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Abstract

We study potential theoretic properties of strictly α-stable pro-
cesses whose Lévy measure is comparable to that of a symmetric α-
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of transition densities and Green function of the process killed upon
exiting a bounded domain. We further show that the exit distributions
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regular harmonic functions of the process. Finally, we indicate that
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1 Introduction

A symmetric (rotation invariant) α-stable process on Rd, 0 < α ≤ 2, is a

Lévy process whose transition density with respect to Lebesgue measure is

determined by its Fourier transform∫
Rd

eix·ξp(t, x)dx = e−t|ξ|α .

For α = 2 this process is (essentially) a Brownian motion, while for 0 < α < 2

it is a pure jump process whose Lévy measure has a density |x|−(d+α) relative

to the d-dimensional Lebesgue measure. The infinitesimal generator of the

latter process is the fractional Laplacian −(−∆)α/2 which is non-local.

In the last several years remarkable progress has been made in under-

standing fine properties of symmetric α-stable processes. Most of the effort

revolved around extending potential theoretic properties of Brownian motion

to symmetric stable processes. The results that were obtained include esti-

mates of the Green function and the Poisson kernel of symmetric α-stable

processes on C1,1 domains ([10]), boundary Harnack principle on Lipschitz

(and more general) domains ([5], [7], [21]), identification of the Martin bound-

ary of the domain with its Euclidean boundary for a wide class of domains

(including Lipschitz domains) ([6], [11]), conditional gauge theorem, and in-

trinsic ultracontractivity for the killed semigroup ([9], [12]).

In this paper we study the potential theory of a nonsymmetric strictly

α-stable process whose Lévy measure is comparable with the Lévy measure

of the symmetric α-stable process. To be more precise, we assume that the

spherical part of the corresponding Lévy measure has a density with re-

spect to the surface measure which is bounded and bounded away from zero.

Although the resulting process need not be a pure jump process anymore,

comparability of Lévy measures suggests qualitatively similar path properties

of the two type of processes. It is, therefore, conceivable, that the potential

theoretic properties are also similar. And indeed, by collecting several facts
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on stable processes, applying time-honored methods in the Brownian mo-

tion theory (e.g. [1], [13]), and using some newly developed methods for

symmetric stable processes ([5], [10]), we were able to show the following

facts: (1) The process killed upon exiting a bounded domain has a jointly

continuous, strictly positive transition density; (2) The Green function of the

killed process is jointly continuous off the diagonal, and comparable with the

Green function of the symmetric stable process away from the boundary; (3)

There exists a jointly continuous Poisson kernel (in case of a bounded domain

satisfying the uniform volume condition) serving as the density of the exit

distribution. Moreover, we point out that the method developed in [2] in or-

der to show the Harnack inequality for spatially nonhomogeneous pure jump

processes whose jump kernels are comparable to those of symmetric stable

processes, can be directly applied to the processes we consider. This leads

to the Harnack inequality for nonnegative harmonic functions in a bounded

open set.

The potential theoretic properties we show may be regarded as basic,

compared with the finer properties proved in the above mentioned papers.

Those finer properties strongly rely on sharp estimates of the Green function

and the Poisson kernel. In case of symmetric stable processes these estimates

are derived from the explicit formulae for the Green function and the Poisson

kernel for the ball (see [4]). The lack of such formulae for nonsymmetric case

will require new methods for proving corresponding sharp estimates.

2 Preliminaries

In this section we describe processes that we will be studying, state known

properties and list conditions that will be assumed in our results. The refer-

ence to Lévy processes is [20].

Let X = (Xt,Px) be a Lévy process in Rd, d ≥ 2, with the generating

triplet (A, ν, γ). More precisely, the characteristic function of the distribution
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µ of X1 (under P0) is

µ̂(z) = exp

{
−1

2
(z, Az) + i(γ, z) +

∫
Rd

(ei(z,x) − 1− i(z, x)1{|x|≤1}(x))ν(dx)

}
,

z ∈ Rd, where A is a symmetric nonnegative definite d × d matrix, ν is a

measure on Rd satisfying

ν({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞,

called the Lévy measure of X, and γ ∈ Rd.

The process X is strictly α-stable if the following scaling property holds:

For every a > 0, (Xat, t ≥ 0)
d
= (a1/αXt, t ≥ 0). If the probability measure

is not explicitly mentioned, we always mean P0. The scaling property is

equivalent to the fact that for every a > 0, µ̂(z)a = µ̂(a1/αz). For α = 2,

one gets Brownian motion. We will consider the case when 0 < α < 2.

In that case A = 0, and there is a finite measure λ on the unit sphere

S = {x ∈ Rd : |x| = 1} such that

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)r−(1+α)dr

for every Borel set B in Rd. The measure λ is called the spherical part of

the Lévy measure ν. To be more precise, the following holds true:

(i) Let 0 < α < 1. Then X is strictly α-stable if and only if

µ̂(z) = exp

{∫
S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1)r−(1+α)dr

}
.

(ii) Let α = 1 and ν 6= 0. Then X is strictly α-stable if and only if

µ̂(z) = exp

{∫
S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1− i(z, rξ)1(0,1](r))r
−2dr + i(z, γ)

}
.

and
∫

S
ξ λ(dξ) = 0.
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(iii) Let 1 < α < 2. Then X is strictly α-stable if and only if

µ̂(z) = exp

{∫
S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1− i(z, rξ))r−(1+α)dr

}
.

Note that when the spherical part λ is equal to the surface measure σ on the

unit sphere, the corresponding process X is the symmetric α-stable process

(for α = 1 we have γ = 0). From now on, we assume that X satisfies (i), (ii)

or (iii).

It is known that the distribution µ of X1 has a smooth density. Let

p(t, x) denote the density of Xt. Then the following scaling property is valid:

For every a > 0,

p(t, x) = p(at, a1/αx)ad/α . (2.1)

Our main assumption concerns the form of the spherical part λ of the

Lévy measure ν. We will assume that λ has a density with respect to the

surface measure σ which is bounded and bounded away from zero. More

precisely, we assume that there exist φ : S → (0,+∞) and κ > 0 such that

φ =
dλ

dσ
and κ ≤ φ(ξ) ≤ κ−1, ∀ξ ∈ S . (2.2)

It immediately follows that the Lévy measure ν has a density f(x) = φ(x/|x|)|x|−(d+α)

with respect to the d-dimensional Lebesgue measure, and

κ|x|−(d+α) ≤ f(x) ≤ κ−1|x|−(d+α) (2.3)

for every x ∈ Rd \ {0}.
One consequence of the assumption (2.2) is that X is a process of type

A in the terminology of [22], which implies that the densities are strictly

positive: p(t, x) > 0 for all t > 0 and all x ∈ Rd (see [17] and [22]).

Another important consequence of the assumption (2.2) is the more

recent estimate for the density of Xt: There exists a finite, positive constant

C such that

p(t, x) ≤ Ct, for every x ∈ Rd such that |x| = 1 . (2.4)
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Let us make a few remarks about this estimate. Since the density p(1, x)

is uniformly bounded in x ∈ Rd, (2.4) is the estimate of the density for

small t. It is a special case of Theorem 3 in [16], and spelled out under the

assumption (2.2) as Example 2 of the same paper. Let us point out that the

implicit constant in Theorem 3 in [16] may depend on x ∈ Rd. Dependence

of the constant on x enters through (34) in [16], and implies dependence of

constant on x in Lemma 10 (in [16] the corresponding variable is denoted

by y). A careful reading of the proof of Theorem 3 reveals that under the

assumption (2.2), the constant may be chosen independently of x as long as

|x| = 1. The estimate (2.4)is used to prove the following result.

Proposition 2.1 The function (t, x) 7→ p(t, x) is uniformly continuous and

bounded on the set {(t, x) : t > 0, |x| ≥ ψ} for every fixed ψ > 0.

Proof: By the scaling property (2.1), uniform boundedness of p(1, x), and

(2.4), it easily follows that there exists a constant C̃ > 0 depending on ψ,

such that

p(t, x) ≤ C̃t, |x| ≥ ψ, t > 0, (2.5)

p(t, x) ≤ C̃t−d/α, x ∈ Rd, t > 0, (2.6)

p(t, x) ≤ C̃t|x|−(d+α), x ∈ Rd \ {0}, t > 0. (2.7)

Given ε > 0, the first two estimates imply that there exist t0, T0 ∈ (0,∞)

such that

p(t, x) < ε, for 0 < t < t0 or t > T0, and |x| ≥ ψ . (2.8)

From the third estimate it follows that there exists Ψ > ψ such that

p(t, x) ≤ C̃T0|x|−(d+α) < ε, for all t ≤ T0, and all |x| > Ψ . (2.9)

Since p(t, x) is jointly continuous, it is uniformly continuous on the set

[t0, T0] × {x ∈ Rd : ψ ≤ |x| ≤ Ψ}. Together with (2.8) and (2.9) this
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proves the uniform continuity of p(t, x) on the set {(t, x) : t > 0, |x| ≥ ψ}.
Boundedness follows from (2.8) and uniform continuity.

Similarly to the upper estimate (2.4), there is a lower estimate for the

transition density: There exist a constant c > 0 and t0 > 0 such that

p(t, x) ≥ ct, for every x ∈ Rd such that |x| = 1, and all t ≤ t0 . (2.10)

Again, this is proved in [16] (see Theorem 2) with a constant c possibly

depending on x, and without explicit t0. But, a slight modification of the

proof of Lemma 5.3 in [15] reveals that the constant c and t0 can be chosen

independently of x for |x| = 1. Scaling property (2.1), strict positivity of the

density, and (2.10) imply that for every ψ > 0 there exist a constant c̃ > 0

and t̃0 > 0 (depending on ψ) such that

p(t, x) ≥ c̃ t|x|−(d+α), for all |x| ≥ ψ and all 0 < t ≤ t̃0 . (2.11)

Note that (2.7) and (2.11) give the following bounds on density p(1, x) for

large x (with, perhaps, different constants)

c̃|x|−(α+d) ≤ p(1, x) ≤ C̃|x|−(α+d) (2.12)

This is a significant improvement of Theorem 1 in [19]. Let us note that for a

symmetric α-stable process there actually exists the limit lim|x|→∞ p(1, x)|x|α+d

(see [3]).

At the end of this section let us note that the dual process X̂ = −X has

the transition density p̂(t, x) = p(t,−x) and satisfies the same assumptions

as X.

3 Transition density of the killed process

In this section we closely follow the presentation from [9].

Let (Pt, t ≥ 0) denote the transition semigroup of X = (Xt,Px). Then

p(t, x, y) := p(t, y − x), t ≥ 0, x, y ∈ Rd, is the transition kernel of the

7



semigroup (Pt). This function is strictly positive and jointly continuous on

(0,∞)× Rd × Rd and satisfies the scaling property

p(t, x, y) = p(1, t−1/αx, t−1/αy)t−d/α .

Therefore the semigroup (Pt) has both the Feller and the strong Feller prop-

erty.

For any set D ⊂ Rd, let τD = inf{t > 0 : Xt /∈ D} denote the first

exit time of X from D. A boundary point z ∈ ∂D is regular for D if

Pz(τD = 0) = 1, and D is said to be regular if every boundary point of D

is regular. A boundary point z ∈ ∂D is said to satisfy the exterior cone

condition, if there exists a cone C with vertex z such that C ∩B(z, r) ⊂ Dc

for some r > 0. Here B(z, r) = {x ∈ Rd : |x − z| < r}. An open set D is

said to satisfy the uniform exterior cone condition if every boundary point

z ∈ ∂D satisfies the exterior cone condition with the same aperture of the

cone.

Proposition 3.1 Let z ∈ ∂D satisfy the exterior cone condition. Then z is

regular for D.

Proof: For r > 0 let τr = inf{t > 0 : Xt /∈ B(0, r)}. Under the P0 probability,

the scaling property implies that for all b > 0 and r > 0 , Xτbr

d
= bXτr .

Therefore, if C is a cone with vertex at the origin and Cr = C ∩ {x ∈ Rd :

|x| ≥ r}, then r 7→ P0(Xτr ∈ Cr) is a constant function. With this at hand,

the proof of Theorem 2.2 from [9] carries over to our setting.

Let D be a bounded domain. Since the process X is transient (e.g. [20],

Theorem 37.8 and Theorem 3.18), τD < ∞, Px a.s. for all x ∈ Rd. Adjoin

the cemetery point ∆ to D and define the killed process XD by

XD
t (ω) =

{
Xt(ω) if t < τD(ω)
∆ if t ≥ τD(ω)

This process is killed upon leaving D. For t ≥ 0, x ∈ Rd, and f ∈ L∞(D),

we define the transition operators (PD
t : t ≥ 0) by

PD
t f(x) = Ex[f(Xt) : t < τD] .
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Let Cb(D) be the space of bounded continuous functions on D and C0(D)

the space of continuous functions on D̄ that vanish on ∂D. Since X is a

doubly Feller process, the standard arguments (see [13], Section 2.1) imply

that PD
t f ∈ Cb(D) for t > 0 and f ∈ L∞. Moreover, if D is regular, then

PD
t f ∈ C0(D) for f ∈ C0(D), and XD on D has both the Feller and the

strong Feller property.

We now want to show that Pt admits a continuous transition density.

For t > 0 and x, y ∈ Rd, let

rD(t, x, y) = Ex[p(t− τD, XτD
, y); τD < t] ,

and

pD(t, x, y) = p(t, x, y)− rD(t, x, y) .

For the dual process X̂ = −X, we analogously define (P̂t : t > 0) and

p̂D(t, x, y).

Theorem 3.2 Let D ⊂ Rd be a bounded domain. Then the following prop-

erties are true:

(1) For every nonnegative Borel measurable function f on Rd, and any

t > 0, x ∈ Rd,

PD
t f(x) =

∫
Rd

pD(t, x, y)f(y) dy .

(2) The function (t, x, y) 7→ pD(t, x, y) is continuous on (0,∞) × (Rd \
∂D)× (Rd \ ∂D).

(3) For all t > 0, x, y ∈ Rd, it holds that

pD(t, x, y) = p̂D(t, y, x) .

(4) The function pD(t, ·, ·) is strictly positive on D ×D.
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(5) For any t, s > 0, x, y ∈ Rd

pD(t+ s, x, y) =

∫
Rd

pD(t, x, z)pD(s, z, y) dz .

(6) For any t > 0, y ∈ D and a regular point z ∈ ∂D,

lim
D3x→z

pD(t, x, y) = 0 .

Remark: The analogous theorem for symmetric α-stable process is stated

and proved in [9] as Theorem 2.4. The symmetry of the transition density is

replaced by the duality relation (3).

Proof: Properties (1), (2), (3), (5) and (6) can be proved by applying the

arguments from [1], Section II.4, or [13], Section 2.2. The uniform continuity

and boundedness of p(t, x, y) shown in Proposition 2.1, as well as estimates

from the proof of that proposition, are crucially used in several places. More-

over, in proving (6), we need the following property (see Proposition 6.1(5)):

If g : D → R is bounded and continuous at z, and HDg(x) := Ex[g(XτD
],

then

lim
D3x→z

HDg(x) = g(z) . (3.1)

Property (4) can be proved in the same way as in Theorem 2.4 from [9].

In this part we have to use estimates (2.6) and (2.11). Symmetry of the

transition density is used in [9] at one point in the proof to conclude that

pD(t, x, y) > 0 for any 0 ≤ t ≤ t1, and (x, y) ∈ (B(a, 3r)\B(a, 2r))×B(a, r).

In our situation this follows from (3) and the fact that the analogous proof

gives that p̂D(t, y, x) > 0 for any 0 ≤ t ≤ t1, and (y, x) ∈ B(a, r)×(B(a, 3r)\
B(a, 2r)).

If x ∈ D̄c, then Px(τD = 0) = 1, and therefore rD(t, x, y) = Ex[p(t −
τD, XτD

, y)] = p(t, x, y), implying pD(t, x, y) = 0 for all y ∈ Rd. Similarly, for

x ∈ D̄c, y ∈ Rd, p̂D(t, x, y) = 0. By (3) in the previous theorem, pD(t, y, x) =

p̂D(t, x, y) = 0 for x ∈ Dc. Hence pD(t, x, y) = 0 if x ∈ Dc or y ∈ Dc.
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4 Green function of the killed process

For x ∈ Rd let

u(x) =

∫ ∞

0

p(t, x) dt .

By using the scaling property (2.1) it easily follows that for x 6= 0

u(x) = |x|α−d u(x/|x|) , (4.1)

and u(0) = +∞.

Proposition 4.1 The function x 7→ u(x) is finite and continuous on Rd \
{0}, and continuous in the extended sense on Rd.

Proof: Let us first show that u(x) < ∞ for x 6= 0. By (4.1), it suffices to

consider points on the unit sphere S. For |x| = 1, we have that p(t, x) ≤ Ct,

t > 0 and p(t, x) ≤ C̃t−d/α (see (2.4) and (2.6)). Therefore,

u(x) =

∫ 1

0

p(t, x) dt+

∫ ∞

1

p(t, x) dt ≤
∫ 1

0

Ct dt+

∫ ∞

1

C̃t−d/α dt <∞ .

To prove continuity, let x 6= 0 and let ψ = |x|/2. Let (xn : n ≥ 1) be a

a sequence converging to x such that |xn| ≥ ψ. By (2.5), p(t, xn) ≤ C̃t,

and by (2.6), p(t, xn) ≤ C̃t−d/α. By splitting the integral
∫∞

0
p(t, xn) dt =∫ 1

0
p(t, xn) dt +

∫∞
1
p(t, xn) dt, applying the dominated convergence theorem

to both parts, and using continuity of p(t, ·), we get that

u(xn) =

∫ ∞

0

p(t, xn) dt −→
∫ ∞

0

p(t, x) dt = u(x) , as n→∞ .

Let xn → 0. By Fatou’s lemma

lim inf
n→∞

u(xn) = lim inf
n→∞

∫ ∞

0

p(t, xn) dt ≥
∫ ∞

0

p(t, 0) dt = u(0) = +∞ ,

proving extended continuity at 0.
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Since u is strictly positive and continuous on the unit sphere S, there

exists a constant k ∈ (0,∞) such that k ≤ u(x) ≤ k−1 for all x ∈ S. It

follows from (4.1) that

k|x|α−d ≤ u(x) ≤ k−1|x|α−d for every x ∈ Rd . (4.2)

Let U denote the potential of the process X, i.e., the semigroup (Pt :

t > 0). That is, for a nonnegative Borel function f on Rd,

Uf(x) =

∫ ∞

0

Ptf(x) dt = Ex

∫ ∞

0

f(Xt) dt .

By defining u(x, y) = u(y − x), x, y ∈ Rd, it immediately follows that

Uf(x) =

∫
Rd

u(x, y) dy .

The function (x, y) 7→ u(x, y) is the Green function of X. It is finite and

jointly continuous on Rd × Rd \ {(x, x) : x ∈ Rd}, and continuous in the

extended sense on Rd × Rd. Moreover, by (4.1),

u(x, y) = |x− y|α−d u

(
y − x

|y − x|

)
.

Let G(x, y) denote the Green function of the symmetric α-stable process.

ThenG(x, y) = c(d, α)|x−y|α−d with c(d, α) = 2−απ−d/2Γ((d−α)/2)Γ(α/2)−1.

Together with (4.2) this implies the following important estimate on the

Green function of X (with a different constant k):

kG(x, y) ≤ u(x, y) ≤ k−1G(x, y) for all x, y ∈ Rd . (4.3)

Let D be a bounded domain in Rd and XD the process killed upon

exiting D. The potential of XD is defined by

UDf(x) =

∫ ∞

0

PD
t f(x) dt = Ex

∫ ∞

0

f(XD
t ) dt ,

for a nonnegative Borel f defined on D. Let us define

uD(x, y) =

∫ ∞

0

pD(t, x, y) dt .

Note that by Theorem 3.2 (5), uD(x, y) > 0 for all x, y ∈ D.
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Theorem 4.2 The following properties are true:

(1) For every nonnegative Borel measurable function f on D,

UDf(x) =

∫
D

uD(x, y)f(y) dy .

(2) The function uD(·, ·) is strictly positive, finite and continuous on D ×
D \ {(x, x) : x ∈ D}, and continuous in the extended sense on D×D.

(3) For all x, y ∈ D,

uD(x, y) = u(x, y)− Ex[u(XτD
, y)] .

(4) For all x, y ∈ D,

uD(x, y) = ûD(y, x) .

(5) For any y ∈ D and a regular point z ∈ ∂D,

lim
D3x→z

uD(x, y) = 0 .

Proof: Assertion (1) follows from Theorem 3.2 and definition of uD. Finite-

ness and continuity of uD on D ×D \ {(x, x) : x ∈ D} can be proved in the

same way as in Proposition 4.1.

Note that for x, y ∈ D∫ ∞

0

rD(t, x, y) dt =

∫ ∞

0

Ex[p(t− τD, XτD
, y), t > τD] dt

= Ex

∫ ∞

τD

p(t− τD, XτD
, y) dt = Ex

∫ ∞

0

p(s,XτD
, y) dt

= Ex[u(XτD
, y)] .

Let δ = dist(y,Dc). Then by (4.2)

Ex[u(XτD
, y)] = Ex[u(y −XτD

)]

≤ Ex[|y −XτD
|α−dk−1]

≤ δα−dk−1 <∞
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Therefore,
∫∞

0
rD(t, x, y) dt <∞, for all x, y ∈ D. Hence,

uD(x, y) =

∫ ∞

0

(p(t, x, y)− rD(t, x, y)) dt

=

∫ ∞

0

p(t, x, y) dt−
∫ ∞

0

rD(t, x, y) dt

= u(x, y)− Ex[u(XτD
, y)]

proving assertion (3). In particular, uD(x, x) = +∞, for all x ∈ D. The

extended continuity of uD is now proved as is Proposition 4.1. Assertion (4)

is a consequence of (3) in Theorem 3.2. Finally, assertion (5) follows from

(3) by using (3.1).

Corollary 4.3 Let z ∈ ∂D be regular. Then

lim
D3x→z

Ex(τD) = 0 .

Proof: Let us first note that Ex(τD) =
∫

D
uD(x, y) dy. Further, by (4.2) and

Theorem 4.2(3) , we have that uD(x, y) ≤ k−1|x−y|α−d, for all x, y ∈ D. Let

us fix a small δ > 0. For x ∈ B(z, δ/2) ∩D,∫
B(z,δ)∩D

uD(x, y) dy ≤ k−1

∫
B(z,δ)

|x− y|α−d dy

= k−1

∫
B(x,δ/2)

|x− y|α−d dy + k−1

∫
B(z,δ)\B(x,δ/2)

|x− y|α−d dy

For the first integral above we have∫
B(x,δ/2)

|x− y|α−d dy =
c(d)

α

(
δ

2

)α

.

The second integral can be estimated as∫
B(z,δ)\B(x,δ/2)

|x− y|α−d dy ≤
∫

B(z,δ)\B(x,δ/2)

(δ/2)α−d dy

≤ (δ/2)α−d|B(z, δ)|

≤ c(d)2d−αδα .
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Therefore, ∫
B(z,δ)∩D

uD(x, y) dy ≤ c4.1δ
α (4.4)

Further, for x ∈ B(z, δ/2) and y ∈ D \ B(z, δ), it holds that uD(x, y) ≤
k−1|x − y|α−d ≤ k−1(δ/2)α−d. Hence, the dominated convergence theorem

and Theorem 4.2(5) imply that

lim
D3x→z

∫
D\B(z,δ)

uD(x, y) dy = 0 .

Together with (4.4), this implies that

lim sup
D3x→z

∫
D

uD(x, y) dy ≤ c4.1δ
α .

Since δ > 0 was arbitrary, the claim follows.

Let GD(x, y) denote the Green function of the symmetric α-stable pro-

cess killed upon exiting D. For a C1,1 domain D there exist quite precise

estimates for GD (see [10]). If one could compare uD(·, ·) with GD(·, ·) in

D ×D, those estimates would transfer to estimates for uD. In the next the-

orem we will show that uD is comparable with GD away from the boundary

of D, or more explicitly, that uD is comparable with |x − y|α−d away from

the boundary

For δ > 0 let Dδ = {x ∈ D : dist(x,Dc) > δ}. Recall the estimate (4.3):

kG(x, y) ≤ u(x, y) ≤ k−1G(x, y) for all x, y ∈ Rd .

Theorem 4.4 There exists a positive constant c4.1 depending on δ, such that

for all x, y ∈ Dδ

c4.1|x− y|α−d ≤ uD(x, y) ≤ c−1
4.1|x− y|α−d . (4.5)

Proof: Let y ∈ Dδ. Then Ex[u(XτD
, y)] ≤ k−1c(d, α)Ex[|XτD

− y|α−d] ≤
k−1c(d, α)δα−d. Hence,

uD(x, y) = u(x, y)− Ex[u(XτD
, y)] ≥ c(d, α)(k|x− y|α−d − k−1δα−d) . (4.6)
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Let η = η(δ) = (k2/2)1/(d−α)δ. For x ∈ D such that |x−y| ≤ η, we have that

k|x− y|α−d − k−1δα−d ≥ k

2
|x− y|α−d . (4.7)

From (4.6) and (4.7) it follows that

uD(x, y) ≥ k

2
c(d, α)|x− y|α−d . (4.8)

Since always uD(x, y) ≤ u(x, y), we have that for y ∈ Dδ and x ∈ D such

that |x− y| ≤ η

uD(x, y) ≤ u(x, y) ≤ k−1c(d, α)|x− y|α−d . (4.9)

By putting these estimates together, we get that there exists c4.2 ∈ (0,∞)

depending on δ such that

c4.2|x− y|α−d ≤ uD(x, y) ≤ c−1
4.2|x− y|α−d (4.10)

for all y ∈ Dδ, and all x ∈ D such that |x− y| ≤ η.

The set Fδ = Dδ × Dδ \ {(x, y) : |x − y| ≤ η} is a compact subset of

D × D \ {(x, x) : x ∈ D}. Since both uD and (x, y) 7→ |x − y|α−d are

strictly positive and continuous on Fδ, they are bounded and bounded away

from zero on this set. Hence, (4.10) holds true on Fδ with a constant c4.3

depending on δ. Therefore, (4.5) holds with c4.1 = min{c4.2, c4.3}.
As a consequence of Theorem 4.4, we may conclude that there exists a

positive constant c4.4 depending on δ such that for all x, y ∈ Dδ

c4.1GD(x, y) ≤ uD(x, y) ≤ c−1
4.1GD(x, y) . (4.11)

5 Exit distributions and the Poisson kernel

In this section we study the exit distributions of the process X from a

bounded domain D, show that in case D satisfies the uniform volume condi-

tion these exit distributions have a density, and under an additional assump-

tion show that the density is continuous. A domain D is said to satisfy the
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uniform volume condition if there exists a constant ρ > 0 such that for every

x ∈ D the following holds:

vol(Dc ∩B(x, 2dist(x, ∂D))) ≥ ρ dist(x, ∂D)d .

Note that the uniform exterior cone condition implies the uniform volume

condition.

Let X = (Xt,Px) be a strictly stable process satisfying assumption from

Section 2., and let τD = inf{t > 0 : Xt /∈ D} be the first exit time from a

bounded domain D. The following formula establishing connection between

the Lévy measure of the process and the harmonic measure (i.e. the exit

distribution) was proved in [14] (see also Theorem 3.1 in [10]): For A ⊂ Dc

and every x ∈ D

Px(XτD
∈ A,XτD

6= XτD−) =

∫
D

ν(A− y)UD(x, dy) . (5.1)

In particular, if dist(A,D) > 0, then XτD
∈ A only if the process jumps out

from D, implying

Px(XτD
∈ A) =

∫
D

ν(A− y)UD(x, dy), A ⊂ Dc, dist(A,D) > 0 . (5.2)

Under our assumptions, the Lévy measure ν has a density f , and the potential

measure UD(x, ·) has a density uD(x, ·). Hence, the formula (5.2) takes the

following form:

Px(XτD
∈ A) =

∫
A

(∫
D

f(z − y)uD(x, y) dy

)
dz, A ⊂ Dc, dist(A,D) > 0 .

(5.3)

We would like to show that if D is a bounded domain satisfying the uniform

volume condition, then Px(XτD
6= XτD−) = 1. For a symmetric α-stable

process and domains satisfying the uniform exterior cone condition this is

proved in Lemma 6 of [5]. Those arguments carry over to our situation.

Some changes are needed to show the following lemma.
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Lemma 5.1 Let D ⊂ Rd be a bounded domain satisfying the uniform volume

condition. There exists a constant p > 0 depending on κ, ρ, α, d, such that

for every x ∈ D
Px(XτB(x,r)

∈ Dc) ≥ p , (5.4)

where r = rx = dist(x,Dc)/3.

Proof: By applying the formula (5.3) to B(x, r) and Dc, we get

Px(XτB(x,r)
∈ Dc) =

∫
Dc

(∫
B(x,r)

f(z − y)uB(x,r)(x, y) dy

)
dz

≥
∫

Dc

(∫
B(x,r)

κ|z − y|−(α+d) uB(x,r)(x, y) dy

)
dz

≥
∫

Dc

(∫
B(x,r)

κ2−(α+d)|z − x|−(α+d) uB(x,r)(x, y) dy

)
dz

= κ2−(α+d)UB(x,r)(x,B(x, r))

∫
Dc

|z − x|−(α+d) dz

where the first inequality follows from assumption (2.2), and the second from

the fact that |z − y| ≤ 2|z − x| for y ∈ B(x, r) and z ∈ Dc. Note that

UB(x,r)(x,B(x, r)) = Ex[τB(x,r)] = c(α)rα by the scaling property. Hence,

Px(XτB(x,r)
∈ Dc) ≥ κc(α)2−(α+d)rα

∫
Dc

|z − x|−(α+d) dz (5.5)

The integral is estimated by means of the uniform volume condition:∫
Dc

|z − x|−(α+d) dz ≥
∫

Dc∩B(x,6r)

|z − x|−(α+d) dz

≥ (6r)−(α+d)vol(Dc ∩B(x, 6r))

≥ (6r)−(α+d)ρ(3r)d = c(ρ, α, d)r−α . (5.6)

Now (5.2) follows from (5.5) and (5.6).

The following result is proved exactly as in Lemma 6 of [5].

Proposition 5.2 Let D ⊂ Rd be a bounded domain satisfying the uniform

volume condition. Then for every x ∈ D,

Px(XτD
6= XτD−) = 1 .
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We assume from now on that D ⊂ Rd satisfies the uniform volume

condition. From (5.1) and Proposition 5.2 we get that for all x ∈ D

Px(XτD
∈ A) =

∫
A

(∫
D

f(z − y)uD(x, y)

)
dz, A ⊂ D̄c, . (5.7)

Let us define the Poisson kernel PD(x, z), x ∈ D, z ∈ D̄c by

PD(x, z) =

∫
D

f(z − y)uD(x, y) dy . (5.8)

The Poisson kernel PD(x, ·) is the density of the exit distribution of X under

Px:

Px(XτD
∈ A) =

∫
A

PD(x, z) dz , A ⊂ D̄c . (5.9)

We will later need the following estimate of the Poisson kernel for points

z away from the boundary ∂D.

Lemma 5.3 Let x ∈ Rd and let r > 0. For all z ∈ B(x, 2r)c, and all

y ∈ B(x, r) we have that

κ2−(α+d) Ey(τB(x,r))

|x− z|α+d
≤ PB(x,r)(y, z) ≤ κ−12α+d Ey(τB(x,r))

|x− z|α+d
. (5.10)

Proof: Note that 2−1|x − z| ≤ |w − z| ≤ 2|x − z| for any w ∈ B(x, r) and

z ∈ B(x, 2r)c. Then

PB(x,r)(y, z) =

∫
B(x,r)

f(z − w)uB(x,r)(y, w) dw

≥
∫

B(x,r)

κ|w − z|−(α+d)uB(x,r)(y, w) dw

≥
∫

B(x,r)

κ2−(α+d)|x− z|−(α+d)uB(x,r)(y, w) dw

= κ2−(α+d)Ey(τB(x,r))|x− z|−(α+d)

where the first inequality follows from (2.3). The other inequality is proved

exactly in the same way.

A similar estimate comes from [5] (Lemma 7). We give a simple proof.
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Lemma 5.4 Let D ⊂ Rd be a bounded domain satisfying the uniform volume

condition, and let λ > 0. For all z ∈ Dc satisfying dist(z,D) ≥ λ diam(D),

and all x ∈ D,

κ(1 + λ−1)−(α+d) Ex(τD)

dist(z,D)α+d
≤ PD(x, z) ≤ κ−1 Ex(τD)

dist(z,D)α+d
(5.11)

Proof: Let z ∈ Dc be such that dist(z,D) ≥ λdiam(D). Then

dist(z,D) ≤ |z − y| ≤ dist(z,D) + diam(D) ≤ (1 + 1/λ)dist(z,D).

Since κ|z − y|−(α+d) ≤ f(z − y) ≤ κ−1|z − y|−(α+d), we get that

κ(1 + 1/λ)−(α+d)dist(z,D)−(α+d) ≤ f(z − y) ≤ κ−1dist(z,D)−(α+d).

We integrate above inequalities against uD(x, y)dy to get (5.11).

Corollary 5.5 Let D ⊂ Rd be a bounded domain satisfying the uniform

exterior cone condition. Then for every ζ ∈ ∂D

lim
D3x→ζ

PD(x, z) = 0 , z ∈ D̄c .

Proof: The statement follows from the right hand side of (5.11) and Corollary

4.3.

In the remaining part of this section we will assume that the density

f of the Lévy measure ν is a continuous function which satisfies (2.3). Let

D ⊂ Rd be a bounded domain satisfying the uniform volume condition. We

will show that the Poisson kernel PD(·, ·) is jointly continuous on D × D̄c.

Let us first prepare a lemma.

Lemma 5.6 Let x ∈ D, 0 < δ < dist(x, ∂D), and ε > 0. There exists a

constant c5.1 > 0 depending on ε, such that for all w ∈ B(x, δ/2) and all

v ∈ Dc satisfying dist(v,D) ≥ ε,∫
B(x,δ)

f(v − y)uD(w, y) dy ≤ c5.1δ
α . (5.12)
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Proof: Since |v − y| ≥ ε, it follows that f(v − y) ≤ κ−1ε−(α+d). Thus,∫
B(x,δ)

f(v − y)uD(w, y) dy ≤ κ−1ε−(α+d)

∫
B(x,δ)

uD(w, y) dy ,

so it suffices to estimate
∫

B(x,δ)
uD(w, y) dy. This is done exactly as in the

proof of Corollary 4.3.

Theorem 5.7 Let D ⊂ Rd be a bounded domain satisfying the uniform

volume condition, and let the Lévy measure of X have a continuous den-

sity f : Rd \ {0} → (0,+∞) satisfying (2.3). Then the Poisson kernel

PD : D × D̄c → (0,+∞) is a jointly continuous function.

Proof: Let x ∈ D and z ∈ D̄c be fixed. Let (xn : n ≥ 1) be a sequence

of points in D such that limn xn = x, and let (zn : n ≥ 1) be a sequence

of points in D̄c such that limn zn = z. Choose δ > 0 and ε > 0 such that

dist(x,Dc) ≥ 2δ and dist(z,D) ≥ 2ε. Then |x−xn| < δ/2 and dist(zn, D) ≥ ε

for all but finitely many n.

If y ∈ D \ B(x, δ), then uD(w, y) ≤ k−1(δ/2)α−d for w ∈ B(x, δ/2). Also,

(|zn − y| : n ≥ 1) is bounded away from zero. By continuity of f and uD,

f(zn − y)uD(xn, y)1D\B(x,δ)(y) −→ f(z − y)uD(x, y)1D\B(x,δ)(y) , n→∞ ,

and convergence is bounded by a finite constant. Since |D| <∞, dominated

convergence theorem implies that∫
D\B(x,δ)

f(zn − y)uD(xn, y) dy −→
∫

D\B(x,δ)

f(z − y)uD(x, y) dy , n→∞ .

(5.13)

Now

|PD(xn, zn)− PD(x, z)| ≤ |
∫

D\B(x,δ)

f(zn − y)uD(xn, y) dy

−
∫

D\B(x,δ)

f(z − y)uD(x, y) dy|

21



+

∫
B(x,δ)

f(zn − y)uD(xn, y) dy

+

∫
B(x,δ)

f(z − y)uD(x, y) dy

≤ |
∫

D\B(x,δ)

f(zn − y)uD(xn, y) dy

−
∫

D\B(x,δ)

f(z − y)uD(x, y) dy|+ 2c5.1δ
α

where the last inequality follows from Lemma 5.6. Let n→∞. By (5.13),

lim sup
n

|PD(xn, zn)− PD(x, z)| ≤ 2c5.1δ
α .

Since δ can be chosen arbitrarily small, the claim follows.

Remark Let us assume that the density f of the Lévy measure of X satisfies

(2.3), but is not necessarily continuous. By letting zn = z for all n ∈ N in the

above proof, we conclude that for every z ∈ D̄c, the function x 7→ PD(x, z)

is continuous in D.

6 Harmonic functions and Harnack inequal-

ity

Harnack inequality for a symmetric α-stable process is an easy consequence

of the explicit formula for the Poisson kernel for the ball. The lack of such

a formula for other strictly stable processes makes Harnack inequality more

difficult task. In this section we would like to point out that the very recent

proof of Harnack inequality for jump processes given in [2] carries over to our

situation with only minor modifications. We begin this section by recalling

definition of harmonic functions and collecting some known properties.

Let X = (Xt,Px) be a strictly α-stable processes satisfying assumptions

from Section 2. Let h : Rd → R be a Borel function bounded from below. We

say that h is harmonic for the process X (or simply harmonic) in an open,
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bounded set D ⊂ Rd if

h(x) = Ex[h(XτU
)] , x ∈ U , (6.1)

for every open set U such that Ū ⊂ D. A function h is regular harmonic in

D, if

h(x) = Ex[h(XτD
)] , x ∈ D , (6.2)

A function h : Rd → R harmonic in D is said to be stochastically regular if

for every nondecreasing sequence of stopping times (Tn : n ≥ 1) such that

Tn → τD, it holds that h(XTn) → h(XτD
), Px a.s.

The analogous definitions of harmonic function for symmetric α-stable

process appear in [5], while a similar definition for more general Lévy pro-

cesses can be found in [18]. Stochastic regularity comes from [18].

Let D ⊂ Rd be a bounded open set. For a bounded Borel function

g : Dc → R define

HDg(x) = Ex[g(XτD
)] , x ∈ Rd . (6.3)

In the next proposition we list several known properties of harmonic

functions.

Proposition 6.1 Let h : Rd → R be a Borel function bounded from below,

and let D ⊂ Rd be open and bounded.

(1) If h is a regular harmonic function in D, then it is harmonic in D.

(2) If h is bounded on Rd and if (h(Xt∧τD
) : t ≥ 0) is a Px-martingale

for every x ∈ D, then h is regular harmonic in D. Conversely, if h is

bounded on Dc and regular harmonic in D, then (h(Xt∧τD
) : t ≥ 0) is

a Px-martingale for every x ∈ D.

(3) Let g : Dc → R be a bounded Borel function. Then HDg is a stochas-

tically regular harmonic function in D. Conversely, if h is a bounded

(on Rd) stochastically regular harmonic function on D, then h = HDh,

i.e., h is a regular harmonic function on D.
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(4) Let g : Dc → R be a bounded Borel function. Then HDg is a continuous

function in D.

(5) Let g : Dc → R be a bounded Borel function. If g is continuous at

z ∈ ∂D, then

lim
D3x→z

HDg(x) = g(z) .

(6) If h is harmonic in D and continuous on D̄, then h is regular harmonic

in D.

(7) Assume, additionally, that D is a bounded domain satisfying the uni-

form volume condition. If h is bounded on D and harmonic in D, then

h is regular harmonic in D.

Proof: Assertion (1) is a consequence of the strong Markov property, (3) is

proved in [18], Section 24, (4) follows from the strong Feller property of X

(see [18], Section 25), while (2) and (5) are standard facts. The assertion

(7) is proved in the same way as Lemma 17 in [5], and (6) can be proved

similarly by use of the bounded convergence theorem.

Assume that D is a bounded domain satisfying the uniform volume

condition. If h is a regular harmonic function in D, then h(x) = Ex[h(XτD
)].

From (5.9) we get the following representation of h:

h(x) =

∫
D̄c

PD(x, z)h(z) dz , x ∈ D . (6.4)

In the sequel we closely follow [2].

Proposition 6.2 (1) There exists a constant c6.1 not depending on x such

that

Px( sup
0≤s≤t

|Xs −X0| > 1) ≤ c6.1t

(2) Let ε > 0. There exists a constant c6.2 depending only on ε such that if

x ∈ Rd and r > 0, then

inf
y∈B(x,(1−ε)r)

Ey[τB(x,r)] ≥ c6.2r
α .
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(3) There exists a constant c6.3 such that supy Ey[τB(x,r)] ≤ c6.3r
α.

(4) Let A ⊂ B(x, 1). There exists a constant c6.4 not depending on x and

A such that

Py(TA < τB(x,3)) ≥ c6.4|A| y ∈ B(x, 2) .

Proof: This is proved exactly as in [2].

Proposition 6.3 There exist constants c6.5 and c6.6 such that if x ∈ Rd,

r > 0, y ∈ B(x, r), and g is a bounded nonnegative function supported in

B(x, 2r)c, then

c6.5

(
EyτB(x,r)

) ∫
g(z)

|z − x|α+d
dz ≤ Eyg(XτB(x,r)

) ≤ c6.6

(
EyτB(x,r)

) ∫
g(z)

|z − x|α+d
dz .

Proof: Note that

Eyg(XτB(x,r)
) =

∫
B(x,r)c

PB(x,r)(y, z)g(z) dz =

∫
B(x,2r)c

PB(x,r)(y, z)g(z) dz ,

where the last equality follows from the fact that g is supported in B(x, 2r)c.

The result now follows from Lemma 5.3.

Let h : Rd → R be a nonnegative and bounded function (on Rd), har-

monic in a bounded domain D which satisfies the uniform volume condition.

Let K ⊂ D be compact. If h(x) > 0 for some x ∈ D, then infy∈K h(y) > 0.

Indeed, h(x) =
∫

D̄c PD(x, z)h(z) dz, for all x ∈ D, and by definition (5.6),

PD(x, z) > 0 for every z ∈ Dc. Hence, if h(x) = 0 for some x ∈ D, then

h(z) = 0 for almost all z ∈ Dc, and thus h = 0 in D. Therefore, h > 0

in D. By Proposition 6.1, (4) and (7), h is continuous on D. Therefore,

infy∈K h(y) > 0. With this fact, the proof of the following result follows

verbatim the proof of Theorem 3.6 in [2].

Theorem 6.4 There exists a constant c6.7 such that if h : Rd → R is non-

negative and bounded in Rd and harmonic in the ball B(x0, 16), then

h(x) ≤ c6.7h(y) , for all x, y ∈ B(x0, 1) . (6.5)
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Corollary 6.5 Let D ⊂ Rd be a bounded domain, and let K ⊂ D be compact.

There exists a constant c6.8 such that if h : Rd → R is nonnegative and

bounded in Rd and harmonic in D, then h(x) ≤ c6.8h(y) for all x, y ∈ K.

Proof: This is proved by the standard chain argument.

The last result is the Harnack inequality stated for nonnegative harmonic

functions which are bounded on Rd. In the sequel we are going to remove

the restriction on boundedness.

Let D ⊂ Rd be a bounded domain satisfying the uniform volume condi-

tion. For a Borel set A ⊂ D̄c, the harmonic measure of A at x ∈ D is defined

by

ωx(A) = Px(XτD
∈ A) = Ex[1A(XτD

)] .

By Proposition 6.1, x → ωx(A) is a bounded, regular harmonic function in

D, and admits a representation

x→ ωx(A) =

∫
A

PD(x, z) dz .

Let K ⊂ D be compact. By Corollary 6.5 there exists a constant c6.8 such

that ωx(A) ≤ c6.8 ω
y(A) for all x, y ∈ K and all A ⊂ D̄c. Thus∫

A

PD(x, z) dz ≤ c6.8

∫
A

PD(y, z) dz ,

for all x, y ∈ K and all A ⊂ D̄c. This implies that for x, y ∈ K,

PD(x, z) ≤ c6.8PD(y, z) for a.e. z ∈ D̄c . (6.6)

Note that this inequality for a ball is the starting point for usual proofs of

Harnack inequality.

Lemma 6.6 Let h : Rd → [0,∞) be regular harmonic in D. Then h is

continuous in D.
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Proof: Let x ∈ D and let (xn : n ≥ 1) be a sequence of points in D such

that x = limn→∞ xn. By the remark following the proof of Theorem 5.7,

limn→∞ PD(xn, z) = PD(x, z), for every z ∈ D̄c. There is a compact set

K ⊂ D such that xn, x ∈ D. By (6.6),

PD(xn, z) ≤ c6.8PD(x, z) for every n ≥ 1, for a.e. z ∈ D̄c . (6.7)

Since
∫

Dc PD(x, z)h(z) = h(x) < ∞, the function z 7→ PD(x, z)h(z) is inte-

grable on Dc. By the dominated convergence theorem,

lim
n→∞

∫
Dc

PD(xn, z)u(z) dz =

∫
Dc

PD(x, z)u(z) dz

proving the lemma.

Theorem 6.7 Let D ⊂ Rd be a bounded domain, and let K ⊂ D be compact.

There exists a constant c6.9 such that if h is a nonnegative harmonic function

in D, then

h(x) ≤ c6.9h(y) x, y ∈ K . (6.8)

Moreover, every nonnegative harmonic function in D is continuous in D.

Proof: There exists a C∞ domain U such that K ⊂ U ⊂ Ū ⊂ D (e.g. Lemma

2.4 of [8]). Clearly, such U satisfies the uniform volume condition, so by (6.6),

there exists a constant c6.10 such that for all x, y ∈ K

PU(x, z) ≤ c6.10PU(y, z), for a.e. z ∈ Ū c .

Let h be a nonnegative harmonic function in D. Then

h(x) = Ex[h(XτU
)] =

∫
Ūc

PU(x, z)h(z) dz ,

for all x ∈ U . In particular, for x, y ∈ K,

h(x) =

∫
Ūc

PU(x, z)h(z) dz ≤ c6.10

∫
Ūc

PU(y, z)h(z) dz = c6.10h(y) .
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Since h is nonnegative and regular harmonic in U , Lemma 6.6 implies that h

is continuous in U . Again by [8], there exists an increasing sequence of C∞

domains (Un, n ≥ 1) such that Ūn ⊂ Un+1 for all n ≥ 1, and ∪∞n=1Un = D.

Therefore, h is continuous on D.

Having the full Harnack inequality, we can prove the following version

originally due to Bogdan [5] for a symmetric α-stable process.

Lemma 6.8 Let x1, x2 ∈ Rd, r > 0, k ∈ N, and let |x1 − x2| < 2kr. There

exits a constant c6.11 such that for every nonnegative function h which is

harmonic in B(x1, r) ∪B(x2, r),

c6.112
−k(α+d)h(x2) ≤ h(x1) ≤ c−1

6.112
k(α+d) (6.9)

Proof: This is proved by following arguments from Lemma 2 in [5], and using

estimate (5.11) for the Poisson kernel.

The last lemma makes it possible to prove the Harnack inequality for

not necessarily connected open sets.

Corollary 6.9 Let D ⊂ Rd be a bounded open set, and let K ⊂ D be com-

pact. There exists a constant c6.12 such that for every nonnegative function

h harmonic in D,

h(x) ≤ c6.12h(y) for all x, y ∈ K .
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