2J(x, y) dy dx+

∫
U

u(x)2κU(x) dx+

∫
U

u(x)2dx

≍ 1

2

∫
U

∫
U

(u(x)− u(y))2Jγ(x, y) dy dx+

∫
U

u(x)2κZ
U(x) dx+

∫
U

u(x)2dx

= C(u, u) +
∫
U

u(x)2dx = C1(u, u) .

Since C∞
c (U) is a core of both (ED,κ),FD,κ

U ) and (C,DU(C)), we conclude that FD,κ
U = DU(C).

We now define κ̃ : U → R by

κ̃(x) := κU(x)− κZ
U(x), x ∈ U. (3.17)

By the choice of γ we have that κ̃ ≥ 0. Note that, by (2.1) there exists c5 > 0 such that

κZ
U(x) = γ

∫
Rd\U

j(|x− y|) dy ≤ γ

∫
Rd\B(x,δU (x))

j(|x− y|) dy ≤ c5
1

Ψ(δU(x))
, x ∈ U.

Hence it follows from (3.16) that

κU(x) ≤ c−1
4 κZ

U(x) ≤
c−1
4 c5

Ψ(δU(x))
, x ∈ U. (3.18)

Let µ(dx) = κ̃(x) dx be a measure on U . For t > 0 and a ≥ 0, define

NU,µ
a (t) := sup

x∈Rd

∫ t

0

∫
z∈U :δU (z)>aΨ−1(t)

q̃(s, x, z)µ(dz) ds .

By the definition of q̃ and (3.18) one can check that supt<1N
U,µ
a (t) < ∞ and limt→0N

V,µ
0 (t) = 0

for any relatively compact open set V ⊂ U , that is, µ ∈ K1(U) in the notation of [12, Definition
2.12].

Let At :=
∫ t

0
κ̃(ZU

s ) ds. Then (At)t≥0 is a positive continuous additive functional of ZU

in the strict sense (i.e. without an exceptional set) with Revuz measure κ̃(x)dx. For any
non-negative Borel function f on U , let

TU,κ̃
t f(x) := Ex[exp(−At)f(Z

U
t )] , t > 0, x ∈ U ,

be the Feynman-Kac semigroup of ZU associated with κ̃(x)dx. By [12, Proposition 2.14], the

Hunt process ZU,κ̃ on U corresponding to the transition semigroup (TU,κ̃
t )t≥0 has a transition

density qU(t, x, y) (with respect to the Lebesgue measure) such that qU(t, x, y) ≤ c17q̃(t, x, y)
for t < 1. Further, (t, y) 7→ qU(t, x, y) is continuous for each x ∈ U .

According to [18, Theorem 6.1.2], the Dirichlet form CU,κ̃ corresponding to TU,κ̃
t is regular

and is given by

CU,κ̃(u, v) =
1

2

∫
U

∫
U

(u(x)− u(y))(v(x)− v(y))J(x, y)dydx+

∫
U

u(x)v(x)κU(x) dx

with the domainDκ̃
U = DU(C)∩L2(U, κ̃(x)dx) . Since (CU,κ̃,Dκ̃

U) is regular, the setDκ̃
U∩Cc(U) =

DU(C) ∩ Cc(U) is its core. By comparing with (3.3) we see that

ED,κ(u, v) = CU,κ̃(u, v) , u, v ∈ C∞
c (U) .

Now we show that the Dirichlet spaces (ED,κ,FD,κ
U ) and (CU,κ̃,Dκ̃

U) are equal. We know that
C∞

c (U) is a core for ED,κ. One can easily check that this is also true for CU,κ̃. Further,
C∞

c (U) ⊂ Cc(U)∩{u ∈ L2(U, dx) : CU(u, u) < ∞} (which is a core). Clearly, C∞
c (U) is dense

in Cc(U) with uniform norm. It is easy to see that C∞
c (U) is dense in Cc(U)∩{u ∈ L2(U, dx) :

CU(u, u) < ∞} with CU,κU
1 norm. Thus the process ZU,κ̃ coincides with Y κ,U . 2
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Proposition 3.4. The process Y κ can be refined to start from every point in D.

Proof. Using Lemma 3.3, the proof is the same as that of [25, Proposition 3.2]. 2

4. Analysis of the generator

In this section we assume that (H1)-(H4) and (1.2)-(1.3) and (1.8) hold. Let

C2
c (D;Rd) = {f : D → R : there exists u ∈ C2

c (Rd) such that u = f on D}
be the space of functions on D that are restrictions of C2

c (Rd) functions. Clearly, if f ∈
C2

c (D;Rd), then f ∈ C2
b (D) ∩ L2(D).

For ϵ > 0, let

LB
ϵ f(x) :=

∫
D,|y−x|>ϵ

(f(y)− f(x))J(x, y) dy − κ(x)f(x).

We introduce the operator

LBf(x) := p.v.

∫
D

(f(y)− f(x))J(x, y) dy − κ(x)f(x) = lim
ϵ↓0

LB
ϵ f(x) , x ∈ D , (4.1)

defined for all functions f : D → R for which the principal value integral makes sense. We
will show that this is the case when f ∈ C2

c (D;Rd). We start with the following result.

Lemma 4.1. There exists a constant C13 > 0 such that for any bounded Lipschitz function f
with Lipschitz constant L, any x ∈ D and any r ∈ (0, δD(x)],∫

D

|f(y)− f(x)| j(|y − x|)|B(x, x)− B(x, y)| dy ≤ C13Ψ(r)−1
(
∥f∥∞ + rL

)
. (4.2)

Proof. First note that∫
D

|f(y)− f(x)| j(|y − x|)|B(x, x)− B(x, y)| dy

≤
∫
D,|y−x|<r/2

|f(y)− f(x)| j(|y − x|)|B(x, x)− B(x, y)| dy

+ B(x, x)
∫
D,|y−x|≥r/2

|f(y)− f(x)| j(|y − x|) dy +
∫
D,|y−x|≥r/2

|f(y)− f(x)| j(|y − x|)B(x, y) dy

=: I1 + I2 + I3.

It follows from δD(x) ≥ r that, if |y − x| < r/2, then δD(y) > r/2 and thus δD(y) ∧ δD(x) >
r/2 > |y − x|. Hence, when δ2 ≥ 1/2, by (H4), (1.2) and (1.3),

I1 ≤ C5L

∫
D,|y−x|<r/2

|x− y|j(|x− y|)
(

|x− y|
δD(x) ∧ δD(y)

)θ

dy

≤ c1Lr
−θ

∫
|y−x|<r/2

|y − x|1+θ|y − x|−dΨ(|y − x|)−1 dy

≤ c2Lr
−θ 1

Ψ(r)

∫ r/2

0

sθΨ(r)

Ψ(s)
ds

≤ a2c2Lr
−θ r2δ2

Ψ(r)

∫ r/2

0

sθ−2δ2 ds ≤ c3LrΨ(r)−1 .

When δ2 < 1/2 by (H2), (1.2) and (1.3),

I1 ≤ 2C1L

∫
D,|y−x|<r/2

|x− y|j(|x− y|) dy
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≤ c4L

∫
|y−x|<r/2

|y − x|−d+1Ψ(|y − x|)−1 dy ≤ c5L
1

Ψ(r)

∫ r/2

0

Ψ(r)

Ψ(s)
ds

≤ a2c5L
r2δ2

Ψ(r)

∫ r/2

0

s−2δ2 ds ≤ c6LrΨ(r)−1 .

Next,

I2 ≤ 2∥f∥∞B(x, x)
∫
|y−x|>r

j(|x− y|) dy ≤ c7∥f∥∞
∫ ∞

r/2

td−1j(t) dt ≤ c8∥f∥∞Ψ(r)−1 .

Finally, by Lemma 2.2

I3 =

∫
D,|y−x|≥r/2

|f(y)− f(x)| J(x, y) dy ≤ 2∥f∥∞
∫
D,|y−x|≥r/2

J(x, y) dy ≤ c9∥f∥∞Ψ(r)−1 .

Combining the estimates for I1, I2 and I3 we get (4.2). 2

For notational convenience, we use LB
0 f(x) = LBf(x) below.

Proposition 4.2. (a) If f ∈ C2
c (D;Rd), then LBf is well defined for all x ∈ D and r > 0.

For 0 ≤ ϵ ≤ r ∧ (δD(x)/2), it holds that

LB
ϵ f(x) = B(x, x)

∫
y∈Rd, |x−y|≥ϵ

(u(y)− u(x)−∇u(x)1{|y−x|<r} · (y − x))j(|x− y|)dy

+B(x, x)
∫
Rd\D

(u(x)− u(y))j(|x− y|)dy

+

∫
y∈D, |x−y|≥ϵ

(u(y)− u(x))j(|x− y|)(B(y, x)− B(x, x))dy − κ(x)u(x), (4.3)

where u ∈ C2
c (Rd) is any function such that u = f on D.

(b) There exists a constant C14 > 0 such that for any f ∈ C2
c (D;Rd), any x ∈ D and any

r ∈ (0, δD(x)] we have

sup
0≤ϵ≤r∧(δD(x)/2)

|LB
ϵ f(x)| ≤ C14

(
r2∥∂2u∥∞ + r∥∇u∥∞ + ∥u∥∞

)
Ψ(r)−1 (4.4)

where u ∈ C2
c (Rd) is any function such that u = f on D.

(c) There exists C15 > 0 such that for any f ∈ C2
c (D;Rd), any open U ⊂ D and any 0 < r ≤

δU/2,

sup
0≤ϵ≤r

∥(LB
ϵ f)|U∥∞ ≤ C15

(
r2∥∂2u∥∞ + r∥∇u∥∞ + ∥u∥∞

)
Ψ(r)−1 , (4.5)

where u ∈ C2
c (Rd) is any function such that u = f on D.

Remark 4.3. We note that the value of the right-hand side of (4.3) does not depend on the
choice of u ∈ C2

c (Rd) such that u = f on D. This will be seen from the proof below. On
the other hand, the quantities ∥∂2u∥∞, ∥∇u∥∞, ∥u∥∞ on the right-hand sides in (4.4)–(4.5)
depend on the choice of u, but this is inconsequential for our purpose.

Proof of Proposition 4.2: (a) Using Lemma 4.1, the proof is the same as that of [25,
Proposition 3.4(a)].

We give the proof for reader’s convenience. Let u ∈ C2
c (Rd) be such that u = f on D. Fix

x ∈ D and let ϵ < r ∧ (δD(x)/2). Then∫
D, |x−y|>ϵ

(f(y)− f(x))j(|x− y|)B(x, y)dy
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= B(x, x)
∫
D, |x−y|>ϵ

(u(y)− u(x))j(|x− y|)dy

+

∫
D, |x−y|>ϵ

(u(y)− u(x))j(|x− y|)(B(x, y)− B(x, x))dy

= B(x, x)
∫
|x−y|>ϵ

(u(y)− u(x))j(|x− y|)dy + B(x, x)
∫
Rd\D, |x−y|>ϵ

(u(x)− u(y))j(|x− y|)dy

+

∫
D, |x−y|>ϵ

(u(y)− u(x))j(|x− y|)(B(x, y)− B(x, x))dy

= B(x, x)
∫
|x−y|>ϵ

(u(y)− u(x)−∇u(x)1{|y−x|<r} · (y − x))j(|x− y|)dy

+ B(x, x)
∫
Rd\D, |x−y|>ϵ

(u(x)− u(y))j(|x− y|)dy

+

∫
D, |x−y|>ϵ

(u(y)− u(x))j(|x− y|)(B(y, x)− B(x, x))dy. (4.6)

In the last integral above, we have used (H1). By subtracting κ(x)u(x), we see that (4.3)
holds true, and that the right-hand side of the equality does not depend on the particular
choice of the function u. By letting ϵ → 0 in (4.6) and using Lemma 4.1 (with r there being
δD(x)) for the third integral, we see that LBf is well defined.
(b) Let u ∈ C2

c (Rd) be any function such that u = f on D. Fix x ∈ D and let r ∈ (0, δD(x)]
and 0 ≤ ϵ ≤ r ∧ (δD(x)/2). Then by part (a),

LB
ϵ f(x) = B(x, x)

∫
y∈Rd, |x−y|≥ϵ

(
u(y)− u(x)−∇u(x)1|y−x|<r · (y − x)

)
j(|y − x|) dy

+ B(x, x)
∫
Rd\D

(u(x)− u(y))j(|y − z|) dy

+

∫
y∈D, |x−y|≥ϵ

(f(y)− f(x))j(|y − x|)(B(y, x)− B(x, x)) dy − κ(x)f(x)

=: Iϵ + II + IIIϵ + IV .

For Iϵ, we use∣∣u(y)− u(x)−∇u(x)1|y−x|<r · (y − x)
∣∣ ≤ ∥∂2u∥∞|y − x|21|y−x|≤r + 2∥u∥∞1|y−z|≥r

to get

sup
0≤ϵ≤r∧(δD(x)/2)

|Iϵ| ≤ B(x, x)
∫
Rd

(
∥∂2u∥∞|y − x|21|y−x|≤r + 2∥u∥∞1|y−x|≥r

)
j(|y − x|) dy

≤ c1

(
∥∂2u∥∞

∫ r

0

td−1t2t−dΨ(t)−1 dt+

∫ ∞

r

2∥u∥∞td−1t−dΨ(t)−1 dt

)
≤ c2(∥∂2u∥∞r2 + 2∥u∥∞)Ψ(r)−1 .

For II we use δD(x) ≥ r to get

|II| ≤ 2B(x, x)∥u∥∞
∫
B(x,δD(x))

j(|y − x|) dy ≤ c3∥u∥∞Ψ(δD(x))
−1 ≤ c3∥u∥∞Ψ(r)−1 .

sup0≤ϵ≤r∧(δD(x)/2) |IIIϵ| is estimated in Lemma 4.1 (with L = ∥∇u∥∞), while for IV we use
(1.8) to get

|IV | ≤ C1∥f∥∞Ψ(δD(x))
−1 ≤ C1∥f∥∞Ψ(r)−1 .
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(c) Recall that r ≤ δD(x) for x ∈ U . Thus, using (4.4),

sup
0≤ϵ≤r

∥(LB
ϵ f)|U∥∞ ≤ c4

(
r2∥∂2u∥∞ + r∥∇u∥∞ + ∥u∥∞

)
Ψ(r)−1.

2

Corollary 4.4. Let (A,D(A)) be the L2-generator of the semigroup corresponding to ED,κ.
Then C2

c (D;Rd) ⊂ D(A) and A|C2
c (D;Rd) = LB|C2

c (D;Rd).

Proof. Since κ is locally bounded, it suffices to show that, for u ∈ C2
c (D;Rd) and v ∈ C2

c (D),∫
D

∫
D

(u(y)− u(x))(v(y)− v(x))J(x, y)(x, y) dy dx = 2

∫
D

(
LBu(x)− κ(x)u(x)

)
v(x) dx.

(4.7)

By Lemma 2.4, the left-hand side is well defined and absolutely integrable. Hence by the
dominated convergence theorem and the symmetry of B,∫

D

∫
D

(u(y)− u(x))(v(y)− v(x))j(|x− y|)B(x, y)dydx

= lim
ϵ↓0

∫
D

∫
y∈D:|x−y|>ϵ

(u(y)− u(x))(v(y)− v(x))j(|x− y|)B(x, y)dydx

= 2 lim
ϵ↓0

∫
D

∫
y∈D:|x−y|>ϵ

(u(y)− u(x))j(|x− y|)B(x, y)dy v(x)dx

= 2 lim
ϵ↓0

∫
supp(v)

∫
y∈D:|x−y|>ϵ

(u(y)− u(x))j(|x− y|)B(x, y)dy v(x)dx. (4.8)

Let ϵ < ϵ0 := dist(∂D, supp(v))/2. It follows from Proposition 4.2 (c) (by taking U = supp(v))
that

sup
x∈supp(v),ϵ<ϵ0

∣∣∣∣∫
y∈D:|x−y|>ϵ

(u(y)− u(x))j(|x− y|)B(x, y)dy
∣∣∣∣

≤ c1
(
ϵ20∥∂2u∥∞ + ϵ0∥∇u∥∞ + ∥u∥∞

)
Ψ(ϵ0)

−1.

Since the right-hand side is finite, we can use the dominated convergence theorem to conclude
that (4.7) holds. 2

Corollary 4.4 says that LB is the extended generator of the semigroup (Tt)t≥0 corresponding
to ED,κ.

Let U be an open set with U ⊂ U ⊂ D. Recall that κU and κU = κ + κU are defined in
(3.2). Consider now the process Y κ,U . Denote LB

Uu := LB,Uu− κU(·)u, where

LB,Uu(z) := p.v.

∫
U

(u(y)− u(z))J(y, z) dy − κ(z)u(z) , u ∈ U.

Since κU = κ+ κU , we can write

LB
Uu(z) = p.v.

∫
U

(u(y)− u(z))J(y, z) dy − κU(z)u(z) , u ∈ U .

Corollary 4.5. Let U be an open subset of D and let (A,D(A)) be the L2-generator of the
semigroup (Tt)t≥0 of Y κ,U . Then C2

c (U) ⊂ D(A) and A|C2
c (U) = (LB

U)|C2
c (U) = LB

|C2
c (U).
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Proof. If u ∈ C2
c (U), then for z ∈ U ,

LBu(z) = lim
ϵ→0

∫
D,|y−z|<ϵ

(u(y)− u(z))J(y, z)dy − κ(z)u(z)

= lim
ϵ→0

∫
U,|y−z|<ϵ

(u(y)− u(z))J(y, z)dy + lim
ϵ→0

∫
D\U,|y−z|<ϵ

(u(y)− u(z))J(y, z)dy − κ(z)u(z)

= LB,Uu(z)− κU(z)u(z)− κ(z)u(z) = LB
Uu(z) .

Thus, the corollary follows from Corollary 4.4 and its proof. 2

The goal of the remainder of this section is to prove a Dynkin-type formula (Theorem 4.8),
which will be used in [29].

Recall that, for an open set U ⊂ D, τU = τY
κ

U = inf{t > 0 : Y κ
t /∈ U}.

Lemma 4.6. Suppose that U is an open set with U ⊂ U ⊂ D. For any u ∈ C2
c (D) and any

x ∈ U ,

Mu
t := u(Y κ,U

t )− u(Y κ,U
0 )−

∫ t

0

LBu(Y κ,U
s ) ds (4.9)

is a Px-martingale with respect to the filtration of Y κ,U .

Proof. We first assume that u ∈ C2
c (U) and we follow the proof of [19, Lemma 2.2]. Let

(A,D(A)) be the L2-generator of the semigroup (Tt)t≥0 of Y κ,U . By Corollary 4.5, C2
c (U) ⊂

D(A) and A|C2
c (U) = (LB

U)|C2
c (U) = LB

|C2
c (U). Since ∥(Ttf − f)−

∫ t

0
TsAfds∥L2(U) = 0,

Ttu(x)− u(x) =

∫ t

0

TsL
Bu(x) ds a.e. x ∈ U . (4.10)

Let gt(x) :=
∫ t

0
TsL

Bu(x) ds, x ∈ U . Note that LBu is bounded in U by Proposition 4.2 (c).
Thus, |gt(x)| ≤ t||(LBu)|U ||∞ < ∞ for all x ∈ U . Since Y κ,U is strongly Feller by Lemma 3.3,,
we have Tϵgt−ϵ ∈ Cb(U) for all ϵ ∈ (0, t). Moreover,

|gt(x)− Tϵgt−ϵ(x)| = |gϵ(x)| ≤ ϵ||(LBu)|U ||∞, for all x ∈ U.

Hence, gt is continuous and (4.10) holds for any x ∈ U . Using this and the Markov property,
we get the desired conclusion for u ∈ C2

c (U).
In general, when u ∈ C2

c (D), let V be a compact open subset ofD such that supp(u)∪U ⊂ V .
By the conclusion above, we have that for any u ∈ C2

c (D) and any x ∈ U ,

u(Y κ,V
t )− u(Y κ,V

0 )−
∫ t

0

LBu(Y κ,V
s ) ds = u(Y κ

t )1t<τV − u(Y κ
0 )−

∫ t∧τV

0

LBu(Y κ
s )ds

is a Px-martingale with respect to the filtration of Y κ. Since τU ≤ τV , by the optional stopping
theorem we get the desired conclusion for u ∈ C2

c (D). 2

Proposition 4.7. Suppose that U is an open set with U ⊂ U ⊂ D. For any u ∈ C2
c (D) and

any x ∈ U ,

Mu
t = u(Y κ

t )1t<τU − u(Y κ
0 )−

∫ t∧τU

0

LBu(Y κ
s )ds (4.11)

is a Px-martingale with respect to the filtration of Y κ.

Proof. Note that LBu(Y κ
s )1s<τU∧ζ = LBu(Y κ

s )1s<τU and that u(Y κ,U
t ) = u(Y κ

t )1t<τU . Thus
we can rewrite (4.9) as (4.11). 2

For any x ∈ D and Borel subset A of D∂, we define N(x,A) =
∫
A∩D J(x, y)dy+ κ(x)1A(∂).

Then it is known that (N, t) is a Lévy system for Y κ (cf. [18, Theorem 5.3.1] and the argument
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in [6, p.40]), that is, for any non-negative Borel function f onD×D∂ vanishing on the diagonal
and any stopping time T ,

Ex

∑
s≤T

f(Y κ
s−, Y

κ
s ) = Ex

(∫ T

0

∫
D∂

f(Y κ
s , y)N(Y κ

s , dy)ds

)
, x ∈ D. (4.12)

We are now ready to establish the following Dynkin-type theorem.

Theorem 4.8. Suppose that U is an open set with U ⊂ U ⊂ D. For any non-negative
function u defined on D satisfying u ∈ C2(U) and any x ∈ U ,

Ex[u(Y
κ
τU
)] = u(x) + Ex

∫ τU

0

LBu(Y κ
s )ds . (4.13)

Proof. For any non-negative function u on D satisfying u ∈ C2(U), choose an open set V of
D and f ∈ C2

c (D) such that U ⊂ U ⊂ V ⊂ V ⊂ D, and f = u on V and f ≤ u on D. Let
h := u− f so that u = h+ f , h ≥ 0, and h = 0 on V . Since f ∈ C2

c (D), by Proposition 4.7,

Ex[f(Y
κ
t )1t<τU ] = f(x) + Ex

∫ t∧τU

0

LBf(Y κ
s )ds .

Proposition 4.2(c) implies that ||(LBf)U ||∞ < ∞. Thus, by letting t → ∞,

Ex[f(Y
κ
τU
)] = f(x) + Ex

∫ τU

0

LBf(Y κ
s )ds . (4.14)

On the other hand, since h = 0 on V , for y ∈ U ,

LBh(y) = p.v.

∫
D

(h(z)− h(y))J(y, z) dz − κ(y)h(y) =

∫
D\V

h(z)J(y, z)dz.

Thus, by the Lévy system formula (4.12)

Ex[h(Y
κ
τU
)] = Ex[h(Y

κ
τU
) : Y κ

τU
∈ D \ V ]

= Ex

∫ τU

0

∫
D\V

h(z)J(Y κ
s , z)dz = Ex

∫ τU

0

LBh(Y κ
s )ds . (4.15)

Adding (4.14) and (4.15), we get (4.13). 2

5. Harnack inequality and Hölder continuity of Harmonic functions

In this section we assume that (H1)-(H4), (1.2)-(1.3) and (1.8) hold.

Lemma 5.1. There exists a constant C16 > 0 such that for all x ∈ D and r > 0 with
B(x, 2r) ⊂ D,

Px(τB(x,r) < t ∧ ζ) ≤ C16t Ψ(r)−1 .

Proof. Let x ∈ D and r > 0 be such that B(x, 2r) ⊂ D. Let f : Rd → [−1, 0] be a C2 function
such that f(z) = −1 for |z| ≤ 1/2, f(y) = 0 for |z| ≥ 1 and that ∥∇f∥∞+∥∂2f∥∞ =: c1 < ∞.
Define

fr(y) := f

(
y − x

r

)
.

Then fr ∈ C2
c (D), fr(y) = −1 for y ∈ B(x, r/2) and fr(y) = 0 for y ∈ D \B(x, r). By (4.11),

fr(Y
κ
t )1t<τB(x,r)

− fr(Y
κ
0 )−

∫ t∧τB(x,r)

0

LBfr(Y
κ
s ) ds
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is a Py-martingale for every y ∈ B(x, 2r). Hence,

Px

(
τB(x,r) < t ∧ ζ

)
= Px

(
|Y κ

τB(x,r)∧t − x| ≥ r, τB(x,r) ∧ t < ζ
)

= Ex

[
1 + fr(Y

κ
τB(x,r)∧t), |Y

κ
τB(x,r)∧t − x| ≥ r, τB(x,r) ∧ t < ζ

]
≤ Ex

[
1 + fr(Y

κ
τB(x,r)∧t)

]
= −fr(x) + Ex

[
fr(Y

κ
τB(x,r)∧t)

]
= Ex

[∫ τB(x,r)∧t

0

LBfr(Y
κ
s ) ds

]
≤ ∥(LBfr)|B(x,r)∥∞ Ex[τB(x,r) ∧ t] ≤ t∥(LBfr)|B(x,r)∥∞ . (5.1)

The first inequality follows because 1 + fr ≥ 0. Note that here fr(Y
κ
τB(x,r)∧t) makes sense

regardless whether τB(x,r) ∧ t < ζ or not (by definition fr(∂) = 0). Since ∥fr∥∞ + r∥∇fr∥∞ +
r2∥∂2fr∥∞ = 1 + c1, applying Proposition 4.2 (c), we get the desired conclusion. 2

Lemma 5.2. For all x ∈ D and all r > 0 with B(x, 2r) ⊂ D, it holds that Px(τB(x,r) = ζ <
t) ≤ C4Ψ(r)−1t.

Proof. By the Lévy system formula,

Px(τB(x,r) = ζ < t) = Ex

∑
s<t

1B(x,r)×{∂}(Y
κ
s−, Y

κ
s ) = Ex

∫ t

0

1B(x,r)(Y
κ
s )κ(Y

κ
s )ds.

Since κ(y) ≤ C4/Ψ(δD(y)) ≤ C4/Ψ(r) for y ∈ B(x, r) by (1.8), we immediately get Px(τB(x,r) =
ζ < t) ≤ C4Ψ(r)−1t. 2

Let A(x, r1, r2) denote the annulus {y ∈ Rd : r1 ≤ |y − x| < r2}.

Proposition 5.3. (a) There exists a constant C17 > 0 such that for all x0 ∈ D and r > 0
with B(x0, r) ⊂ D, it holds that

ExτB(x0,r) ≥ C17Ψ(r) , x ∈ B(x0, r/2).

(b) For every ϵ > 0, there exists C18 = C18(ϵ) > 0 such that for all x0 ∈ D and r > 0 satisfying
B(x0, (1 + ϵ)r) ⊂ D, it holds that

ExτB(x0,r) ≤ C18Ψ(r) , x ∈ B(x0, r) .

Proof. (a) Let x ∈ D and r > 0 be such that B(x, r) ⊂ D. It follows from Lemmas 5.1–5.2
and (1.3) that

Px(τB(x,r/2) < t) ≤ c1Ψ(r)−1t .

Therefore,

ExτB(x,r/2) ≥ tPx(τB(x,r/2) ≥ t) ≥ t(1− c1Ψ(r)−1t), t > 0.

Choose t = Ψ(r)/(2c1), so that 1− c1Ψ(r)−1t = 1/2. Then

ExτB(x,r/2) ≥
1

2
Ψ(r)/(2c1) = c2Ψ(r) .

Now let B(x0, r) ⊂ D and x ∈ B(x0, r/2). Then B(x, r/2) ⊂ B(x0, r) ⊂ D. By what was
proven above,

ExτB(x0,r) ≥ ExτB(x,r/2) ≥ c2Ψ(r) .

(b) Let ϵ0 := ϵ/3, x0 ∈ D and r > 0 be such that B(x0, (1+ 3ϵ0)r) ⊂ D. For y ∈ B(x0, r) and
u ∈ A(x0, (1 + ϵ0)r, (1 + 2ϵ0)r)

)
, δD(u) ∧ δD(y) ≥ ϵ0r ≥ (ϵ0/(2 + 2ϵ0))|u− y|. Thus, by (H2),

and then using (1.2)-(1.3),

J(u, y) ≥ c3j(|u− y|) ≥ c4j(|u− x0|), (y, u) ∈ B(x0, r)× A(x0, (1 + ϵ0)r, (1 + 2ϵ0)r)
)
.
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Therefore, for y ∈ B(x0, r)∫
A(x0,(1+ϵ0)r,(1+2ϵ0)r)

J(u, y) du ≥c4

∫
A(x0,(1+ϵ0)r,(1+2ϵ0)r)

j(|u− x0|) du

≥c5

∫ (1+2ϵ0)r

(1+ϵ0)r

1

tΨ(t)
dt ≥ c6

1

Ψ(r)
. (5.2)

For x ∈ B(x0, r), by using (5.2) in the last inequality below,

1 ≥Px

(
Y κ
τB(x0,r)

∈ A(x0, (1 + ϵ0)r, (1 + 2ϵ0)r)
)

=Ex

∫ τB(x0,r)

0

∫
A(x0,(1+ϵ0)r,(1+2ϵ0)r)

J(u, Y κ
s ) du ds ≥ c6ExτB(x0,r)/Ψ(r),

which is the required inequality. 2

Let TA be the first hitting time to A for Y κ.

Lemma 5.4. For every ϵ ∈ (0, 1) there exists C19 = C19(ϵ) > 0 such that for all x ∈ D and
r > 0 with B(x, (1 + 3ϵ)r) ⊂ D, and any Borel set A ⊂ B(x, r),

Py(TA < τB(x,(1+2ϵ)r)) ≥ C19
|A|

|B(x, r)|
, y ∈ B(x, (1 + ϵ)r).

Proof. Without loss of generality we assume that Py(TA < τB(x,(1+2ϵ)r)) < 1/4. Set τ =
τB(x,(1+2ϵ)r). For y ∈ B(x, (1+ ϵ)r) we have that B(y, 2ϵr) ⊂ D and B(y, ϵr) ⊂ B(x, (1+2ϵ)r).
Hence by Lemmas 5.1 and 5.2, for any y ∈ B(x, (1 + ϵ)r),

Py(τ < t) ≤ Py(τB(y,ϵr) < t) ≤ c0Ψ(ϵr)−1t ≤ c0a2ϵ
−2δ2Ψ(r)−1t =: c1Ψ(r)−1t .

Choose t0 = Ψ(r)/(4c1), so that Py(τ < t0) ≤ 1/4. Further, if z ∈ B(x, (1 + 2ϵ)r) and
u ∈ A ⊂ B(x, r), then |u − z| ≤ 2(1 + ϵ)r. By (1.2) and (1.3), j(|u − z|) ≥ c2r

−d/Ψ(r) for
some c2 = c2(ϵ) > 0. Moreover, δD(u) ∧ δD(z) ≥ ϵr ≥ ϵ

2(1+ϵ)
|u − z|, implying by (H2) that

B(u, z) ≥ c3 (c3 = C1(ϵ/(2(1 + ϵ))). Thus,

Py(TA < τ) ≥ Ey

∑
s≤TA∧τ∧t0

1{Y κ
s− ̸=Y κ

s ,Y κ
s ∈A}

= Ey

∫ TA∧τ∧t0

0

∫
A

j(|u− Y κ
s |)B(u, Y κ

s ) du ds ≥
c2c3

rdΨ(r)
|A|Ey[TA ∧ τ ∧ t0],

where in the second line we used properties of the Lévy system. Next,

Ey[TA ∧ τ ∧ t0] ≥ t0Py(TA ≥ τ ≥ t0) ≥ t0[1− Py(TA < τ)− Py(τ < t0)] ≥
t0
2
=

Ψ(r)

8c1
.

The last two displays give that

Py(TA < τ) ≥ c2c3
8c1rd

|A| = c4
|A|

|B(x, r)|
, y ∈ B(x, (1 + ϵ)r).

2

Lemma 5.5. Suppose further that (H5) holds. There exist C20 > 0 and C21 > 0 with the
property that if r > 0, and x ∈ D are such that B(x, 2r) ⊂ D, and H is a bounded non-negative
function with support in D \B(x, 2r), then for every z ∈ B(x, r),

C20Ez[τB(x,r)]

∫
D

H(y)J(x, y) dy ≤ EzH(Y κ
τB(x,r)

) ≤ C21Ez[τB(x,r)]

∫
D

H(y)J(x, y) dy .
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Proof. Let y ∈ B(x, r) and u ∈ D \ B(x, 2r). By (1.9), J(u, y) ≍ J(x, y). Thus using the
Lévy system we get

Ez

[
H(Y κ

τB(x,r)
)
]
= Ez

∫ τB(x,r)

0

∫
D\B(x,2r)

H(u)J(u, Y κ
s ) du ds

≍ Ez

∫ τB(x,r)

0

∫
D\B(x,2r)

H(u)J(u, x) du ds.

2

Proof of Theorem 1.1: (a) Using Proposition 5.3 and Lemmas 5.4 and 5.5 (instead of
(A1)–(A3) in [31]), the proof of (a) is very similar to the proofs of [31, Theorem 2.2, Theorem
2.4]. We omit the details.
(b) By (a) we can and will assume that L > 2 and 2r < |x1 − x2| < Lr. For simplicity, let
Bi = B(xi, r), i = 1, 2. Then by using harmonicity in the first inequality, part (a) in the
second inequality, and the Lévy system formula in the second line, we have

f(x1) ≥ Ex1

[
f(Y κ

τB1
);Y κ

τB1
∈ B(x2, r/2)

]
≥ C−1

8 f(x2)Px1

(
Y κ
τB1

∈ B(x2, r/2)
)

= C−1
8 f(x2)Ex1

∫ τB1

0

∫
B(x2,r/2)

J(Y κ
s , z) dz ds . (5.3)

For y ∈ B1 and z ∈ B(x2, r/2) we have by (1.9) that J(y, z) ≥ c1J(x1, z). Further, δD(x1) ∧
δD(z) ≥ r/2 ≥ (2L+2)−1|x1−z|, hence by (H2), J(x1, z) ≥ c2j(|x1−z|) where c2 = C1(

1
2(L+1)

).

By inserting this in (5.3), and by using Proposition 5.3 (a), we obtain

f(x1) ≥ c1c2C
−1
8 f(x2)ExτB1

∫
B(x2,r/2)

j(|x1 − z|) dz

≥ c3c2f(x2)Ψ(r)
1

((L+ 1)r)dΨ((L+ 1)r)
|B(x2, r/2)|

≥ c4c2f(x2)L
−d Ψ(r)

Ψ((L+ 1)r)
≥ c5c2f(x2)L

−dL−2δ2 .

The last inequality follows from (1.3). 2

We now show that a non scale invariant Harnack inequality holds under much weaker
assumptions than (H2)-(H5), and introduce weaker versions of hypotheses (H4)-(H5):

(H4-w) If δ2 ≥ 1/2, then there exists θ > 2δ2 − 1 such that for any relatively compact open
set U ⊂ D there exists C22 = C22(U) such that

|B(x, x)− B(x, y)| ≤ C22|x− y|θ for all x, y ∈ U.

(H5-w) For any relatively compact open set U ⊂ D and any open set V such that U ⊂ V ⊂ D,
there exists C23 = C23(U, V ) ≥ 1

C−1
23 B(x1, z) ≤ B(x2, z) ≤ C23B(x1, z) , for all x1, x2 ∈ U, z ∈ D \ V .

It is clear that (H4), respectively (H5), imply (H4-w), respectively (H5-w).

Proposition 5.6 (non scale invariant Harnack inequality). Suppose D is a proper open subset
of Rd and assume that (H1), (H2-w)-(H5-w), (1.2)-(1.3) and (3.1) hold. For any compact
set K and open set U with K ⊂ U ⊂ U ⊂ D, there exists a constant C24 = C24(K,U) > 0
such that for any non-negative function f in D which is harmonic in U with respect to Y κ,
we have

f(x) ≤ C24f(y), for all x, y ∈ K.
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Proof. Using (H2-w)-(H5-w) instead of (H2)-(H5), non scale invariant versions (with
constants depending on r) of Propositions 4.2(c) and 5.3 and Lemmas 5.4 and 5.5 can be
proved. Proposition 5.3, Lemmas 5.4 and 5.5 imply that conditions (A1), (A2) and (A3) of
[31] are satisfied for the process Y κ with constants depending on r. Thus we can repeat the
proofs of [31, Theorems 2.2 and 2.4] to finish the proof. Note that conservativeness does not
play any role. We omit the details. 2

The above Harnack inequality is not scale invariant since the constant C25 in the result
depends on each K and U there. The scale invariant version of Harnack inequality is not
possible under (H3-w) since the value of integral (1.6) depends on the sets U and V there.

By following the arguments of [31, Theorem 4.9] and [2, Theorem 4.1], we can prove Theorem
1.2. Note that r is missing in [25, Theorem 3.14] and [31, Theorem 4.9]. We give a full proof
here for reader’s convenience. Note that (H5) is not assumed in Theorem 1.2.
Proof of Theorem 1.2: By Lemma 5.4, there exists c1 > 0 such that for all (s, x) ∈
(0,∞)×D with B(x, 5s) ⊂ D, and any A ⊂ B(x, s) with |A|/|B(x, s)| ≥ 1/3,

Py(TA < τB(x,3s)) ≥ c1, y ∈ B(x, 2s). (5.4)

For y ∈ B(x, s) and s′ > 2s, we have B(y, s′/2) ⊂ B(x, s′). Thus, using Lemma 2.2, we have
that, for y ∈ B(x, s) and s′ > 2s with B(x, 2s′) ⊂ D,∫

D\B(x,s′)

J(y, z)dz ≤
∫
D\B(y,s′/2)

J(y, z)dz ≤ C11Ψ(s′/2)−1.

Using this and Proposition 5.3 (b), we obtain that for s′ > 2s with B(x, 2s′) ⊂ D,

Py(Y
κ
τB(x,s)

∈ D \B(x, s′)) = Ey

∫ τB(x,s)

0

∫
D\B(x,s′)

J(Y κ
t , z)dzdt

≤ c2Ψ(s)/Ψ(s′/2), y ∈ B(x, s).

Thus, by (1.3),

Py(Y
κ
τB(x,s)

∈ D \B(x, s′)) ≤ c3
s2δ1

(s′)2δ1
, y ∈ B(x, s), s′ > 2s. (5.5)

Let

γ = 1− c1
4
, ρ =

1

3
∧
(γ
2

)1/(2δ1)
∧
(
c1γ

2

8c3

)1/(2δ1)

.

Let x ∈ B(x0, r/2). We will show that

sup
B(x,ρkr)

f − inf
B(x,ρkr)

f ≤ ∥f∥∞γk, k ≥ 1, (5.6)

by the induction. Let Bi stand for B(x, ρir) and τi for τB(x,ρir). Let

mi = inf
Bi

f, Mi = sup
Bi

f.

Suppose Mi −mi ≤ ∥f∥∞γi for all i ≤ k; we want to show that

Mk+1 −mk+1 ≤ ∥f∥∞γk+1. (5.7)

Note that mk ≤ f ≤ Mk on Bk+1. Let

A′ = {z ∈ Bk+1 : f(z) ≤
mk +Mk

2
}.
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We may assume |A′|/|Bk+1| ≥ 1/2, otherwise we look at ∥f∥∞ − f instead of f . Let A be
a compact subset of A′ with |A|/|Bk+1| ≥ 1/3. Let ϵ > 0 and choose y, z ∈ Bk+1 with
f(y) ≥ Mk+1 − ϵ and f(z) ≤ mk+1 + ϵ. Then

f(y)− f(z) =Ey[f(Y
κ
TA
)− f(z);TA < τk]

+ Ey[f(Y
κ
τk
)− f(z); τk < TA, Y

κ
τk

∈ Bk−1]

+
∞∑
i=1

Ey[f(Y
κ
τk
)− f(z); τk < TA, Y

κ
τk

∈ Bk−i−1 \Bk−i] =: I + II + III.

By the choice of A,

I ≤
(
mk +Mk

2
−mk

)
Py(TA < τk) =

1

2
(Mk −mk)Py(TA < τk)

and, clearly,

II ≤ (Mk −mk)Py(τk < TA) = (Mk −mk)(1− Py(TA < τk)).

By the induction hypothesis, (5.5) and the fact that

ρ ≤ (γ/2)1/(2δ1) ∧ (c1γ
2/(8c3))

1/(2δ1),

we have that

III ≤
∞∑
i=1

(Mk−i−1 −mk−i−1)Py(Y
κ
τk

∈ D \Bk−i) ≤
∞∑
i=1

c3∥f∥∞γk−i−1 (ρkr)2δ1

(ρk−ir)2δ1

= c3∥f∥∞γk−1

∞∑
i=1

(ρ2δ1/γ)i ≤ 2c3∥f∥∞γk−2ρ2δ1 ≤ c1
4
∥f∥∞γk.

Therefore, by (5.4) and the fact that ρ ≤ 1/3, we have

f(y)− f(z) ≤1

2
(Mk −mk)Py(TA < τk) + (Mk −mk)(1− Py(TA < τk)) +

c1
4
∥f∥∞γk

≤(Mk −mk)

(
1− 1

2
Py(TA < τk)

)
+

c1
4
∥f∥∞γk

≤(Mk −mk)

(
1− 1

2
Py(TA < τB(x,3ρk+1r))

)
+

c1
4
∥f∥∞γk

≤∥f∥∞γk
(
1− c1

2

)
+

c1
4
∥f∥∞γk = ∥f∥∞γk

(
1− c1

4

)
= ∥f∥∞γk+1.

Hence
Mk+1 −mk+1 ≤ f(y)− f(z) + 2ϵ ≤ ∥f∥∞γk+1 + 2ϵ.

Since ϵ can be arbitrarily small, (5.7) holds and hence (5.6) holds.
If x, y ∈ B(x0, ρr/2), let k be the smallest natural number with |x− y|/r ≤ ρk. Then

log
|x− y|

r
≥ (k + 1) log ρ,

y ∈ B(x, ρkr), and

|f(y)− f(x)| ≤ ∥f∥∞γk = ∥f∥∞ek log γ

≤ c4∥f∥∞elog(
|x−y|

r )(log γ/ log ρ) = c4∥f∥∞
(
|x− y|

r

)log γ/ log ρ

.

If x, y ∈ B(x0, r/2) \B(x0, ρr/2), then clearly |f(x)− f(y)| ≤ 2∥f∥∞ ≤ c5∥f∥∞
(

|x−y|
r

)β
. 2
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6. Existence of Green function

In the first part of this section, we assume that (H1), (H2-w)-(H3-w) hold and show
that the process Y κ admits a Green function. Then we will assume additionally that (H4-
w)-(H5-w) hold, so that Proposition 5.6 holds. Using Proposition 5.6, we will show that the
Green function is finite off the diagonal.

First we assume that (H1), (H2-w)-(H3-w) hold. Recall that ζ is the lifetime of Y κ. Let
f : D → [0,∞) be a Borel function and λ ≥ 0. The λ-potential of f is defined by

Gλf(x) := Ex

∫ ζ

0

e−λtf(Y κ
t ) dt , x ∈ D.

When λ = 0, we write Gf instead of G0f and call Gf the Green potential of f . If g : D →
[0,∞) is another Borel function, then by the symmetry of Y κ we have that∫

D

Gλf(x)g(x) dx =

∫
D

f(x)Gλg(x) dx . (6.1)

For A ∈ B(D), we let Gλ(x,A) := Gλ1A(x) be the λ-occupation measure of A.
Let U be a relatively compact open subset of D. For γ > 0, let Jγ be the jump kernel

defined in the proof of Lemma 3.3 and let Z be the pure jump conservative process with
jump kernel Jγ. In the proof of Lemma 3.3 we have shown that, when γ is small enough, the
function κ̃ defined in (3.17) is non-negative and the semigroup (QU

t )t≥0 of Y κ,U is given by

QU
t f(x) = Ex[exp(−At)f(Z

U
t )] , t > 0, x ∈ U,

where At :=
∫ t

0
κ̃(ZU

s ) ds. Moreover, QU
t has a transition density qU(t, x, y) (with respect

to the Lebesgue measure) which is symmetric in x and y, and such that for all y ∈ U ,
(t, x) 7→ qU(t, x, y) is continuous.
Let GU

λ f(x) :=
∫∞
0

e−λtQU
t f(x) dt = Ex

∫ τU
0

e−λtf(Y κ
t ) dt denote the λ-potential of Y U and

GU
λ (x, y) :=

∫∞
0

e−λtqU(t, x, y) dt the λ-potential density of Y U . We will write GU for GU
0 for

simplicity. Then GU
λ (x, ·) is the density of the λ-occupation measure. In particular this shows

that GU
λ (x, ·) is absolutely continuous with respect to the Lebesgue measure. Moreover, since

x 7→ qU(t, x, y) is continuous, we see that x 7→ GU
λ (x, y) is lower semi-continuous. By Fatou’s

lemma this implies that GU
λ f is also lower semi-continuous.

Let (Un)n≥1 be a sequence of bounded open sets such that Un ⊂ Un ⊂ Un+1 and ∪n≥1Un = D.
For any Borel f : D → [0,∞), it holds that

Gλf(x) = Ex

∫ ζ

0

e−λtf(Y κ
t ) dt = ↑lim

n→∞
Ex

∫ τUn

0

e−λtf(Y κ
t ) dt = ↑lim

n→∞
GUn

λ f(x) , (6.2)

where ↑ lim denotes an increasing limit.
In particular, if A ∈ B(D) is of Lebesgue measure zero, then for every x ∈ D,

Gλ(x,A) = lim
n→∞

GUn
λ (x,A) = lim

n→∞
GUn

λ (x,A ∩ Un) = 0 .

Thus, Gλ(x, ·) is absolutely continuous with respect to the Lebesgue measure for each λ ≥ 0
and x ∈ D. Together with (6.1) this shows that the conditions of [3, VI Theorem (1.4)] are
satisfied, which implies that the resolvent (Gλ)λ>0 is self dual. In particular, see [3, pp.256–
257], there exists a symmetric function G(x, y) excessive in both variables such that

Gf(x) =

∫
D

G(x, y)f(y) dy , x ∈ D.

We recall, see [3, II, Definition (2.1)], that a measurable function f : D → [0,∞] is λ-excessive,
λ ≥ 0, with respect to the process Y κ if for every t ≥ 0 it holds that Ex[e

−λtY κ
t ] ≤ f(x) and
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limt→0 Ex[e
−λtY κ

t ] = f(x), for every x ∈ D. 0-excessive functions are simply called excessive
functions.

We note that the process Y κ need not be transient. If it is transient, then it follows that
G(x, y) < ∞ for a.e. y ∈ D. In the following lemma we show transience under the additional
assumption that κ is strictly positive.

Lemma 6.1. Suppose that κ(x) > 0 for every x ∈ D. Then the process Y κ is transient in the
sense that there exists f : D → (0,∞) such that Gf < ∞. More precisely, Gκ ≤ 1.

Proof. Let (Qt)t≥0 denote the semigroup of Y κ. For any A ∈ B(D), we use [18, (4.5.6)] with
h = 1A, f = 1, and let t → ∞ to obtain∫

A

Px(ζ < ∞) dx ≥
∫
A

Px(Y
κ
ζ− ∈ D, ζ < ∞) dx =

∫ ∞

0

∫
D

κ(x)Qs1A(x) dx dt.

This can be rewritten as∫
A

Px(ζ < ∞) dx ≥
∫
D

κ(x)G1A(x) dx =

∫
A

Gκ(x) dx.

Since this inequality holds for every A ∈ B(D), we conclude that Px(ζ < ∞) ≥ Gκ(x) for
a.e. x ∈ D. Both functions x 7→ Px(ζ < ∞) and Gκ are excessive. Since G(x, ·) is absolutely
continuous with respect to the Lebesgue measure (i.e., Hypotesis (L) holds, see [13, p.112]),
by [13, Proposition 9, p.113], we conclude that Gκ(x) ≤ Px(ζ < ∞) ≤ 1 for all x ∈ D. 2

From now on we assume that Y κ is transient so that G(x, y) is not identically infinite. Note
that it follows from (6.2) that, for every non-negative Borel f , Gλf is lower semi-continuous, as
an increasing limit of lower semi-continuous functions. Since every λ-excessive function is an
increasing limit of λ-potentials see [3, II Proposition (2.6)]), we conclude that all λ-excessive
functions of Y κ are lower semi-continuous. In particular, for every y ∈ D, Gλ(·, y) is lower
semi-continuous. Since G(·, y) is the increasing limit of Gλ(·, y) as λ → 0, we see that G(·, y)
is also lower semi-continuous.

Fix an open set B in D and x ∈ D. Let f be a non-negative Borel function on D. By
Hunt’s switching identity, [3, VI, Theorem (1.16)],

Ex[Gf(Y κ
τB
)] =

∫
D

Ex[G(Y κ
τB
, y)]f(y) dy =

∫
D

Ey[G(x, Y κ
τB
)]f(y) dy.

Suppose, further, that f = 0 on B. Then by the strong Markov property, [3, I, Definition
(8.1)],∫

D

G(x, y)f(y) dy = Ex

∫ ∞

τB

f(Y κ
t ) dt = Ex[Gf(Y κ

τB
)] =

∫
D\B

Ey[G(x, Y κ
τB
)]f(y) dy ,

and hence G(x, y) = Ey[G(x, Y κ
τB
)] for a.e. y ∈ D \B. Since both sides are excessive (and thus

excessive for the killed process Y κ,D\B), equality holds for every y ∈ D \ B. By using Hunt’s
switching identity one more time, we arrive at

G(x, y) = Ex[G(Y κ
τB
, y)] , for all x ∈ D, y ∈ D \B .

In particular, if y ∈ D \ B is fixed, then the above equality says that x 7→ G(x, y) is regular
harmonic in B with respect to Y κ. By symmetry, y 7→ G(x, y) is regular harmonic in B as
well.

Now we assume additionally that (H4-w)-(H5-w) hold. By using Proposition 5.6 we
conclude that G(x, y) < ∞ for all y ∈ D \ {x}. This proves the following result about the
existence of the Green function.
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Proposition 6.2. Suppose that (H1), (H2-w)-(H5-w), (1.2)-(1.3) and (3.1) hold. Assume
that Y κ is transient. Then there exists a symmetric function G : D × D → [0,∞] which
is lower semi-continuous in each variable and finite outside the diagonal such that for every
non-negative Borel f ,

Gf(x) =

∫
D

G(x, y)f(y) dy .

Moreover, G(x, ·) is harmonic with respect to Y κ in D\{x} and regular harmonic with respect
to Y κ in D \B(x, ϵ) for any ϵ > 0.

We now prove the continuity of Green function under an additional assumption. The proof
of the next proposition is similar to the corresponding part of the proof of [26, Theorem 1.1].

Proposition 6.3. Suppose that (H1)-(H4), (H5-w), (1.2)-(1.3) and (1.8) hold. Assume
that Y κ is transient and that the Green function G : D ×D → [0,∞] of Y κ satisfies that for
any x ∈ D and r > 0

sup
z∈D\B(x,r)

G(x, z) < ∞. (6.3)

Then G(x, ·) is continuous in D \ {x}.
Proof. We fix x0, y0 ∈ D , x0 ̸= y0, and choose a positive a small enough so that B(x0, 4a)∩
B(y0, 4a) = ∅ and B(x0, 4a) ∪B(y0, 4a) ⊂ D.
We first note that for (z, w) ∈ B(x0, 2a)×B(y0, 2a), δD(z)∧ δD(w) ≥ 2a = 2a

|x0−y0|+4a
(|x0 −

y0|+ 4a) ≥ 2a
|x0−y0|+4a

|w − z|. Thus, by (H2),

sup
(z,w)∈B(x0,2a)×B(y0,2a)

J(z, w) ≤ c0 sup
(z,w)∈B(x0,2a)×B(y0,2a)

j(z, w) ≤ c1
adΨ(a)

. (6.4)

We recall that by Proposition 5.3(b), EyτB(x0,2a) ≤ c2Ψ(a) for all y ∈ B(x0, a). Let N ≥ 1/a.
In the paragraph after the proof of Lemma 6.1, we have seen that for any non-negative Borel
function f and λ ≥ 0, Gλf is lower semi-continuous. Thus by [13, Theorem 2, p.126], G is
locally integrable in each variable. Using (4.12) in the second line and the local integrability
of G in the fourth, we have for every y ∈ B(x0, a),

Ey

[
G(Y κ

τB(x0,2a)
, y0);Y

κ
τB(x0,2a)

∈ B(y0, 1/N)
]

= Ey

(∫ τB(x0,2a)

0

∫
B(y0,1/N)

G(w, y0)J(Y
κ
s , w)dw ds

)
≤

(
sup

y∈B(x0,a)

EyτB(x0,2a)

)(
sup

z∈B(x0,2a)

∫
B(y0,1/N)

J(z, w)G(w, y0)dw

)

≤ c1c2a
−d

∫
B(y0,1/N)

G(w, y0)dw < ∞.

Given ϵ > 0, choose N large enough such that c1c2a
−d
∫
B(y0,1/N)

G(w, y0)dw < ϵ/4, so

sup
y∈B(x0,a)

Ey

[
G(Y κ

τB(x0,2a)
, y0);Y

κ
τB(x0,2a)

∈ B(y0, 1/N)
]
< ϵ/4.

The function y 7→ h(y) := Ey

[
G(Y κ

τB(x0,2a)
, y0);Y

κ
τB(x0,2a)

∈ D \B(y0, 1/N)
]
is harmonic on

B(x0, a), and by (6.3) it is bounded function on D. Thus, by Theorem 1.2, it is continuous.
Choose a δ ∈ (0, a) such that |h(y) − h(x0)| < ϵ/2 for all y ∈ B(x0, δ) , We now see that for
all y ∈ B(x0, δ),

|G(y, y0)−G(x0, y0)|
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≤ |h(y)− h(x0)|+ 2 sup
y∈B(x0,a)

Ey

[
G(Y κ

τB(x0,2a)
, y0);Y

κ
τB(x0,2a)

∈ B(y0, 1/N)
]
< ϵ.

2

7. Examples

In this section we give two families of examples of jump kernels that satisfy hypotheses
(H1)-(H5).

7.1. Trace processes and resurrected kernels. Let X = (Xt,Px) be a Lévy process with
Lévy measure j(|x|)dx. For the moment we do not assume that (1.2) and (1.3) hold. Let D
be a proper open set in Rd such that U := D

c
is non-empty. We denote the jump kernel of X

as j(x, y) = j(|x− y|). Let

At :=

∫ t

0

1(Xs∈D) ds

and let τt := inf{s > 0 : As > t} be its right-continuous inverse. The process Y = (Yt)t≥0

defined by Yt := Xτt is a Hunt process with state space D. The process Y is called the trace
process of X on D (it is also called the path-censored process in some literature, for instance,
[30]). Here is another way to describe the part of the process Y until its first hitting time to
the boundary ∂D: Let x = XτD− ∈ D be the position from which X jumps out of D, and
let z = XτD ∈ U be the position where X lands at the exit from D. The distribution of the
returning position of X to D is given by the Poisson kernel of X with respect to U :

PU(z, A) =

∫
A

∫
U

GU(z, w)j(w, y) dw dy, A ∈ B(D).

Here GU(z, w), z, w ∈ U , denotes the Green function of the process X killed upon exiting
U . This implies that when X jumps out of D from the point x, we continue the process by
resurrecting it in A ∈ B(D) according to the kernel

q(x,A) =

∫
U

j(x, z)PU(z, A) dz, x ∈ D,

which has density

q(x, y) =

∫
U

∫
U

j(x, z)GU(w, z)j(z, y) dz dw, x, y ∈ D.

We call q(x, y) the resurrection kernel. Since the Green function GU is symmetric, it imme-
diately follows that q(x, y) = q(y, x) for all x, y ∈ D. This shows that the part of the process
Y until its first hitting of the boundary can be regarded as a resurrected process. The jump
kernel of this process is symmetric and is given by J(x, y) = j(x, y) + q(x, y), x, y ∈ D.

This example can be modified in the following way. For each z ∈ U , let p(z, y) be a
subprobability density on D. Instead of returning the process X to D by using the Poisson
kernel PU(z, A), we may use the kernel p(z, A) =

∫
A
p(z, y)dy, A ∈ B(D). We call this kernel

the return kernel. Define

q(x, y) :=

∫
U

j(x, z)p(z, y) dz. (7.1)

We assume that p(z, y) satisfies the following two properties: (1) It is such that q is symmetric,
that is, q(x, y) = q(y, x); (2) There exists c1 ≥ 1 such that for all y0 ∈ D and r > 0 with
B(y0, 2r) ⊂ D,

c−1
1 p(w, y1) ≤ p(w, y2) ≤ c1p(w, y1) for all w ∈ Dc and all y1, y2 ∈ B(y0, r). (7.2)
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Clearly, both properties are true for the trace process (that is, for the Poisson kernel PU(w, y)).
We note that the first property is quite delicate. Still, many examples of return kernels for
which q is symmetric are given in [29] for the case of a half-space. Both properties can be
checked in concrete examples of return kernels. One such example is given by

p(w, y) :=
j(w, y)∫

D
j(w, z) dz

studied in [17, 32] in the context of the Neumann boundary problem. Note that it follows
from (7.5) below that this p satisfies both properties above.

For x, y ∈ D, x ̸= y, define

J(x, y) := j(x, y) + q(x, y) = j(x, y)

(
1 +

q(x, y)

j(x, y)

)
=: j(x, y)B(x, y), (7.3)

where

B(x, y) =

{
1 + q(x,y)

j(x,y)
when x ̸= y;

1 when x = y.
(7.4)

In the remaining part of this subsection we show that J(x, y) (that is, B(x, y)) satisfies hy-
potheses (H1)-(H5).

Since we have assumed that the return kernel p(z, y) is such that q is symmetric, it is
immediate that B(x, y) = B(y, x) for all x, y ∈ D. Hence (H1) holds.

Fix ϵ ∈ (0, 1), x0 ∈ Rd and r > 0. Then, for all w ∈ Rd\B(x0, (1+ϵ)r) and x1, x2 ∈ B(x0, r),

|x1 − w| ≤ |x2 − w|+ |x1 − x2| ≤ |x2 − w|+ 2r ≤ (1 + (2/ϵ))|x2 − w|.
Thus j(x1, w) ≍ j(x2, w) for w ∈ Rd \ B(x0, (1 + ϵ)r) and x1, x2 ∈ B(x0, r). In particular, if
x0 ∈ D and B(x0, (1 + ϵ)r) ⊂ D, then

j(x1, z) ≍ j(x2, z) for all x1, x2 ∈ B(x0, r), z ∈ D \B(x0, (1 + ϵ)r)

and

j(x1, w) ≍ j(x2, w) for all x1, x2 ∈ B(x0, r), w ∈ Dc. (7.5)

Therefore, for all x1, x2 ∈ B(x0, r), z ∈ D \B(x0, (1 + ϵ)r),

B(x1, z) = 1 +
1

j(x1, z)

∫
U

j(x1, w)p(w, z) dw

≍ 1 +
1

j(x2, z)

∫
U

j(x2, w)p(w, z) dw = B(x2, z).

Hence (H5) holds.

To check (H2) and (H4), we will use the following two lemmas for q.

Lemma 7.1. For every ϵ ∈ (0, 1), there exists C25 = C25(ϵ) ≥ 1 such that for all x0, y0 ∈ D
and r > 0,

C−1
25 q(x0, y0) ≤ q(x, y) ≤ C25q(x0, y0), (x, y) ∈ B(x0, (1− ϵ)δD(x0))×B(y0, (1− ϵ)δD(y0)).

Proof. The lemma follows from (7.2) and (7.5). 2

Lemma 7.2. There exists C26 > 1 such that

q(x, y) ≤ C26

(
1

δD(y)dΨ(δD(x))
∧ 1

δD(x)dΨ(δD(y))

)
for all x, y ∈ D.
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Proof. By Lemma 7.1,

q(x, y) ≍ q(x, u) =

∫
U

j(x,w)p(w, u)dw for all u ∈ B(y, δD(y)/2).

Thus, by (2.1),

q(x, y) ≤ c1
δD(y)d

∫
B(y,δD(y)/2)

q(x, u)du =
c1

δD(y)d

∫
U

j(x,w)

(∫
B(y,δD(y)/2)

p(w, u)du

)
dw

≤ c1
δD(y)d

∫
B(x,δD(x))c

j(x,w)dw ≤ c2
δD(y)dΨ(δD(x))

.

The lemma now follows from this and the symmetry of q. 2

Applying Lemma 7.2 to (7.4) and using (1.2), we get

B(x, y)− 1 ≤ c1
(δD(x) ∧ δD(y))dΨ(δD(x) ∧ δD(y))j(|x− y|)

≍ Ψ(|x− y|)
Ψ(δD(x) ∧ δD(y))

(
|x− y|

δD(x) ∧ δD(y)

)d

≤ c2

(
|x− y|

δD(x) ∧ δD(y)

)d+2δ1

.

This proves that both (H2) and (H4) hold.

To check (H3), it suffices to show (1.6) for a ∈ (0, 1/2]. Let j(x, dz) := j(x, z)dz. Then for
any x ∈ D, j(x, dz) is a finite measure on Dc such that, by (2.1),

j(x,Dc) ≤ c3
Ψ(δD(x))

x ∈ D, (7.6)

for some c3 > 0. By (2.1), (7.1), (7.3), (7.6), and the fact that p is a subprobability kernel,
for a ∈ (0, 1/2],∫

D,|x−y|>aδD(x)

J(x, y)dy ≤
∫
|x−y|>aδD(x)

j(x, y)dy +

∫
D

∫
Dc

j(x, dw)p(w, y) dy

≤ c4Ψ(aδD(x))
−1 +

∫
Dc

(∫
D

p(w, y)dy

)
j(x, dw) ≤ c5(a)Ψ(δD(x))

−1.

This proves that (H3) holds.

Remark 7.3. Suppose that for every x ∈ D, j̃(x, dz) is a kernel on Dc satisfying (7.6). For
x, y ∈ D, let q̃(x, y) := j̃(x, dz)p(z, y). Then J(x, y) := j(x, y) + q̃(x, y) also satisfies (H3).

7.2. Examples of B(x, y) satisfying (H3) which may blow up at the boundary. Let
D ⊂ Rd be a proper open subset of Rd, J(x, y) = j(|x−y|)B(x, y), where j satisfies (1.2) with
Ψ satisfying (1.3).

We first record an estimate of j(|x− y|) in case |x− y| > aδD(x). By (1.3),

Ψ(|x− y|)−1 ≤ a−1
1

(
aδD(x)

|x− y|

)2δ1

Ψ(aδD(x))
−1

and

Ψ(aδD(x))
−1 ≤ a2a

−2δ2Ψ(δD(x))
−1.

This, together with (1.2), implies that there exists c1 = c1(a, δ1, δ2) > 0 such that

j(|x− y|) ≤ c1Ψ(δD(x))
−1δD(x)

2δ1|x− y|−d−2δ1 , |y − x| > aδD(x). (7.7)
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Lemma 7.4. Suppose that D is a proper open subset of Rd and let Ls := {y ∈ D : δD(y) = s}.
When d ≥ 2 we assume that there exists A1 > 0 such that

Hd−1(Ls ∩B(z,R)) ≤ A1R
d−1, z ∈ D, s > 0, R > 0, (7.8)

where Hd−1 is the (d − 1)-dimensional Hausdorff measure. Assume that there exists β2 ∈
[0, 1 ∧ (2δ1)) with the property that for all a ∈ (0, 1/2], there exists A2(a) > 0 such that

B(x, y) ≤ A2(a)
|x− y|2β2

δD(x)β2δD(y)β2
, for |x− y| > aδD(x). (7.9)

Then for every a ∈ (0, 1/2], there exists C27(a) > 0 such that∫
|x−y|>aδD(x)

J(x, y) dy ≤ C27(a)Ψ(δD(x))
−1.

Proof. We give the proof for d ≥ 2. It follows from [14, Theorem 6.3.3 (vi) and (vii), p.
285] that the function x 7→ δD(x) is Lipschitz on D and |∇δD(x)| = 1 a.e. x ∈ D. Thus, the
following coarea formula is valid (see [16, Theorem 3.2.3 (2)]: For any g ∈ L1(D),∫

D

g(y)dy =

∫ ∞

0

∫
Ls

g(y)Hd−1(dy)ds. (7.10)

It follows from (7.7) and (7.9) that∫
|x−y|>aδD(x)

J(x, y) dy ≤ c1
δD(x)

2δ1−β2

Ψ(δD(x))

∫
|x−y|>aδD(x)

δD(y)
−β2

|x− y|d+2δ1−2β2
dy. (7.11)

We split the integral into two parts:∫
|x−y|>aδD(x)

δD(y)
−β2

|x− y|d+2δ1−2β2
dy

=

∫
|x−y|>aδD(x),δD(y)≤(1+a)δD(x)

+

∫
δD(y)>(1+a)δD(x)

=: I1 + I2.

Here we used that if δD(y) ≥ (1 + a)δD(x), then |x− y| > aδD(x).
Using (7.8), (7.10), the assumption β2 < 1 ∧ (2δ1) in the last line, we have

I1 =

∫
D

1B(x,aδD(x))c(y)1δD(y)≤(1+a)δD(x)}
δD(y)

−β2dy

|x− y|d+2δ1−2β2

=
∞∑
n=0

∫
D

1δD(y)≤(1+a)δD(x)1B(x,2n+1aδD(x))\B(x,2naδD(x)(y)
δD(y)

−β2dy

|x− y|d+2δ1−2β2

≤ δD(x)
−d−2δ1+2β2

∞∑
n=0

2n(−d−2δ1+2β2)

∫
D

1δD(y)≤(1+a)δD(x)1B(x,2n+1aδD(x))(y)δD(y)
−β2dy

= δD(x)
−d−2δ1+2β2

∞∑
n=0

2n(−d−2δ1+2β2)

∫ (1+a)δD(x)

0

Hd−1(Ls ∩B(x, 2n+1aδD(x)))s
−β2ds

≤ c2δD(x)
−1−2δ1+2β2

∞∑
n=0

2n(−d−2δ1+2β2)2(n+1)(d−1)

∫ (1+a)δD(x)

0

s−β2ds

≤ c3δD(x)
−2δ1+β2

∞∑
n=0

2n(−2δ1+2β2−1) = c4δD(x)
−2δ1+β2 .
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When s > (1 + a)δD(x), we have |x − y| ≥ s − δD(x) ≥ (a/(1 + a))s. Using (7.8), (7.10),
the facts that 2β2 < 1 + 2δ1 and β2 < 2δ1 in the last line, we have

I2 =

∫
D

1{δD(y)>(1+a)δD(x)}
δD(y)

−β2

|x− y|d+2δ1−2β2
dy

=

∫ ∞

(1+a)δD(x)

∫
Ls

|x− y|−d−2δ1+2β2 Hd−1(dy)s
−β2ds

=

∫ ∞

(1+a)δD(x)

∫
Ls,|x−y|≤2s

|x− y|−d−2δ1+2β2Hd−1(dy)s
−β2ds

+

∫ ∞

(1+a)δD(x)

∫
Ls,|x−y|>2s

|x− y|−d−2δ1+2β2Hd−1(dy)s
−β2ds

≤
∫ ∞

(1+a)δD(x)

[(a/(1 + a))s]−d−2δ1+2β2Hd−1(Ls ∩B(x, 2s))s−β2ds

+

∫ ∞

(1+a)δD(x)

∞∑
n=1

∫
Ls,2n+1s≥|x−y|>2ns

|x− y|−d−2δ1+2β2 Hd−1(dy)s
−β2ds

≤c5[(a/(1 + a))]−d−2δ1+2β2

∫ ∞

(1+a)δD(x)

s−2δ1+β2−1ds

+

∫ ∞

(1+a)δD(x)

∞∑
n=1

(2ns)−d−2δ1+2β2 Hd−1(Ls ∩B(x, 2n+1s))s−β2ds

≤c6δD(x)
−2δ1+β2 + c7

∞∑
n=1

2(−2δ1+2β2−1)n

∫ ∞

(1+a)δD(x)

s−1−2δ1+β2ds ≤ c8δD(x)
−2δ1+β2 .

Combining the display above with (7.11), we get the conclusion of the lemma. 2

In the remaining part of this subsection we impose the following conditions on B(x, y) that
is used in [29, Section 4] in the case of the half-space. Suppose 0 ≤ β1 ≤ β2 < 1 ∧ (2δ1). Let
Φ be a positive function on (0,∞) satisfying Φ(t) ≡ Φ(2) > 0 on [0, 2) and the following weak
scaling condition: There exist constants b1, b2 > 0 such that

b1(R/r)β1 ≤ Φ(R)

Φ(r)
≤ b2(R/r)β2 , 2 ≤ r < R < ∞. (7.12)

Recall that D is a proper open subset of Rd. Assume that B(x, y) satisfies (H1), (H4) and
the following assumption: There exists C28 ≥ 1 such that

C−1
28 Φ

(
|x− y|2

δD(x)δD(y)

)
≤ B(x, y) ≤ C28Φ

(
|x− y|2

δD(x)δD(y)

)
for all x, y ∈ D. (7.13)

To use Lemma 7.4, we further assume that (7.8) holds when d ≥ 2. Note that (7.8) is clearly
satisfied in case when D is a half-space. We show now that under the above conditions, (H2),
(H3) and (H5) also hold.

Let a ∈ (0, 1) and x, y ∈ D such that δD(x)∧δD(y) ≥ a|x−y|. Then |x−y|2/δD(x)δD(y)) ≤
1/a2. Since Φ is bounded on [0, 1/a2), (H2) holds true.

Let a ∈ (0, 1/2] and |x− y| > aδD(x). Then δD(y) ≤ |x− y| + δD(x) ≤ ((a + 1)/a)|x− y|.
Hence |x−y|2 ≥ (a2/(1+a))δD(x)δD(y). Therefore by (7.12) and the fact that Φ(t) ≡ Φ(2) > 0
on [0, 2), we conclude that there exists c1 = c1(a) > 0 such that

Φ

(
|x− y|2

δD(x)δD(y)

)
≤ c1

|x− y|2β2

δD(x)β2δD(y)β2
.
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Thus (7.9) holds, so (H3) follows form Lemma 7.4.

Let ϵ ∈ (0, 1), x0 ∈ D and r > 0 with B(x0, (1 + ϵ)r) ⊂ D. For x1, x2 ∈ B(x0, r) and
z ∈ D \ B(x0, (1 + ϵ)r), it holds that |x1 − z| ≤ (1 + 2ϵ)|x2 − z| and δD(x1) ≤ δD(x2) + 2r ≤
δD(x1) + (2/ϵ)δD(x2) = (1 + 2ϵ)δD(x2). Therefore, there exists c2 = c2(ϵ) ≥ 1 such that

c−1
2

|x1 − z|2

δD(x1)δD(z)
≤ |x2 − z|2

δD(x2)δD(z)
≤ c2

|x1 − z|2

δD(x1)δD(z)
.

Using this, (7.12) and the fact that Φ(t) ≡ Φ(2) > 0 on [0, 2), (H5) holds true.
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