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Abstract. In this paper we study positive self-similar Markov processes obtained by (par-
tially) resurrecting a strictly α-stable process at its first exit time from (0,∞). We construct
those processes by using the Lamperti transform. We explain their long term behavior and
give conditions for absorption at 0 in finite time. In case the process is absorbed at 0 in finite
time, we give a necessary and sufficient condition for the existence of a recurrent extension.
The motivation to study resurrected processes comes from the fact that their jump kernels
may explode at zero. We establish sharp two-sided jump kernel estimates for a large class of
resurrected stable processes.
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1. Introduction

A [0,∞)-valued standard Markov process (see [2]) X = (Xt,Px), t ≥ 0, x ≥ 0, is called
a positive self-similar Markov process (pssMp) if there exists α > 0 such that for any x > 0
and c > 0, the law of (cXc−αt : t ≥ 0) under Px is equal to the law of (Xt : t ≥ 0) under
Pcx. One refers to α as the self-similarity index. We will say that X is a pssMp with the
origin as a trap (or that X is absorbed at the origin) if once X hits the origin it stays there
forever. Self-similar processes were introduced by Lamperti in [24] where he established a one-
to-one correspondence between pssMps up to the first exit time from (0,∞) and possibly killed
Lévy processes. A detailed description of this correspondence, usually called the Lamperti
transform, is given in Section 2.

A canonical example of a pssMp with origin as a trap is an α-stable process in R absorbed
at the origin upon exiting (0,∞). To be more precise, let η = (ηt)t≥0 be a strictly α-stable
process in R, α ∈ (0, 2). Its Lévy measure has a density

ν(x) = c+ x
−1−α1(x>0) + c− |x|−1−α1(x<0), x ∈ R, (1.1)

where c+, c− ≥ 0 and c+ = c− if α = 1. Let ρ := P(η1 ≥ 0) = P(η1 > 0) be the positivity
parameter, and set ρ̂ := 1− ρ. The process η will be parameterized so that

c+ =
Γ(α + 1)

Γ(αρ)Γ(1− αρ)
, c− =

Γ(α + 1)

Γ(αρ̂)Γ(1− αρ̂)
. (1.2)

Throughout the paper, we will exclude the cases of only one-sided jumps. More precisely, the
set of permissible parameters (α, ρ) is given by

{(α, ρ) : α ∈ (0, 1), ρ ∈ (0, 1)} ∪ {(α, ρ) : α ∈ (1, 2), ρ ∈ (1− 1/α, 1/α)} ∪ {(α, ρ) = (1, 1/2)},
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cf. [23, p.399]. We denote by Px, x > 0, the law of η starting at x.
Let τ = τ(0,∞) := inf{t > 0 : ηt ∈ (−∞, 0]} be the first exit time of η from (0,∞). At

time τ , we send the process to 0 where it stays forever, and thus arriving at the process
X∗

t := ηt1(t<τ), t ≥ 0. The process X∗ = (X∗
t ,Px) is a pssMp of index α, cf. [6, Section 3.1].

If T0 := inf{t > 0 : X∗
t = 0}, then T0 = τ(0,∞) < ∞ and X∗

T0− > 0 a.s. We denote by ξ∗ the
Lévy process associated with X∗ through the Lamperti transform.

In this paper, we introduce a large class of positive self-similar processes that can be obtained
by (partially) resurrecting the strictly α-stable process η at the first exit time τ . If z = ητ < 0 is
the position where η lands at the exit from (0,∞), we return the process into [0,∞) according
to a probability distribution p(z, ·). If the process is returned to 0, it stays there forever. More
precisely, to ensure self-similarity, we consider probability kernels p : (−∞, 0)× B([0,∞)) →
[0, 1] satisfying the scaling condition

p(λz, λA) = p(z, A) for all z < 0, A ∈ B([0,∞)) and λ > 0. (1.3)

All such kernels arise in the following way: Let ϕ be a probability measure on B([0,∞)). Then

p(z, A) := ϕ(|z|−1A), for all z < 0 and A ∈ B([0,∞)) (1.4)

satisfies (1.3). Conversely, if p(·, ·) satisfies (1.3) and if we set ϕ(A) = p(−1, A), then p(·, ·) is
of the form (1.4). We call p(·, ·) the return kernel. Note that it follows from (1.3) that

p := 1− p(z, {0})
is independent of z < 0.
Let j(x, z) := ν(z − x) be the jump kernel of η. Set

q0(x,A) :=

∫
(−∞,0)

j(x, z)p(z, A) dz, x > 0, A ∈ B([0,∞)), (1.5)

and note that

q0(x, {0}) =
∫
(−∞,0)

j(x, z)p(z, {0}) dz = (1− p)

∫ 0

−∞
c−(x− z)−1−α dz = (1− p)

c−
α
x−α.

We define a resurrection kernel q as the restriction of q0(x, ·) to (0,∞):

q(x,A) :=

∫
(−∞,0)

j(x, z)p(z, A) dz, x > 0, A ∈ B((0,∞)). (1.6)

The idea behind the kernel q0(x, ·) is that if x = ητ− , then instead of sending η to the origin
at time τ (thus obtaining the pssMp X∗), with probability 1 − p we send η to the origin,
and with probability p = p(1, (0,∞)) we restart (or resurrect) it according to the normalized
kernel q(x, ·). If p ∈ (0, 1) we call the process partially resurrected, and when p = 1 we say
that it is fully resurrected (or just resurrected). By Lemma 3.1, q(x, ·) is absolutely continuous
with respect to the Lebesgue measure, and its density will be denoted by q(x, y), x, y > 0.
By resurrecting according to the normalized density we arrive at a pssMp X absorbed at the
origin with jump kernel J(x, y) := j(x, y) + q(x, y). The precise construction will be carried
out in Section 3 by means of the Lamperti transform.

Examples of pssMp that can be obtained by such resurrection include the path censored
process from [23] (also called the trace process on (0,∞) of the stable process) in which case
the return kernel is equal to the Poisson kernel of η with respect to (−∞, 0); the process from
[11, 29] related to nonlocal problems with Neumann boundary condition in which case the
return kernel is equal to j(z, y)dy/

∫∞
0
j(z, u)du; and the absolute value process |η| = (|ηt|)t≥0

in which case p(z, A) = δ−z(A), see Subsection 2.3. In all three examples above p = 1 so we
have full resurrection of η. If p(z, A) = (1 − p)δ0(A) + pδ−z(A), we recover the ricocheted
process from [5, 22].
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One of the key questions that we will address in this paper is the behavior of X at its
absorption time at 0. In case p < 1 it is clear from the Lamperti trichotomy (see Section 2)
that the partially resurrected process X will be absorbed at 0 in finite time by a jump. In
case p = 1, the absorption time may be infinite or finite, and in the latter case it turns out
that X is continuously absorbed at 0. We answer the question of finite or infinite lifetime by
studying the behavior of the Lévy process ξ = (ξt,Px), t ≥ 0, x ∈ R, associated to X through
the Lamperti transform. Let Ψ denote the characteristic exponent of ξ. We will write P0 as
P and denote expectation with respect to P by E. When p < 1, it is obvious that Eξ1 = −∞.
Our first main result is about the finiteness of E|ξ1| and provides an explicit expression of
Eξ1 when p = 1.

Theorem 1.1. Suppose p = 1. It holds that E|ξ1| <∞ if and only if∫
(0,∞)

| log y|ϕ(dy) <∞. (1.7)

In this case

E[ξ1] = iΨ
′
(0) = Γ(α)

sin(παρ̂)

π

(
π cot(παρ̂) +

∫
(0,∞)

(log y)ϕ(dy)

)
. (1.8)

It follows from [19, Theorem 7.2] and the Lamperti trichotomy (see Section 2) that (i) If
E[ξ1] ≥ 0, then lim supt→∞ ξt = +∞, hence the absorption time of X is infinite, and (ii) If
E[ξ1] < 0, then limt→∞ ξt = −∞, hence the absorption time of X is finite Px-a.s. and X is
continuously absorbed at 0. Therefore, since αρ̂ ∈ (0, 1), to deduce the long term behavior of
X it suffices to determine the sign of the expression in the parenthesis in (1.8), see Corollaries
3.8–3.9.

In case whenX is absorbed at zero in finite time, we give a definitive answer on the existence
of its recurrent positive self-similar extensions.

Theorem 1.2. Suppose that X is absorbed at zero in finite time. If

κ0 := sup{κ ∈ (0,∞) :

∫
(0,∞)

uκϕ(du) <∞} ∈ (0,∞], (1.9)

then (1) X has a positive self-similar recurrent extension which leaves 0 continuously; and
(2) there exists κ∗ ∈ (0, α) such that, for any β ∈ (0, κ∗), X has a positive self-similar
recurrent extension which leaves 0 by a jump associated with an excursion measure of the
form cβx−1−βdx, x > 0.
Conversely, if (1.9) does not hold, then X has no positive self-similar recurrent extension.

Positive self-similar Markov processes and their associated Lévy processes have been ex-
tensively studied in the last 15 years. We mention here the Lamperti stable processes [6, 7],
hypergeometric processes [21, 18], double hypergeometric Lévy processes [22], and β-processes
[17]. The interest in those families of processes was mostly motivated by the Wiener-Hopf
factorization.

Our motivation for studying pssMps comes from our research program on the potential
theory of Markov processes with jump kernels degenerate at the boundary. In [14, 15], we
introduced a large class of symmetric Markov processes in Rd

+ with jump kernels decaying
at the boundary and systematically studied their potential theory. The trace process of a
symmetric α-stable process on Rd

+ is degenerate in the sense that its jump kernel blows up
at the boundary, see [4]. The same feature is true also for the process studied in [11, 29].
In [16] we studied the potential theory of a large class of symmetric Markov processes in
Rd

+ with jump kernels blowing up at the boundary. The main examples of such processes
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are rotationally symmetric α-stable processes resurrected upon exiting the upper-half-space.
The current paper concentrates on the one dimensional case, but we do not assume that the
processes are symmetric. The jump kernel J(x, y) = j(x, y)+q(x, y) of our resurrected process
exhibits unusual and interesting behavior when y → 0. Depending on the return kernel p(z, ·),
J(x, y) may tend to ∞ at various rates as y → 0. Since j(x, y) is bounded away from the
diagonal, this explosion is due to the resurrection kernel.

In order to state the precise result about behavior of the resurrection kernel, we first need
a definition.

Definition 1.3. Let g : (0,∞) → (0,∞) and β1, β2 ∈ R.
(i) We say that g satisfies the lower weak scaling condition at zero L1(β1) (resp. at infinity

L1(β1)) if there exists c ∈ (0, 1] such that

g(R)

g(r)
≥ c

(
R

r

)β1

for all r ≤ R < 1 (resp. 1 ≤ r ≤ R).

(ii) We say that g satisfies the upper weak scaling condition at zero U1(β2) (resp. at infinity
U1(β2)) if there exists C ∈ [1,∞) such that

g(R)

g(r)
≤ C

(
R

r

)β2

for all r ≤ R < 1 (resp. 1 ≤ r ≤ R).

Here is our third main result in which we assume that the restriction of the measure ϕ to
(0,∞) is absolutely continuous with respect to the Lebesgue measure and, with slight abuse
of notation, denote its density also by ϕ. The notation a ≍ b means that c ≤ b/a ≤ c−1 for
some c ∈ (0, 1).

Theorem 1.4. Suppose that the density ϕ is strictly positive. (1) If x ≤ y ≤ 5x, then

q(x, y) ≍ q(y, x) ≍ x−1−α ≍ y−1−α.

(2) Suppose ϕ satisfies the lower weak scaling condition L1(β1) at zero with β1 > −1 − α.
Then for 5x ≤ y,

q(y, x) ≍ (y − x)−1−α

∫ 1

x
y−x

ϕ(t)
dt

t
≍ y−1−α

∫ 1

x
y−x

ϕ(t)
dt

t
.

Further, if ϕ also satisfies the upper weak scaling condition U1(β2) at zero with β2 < 0, for
5x ≤ y,

q(y, x) ≍ (y − x)−1−αϕ
( x

y − x

)
≍ y−1−αϕ

(x
y

)
.

(3) Suppose ϕ satisfies the upper weak scaling condition U1(γ2) at infinity with γ2 < 0. Then
for 5x ≤ y,

q(x, y) ≍ (y − x)−1−α

∫ y−x
x

0

tαϕ(t)dt ≍ y−1−α

∫ y
x
−1

1

tαϕ(t)dt. (1.10)

Further, if ϕ also satisfies the lower weak scaling condition L1(γ1) at infinity with γ1 < −1−α,
for 5x ≤ y,

q(x, y) ≍ (y − x)−1−α
( x

y − x

)−1−α
ϕ
(y − x

x

)
≍ x−1−αϕ

(y
x

)
.

As a consequence of this theorem we can deduce, see Corollary 5.3, that the jump kernel
J(x, y) of the path censored process goes to ∞ at rate y−αρ as y → 0, and that the jump
kernel of the process with the resurrection kernel j(z, y)dy/

∫∞
0
j(z, u)du goes to infinity at

rate log(1/y) as y → 0.
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Stable process conditioned to stay positive and censored stable process can be regarded
as resurrected stable processes, see [1] and [23, Remark 3.3]. However, they do not fall into
the framework of resurrected stable processes of this paper. To cover these processes, we
introduce a larger class of pssMps in Section 6 of this paper. This larger class incudes stable
processes conditioned to stay positive, stable processes conditioned to hit 0 continuously, and
censored stable processes as examples. The jump kernel J(x, y) = j(x, y) + q(x, y) of our
resurrected stable process can be regarded as a modification of the original kernel j(x, y). The
jump kernels of the class of pssMps in Section 6 are of the more general form j(x, y)B(x, y)
where B : (0,∞) × (0,∞) → (0,∞). In case of multidimensional isotropic stable process,
the analogous procedure is quite standard when B is bounded from below and above by
two positive constants, leading to the so-called stable-like processes. The situation when the
function B(x, y) decays and vanishes at the boundary of the state space was recently studied
in [14, 15] in the multidimensional case of the upper-half-space in Rd and the symmetric jump
kernel j(x, y) = |x−y|−d−α. The paper [16] deals with the multidimensional case in the upper-
half-space, the same jump kernel |x − y|−d−α, with B(x, y) exploding at the boundary. The
symmetric 1-dimensional case is also covered in that paper, but differently to the current paper
which is mostly focused on self-similarity, the main concern of [16] is on potential-theoretic
questions.

Organization of the paper: In the next section we recall some preliminary results related
to pssMps and their connection to Lévy processes through the Lamperti transform, in partic-
ular the Lamperti trichotomy and the relationship between infinitesimal generators of those
processes. We also introduce two families of return kernels and show how some of examples
for pssMp from literature fit into these families.

Section 3 is central to the paper. Starting from the general return kernel described by the
measure ϕ, we first look at the regular step process with the resurrection kernel q(x, y) as
its jump kernel, and its counterpart through the Lamperti transform – a compound Poisson
process χ. We compute the Lévy measure of χ and its characteristic function. For particular
examples given by (2.13) and (2.15) we obtain more precise expressions. Then we construct
the resurrected process X, and compute the characteristic exponent Ψ of the corresponding
Lévy process ξ. In Subsection 3.3 we study the behavior of X by analyzing the derivative of
the characteristic exponent Ψ of ξ at zero and give a proof of Theorem 1.1. In Subsection 3.2
we prove Theorem 1.2. Finally, we provide several concrete examples illustrating the behavior
of X at its absorption time.

In Section 4 we give a necessary and sufficient condition on ϕ making the resurrection
kernel symmetric, i.e., q(x, y) = q(y, x) for all x, y > 0, cf. Theorem 4.3. If, in addition, the
underlying α-stable process η is symmetric, the resulting resurrected process X will be also
symmetric.

In Section 5 we provide a proof of Theorem 1.4. The key estimates are given in Lemma 5.1
where it is assumed that |x− y| = 1. By using scaling of the resurrection kernel, this suffices
to prove the theorem. A particular example of a slightly modified density from the family
(2.13) gives additional insight of possible behaviors at zero and at infinity, see Corollary 5.3.

In Section 6 we put the resurrected process in a more general context of processes with
modified jump kernel. Given a process with jump kernel j(x, y), we multiply it by a function
B(x, y) which changes the behavior of the original kernel. We show that the jump kernel of
the resurrected process can be thought of as being modified by the function which explodes
at the boundary, namely at zero. We end the paper by looking at the symmetric α-stable
case modified by a function B(x, y), and establish the behavior of the modified process at its
lifetime.
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For the reader’s convenience, we summarize the known examples of resurrected stable pro-
cesses that can be included in our framework. Path-censored stable processes, the processes
studied in [11, 29], the absolute value of a stable process and the ricocheted stable processes are
examples of our resurrected stable processes. Censored stable processes, stable processes con-
ditioned to stay positive, and stable processes conditioned to hit 0 continuously are included
in the more general framework of Section 6.

Notation: We use “:=” to indicate definitions. Define a ∧ b := min{a, b} and a ∨ b :=
max{a, b}. We write f ≍ g if f, g are nonnegative functions, c−1g ≤ f ≤ cg with some
constant c ∈ (0,∞). We call c the comparability constant. Lower case letters ci, i = 1, 2, . . .
are used to denote the constants in the proofs and the labeling of these constants starts anew
in each proof. Γ denotes the Gamma function defined as Γ(x) =

∫∞
0
yx−1e−ydy, ψ denotes the

digamma function defined as ψ(x) = d
dx

log Γ(x), and B denotes the beta function defined by
B(x, y) = Γ(x)Γ(y)/Γ(x+ y).

2. Preliminaries

2.1. Lamperti correspondence. We start this preliminary section by briefly describing
the correspondence between positive self-similar Markov processes and 1-dimensional Lévy
processes, usually called the Lamperti transform. Let ξ = (ξt,Px), t ≥ 0, x ∈ R, be a possibly
killed Lévy process sent to −∞ at death. Define the integrated exponential process I = (It)t≥0

by

It :=

∫ t

0

eαξsds, t ≥ 0,

and let φ be its inverse:

φ(t) := inf{s > 0 : Is > t}, t ≥ 0.

For each x > 0, define Px := Plog x and

Xt := exp{ξφ(t)}1(t<I∞), t ≥ 0.

Then X = (Xt,Px), t ≥ 0, x > 0, is a pssMp of index α with absorption time ζ = I∞. (See
[26] for an in-depth analysis of the absorption time.) Conversely, for a pssMp X = (Xt,Px),
t ≥ 0, x > 0, of index α, let

St :=

∫ t

0

X−α
u du

and let T (·) be its inverse

T (t) := inf{u > 0 : Su > t}, t ≥ 0.

For any x ∈ R, define Px := Pex and ξs := logXTs . Then ξ = (ξt,Px), t ≥ 0, x ∈ R, is a
possibly killed Lévy process. Moreover, we have the following three exhausting scenarios (see
[19, Theorem 13.1]) that we refer to as the Lamperti trichotomy:

(1) Px(ζ = ∞) = 1 for all x > 0 in which case lim supt→∞ ξt = ∞;
(2) Px(ζ <∞, Xζ− = 0) = 1 for all x > 0 in which case limt→∞ ξt = −∞;
(3) Px(ζ < ∞, Xζ− > 0) = 1 for all x > 0 in which case ξ is killed at an independent

exponentially distributed random time.

In case (2), we will say that X is continuously absorbed at 0.
Now we recall a few facts about 1-dimensional Lévy processes. Let ξ = (ξt,Px), t ≥ 0, x ∈ R,

be a 1-dimensional Lévy process with characteristic triple (d, σ, ν). We will write P0 as P and
denote expectation with respect to P by E. Then

E
[
eiθξt

]
= e−tΨ(θ), θ ∈ R, (2.1)
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where the characteristic exponent Ψ is given by

Ψ(θ) = diθ +
1

2
σ2θ2 +

∫
R

(
1− eiθx + iθx1(|x|≤1)

)
ν(dx), θ ∈ R. (2.2)

Recall that ξ1 has finite expectation if and only if
∫
|y|≥1

|y|ν(dy) < ∞, cf. [28, Theorem 25.3,

Example 25.12]. In this case, by differentiating (2.1) we get that E[ξ1] = iΨ′(0).
If ξ is killed at an independent exponential time of parameter q ≥ 0 (when ξ is sent either

to a cemetery ∂ or to −∞), the characteristic exponent becomes Ψ̃(θ) = Ψ(θ) + q. Thus for

the killed Lévy process ξ̃, the killing rate is equal to Ψ̃(0).
Let A be the infinitesimal generator of the semigroup of ξ (possibly killed at rate q ≥ 0)

acting on C0(R) (continuous functions vanishing at infinity). Then, cf. [28, Theorem 31.5],
C2

0(R) ⊂ D(A), and for f ∈ C2
0(R),

Af(x) = −qf(x)− df ′(x) +
1

2
σ2f ′′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x)y1(|y|≤1)

)
ν(dy).

Let X be the pssMp of index α corresponding to the Lévy process ξ. Its infinitesimal
generator L can be described as follows (cf. [6, Theorem 1], where we take the usual cutoff
function ℓ(y) = y1[−1,1](y)): If f : [0,∞] → R is such that f , xf ′ and x2f ′′ are continuous on
[0,∞] then it belongs to the domain of L and

Lf(x) = −qx−αf(x) + x1−α

(
−d+ 1

2
σ2

)
f ′(x) +

1

2
σ2x2−αf ′′(x)

+x−α

∫
(0,∞)

(
f(ux)− f(x)− xf ′(x)(log u)1[−1,1](log u)

)
µ(du), (2.3)

where µ(du) = ν(du) ◦ log u. By the change of variables y = log u, we get

Lf(x) = −qx−αf(x) + x1−α

(
−d+ 1

2
σ2

)
f ′(x) +

1

2
σ2x2−αf ′′(x)

+x−α

∫
R

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
ν(dy), (2.4)

which corresponds to the formula in [25, p. 4]. In case ν has a density (which we also denote
by ν), the integral in (2.4) can be (after a change of variables) written in the form∫ ∞

0

(
f(z)− f(x)− xf ′(x)(log z/x)1[−1,1](log z/x)

)
ν(log z/x)

dz

z

showing that the intensity of jumps from x to z (i.e. the jump kernel of X) is given by
z−1ν(log z/x).

2.2. Strictly stable process absorbed at 0 and censored process. Recall that η =
(ηt,Px) denotes a strictly α-stable process in R, α ∈ (0, 2). Thus η is a Lévy process with
characteristic exponent given by (2.2), where σ = 0 and the Lévy measure ν has density given
by (1.1). Moreover, it holds that d = a := (c+ − c−)/(α − 1) when α ̸= 1, and we specify
d = a = 0 when α = 1, cf. [23, p. 398].
Recall also that τ = τ(0,∞) := inf{t > 0 : ηt ∈ (−∞, 0]}, X∗

t := ηt1(t<τ), t ≥ 0, and ξ∗ is
the Lévy process associated to X∗ through the Lamperti transform. Then ξ∗ is a killed Lévy
process. Its Lévy measure µ was computed in [6, Section 3.1], see also [23, (6)]. It holds that
µ has a density

µ(x) = c+
ex

(ex − 1)1+α
1(x>0) + c−

ex

(1− ex)1+α
1(x<0), x ∈ R, (2.5)



8 PANKI KIM RENMING SONG AND ZORAN VONDRAČEK

and ξ∗ is killed at rate
c−
α

=
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
. (2.6)

The characteristic exponent Ψ∗ of ξ∗ can be found in [19, (13.46)]:

Ψ∗(θ) =
Γ(α− iθ)

Γ(αρ̂− iθ)

Γ(iθ + 1)

Γ(iθ + 1− αρ̂)
, θ ∈ R. (2.7)

The infinitesimal generator of ξ∗ is given by

A∗f(x) = −c−
α
f(x)− bf ′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x)y1[−1,1](y)

)
µ(dy), (2.8)

where b ∈ R is a linear term which we will identify shortly. By (2.4), the infinitesimal generator
of X∗ is equal to

L∗f(x) = −c−
α
x−αf(x)− bx1−αf ′(x) + x−α

∫
R

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
µ(y)dy

= −c−
α
x−αf(x)− bx1−αf ′(x)

+x−α

∫ ∞

0

(
f(z)− f(x)− xf ′(x)(log z/x)1[−1,1](log(z/x))

)
µ(log(z/x))z−1dz.

We have that

µ
(
log

z

x

)
= c+

z
x(

z
x
− 1
)1+α1(z>x) + c−

z
x(

1− z
x

)1+α1(z<x)

= xαz
(
c+|z − x|−1−α1(z>x) + c−|z − x|−1−α1(z<x)

)
= xαz ν(z − x).

Therefore, with j(x, z) := ν(z − x),

L∗f(x) = −c−
α
x−αf(x)− bx1−αf ′(x)

+

∫ ∞

0

(
f(z)− f(x)− xf ′(x)(log z/x)1[−1,1](log(z/x))

)
j(x, z)dz. (2.9)

By comparing this expression with the form of the infinitesimal generator of X∗ given in [6,
Theorem 2], we see that

b = −a−
∫ ∞

0

(
(log u)1[−1,1](log u)− (u− 1)1[−1,1](u− 1)

)
ν(u− 1) du. (2.10)

Let Ψ(θ) := Ψ∗(θ) − Ψ∗(0) = Ψ∗(θ) − c−/α. Then Ψ is the characteristic exponent of
an unkilled Lévy processes ξ. More precisely, ξ∗ is equal in distribution to ξ killed at an
independent exponential time with parameter c−/α. The infinitesimal generator of ξ is

Af(x) = −bf ′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x)y1[−1,1](y)

)
µ(dy). (2.11)

It is immediate from (2.5) that
∫
|y|≥1

|y|µ(dy) <∞, hence E|ξ1| <∞. Let X = (Xt,Px) be the

pssMp of index α corresponding to ξ through the Lamperti transform. The effect of removing
the killing term from the generator of ξ∗ is to remove the killing term from the generator of
X∗. Hence, the infinitesimal generator L of X is given by the right-hand side of (2.9) with
−(c−/α)x

−αf(x) removed:

Lf(x) = −bx1−αf ′(x) +

∫ ∞

0

(
f(y)− f(x)− xf ′(x)(log y/x)1[−1,1](log(y/x))

)
j(x, y)dy.

(2.12)
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Considered on (0,∞), X∗ is a stable process killed upon exiting (0,∞). By removing the
killing term in the infinitesimal generator, we end up with the process X – the (not necessarily
symmetric) censored α-stable process on (0,∞). The censored process X can be also regarded
as a resurrected process with the resurrection kernel q(x,A) = Px(ητ− ∈ A) – it is continued
exactly at the position from which η has jumped out from (0,∞) (thus effectively suppressing
this jump). Note that this type of resurrection does not fall into our setting. Censored
processes were introduced in [3] in a more general multi-dimensional context for rotationally
symmetric stable processes.

2.3. Examples of return kernels. An example of pssMp of index α related to η is its
absolute value process |η| = (|ηt|)t≥0. One can view |η| also as a resurrected process: at time τ ,
if z = ητ , we resurrect at −z > 0 according to the resurrection kernel q with p(z, A) = δ−z(A).

We discuss now two families of return kernels with p = 1. First note that if the measure ϕ is
absolutely continuous with respect to the Lebesgue measure on [0,∞) with a density (which
we denote by the same letter), then the return kernel p(z, ·) has a density p(z, y), y > 0, and
(1.3)–(1.4) imply that

p(z, y) = ϕ

(
y

|z|

)
1

|z|
.

In the first family of return kernels the probability measure ϕ has a density which decays
polynomially at infinity: For β > 0 and γ > β, let

ϕ(t) = ϕβ,γ(t) =
Γ(γ)

Γ(β)Γ(γ − β)
tβ−1(1 + t)−γ. (2.13)

Motivation for this family comes from two particular examples. The first one is the path-
censored process introduced in [23]. This process is obtained from η by removing parts of the

path in (−∞, 0]. More formally, define At :=
∫ t

0
1(ηs>0)ds and let τt := inf{s > 0 : As > t} be

its right-continuous inverse. The process θ = (θt)t≥0, defined by θt = ητt , is a strong Markov
process on (0,∞), called the path-censored process of η on (0,∞). The part of the process θ
until its first hitting time of 0 can be described in the following way: Let x = ητ− ∈ (0,∞)
be the position from which η jumps out of (0,∞), and z = ητ < 0 be the position where η
lands at the exit from (0,∞). The distribution of the returning position of η to (0,∞) has
the density P(−∞,0)(z, y) called the Poisson kernel: If σ := inf{t > 0 : ηt ∈ [0,∞)}, then
Pz(ησ ∈ A) =

∫
A
P(−∞,0)(z, y) dy, A ∈ B((0,∞)). The exact formula for this Poisson kernel is

given by (e.g. [20, Lemma 1.1] which contains a minor typo: the α there should be αρ),

P(−∞,0)(z, y) =
1

Γ(1− αρ)Γ(αρ)

(
y

|z|

)−αρ

(|z|+ y)−1 = ϕ1−αρ,1

(
y

|z|

)
1

|z|
.

In the second example the return kernel is equal to the normalized jump kernel, see [11, 29],

p(z, y) =
j(z, y)∫∞

0
j(z, u)du

= α|z|α(|z|+ y)−1−α = ϕ1,1+α

(
y

|z|

)
1

|z|
. (2.14)

Here we used that j(z, y) = c+(y − z)−1−α for z < 0, y > 0.
In the second family, the probability measure ϕ has a density which decays exponentially

at infinity: For a, β, γ > 0, let

ϕ(t) = ϕa,β,γ(t) =
γa

β
γ

Γ(β
γ
)
tβ−1e−atγ , t > 0. (2.15)
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Then

p(z, y) =
γa

β
γ

Γ(β
γ
)

yβ−1

|z|β
e−a(y/|z|)γ .

3. Resurrected process

Let us go back to the strictly α-stable process η. Instead of killing η upon exiting (0,∞)
to get X∗, or restarting at ητ− to get the censored process X, we look at the exit point ητ =
z < 0 and (partially) resurrect according to some probability kernel p(z, A), A ∈ B([0,∞)).
We assume that p(z, ·) satisfies (1.3). Recall from (1.4) that such kernels are in one-to-one
correspondence with probability measures ϕ on B([0,∞)) through the relation

p(z, A) = ϕ(|z|−1A), z < 0.

If the measure p(z, ·) has a density with respect to the Lebesgue measure, we will denote it
by p(z, y), y > 0. It is immediate that

p(λz, λy) = λ−1p(z, y) for all z < 0, a.e. y > 0 and all λ > 0. (3.1)

Recall that ν(x) is the Lévy density given in (1.1). For x, z ∈ R, let j(x, z) := ν(z − x). If
x > 0 and z < 0, we have that

j(x, z) = c−(x− z)−1−α. (3.2)

Further, j enjoys the following scaling property:

j(λx, λz) = λ−1−αj(x, z), x > 0, z < 0, λ > 0. (3.3)

Recall that the resurrection kernel q(x,A) was defined in (1.6) as

q(x,A) :=

∫
(0,∞)

j(x, z)p(z, A) dz =

∫
(0,∞)

c−
(x− z)1+α

ϕ

(
A

|z|

)
dz x > 0, A ∈ B((0,∞)).

(3.4)

3.1. Compound Poisson processes corresponding to resurrection kernels. In this
subsection we study the pssMp defined through the resurrection kernel q and the correspond-
ing Lévy process. From the scaling properties of p in (1.3) and j in (3.3) we get that the
resurrection kernel q satisfies

q(λx, λA) = λ−αq(x,A), x > 0, A ∈ B((0,∞)), λ > 0.

In particular, q(1, A) = xαq(x, xA), implying that for any g : (0,∞) → R,∫
g(y)q(1, dy) = xα

∫
g(y/x)q(x, dy). (3.5)

Lemma 3.1. For all x > 0, the measure q(x, ·) has a density q(x, y) given by

q(x, y) := c−

∫
(0,∞)

(
x+

y

t

)−1−α

t−1ϕ(dt). (3.6)

Proof. By (3.4), for any A ∈ B((0,∞)) we have

q(x,A) = c−

∫ ∞

0

(x+ z)−1−α

(∫
(0,∞)

1A/z(t)ϕ(dt)

)
dz

= c−

∫
(0,∞)

∫ ∞

0

(x+ z)−1−α1A(zt) dz ϕ(dt)

= c−

∫
(0,∞)

∫ ∞

0

(
x+

y

t

)−1−α

t−11A(y) dy ϕ(dt)
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=

∫
A

(
c−

∫
(0,∞)

(
x+

y

t

)−1−α

t−1 ϕ(dt)

)
dy,

where in the second and last equalities we used Tonelli’s theorem and in the penultimate
equality the change of variables y = tz. 2

We record here a simple consequence of (3.6): For all y > 0,

q(1, y) ≤ c−(y
−1−α + 1). (3.7)

Indeed,

q(1, y) = c−

(∫
(0,1)

(
1 +

y

t

)−1−α ϕ(dt)

t
+

∫
[1,∞)

(
1 +

y

t

)−1−α ϕ(dt)

t

)
≤ c−

(
y−1−α

∫
(0,1)

tαϕ(dt) +

∫
[1,∞)

t−1ϕ(dt)

)
≤ c−(y

−1−α + 1).

Note that

q(x) := q(x, (0,∞)) =

∫ 0

−∞
j(x, z)p(z, (0,∞))dz = pc−

∫ 0

−∞
(x− z)−1−αdz = p

c−
α
x−α,

so that

Q(x,A) :=
q(x,A)

q(x)
, x > 0, A ∈ B((0,∞)),

is a well-defined probability kernel satisfying

Q(λx, λA) = Q(x,A), x > 0, A ∈ B((0,∞)), λ > 0.

It follows from Lemma 3.1 that both q(x, ·) and Q(x, ·) have densities q(x, y), resp. Q(x, y),
satisfying

q(λx, λy) = λ−1−αq(x, y), Q(λx, λy) = λ−1Q(x, y), x, y > 0, λ > 0.

We define now Π(x, ·) to be the image measure of Q(ex, ·) under the mapping y 7→ ey:
Π(x,A) := Q(ex, eA). In particular, for every g : R → R,∫

R
g(y)Π(x, dy) =

∫
(0,∞)

g(log y)Q(ex, dy). (3.8)

Note that Π(·, ·) is translation invariant, that is, for all u ∈ R,

Π(x+ u,A+ u) = Q(exeu, eueA) = Q(ex, eA) = Π(x,A).

Let

Π(A) := Π(0, A) = Q(1, eA), A ∈ B(R),
and

π(A) := q(1, eA) = q(1)Q(1, eA) = q(1)Π(A), A ∈ B(R).
Clearly, Π is a probability measure on B(R) and π a finite measure, hence a Lévy measure.
Both Π and π have densities (which again by an abuse of notation we denote by the same
letters) satisfying

Π(y) = Q(1, ey)ey and π(y) = q(1, ey)ey = e−αyq(e−y, 1). (3.9)

It follows from (3.7) that

π(y) ≤ c−(e
−(1+α)y + 1)ey = c−(e

−αy + ey). (3.10)

In particular, π(y) is bounded in every neighborhood of 0.
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Let χ be a compound Poisson process with characteristic exponent Ψχ(θ) =
∫
R(1−e

iθy)π(dy).
The jump distribution of χ is given by the measure Π and the jump rate is q(1). The infini-
tesimal generator of χ is given by

Af(x) =
∫
R
(f(x+ y)− f(x))π(dy).

Let Y = (Yt,Px) be the pssMp of index α related to χ through the Lamperti transform.
The infinitesimal generator of Y is, according to (2.4), equal to

LY f(x) = x−α

∫
R
(f(xeu)− f(x))π(du) = x−α

∫
(0,∞)

(f(xu)− f(x))q(1, du)

=

∫
(0,∞)

(f(y)− f(x))q(x, dy), (3.11)

where we used (3.8) in the second equality, and (3.5) in the third equality. This shows that
Y = (Yt,Px) is a regular step process defined by the Markov kernel Q(x,A), A ∈ B((0,∞)),
and the holding function q(x), cf. [2, I.12].

Theorem 3.2. Suppose that p(z, ·) is given by (1.4). Then

π̂(θ) :=

∫
R
eiθyπ(dy) =

c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

∫
(0,∞)

uiθϕ(du).

Proof. We have for A ∈ B(R),

π(A) = q(1, eA) = c−

∫ ∞

0

(1 + z)−1−αϕ

(
eA

z

)
dz

= c−

∫ ∞

0

(1 + z)−1−α

(∫
(0,∞)

1eA/z(y)ϕ(dy)

)
dz

= c−

∫ ∞

0

(1 + z)−1−α

(∫
(0,∞)

1A(log(yz))ϕ(dy)

)
dz

= c−

∫
(0,∞)

(∫ ∞

0

1A(log(yz))(1 + z)−1−αdz

)
ϕ(dy). (3.12)

Therefore, by using [13, 8.380.1-3],

π̂(θ) =

∫
R
eiθyπ(dy) = c−

∫
(0,∞)

(∫ ∞

0

eiθ log(yz)(1 + z)−1−αdz

)
ϕ(dy)

= c−

∫
(0,∞)

(∫ ∞

0

(yz)iθ(1 + z)−1−αdz

)
ϕ(dy)

= c−

(∫ ∞

0

ziθ(1 + z)−1−αdz

)(∫
(0,∞)

yiθϕ(dy)

)
=

c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

∫
(0,∞)

yiθϕ(dy).

2

This theorem allows us to rewrite the density of the jump distribution of χ as a convolution
of a subprobability and a probability distribution on R, cf. [23, p.411, 2nd paragraph]. Define

τ(A) := ϕ(eA), A ∈ B(R), and f(y) :=
αey

(1 + ey)1+α
, y ∈ R.
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Then f is a probability density on R and

f̂(θ) :=

∫
R
eiθyf(y)dy =

Γ(α− iθ)Γ(1 + iθ)

Γ(α)
, τ̂(θ) :=

∫
R
eiθyτ(dy) =

∫
(0,∞)

yiθϕ(dy).

Corollary 3.3. It holds that

Π(y) = (f ∗ τ)(y) = αey
∫
(0,∞)

tα

(t+ ey)1+α
ϕ(dt), y ∈ R.

Proof. The first equality is an immediate consequence of the equality Π̂ = f̂ τ̂ . For the second
equality, we rewrite

Π(y) =

∫
R

αey−u

(1 + ey−u)1+α
τ(du) = αey

∫
(0,∞)

t−1

(1 + t−1ey)1+α
ϕ(dt) = αey

∫
(0,∞)

tα

(t+ ey)1+α
ϕ(dt).

2

Corollary 3.4. (a) Assume that ϕ is given by (2.13). Then

π̂(θ) =
c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

Γ(β + iθ)Γ(γ − β − iθ)

Γ(β)Γ(γ − β)
. (3.13)

(b) Assume that ϕ is given by (2.15). Then

π̂(θ) =
c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

a−
iθ
γ Γ
(

β+iθ
γ

)
Γ
(

β
γ

) . (3.14)

(c) Assume that ϕ = δa, a ∈ (0,∞). Then

π̂(θ) =
c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)
aiθ.

Proof. (a) It follows from Theorem 3.2 and [13, 8.380.1-3] that

π̂(θ) =
c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

Γ(γ)

Γ(β)Γ(γ − β)

∫ ∞

0

uiθ+β−1

(1 + u)γ
du

=
c−
α

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

Γ(β + iθ)Γ(γ − β − iθ)

Γ(β)Γ(γ − β)
.

(b) This follows from Theorem 3.2 by noting (after the change of variables v = auγ) that∫ ∞

0

uiθ+β−1e−auγ

du = γ−1a−
β+iθ

γ Γ

(
β + iθ

γ

)
.

(c) This is clear. 2

In case ϕ is given by (2.13), we can also compute the density Π(y) of the jump distribution
of χ. By using Corollary 3.3 and the change of variables u = t−1ey we have

Π(y) =
αΓ(γ)

Γ(β)Γ(γ − β)
ey
∫ ∞

0

(t+ ey)−1−α tβ+α−1(1 + t)−γdt

=
αΓ(γ)

Γ(β)Γ(γ − β)
e−(γ−β)y

∫ ∞

0

uγ−β(1 + ue−y)−γ(1 + u)−1−αdu

=
αΓ(γ)B(1 + γ − β, β − α)

Γ(β)Γ(γ − β)
e−(γ−β)y

2F1(γ, 1 + γ − β; 1 + α + γ; 1− e−y), (3.15)

where the last line follows from [13, 3.197.5]. Here 2F1 is the hypergeometric function.
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Example 3.5. (a) Recall that αρ < 1. Take β = 1− αρ and γ = 1 in (2.13), we get

p(z, y) =
1

Γ(1− αρ)Γ(αρ)

|z|αρ

yαρ
(|z|+ y)−1. (3.16)

Since Π(y) = (α/c−)π(y), it follows from Corollary 3.4 that the characteristic function of the
jump distribution Π of χ is equal to

Γ(α− iθ)Γ(1 + iθ)

Γ(α)

Γ(1− αρ+ iθ)Γ(αρ− iθ))

Γ(1− αρ)Γ(αρ)
.

Since Γ(1−αρ)Γ(αρ) = π
sin(παρ)

, cf. [13, 8.334.3], we see that the characteristic function of the

jump distribution of χ coincides with the one in [23, Proposition 4.2, (9)]. This means that
the return kernel given in (3.16) corresponds to the path censored (or trace) process studied in
[23]. This can be also seen by recognizing p(z, y) from (3.16) as the Poisson kernel P(−∞,0)(z, y)
of the stable process η (see Subsection 2.3 above). By using (3.15) with β = 1−αρ and γ = 1,
we find

Π(y) =
αΓ(αρ+ 1)Γ(αρ̂+ 1)

Γ(1− αρ)Γ(αρ)Γ(α + 2)
e−αρy

2F1(1, αρ+ 1;α + 2; 1− e−y), y ∈ R,

cf. [23, (13)].
(b) Take β = 1 and γ = 1 + α in (2.13). Then

p(z, y) =
Γ(1 + α)

Γ(α)
|z|α(|z|+ y)−1−α = α|z|α(|z|+ y)−1−α, (3.17)

which is the normalized jump kernel in (2.14). It follows from Corollary 3.4 that the charac-
teristic function of the jump distribution of χ is equal to

Π̂(θ) =
Γ(α− iθ)2Γ(1 + iθ)2

Γ(α)2
,

and the density is

Π(y) = α2B(1 + α, 1− α)e−αy
2F1(1 + α, 1 + α; 2 + 2α; 1− e−y), y ∈ R.

(c) Suppose that ϕ = δa, a > 0. Then

Π(y) = αey
aα

(a+ ey)1+α
, y ∈ R.

We end this subsection with a necessary and sufficient condition for χ1 to have finite ex-
pectation.

Proposition 3.6. E|χ1| <∞ if and only if (1.7) holds true.

Proof. It follows from [28, Theorem 25.3, Example 25.12] that E|χ1| < ∞ if and only if∫
|y|≥1

|y|π(dy) <∞.

We first assume (1.7). We will show that
∫
R |y|π(dy) <∞. By using (3.12) we have∫

R
|y|π(dy) = c−

∫
(0,∞)

(∫ ∞

0

| log(yz)|(1 + z)−1−αdz

)
ϕ(dy)

≤ c−

∫
(0,∞)

(∫ ∞

0

(| log y|+ | log z|)|(1 + z)−1−αdz

)
ϕ(dy)

= c−

∫
(0,∞)

| log y|
(∫ ∞

0

(1 + z)−1−αdz

)
ϕ(dy)
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+c−

∫
(0,∞)

(∫ ∞

0

| log z|(1 + z)−1−αdz

)
ϕ(dy) <∞.

Finiteness follows from the assumption and the fact that both integrals with respect to dz are
finite.

We now assume that
∫
|y|≥1

|y|π(dy) <∞. Then by (3.12)

∞ >

∫
y≤−1

(−y)π(dy) ≥ c−

∫
(0,1)

(∫ ∞

0

(− log(yz))(1 + z)−1−α1log(yz)≤−1dz

)
ϕ(dy)

≥ c−

∫
(0,1)

(∫ ∞

0

(− log y)(1 + z)−1−α1log z≤−1dz

)
ϕ(dy)

= c−

(∫ 1/e

0

(1 + z)−1−αdz

)∫
(0,1)

(− log y)ϕ(dy).

Thus,
∫
(0,1)

(− log y)ϕ(dy) <∞. Similarly,

∞ >

∫
y≥1

yπ(dy) ≥ c−

∫
(1,∞)

(∫ ∞

0

log(yz)(1 + z)−1−α1log(yz)≥1 dz

)
ϕ(dy)

≥ c−

∫
(1,∞)

(∫ ∞

0

log y(1 + z)−1−α1log z≥1 dz

)
ϕ(dy)

= c−

(∫ ∞

e

(1 + z)−1−αdz

)∫
(1,∞)

(log y)ϕ(dy).

Thus,
∫
(1,∞)

(log y)ϕ(dy) <∞. We have shown that (1.7) holds. 2

3.2. Resurrected process. Let Ψ(θ) = Ψ∗(θ)−Ψ∗(0) = Ψ∗(θ)− c−/α be the characteristic
exponent of the Lévy process ξ corresponding to the censored α-stable process X through the
Lamperti transform. We will add to ξ an independent compound Poisson process, denoted by
χ, with characteristic exponent Ψχ given by

Ψχ(θ) =

∫
R
(1− eiθy)π(dy) =

c−
α

− π̂(θ), θ ∈ R. (3.18)

The effect of this procedure is that, instead of completely removing the killing from ξ∗, we
remove part of the killing (i.e., pc−/α) and add jumps according to Π at the exponential rate
π̂(0) = pc−/α. Let ξ := ξ + χ be this new Lévy process. By (2.7), its characteristic exponent
Ψ is given by

Ψ(θ) =
Γ(α− iθ)

Γ(αρ̂− iθ)

Γ(iθ + 1)

Γ(iθ + 1− αρ̂)
− π̂(θ). (3.19)

Note that

Ψ(0) =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
− π̂(0) =

c−
α
(1− p).

If p = 1, then Ψ(0) = 0, implying that in the Lamperti trichotomy the case (3) does not occur.
If p < 1, ξ is a killed Lévy process with rate Ψ(0) and thus Eξ1 = −∞.

Let X = (X t,Px) be the pssMp of index α with origin as a trap corresponding to ξ through
the Lamperti transform. This process can be described as follows: Consider the strictly α-
stable process η = (ηt,Px), and set as before τ = inf{t > 0 : ηt ≤ 0}. Then τ < ∞ a.s. At
time τ , with probability p we resurrect according to the return kernel p(ητ , y), y > 0, and
with probability 1 − p kill the process and send it to the origin. This amounts to adding
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the resurrection kernel q(x, y) to the jump kernel j(x, y) of η. The process X is a pssMp of
index α with origin as a trap and jump kernel J(x, y) := j(x, y) + q(x, y). Indeed, let Aξ be
the infinitesimal generator of ξ and LX the infinitesimal generator of X given by (2.12). The
infinitesimal generator of ξ is obtained by adding π to the Lévy measure ν of ξ, and taking
into account the killing term. Hence for g ∈ C2

0(R),

Aξg = −c−
α
(1− p)g +Aξg +Aχg.

By using the relation between generators of the Lévy process and the corresponding the
Lamperti transformed pssMp of index α, together with (3.11), we see that the infinitesimal
generator of X is equal to

LXf(x) = −c−
α
(1− p)x−α + LXf(x) +

∫ ∞

0

(f(y)− f(x))q(x, y)dy.

Assume that p(z, y) is given by (1.4). Then by (1.2), (3.19) and Theorem 3.2,

Ψ(θ) =
Γ(α− iθ)Γ(iθ + 1)

Γ(αρ̂− iθ)Γ(iθ + 1− αρ̂)
− c−

α

Γ(α− iθ)Γ(iθ + 1)

Γ(α)

∫
(0,∞)

uiθϕ(du)

= Γ(α− iθ)Γ(iθ + 1)

(
1

Γ(αρ̂− iθ)Γ(iθ + 1− αρ̂)
− 1

Γ(αρ̂)Γ(1− αρ̂)

∫
(0,∞)

uiθϕ(du)

)
=

Γ(α− iθ)Γ(iθ + 1)

π

(
sin(π(αρ̂− iθ))− sin(παρ̂)

∫
(0,∞)

uiθϕ(du)

)
. (3.20)

In the third line we used the identity Γ(z)Γ(1− z) = π/ sin(πz) twice.

Remark 3.7. For the ricocheted stable process from [22], the measure ϕ determining the
return kernel is equal to (1− p)δ0 + pδ1. In this case

Ψ(θ) =
Γ(α− iθ)Γ(iθ + 1)

π
(sin(π(αρ̂− iθ))− p sin(παρ̂))

which recovers [22, (4.2)],

3.3. Behavior of X at absorption time. If p < 1, it follows from the Lamperti trichotomy
that case (3) occurs, hence X is absorbed at 0 by a jump. In the remaining part of this
subsection we therefore assume that p = 1. Recall that E|ξ1| < ∞ and, under assumption
(1.7), also E|χ1| < ∞, cf. Proposition 3.6. Therefore, under assumption (1.7), E|ξ1| < ∞,

Ψ
′
(0) exists, and E[ξ1] = iΨ

′
(0). Thus, combining [19, Theorem 7.2] with the Lamperti

trichotomy, we get that if iΨ
′
(0) ≥ 0, then lim supt→∞ ξt = +∞, hence the absorption time

of X is infinite; and if iΨ
′
(0) < 0, then limt→∞ ξt = −∞, hence the absorption time of X is

finite Px-a.s. and X is continuously absorbed at 0.

Proof of Theorem 1.1: The equivalence of E|ξ1| < ∞ and (1.7) follows from Proposition
3.6. Put

f1(θ) := B(α− iθ, 1 + iθ), f2(θ) :=

∫
(0,∞)

uiθϕ(du)

f3(θ) :=
sin(π(αρ̂− iθ))

π
− sin(παρ̂ )

π
f2(θ),

where B denotes the beta function. Then by (3.20), Ψ(θ) = Γ(1+α)f1(θ)f3(θ). Since f2(0) = 1
and f3(0) = 0, we have

Ψ
′
(0) = Γ(1 + α)(f ′

1(0)f3(0) + f1(0)f
′
3(0)) = Γ(1 + α)B(α, 1)f ′

3(0) = Γ(α)f ′
3(0). (3.21)
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Using the assumption (1.7),

f ′
2(0) = i

∫
(0,∞)

(log u)uiθϕ(du)|θ=0 = i

∫
(0,∞)

(log u)ϕ(du),

and so

f ′
3(0) = −i cos(παρ̂)− sin(παρ̂)

π
f ′
2(0) = −i cos(παρ̂)− i

sin(παρ̂)

π

∫
(0,∞)

(log u)ϕ(du).

Therefore by (3.21)

iΨ
′
(0) = Γ(α)

(
cos(παρ̂) +

sin(παρ̂)

π

∫
(0,∞)

(log u)ϕ(du)

)
= Γ(α)

sin(παρ̂)

π

(
π cot(παρ̂) +

∫
(0,∞)

(log u)ϕ(du)

)
.

2

Since (α− 1)+ < αρ̂ < 1, we see from the display above that the sign of iΨ
′
(0) depends on

the sign of

π cot(παρ̂) +

∫
(0,∞)

(log u)ϕ(du).

Note that
∫
(0,∞)

(log u)ϕ(du) may depend on α. For example, when ϕ is given by (2.13) with

β = 1 and γ = 1+α, it holds that
∫
(0,∞)

(log u)ϕ(du) = ψ(1)−ψ(α), where ψ is the digamma

function.
Let Lϕ := −

∫
(0,∞)

(log u)ϕ(du). Define arccot : R → (0, π) as a strictly decreasing and

continuous function. Set

aϕ :=
1

π
arccot

(
Lϕ

π

)
and note that aϕ ∈ (0, 1).

Corollary 3.8. Suppose p = 1. (a) If α ≤ 1 + aϕ, then X is (continuously) absorbed at 0 at
an a.s.-finite time if and only if αρ̂ > aϕ. (b) If α > 1 + aϕ, then the absorption time of X is
always finite Px-a.s..

Proof. (a) If α ≤ 1, since 0 < αρ̂ < 1, we see that π cot(παρ̂)− Lϕ < 0 if and only if

ρ̂ >
1

απ
arccot

(
Lϕ

π

)
=
aϕ
α
.

If 1 < α ≤ 1 + aϕ, then

cot(π(α− 1)) ≥ cot(πaϕ) =
Lϕ

π
and so we also have that π cot(παρ̂)− Lϕ < 0 if and only if ρ̂ >

aϕ
α
.

(b) If α > 1 + aϕ then cot(π(α− 1))) <
Lϕ

π
and we always have

π cot(παρ̂)− Lϕ < π cot(π(α− 1))− Lϕ ≤ 0.

2

In case Lϕ = −
∫
(0,∞)

(log u)ϕ(du) is independent of α, we can be slightly more precise. Let

ρ(α) := 1− 1

απ
arccot

(
Lϕ

π

)
,
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so that π cot
(
πα(1−ρ(α))

)
−Lϕ = 0. Notice that ρ(aϕ) = 0 (this need not be true in case Lϕ

depends on α). Since Lϕ does not depend on α, the function α 7→ ρ(α) is strictly increasing,
hence aϕ is the only zero of ρ(α).

Corollary 3.9. Suppose that p = 1 and Lϕ does not depend on α.

(i) If α ∈ (0, aϕ), then the absorption time of X is infinite;
(ii) If α ∈ [aϕ, 1 + aϕ], then the absorption time of X is finite if and only if ρ > ρ(α);
(iii) If α ∈ (1 + aϕ, 2), then the absorption time of X is finite.

Proof. This is a direct consequence of Corollary 3.8 and the discussion above. 2

3.4. Recurrent extension. Recall that the origin is a trap for X. If X is absorbed in 0 at
finite time, one can ask if there exists a positive self-similar recurrent extension of X. The
general result is given in [12, Theorem 1] and [27, Theorems 1 and 2]: (i) There exists a unique
positive self-similar recurrent extension of X which leaves 0 continuously if and only if there
exists κ ∈ (0, α) such that

E
[
eκξ1

]
= 1, (3.22)

and (ii) For β ∈ (0, α) there exists a positive self-similar recurrent extension of X which leaves
0 by a jump associated with an excursion measure of the form cβx−1−βdx if and only if

E
[
eβξ1

]
< 1. (3.23)

Note that E[eκξ1 ] = E[ei(−iκ)ξ1 ] = e−Ψ(−iκ) for all κ ≥ 0 for which the expectation is finite.
Let φ : R → (−∞,+∞] be defined by φ(κ) := −Ψ(−iκ), so that

E
[
eκξt
]
= etφ(κ).

Hence, (3.22) is equivalent to the existence of κ ∈ (0, α) such that φ(κ) = 0, and (3.23) is
equivalent to φ(β) < 0. Note that, by Hölder’s inequality, φ is convex.

Proof of Theorem 1.2: Let

h(κ) := sin(π(αρ̂− κ))− sin(παρ̂)

∫
(0,∞)

uκϕ(du).

Clearly, h(0) = (1− p) sin(παρ̂) ≥ 0 since αρ̂ ∈ (0, 1), and note that from (3.20)

−φ(κ) = Ψ(−iκ) = Γ(α− κ)Γ(κ+ 1)

π
h(κ). (3.24)

If κ0 < α, then κ0 + ϵ < α for all small ϵ > 0. Since
∫
(0,∞)

uκ0+ϵϕ(du) = +∞ by definition

of κ0, we get that h(κ0 + ϵ) = −∞.
Assume that (1.9) holds true, i.e., κ0 > 0. If κ0 ≥ α, then

h(α−) = sin(π(αρ̂− α))− sin(παρ̂) lim
κ↑α

∫
(0,∞)

uκϕ(du)

= − sin(παρ)− sin(παρ̂) lim
κ↑α

∫
(0,∞)

uκϕ(du) < 0,

where in the last inequality we used the assumptions αρ ∈ (0, 1) and αρ̂ ∈ (0, 1). Therefore,
h((α ∧ (κ0 + ϵ))−) < 0 for all small ϵ > 0. If κ ∈ (0, κ0),

h′(κ) = −π cos(π(αρ̂− κ))− sin(παρ̂)

(∫
(0,∞)

(log u)uκϕ(du)

)
, (3.25)

which is justified by (1.9).



19

Assume that p = 1. Since by the assumption that X is absorbed at 0 in finite time, this

happens continuously, and therefore E[ξ1] ∈ [−∞, 0). If (1.7) holds true, since iΨ
′
(0) < 0, by

Theorem 1.1 and (3.25),

h′(0+) = −π cos(παρ̂)− sin(παρ̂)

∫
(0,∞)

(log u)ϕ(du) > 0,

implying that h is strictly positive in some neighborhood of zero. Note that by (1.9), we have∫
(1,∞)

(log u)uκϕ(du) <∞ for κ ∈ (0, κ0) and thus
∫
(1,∞)

(log u)ϕ(du) ≤
∫
(1,∞)

(log u)uκϕ(du) <

∞. Consequently, if (1.7) does not holds, then we have
∫
(0,1)

(log u)ϕ(du) = −∞. By the

monotone convergence theorem,

lim
κ↓0

∫
(0,1)

(log u)uκϕ(du) = − lim
κ↓0

∫
(0,1)

(− log u)uκϕ(du) = −∞.

We now see from (3.25) that

lim inf
κ↓0

h′(κ) = −π cos(παρ̂)− sin(παρ̂)

(
lim
κ↓0

∫
(0,∞)

(log u)uκϕ(du)

)
= ∞,

implying again that h is strictly positive in some neighborhood of zero.
If p < 1, then h(0) > 0, so again we see that h s strictly positive in some neighborhood of

zero.
Together with h((α ∧ (κ0 + ϵ))−) < 0 for all small ϵ > 0, this implies the existence of

κ∗ ∈ (0, α) such that h(κ∗) = 0, hence also φ(κ∗) = 0. Thus X has a positive self-similar
recurrent extension. Furthermore, by the convexity of φ, for every β ∈ (0, κ∗) we have

φ(β) < 0. This means that E[eβξ1 ] < 1. By [27, Theorem 1], there exists a positive self-
similar recurrent extension of X which leaves 0 by a jump associated with the excursion
measure cβx−1−βdx, x > 0.
Assume that (1.9) is false, that is κ0 = 0. Then h(ϵ) = −∞ for all ϵ > 0, and we see from

(3.24) that φ(β) = +∞ for all β ∈ (0, α) and consequently E[eβξ1 ] = +∞. Hence X does not
have a recurrent extension. 2

Remark 3.10. It is easy to find examples of probability measures ϕ on (0,∞) satisfying (1.7)
but not (1.9) giving rise to pssMp that are (continuously) absorbed at zero in finite time, but
not having a positive self-similar recurrent extension. One such example is the measure with

density 1(2,∞)(t)
2(log 2)2

t(log t)3
.

3.5. Examples. In this subsection we analyze a list of examples. Recall that ψ is the digamma
function.

Example 3.11. We look at our main example in which ϕ is given by (2.13). Let f(t) =
(1 + t)−γ with γ > 0. The Mellin transform of f is, by [13, p.1131, 17.43.7], equal to

Mf (s) :=

∫ ∞

0

f(t)ts−1dt =
Γ(s)Γ(γ − s)

Γ(γ)
.

Since ∫ ∞

0

f(t)(log t)ts−1dt =M ′
f (s) =

1

Γ(γ)

(
Γ′(s)Γ(γ − s)− Γ(s)Γ′(γ − s)

)
,

we get that ∫ ∞

0

(log t)ϕ(t)dt =
Γ(γ)

Γ(β)Γ(γ − β)
M ′

f (β) = ψ(β)− ψ(γ − β).
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Hence by (1.8),

iΨ
′
(0) = Γ(α)

sin(παρ̂)

π
(π cot(παρ̂) + ψ(β)− ψ(γ − β)) . (3.26)

(a) Suppose that γ = 1 in (2.13). Then β ∈ (0, 1), and by the reflection formula for the
digamma function, ψ(1 − β) − ψ(β) = π cot(πβ), see [13, 8.365.8]. Elementary calculation
gives that

iΨ
′
(0) = −Γ(α)

sin(π(αρ̂− β))

sin(πβ)
,

and the sign of iΨ
′
(0) depends on the sign of sin(π(αρ̂− β)).

Case 1: α = 1. Then ρ̂ = 1/2, and sin(π(αρ̂ − β)) = sin(π/2 − πβ) = cos(πβ). Therefore,

iΨ
′
(0) > 0 if β ∈ (1/2, 1), iΨ

′
(0) = 0 if β = 1/2, and iΨ

′
(0) < 0 if β ∈ (0, 1/2).

Case 2: α ∈ (0, 1) ∪ (1, 2). Since αρ̂ ∈ (0, 1), we have that αρ̂ − β ∈ (−1, 1). Thus,
sin(π(αρ̂− β)) = 0 if and only if ρ = 1− β

α
. Since we must have that ρ > 0 and ρ < 1/α, we

get two critical values: α∗ = β and α∗ := 1 + α∗ = 1 + β, see Corollary 3.9. If α ∈ (0, α∗),

then iΨ
′
(0) > 0; If α ∈ [α∗, α

∗], then iΨ
′
(0) > 0 if ρ > 1 − β

α
, iΨ

′
(0) = 0 if ρ = 1 − β

α
, and

iΨ
′
(0) < 0 if ρ < 1− β

α
; If α ∈ (α∗, 2), then iΨ

′
(0) < 0.
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Figure 1. Example 3.11 (a): Left: β = 1/3, γ = 1, α∗ = 1/3, α∗ = 4/3; Right:

β = 2/3, γ = 1, α∗ = 2/3, α∗ = 5/3; iΨ
′
(0) > 0 in the shaded region, iΨ

′
(0) = 0

on the red line.

We further assume that β = 1− αρ. The pssMp X is then the part (until the first hitting
of zero) of the trace process of the α-stable process η in (0,∞) (or the path-censored α-stable
process). We have that αρ̂− β = αρ̂+αρ− 1 = α− 1. Thus, if α < 1, then αρ̂− β ∈ (−1, 0),

and therefore iΨ
′
(0) > 0. If α = 1, then αρ̂− β = 0, and therefore iΨ

′
(0) = 0. If α > 1, then

αρ̂− β ∈ (0, 1), and therefore iΨ
′
(0) < 0. This shows that X has infinite absorption time in

case α ∈ (0, 1] and hits zero in finite time when α ∈ (1, 2). Of course, since X is the trace
process, this fact is well known.
(b) Let us now consider the case β = 1 and γ = α + 1. In this case

iΨ
′
(0) =

Γ(α) sin(παρ̂)

π
(π cot(παρ̂)) + (ψ(1)− ψ(α))) . (3.27)

The equation π cot(π(α − 1)) = ψ(α) − ψ(1) (obtained by formally taking ρ = 1/α), has a
unique solution α∗ in (1, 2) which can be numerically computed. It turns out that α∗ ≈ 1.44386
with corresponding ρ∗ = 1/α∗ ≈ 0.692588. Further, solving π cot(πα(1−ρ))+(ψ(1)−ψ(α)) =
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0 for ρ, we get a unique solution

ρ(α) = 1− 1

απ
arccot

(
ψ(1)− ψ(α)

π

)
.

It is easy to see that limα↓0 ρ(α) = −∞, limα↑2 ρ(α) = 1, hence by continuity there exists
α∗ such that ρ(α∗) = 0, and consequently, ρ(α) > 0 for α ∈ (0, α∗). Numerically we obtain
α∗ ≈ 0.596051.

Therefore, we conclude that (i) If α ∈ (0, α∗], then iΨ(0) > 0 for all ρ ∈ (0, 1); (ii) if
α ∈ (α∗, α

∗), then iΨ(0) > 0 for ρ > ρ(α), iΨ(0) = 0 for ρ = ρ(α), iΨ(0) < 0 for ρ < ρ(α);
(iii) if α ∈ [α∗, 2), then iΨ(0) < 0 for all admissible ρ.
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Figure 2. Example 3.11 (b): α∗ ≈ 0.596501, α∗ ≈ 1.44386; iΨ
′
(0) > 0 in the

shaded region, iΨ
′
(0) = 0 on the red line.

Example 3.12. In case ϕ = δa,

iΨ
′
(0) = Γ(α)

sin(παρ̂)

π
(π cot(παρ̂)− log a) . (3.28)

If a = 1, the corresponding pssMp X of index α is the absolute value of the strictly α-stable

Lévy process. The sign of iΨ
′
(0) depends on whether αρ̂ is less than, equal, or larger than

1/2. Similar analysis can be done for any a > 0.
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Figure 3. Example 3.12: a = 1; iΨ
′
(0) > 0 in the shaded region, iΨ

′
(0) = 0

on the red line.
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Example 3.13. We now look at the example in which ϕ is given by (2.15). Then ϕ is a
probability density on (0,∞). Its Mellin transform is given by

Mϕ(s) :=

∫ ∞

0

ϕ(t)ts−1dt =
γa

β
γ

Γ(β
γ
)

∫ ∞

0

ts+β−2e−atγdt

=
γa

β
γ

Γ(β
γ
)
γ−1a−

s+β−1
γ Γ

(
s+ β − 1

γ

)
=

Γ
(

s+β−1
γ

)
Γ
(

β
γ

) a
1−s
γ .

Thus we have∫ ∞

0

ϕ(t)(log t)ts−1dt =M ′
ϕ(1) =

Γ
(

s+β−1
γ

)
γΓ
(

β
γ

) (
ψ

(
s+ β − 1

γ

)
− log a

)
a

1−s
γ ,

and finally, ∫ ∞

0

ϕ(t)(log t)dt =M ′
ϕ(1) =

1

γ

(
ψ

(
β

γ

)
− log a

)
.

Therefore,

iΨ
′
(0) = Γ(α)

sin(παρ̂)

π

(
π cot(παρ̂)− 1

γ

(
ψ

(
β

γ

)
− log a

))
.
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Figure 4. Example 3.13: Left: a = 1, β = 0.1, γ = 1, α∗ ≈ 0.906821, α∗ ≈
1.906821; Right: a = 1, β = 100000, γ = 1, α∗ ≈ 0.0847945, α∗ ≈ 1.0847945;

iΨ
′
(0) > 0 in the shaded region, iΨ

′
(0) = 0 on the red line.

We end this subsection with the analysis of the behavior at lifetime (absorption time) of
the censored process. To the best of our knowledge, this has not been completely done before,
but see [6, p.976].

Example 3.14. In this example we consider the Lévy process with characteristic exponent

Ψ(θ) =
Γ(α− iθ)

Γ(αρ̂− iθ)

Γ(iθ + 1)

Γ(iθ + 1− αρ̂)
− c−

α
.

The corresponding pssMp X is the (not necessarily symmetric) censored α-stable process. It
is straightforward to calculate that

iΨ′(0) =
Γ(α) sin(παρ̂)

π
(π cot(παρ̂)− (ψ(1)− ψ(α))) . (3.29)
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Notice the similarity with the expression in Example 3.11 (b) and the difference being the sign
in front of (ψ(1)− ψ(α)). The equation π cot(π(α− 1)) = ψ(1)− ψ(α) (obtained by formally
taking ρ = 1/α), has a unique solution α∗ in (1, 2) which can be numerically computed. It
turns out that α∗ ≈ 1.56735 with corresponding ρ∗ = 1/α∗ ≈ 0.63802. For every α ∈ (0, α∗)
equation π cot(πα(1− ρ)) = ψ(1)− ψ(α) has a unique solution given by

ρ(α) = 1− 1

απ
arccot

(
ψ(1)− ψ(α)

π

)
which is strictly increasing in α. Moreover, it can be shown that ρ(α) > 0 for every α ∈ (0, 2),
and limα↓0 ρ(α) = 0 (so formally we can take α∗ = 0). When ρ > ρ(α) we have iΨ′(0) > 0,
for ρ = ρ(α) it holds that iΨ′(0) = 0, while for ρ < ρ(α), iΨ′(0) < 0. When α ∈ [α∗, 2), for
every admissible ρ we have that iΨ′(0) < 0. Note also that for every ρ ∈ [ρ∗, 1) it holds that
iΨ′(0) > 0.

0.5 1.0 1.5 2.0
α

0.2

0.4

0.6

0.8

1.0

ρ

Figure 5. Example 3.14: α∗ ≈ 1.56735; iΨ
′
(0) > 0 in the shaded region,

iΨ
′
(0) = 0 on the red line.

4. Symmetric resurrection kernels

The goal of this section is to find a sufficient and necessary condition for the resurrection
kernel to be symmetric, namely that it holds q(x, y) = q(y, x). When the resurrection kernel
is symmetric and the strictly α-stable process η is also symmetric (that is c+ = c−, or,
equivalently, ρ = 1/2), the jump kernel J(x, y) = j(x, y) + q(x, y) of the resurrected process
X is also symmetric. In particular, the process X is symmetric with respect to the Lebesgue
measure in (0,∞).

We first give a necessary and sufficient condition for symmetry in terms of the Lévy measure
π of the compound Poisson process χ.

Proposition 4.1. Let π be the Lévy measure of the compound Poisson process χ. Then
q(x, y) = q(y, x) for all x, y > 0, if and only if,

π(−y) = e(α−1)yπ(y). (4.1)

Proof. Recall that π(y) = e−αyq(e−y, 1). Suppose that q is symmetric. Then by symmetry
and scaling

π(−y) = eαyq(ey, 1) = eαyq(1, ey) = eαy(ey)−1−αq(e−y, 1)

= e−yq(e−y, 1) = e−yeαyπ(y) = e(α−1)yπ(y).

The converse is similar. 2
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Recall from Lemma 3.1 that

q(x, y) = c−

∫
(0,∞)

(
x+

y

v

)−1−α ϕ(dv)

v
.

The proof of the next technical lemma is given in the appendix.

Lemma 4.2. Suppose that m is a signed Borel measure on (0,∞) such that∫
(0,∞)

(1 + xu)−1−α|m|(du) <∞, for all x > 0

and ∫
(0,∞)

(1 + xu)−1−αm(du) = 0, for all x > 0. (4.2)

Then m is the zero measure on (0,∞).

Theorem 4.3. It holds that q(x, y) = q(y, x) for all x, y > 0, if and only if

ϕ∗(dt) = tα−1ϕ(dt), on (0,∞), (4.3)

where ϕ∗ is the pushforward of the restriction of the measure ϕ to (0,∞) under the map
x→ 1/x. In case when the restriction of the measure ϕ(dt) to (0,∞) has a density ϕ(t) with
respect to the Lebesgue measure, the measure equality above reduces to ϕ(t−1) = t1+αϕ(t) for
almost every t > 0.

Proof. We have that

q(y, x) = c−

∫
(0,∞)

(
y +

x

v

)−1−α ϕ(dv)

v
= c−

∫
(0,∞)

(yv + x)−1−αvαϕ(dv)

= c−

∫
(0,∞)

(y
u
+ x
)−1−α

u−αϕ∗(du).

If (4.3) holds, then the last integral in the display above is equal to

c−

∫
(0,∞)

(y
u
+ x
)−1−α

u−αuα−1ϕ(du) = c−

∫
(0,∞)

(
x+

y

u

)−1−α ϕ(du)

u
= q(x, y).

Conversely, assume that q is symmetric. Then we must have that∫
(0,∞)

(y
u
+ x
)−1−α

u−αϕ∗(du) =

∫
(0,∞)

(y
u
+ x
)−1−α ϕ(du)

u
,

for all x, y > 0. By taking y = 1 and rewriting, we get that∫
(0,∞)

(1 + xu)−1−αuϕ∗(du) =

∫
(0,∞)

(1 + xu)−1−αuαϕ(du), for all x > 0.

The claim now follows from Lemma 4.2. 2

Corollary 4.4. Let ϕ : (0,∞) → [0,∞) be such that
∫∞
0
ϕ(t)dt = 1. Then ϕ satisfies (4.3) if

and only if

ϕ(t) =
f(t+ t−1)

(1 + t)1+α
, (4.4)

for f : [2,∞) → [0,∞).
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Proof. Assume that ϕ is given by (4.4). Let g(t) := f(t+ t−1). Then g(t−1) = g(t) implying
that ϕ satisfies (4.3).

Conversely, if ϕ satisfies (4.3), define g(t) := ϕ(t)(1 + t)1+α. Then g(t−1) = g(t). For s ≥ 2,
solving t+t−1 = s, we get two solutions: t = (s+

√
s2 − 4)/2 ≥ 1 and t−1 = (s−

√
s2 − 4)/2 ≤

1. Define f(s) := g(t) = g(t−1). Since s = t+ t−1, we see that g(t) = f(t+ t−1). 2

Proposition 4.5. Suppose that p = 1 and q is symmetric. Then E[ξ1] < 0 if α > 1 and
ρ̂ ∈ [1/(2α), 1/α), E[ξ1] = 0 if α = 1 and ρ̂ = 1/2, and E[ξ1] > 0 if ρ̂ ∈ (0, 1/(2α)].
In particular, if α ≥ 3/2, then the absorption time of X is finite Px-a.s. and X is continu-

ously absorbed at 0. Also, if α ≤ 1/2, then the absorption time of X is infinite.

Proof. By Theorem 4.3,∫
(0,∞)

(log u)ϕ(du) =

∫
(0,1)

(log u)ϕ(du) +

∫
(1,∞)

(log u)ϕ(du)

=

∫
(1,∞)

(log 1/u)ϕ∗(du) +

∫
(1,∞)

(log u)ϕ(du)

=

∫
(1,∞)

(log u)(−uα−1 + 1)ϕ(du),

which is negative for α > 1, zero for α = 1, and positive for α < 1. It follows from (1.8) that

the sign of iΨ
′
(0) depends on the sign of

π cot(παρ̂)−
∫
(1,∞)

(log u)(uα−1 − 1)ϕ(du).

This expression is negative for α > 1 and ρ̂ ∈ [1/(2α), 1/α), zero for α = 1 and ρ̂ = 1/2, and
positive for α < 1 and ρ̂ ∈ (0, 1/(2α)].

The absorption claim for α ≥ 3/2 (which is equivalent to 1 − 1/α ≥ 1/(2α)) follows from
the assumption ρ̂ > 1− 1/α. 2
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Figure 6. Illustration of Proposition 4.5: In the shaded region iΨ
′
(0) > 0, in

the white region iΨ
′
(0) < 0, in the yellow region the sign of iΨ

′
(0) is undeter-

mined.

Example 4.6. (a) Let ϕ be as in (2.13):

ϕ(t) =
Γ(γ)

Γ(β)Γ(γ − β)
tβ−1(1 + t)−γ.
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Imposing condition (4.3) on ϕ implies that γ = α+2β−1. Since γ > β, we get that β > 1−α.
Thus

ϕ(t) =
Γ(α + 2β − 1)

Γ(β)Γ(α + β − 1)
tβ−1(1 + t)1−α−2β.

Note that if β = 1 then symmetry requires that γ = α+ 1, so we get Example 3.11 (b). In

this case, the regions for the sign of iΨ
′
(0) are completely determined, see Figure 2.

(b) If ϕ is as in (2.15), then it cannot lead to a symmetric resurrection kernel.
(c) Let ϕ = δa, a > 0. Then the measure ϕ satisfies (4.3) if and only if a = 1.

5. Sharp two-sided estimates of the resurrection kernel

In this section we establish sharp two-sided estimates of q(x, y) under minimal assumptions.
First notice that it follows from (3.6) that q enjoys the following scaling

q(λx, λy) = λ−1−αq(x, y), x, y > 0, λ > 0.

This implies that for all 0 < x < y we have

q(x, y) =(y − x)−1−αq

(
x

y − x
,

x

y − x
+ 1

)
(5.1)

q(y, x) =(y − x)−1−αq

(
x

y − x
+ 1,

x

y − x

)
. (5.2)

Thus it suffices to get the estimates of q(x, x+ 1) and q(x+ 1, x), x > 0.
We first look at the simple case when the measure ϕ has compact support in (0,∞). Then

it is easy to see that

q(x, x+ 1) = c−

∫
(0,∞)

(
x+ 1 +

x

t

)−1−α ϕ(dt)

t
≍ 1

and

q(x+ 1, x) = c−

∫
(0,∞)

(
x+

x+ 1

t

)−1−α
ϕ(dt)

t
≍ 1.

Thus in this case by (5.1)-(5.2), we have

q(x, y) ≍ |x− y|−1−α, x, y ∈ (0,∞).

In the remainder of this section, we assume that ϕ is absolutely continuous and has a strictly
positive density.

Assume that |y − x| = 1 so that either y = x+ 1 or y = x− 1. Then by Lemma 3.1,

q(x+ 1, x) = c−

∫ ∞

0

(
x+ 1 +

x

t

)−1−α

ϕ(t)
dt

t

and

q(x, x+ 1) = c−

∫ ∞

0

(
x+

x+ 1

t

)−1−α

ϕ(t)
dt

t
.

Lemma 5.1. (1) If x ≥ 1/4, then q(x+ 1, x) ≍ q(x, x+ 1) ≍ x−1−α.
(2) Suppose ϕ satisfies the lower weak scaling condition L1(β1) at zero with β1 > −1 − α.
Then for x ≤ 1/4,

q(x+ 1, x) ≍
∫ 1

x

ϕ(t)
dt

t
. (5.3)

Further, if ϕ also satisfies the upper weak scaling condition U1(β2) at zero with β2 < 0, then

q(x+ 1, x) ≍ ϕ(x). (5.4)
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(3) Suppose ϕ satisfies the upper weak scaling condition U1(γ2) at infinity with γ2 < 0. Then

q(x, x+ 1) ≍
∫ 1/x

0

tαϕ(t)dt ≍
∫ 1/x

1

tαϕ(t)dt. (5.5)

Further, if ϕ also satisfies the lower weak scaling condition L1(γ1) at infinity with γ1 < −1−α,

q(x, x+ 1) ≍ x−1−αϕ(1/x). (5.6)

Proof. Without loss of generality, we neglect the constant c− in the proof. First note that

0 <

∫ ∞

0

tαϕ(t)

(1 + t)α+1
dt ≤

∫ ∞

0

ϕ(t)dt = 1. (5.7)

(1) Case 1: 1/4 ≤ x ≤ 4. Then

x+ 1 +
x

t
≥ 1 +

1

4t
≥ 1

4

(
1 +

1

t

)
and x+ 1 +

x

t
≤ 4 + 1 +

1

t
= 5

(
1 +

1

t

)
.

Also,

x+
x+ 1

t
≥ 1

4
+

1

t
≥ 1

4

(
1 +

1

t

)
and x+

x+ 1

t
≤ 4 +

4 + 1

t
≤ 5

(
1 +

1

t

)
.

Thus, by (5.7) we get

q(x+ 1, x) ≍ q(x, x+ 1) ≍
∫ ∞

0

(
1 +

1

t

)−1−α

ϕ(t)
dt

t
=

∫ ∞

0

tαϕ(t)

(1 + t)α+1
dt ≍ 1.

Case 2: x ≥ 4. Then we have that

x+
x

t
≤ x+ 1 +

x

t
≤ 2x+ 2

x

t
,

and hence

x+ 1 +
x

t
≍ x

(
1 +

1

t

)
.

Also,

x+
x+ 1

t
≤ (x+ 1)

(
1 +

1

t

)
and x+

x+ 1

t
≥ x+ 1

2

(
1 +

1

t

)
imply

x+
x+ 1

t
≍ (x+ 1)

(
1 +

1

t

)
≍ x

(
1 +

1

t

)
.

Thus, by (5.7)

q(x+ 1, x) ≍ q(x, x+ 1) ≍ x−1−α

∫ ∞

0

(
1 +

1

t

)−1−α

ϕ(t)
dt

t
≍ x−1−α.

(2) Assume x ≤ 1/4 and let

q(x+ 1, x) =

∫ x

0

+

∫ 1

x

+

∫ ∞

1

=: I + II + III.

For 0 < t < x, we have that

x+ 1 =
t(x+ 1)

x

x

t
≤ (x+ 1)

x

t
≤ 2

x

t
,
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hence x + 1 + x
t
≍ x

t
. Since ϕ satisfies the lower weak scaling condition at zero L1(β1) with

β1 > −1− α, we have∫ x

0

tαϕ(t)dt = ϕ(x)

∫ x

0

tα(ϕ(t)/ϕ(x))dt ≤ c−1ϕ(x)

∫ x

0

tα(t/x)β1dt = c1x
α+1ϕ(x).

Thus,

I ≍
∫ x

0

(x
t

)−1−α

ϕ(t)
dt

t
= x−1−α

∫ x

0

tαϕ(t)dt ≤ c1ϕ(x).

For x ≤ t <∞, we have

1 ≤ x+ 1 +
x

t
≤ 1

4
+ 1 + 1,

hence x+ 1 + x/t ≍ 1. Therefore,

II ≍
∫ 1

x

ϕ(t)
dt

t
.

Finally,

III ≍
∫ ∞

1

ϕ(t)
dt

t
≤
∫ ∞

1

ϕ(t)dt ≤ 1.

Since ∫ 1

x

ϕ(t)
dt

t
≥ ϕ(x)

∫ 2x

x

ϕ(t)dt

ϕ(x)t
+ 2

∫ 1

1/2

ϕ(t)dt ≥ cϕ(x)

∫ 2x

x

tβ1−1

xβ1
dt+ c2 ≍ ϕ(x) + 1,

we get (5.3). Moreover, if ϕ also satisfies U1(β2) with β2 < 0, then

c3ϕ(x) = cϕ(x)

∫ 1

x

(t/x)β1
dt

t
≤
∫ 1

x

ϕ(t)
dt

t
≤ Cϕ(x)

∫ 1

x

(t/x)β2
dt

t
= c4ϕ(x),

so we get (5.4).

(3) Assume x ≤ 1/4.

q(x, x+ 1) =

∫ 1/x

0

+

∫ ∞

1/x

=: I + II.

For 0 < t < 2,

x+
x+ 1

t
≤ x+ 1 +

x+ 1

t
≤ 2

x+ 1

t
+ (x+ 1)t,

hence

x+
x+ 1

t
≍ x+ 1

t
≍ 1

t
.

For 2 < t < 1/x,

x+
x+ 1

t
≤ 1

t
+

2

t
=

3

t
,

hence x+ (x+ 1)/t ≍ 1/t. Therefore,

I ≍
∫ 1/x

0

(
1

t

)−1−α

ϕ(t)
dt

t
=

∫ 1/x

0

tαϕ(t)dt.

When t > 1/x,
x+ 1

t
=
x+ 1

x

x

t
≤ 2

x

x

t
≤ (2t)

x

t
= 2x.

Thus, x+ (x+ 1)/t ≤ 3x, hence x+ (x+ 1)/t ≍ x. Moreover, using that fact that ϕ satisfies
the upper weak scaling condition at infinity U1(γ2) with γ2 < 0, we have∫ ∞

1/x

ϕ(t)
dt

t
= ϕ(1/x)

∫ ∞

1/x

ϕ(t)

ϕ(1/x)t
dt ≤ Cϕ(1/x)

∫ ∞

1/x

(tx)γ2
dt

t
= c5ϕ(1/x).
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Therefore,

II ≍ x−1−α

∫ ∞

1/x

ϕ(t)
dt

t
≤ c5x

−α−1ϕ(1/x).

Now, using ∫ 1/x

0

tαϕ(t)dt ≥ ϕ(1/x)

∫ 1/x

1/(2x)

ϕ(t)

ϕ(1/x)
tαdt+

∫ 1

0

tαϕ(t)dt

≥ C−1ϕ(1/x)

∫ 1/x

1/(2x)

(xt)γ2tαdt+ c6 ≍ x−α−1ϕ(1/x) + 1,

we get (5.5). Finally, if ϕ also satisfies L1(γ1) with γ1 < −1− α, then

c7x
−α−1ϕ(1/x) ≤ cϕ(1/x)

∫ 1/x

1

tα(tx)γ1dt ≤
∫ 1/x

1

tαϕ(t)dt

≤ Cϕ(1/x)

∫ 1/x

1

tα(tx)γ2dt ≤ c8x
−α−1ϕ(1/x),

and so we get (5.6). 2

Proof of Theorem 1.4: The result follows immediately from Lemma 5.1 and the scaling
relations (5.1)–(5.2). 2

As a consequence of Theorem 1.4 we can get estimates of the Lévy density π(u) = q(1, eu)eu.
We state the next corollary in its simple form.

Corollary 5.2. Suppose that ϕ satisfies both the lower and upper scaling conditions at zero
and infinity as in Theorem 1.4. Then

π(u) ≍
{

1, |u| ≤ log 5,
euϕ(eu), |u| > log 5.

We first apply Theorem 1.4 to a generalization of the function ϕ given in 2.13. For β ≥ 0,
γ ≥ β and δ+, δ− ∈ R, let

ϕ(t) ≍ (log(e+ t))δ+
(
log(e+ t−1)

)δ− tβ−1(1 + t)−γ, (5.8)

and
∫∞
0
ϕ(t)dt = 1, which implies that δ− < −1 if β = 0 and δ+ < −1 if γ = β. Then

q(x, y) ≍
∫ ∞

0

(
x+

y

t

)−1−α (log(e+ t))δ+ (log(e+ t−1))
δ−

t2−β(1 + t)γ
dt.

It is straightforward to check that the function ϕ satisfies the scaling conditions assumed in
Theorem 1.4. Hence we have the following result.

Corollary 5.3. Suppose ϕ is a probability density on (0,∞) satisfying (5.8). If x ≤ y ≤ 5x,
then

q(x, y) ≍ q(y, x) ≍ x−1−α ≍ y−1−α.

If 5x ≤ y, then

q(y, x) ≍ y−1−α


(y/x)1−β(log(y/x))δ− , β < 1, (log(y/x))1+δ− , δ− > −1,

log(log(y/x)), δ− = −1,
1, δ− < −1,

β = 1,

1, β > 1,

(5.9)
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and

q(x, y) ≍ y−1−α


(y/x)α+β−γ(log(y/x))δ+ , γ − β < α, (log(y/x))1+δ+ , δ+ > −1,

log(log(y/x)), δ+ = −1,
1, δ+ < −1,

γ − β = α,

1, γ − β > α.

(5.10)

Note that in the case γ − α < β < 1, or in the case γ − α = β = 1 and δ+ ∧ δ− ≥ −1, both
q(x, y) and q(y, x) explode when x→ 0. This leads to the following path interpretation: The
intensity of jumps to and away from points near 0 is much higher than in case of the stable
process. Thus, on average, large jump to and away from points near 0 are more probable.

In the symmetric case, we have γ = α + 2β − 1 and δ+ = δ−, see Example 4.6 (a). Hence
−α− β + γ = −(1− β), and the estimates for q(x, y) and q(y, x) coincide.

Now we apply Theorem 1.4 to the function ϕ given in (2.15).

Corollary 5.4. Suppose ϕ is a probability density on (0,∞) satisfying

ϕ(t) ≍ tβ−1e−atγ , t > 0 (5.11)

where a, γ > 0 and β > 0. If x ≤ y ≤ 5x, then

q(x, y) ≍ q(y, x) ≍ x−1−α ≍ y−1−α.

If 5x ≤ y, then

q(y, x) ≍ y−1−α

 (y/x)−β+1, 0 < β < 1,
log(y/x) β = 1,
1, β > 1,

(5.12)

and

q(x, y) ≍ y−1−α

∫ y
x

1

tα+β−1e−atγdt ≍ y−1−α. (5.13)

Proof. For the second comparison in (5.13), see (1.10) and

0 <

∫ 4

1

tα+β−1e−atγdt ≤
∫ y

x
−1

1

tα+β−1e−atγdt ≤
∫ ∞

1

tα+β−1e−atγdt <∞, 5x ≤ y.

2

In case β ≤ 1, we see that q(y, x) explodes as x→ 0, but q(x, y) stays bounded. This means
that the process will have tendency for big jumps to points close to the origin.

As a consequence of Corollary 5.4 we can derive that, when a probability density ϕ on
(0,∞) satisfies (5.11), π(u) ≍ 1 for |u| ≤ log 5, π(u) ≍ e−uα for u > log 5, and

π(u) ≍

 euβ, 0 < β < 1,
|u|eu, β = 1,
eu, β > 1,

when u < − log 5.
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6. Modified jump kernel

6.1. General case. Stable process conditioned to stay positive is a pssMp that can be re-
garded as a resurrected stable process. However, it does not fall into the framework of resur-
rected stable processes of this paper. In this section we introduce a larger class of pssMps by
modifying the jump kernel of the pssMp X = (Xt,Px) of index α defined in Subsection 2.2.
Thus, X is a not necessarily symmetric censored process. Let j(x, y) = ν(y − x), where ν is
defined in (1.1). We define a new jump kernel by

J(x, y) := B(x, y)j(x, y), x, y > 0,

where B : (0,∞)× (0,∞) → (0,∞) is a function satisfying the following properties:
(B1) Homogeneity: B(λx, λy) = B(x, y) for all x, y > 0 and all λ > 0.
(B2) Integrability: (a) y 7→ e−αyB(1, ey) is integrable at ∞ and y 7→ eyB(1, ey) is integrable
at −∞; (b) y 7→ B(1, ey)|y|1−α is integrable at 0; (c) For all x ∈ (0,∞), y 7→ B(x, y) is locally
integrable in (0,∞) \ {x}.
(B3) Regularity: If α ∈ [1, 2), there exist θ > α− 1 and C > 0 such that

|B(x, x)− B(x, y)| ≤ C

(
|x− y|
x ∧ y

)θ

for |x−y| ≤ (x∧y)/4. If α < 1, there exists C > 0 such that B(x, y) ≤ C for |x−y| ≤ (x∧y)/4.
Without loss of generality, from now on, we assume that B(1, 1) = 1.
For any B(·, ·) satisfying (B1)–(B3), we will construct a pssMp with the jump kernel J

above via the Lamperti transform of a certain Lévy process.

We first show that the jump kernel J(x, y) = j(x, y) + q(x, y) of the resurrected process X
is of the form introduced above. Indeed, J(x, y) can be rewritten as

J(x, y) = j(x, y) + q(x, y) = j(x, y)

(
1 +

q(x, y)

j(x, y)

)
= B(x, y)j(x, y),

where we define B(x, y) := 1 + q(x, y)/j(x, y) for y ̸= x, and B(x, x) = 1. Clearly, B(x, y)
satisfies (B1). Next, by (2.5) and (3.9),

B(1, ey) = 1 +
q(1, ey)

j(1, ey)
= 1 +

π(y)

eyν(ey − 1)
= 1 +

π(y)

µ(y)
,

so that B(1, ey)µ(y) = µ(y)+π(y) is a Lévy density, i.e.,
∫
R(1∧y

2)B(1, ey)µ(y)dy <∞. Indeed,
since µ(y) ≍ e−αy at +∞, µ(y) ≍ e−y at −∞, and µ(y) ≍ |y|−1−α near zero, we know that
(B2) holds. Finally, it follows from Theorem 1.4 that for x < y < (5/4)x or y < x < (5/4)y
it holds that q(x, y) ≍ q(y, x) ≍ x−1−α ≍ y−1−α. Hence, if |x− y| < (x ∧ y)/4,

|B(x, y)− B(x, x)| =
q(x, y)

j(x, y)
≤ (c+ ∨ c−)|x− y|1+αq(x, y)

≤ C|x− y|1+α(x−1−α ∨ y−1−α) = C

(
|y − x|
x ∧ y

)1+α

.

Thus (B3) holds with θ = 1 + α.

As examples of this general setting we also mention the α-stable process conditioned to
stay positive and the α-stable process conditioned to hit 0 continuously, see [9, 10]. The jump
kernel of the former is

J(x, y) =
yαρ̂

xαρ̂
j(x, y), x, y > 0
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and the latter

J(x, y) =
yαρ̂−1

xαρ̂−1
j(x, y), x, y > 0.

It is straightforward to show that for every γ ∈ (−1, α), the function B(x, y) = (y/x)γ

satisfies conditions (B1)-(B3). In fact, (B1) and (B2)(b)–(c) clearly hold. For (B2)(a),
B(1, ey) = eγy, so e−αyB(1, ey) = e−(α−γ)y and is integrable at ∞ if and only if γ < α. Also,
eyB(1, ey) = e(1+γ)y and is integrable at –∞ if and only if γ > −1. For (B3), without loss of
generality assume that γ ̸= 0 and consider x, y ∈ (0,∞) with |y − x| < (x ∧ y)/4. Then

|B(x, y)− B(x, x)| =
∣∣∣(y
x

)γ
− 1
∣∣∣ = |γ|uγ−1|y − x|

xγ
, (6.1)

where u is between x and y. If x < y, then x = x ∧ y and y ≤ (5/4)x. If γ ≥ 1, then
the right-hand side above is less than (5/4)γ−1γ(y − x)/x. If γ < 1, then we estimate the
right-hand side with |γ|(y − x)/x. Thus in both cases (B3) holds with θ = 1. If y < x, then
we replace xγ with yγ in (6.1) and argue as before.
See Proposition 6.7 for more on this example.

Given an arbitrary B(x, y) satisfying (B1)-(B3), and the jump kernel j(x, y) of the censored
process X, we now construct a a pssMp X = (X t,Px) of index α corresponding to the jump
kernel J(x, y) = B(x, y)j(x, y) via the Lamperti transform of a certain Lévy process. Define

µB(y) := B(1, ey)µ(y) = B(1, ey)
(
c+

ey

(ey − 1)1+α
1(y>0) + c−

ey

(1− ey)1+α
1(y<0)

)
.

By the assumptions (B2)(a) and (c) we have that
∫
|y|>1

µB(y)dy <∞, while by (B2)(b) and

(c) we get that
∫
|y|≤1

y2µB(y)dy < ∞. Thus µB is a Lévy measure. Further, let ξ denote the

Lévy process with infinitesimal generator

Af(x) = −bf ′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x)y1[−1,1](y)

)
µB(y)dy, (6.2)

where b ∈ R. Let X = (X t,Px) be the pssMp of index α obtained from ξ through the
Lamperti transform. By using a calculation similar to the one we used to obtain L∗ in Section
2, together with the homogeneity of B and (B1), we see that the infinitesimal generator of X
is

Lf(x) = −bx1−αf ′(x) + x−α

∫
R

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
µB(y)dy (6.3)

= −bx1−αf ′(x) +

∫ ∞

0

(
f(z)− f(x)− xf ′(x)(log z/x)1[−1,1](log(z/x))

)
B(x, z)j(x, z)dz.

This shows that the jump kernel of X is precisely J(x, y) = B(x, y)j(x, y), see the last sentence
of Subsection 2.2.

6.2. Symmetric case. In this subsection we assume that η is a symmetric α-stable process.
Then ρ = 1/2, c+ = c− =: c, and a = 0. For simplicity, we will assume that c = 1. We first
consider the case that B(x, y) is identically 1. Recall that X∗ is the process η killed upon
exiting (0,∞), and the constant b in the linear term of its infinitesimal generator in (2.10)
equal to

b = −
∫ ∞

0

(
(log u)1[−1,1](log u)− (u− 1)1[−1,1](u− 1)

)
|u− 1|−1−α du.
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Lemma 6.1. It holds that

−b = lim
ϵ→0

∫
R,|ey−1|>ϵ

y1[−1,1](y)µ(y)dy = p.v.

∫ 1

−1

yµ(y)dy.

Proof. We first note that by using symmetry, for ϵ ∈ (0, 1) we have∫
(0,∞),|u−1|>ϵ

(u− 1)1[−1,1](u− 1)|u− 1|−1−αdu =

∫
R
v1(ϵ<|v|≤1)|v|−1−αdv = 0.

Therefore

I(ϵ) :=

∫
R,|ey−1|>ϵ

y1[−1,1]µ(y)dy =

∫
R,|ey−1|>ϵ

y1[−1,1](y)
ey

|ey − 1|1+α
dy

=

∫
(0,∞),|u−1|>ϵ

(log u)1[−1,1](log u)|u− 1|−1−αdu

=

∫
(0,∞),|u−1|>ϵ

(
(log u)1[−1,1](log u)− (u− 1)1[−1,1](u− 1)

)
|u− 1|−1−αdu.

By letting ϵ→ 0 we obtain that limϵ→0 I(ϵ) = −b which is the first equality in the statement.
For the second,

I(ϵ) =

∫ log(1−ϵ)

−1

yµ(y) dy +

∫ 1

log(1+ϵ)

yµ(y) dy

=

(∫ log(1−ϵ)

−1

yµ(y) dy +

∫ 1

− log(1−ϵ)

yµ(y) dy

)
+

∫ − log(1−ϵ)

log(1+ϵ)

yµ(y) dy

=: I1(ϵ) + I2(ϵ).

Suppose α ∈ [1, 2) (for α ∈ (0, 1) the integral I2(ϵ) is convergent). For y ∈ (0, 1/2) it holds
that yµ(y) ≤ c1y

−α for some c1 > 0, hence

I2(ϵ) ≤ c1

∫ − log(1−ϵ)

log(1+ϵ)

y−αdy

≤ c2

{
(log(1 + ϵ)1−α − (− log(1− ϵ))1−α) ≤ c3ϵ

2−α for α ∈ (1, 2)

log
(

− log(1−ϵ)
log(1+ϵ)

)
for α = 1

→ 0

as ϵ→ 0. Since we have already proved that limϵ→0 I(ϵ) exists we can conclude that

lim
ϵ→0

I1(ϵ) = p.v.

∫ 1

−1

yµ(y)dy.

2

Remark 6.2. The existence of the principal value integral p.v.
∫ 1

−1
yµ(y)dy can be alterna-

tively proved in the following way. First note that∫
R,ϵ<|y|≤1

yµ(y)dy =

∫ 1

ϵ

y(µ(y)− µ(−y))dy.

Secondly, µ(y) − µ(−y) = y−α((1 − α) + O(y2)) as y ↓ 0, showing that the right-hand side
above is convergent.
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Let ξ be a Lévy process with Lévy density µB(y) = µ(y)B(1, ey) and linear term

b = b−
∫ 1

−1

y(B(1, ey)− 1)µ(y)dy, (6.4)

cf. (6.2). Note that the integral is convergent because of (B3). Let X be the corresponding
pssMp of index α. The jump kernel of X is J(x, y) = B(x, y)|x− y|−1−α and the infinitesimal
generator of X is given in (6.3). The following is an analog of Lemma 6.1.

Lemma 6.3. It holds that

−b = lim
ϵ→0

∫
R,|ey−1|>ϵ

y1[−1,1](y)µ
B(y)dy = p.v.

∫ 1

−1

yµB(y)dy.

Proof. We have∫
R,|ey−1|>ϵ

y1[−1,1]µ
B(y)dy =

∫
R,|ey−1|>ϵ

y1[−1,1](y)B(1, ey)
ey

|ey − 1|1+α
dy

=

∫
R,|ey−1|>ϵ

y1[−1,1](y)B(1, 1)
ey

|ey − 1|1+α
dy

+

∫
R,|ey−1|>ϵ

y1[−1,1](y)(B(1, ey)− B(1, 1)) ey

|ey − 1|1+α
dy

=: J1(ϵ) + J2(ϵ).

By Lemma 6.1, and since B(1, 1) = 1, limϵ→0 J1(ϵ) = −b. On the other hand, by using (B3)
if α ≥ 1, we conclude that

lim
ϵ→0

J2(ϵ) =

∫
R
y1[−1,1](y)(B(1, ey)− 1)

ey

|ey − 1|1+α
dy =

∫ 1

−1

y(B(1, ey)− 1)µ(y)dy.

This proves the first equality in the statement. For the second statement, note that for u 7→
B(1, u) is by (B3) bounded in a neighborhood of 1. Hence, yµB(y) = yµ(y)B(1, ey) ≤ c1y

−α,
and we obtain the conclusion in the same way as in Lemma 6.1. In the case α ∈ (0, 1), since
the integral is absolutely convergent, we use the dominated convergence theorem. 2

In the context of pssMps it is natural to write the generator in the form (6.3) which involves
a cutoff function. On the other hand, in the multidimensional setting of regional non-local
operators, such as the infinitesimal generator of a censored α-stable process, generators are
usually written as principal value integrals. In the context of jump kernels decaying at the
boundary, such operators were studied in [14, Section 3.2] when B is symmetric (see (B4)
below). In the next result we reconcile these two approaches in the current setting. Let

L̃f(x) := p.v.

∫ ∞

0

(f(z)−f(x))J(x, z)dz = lim
ϵ→0

∫
(0,∞),|z−x|>ϵ

(f(z)−f(x))B(x, z)|x−z|−1−αdz.

Lemma 6.4. If f ∈ C2
c ((0,∞)), then L̃f(x) is well defined and L̃f = Lf .

Proof. By (B2)(c), for any compact set K ⊂ (0,∞) and ϵ > 0,∫
z∈K,|z−x|≥ϵ

B(x, z)dz ≤ c(x,K, ϵ) <∞.

Using this and (B3), one can follow the proofs of [14, Lemma 3.3 and Proposition 3.4] and
show that L̃f is well defined for f ∈ C2

c ((0,∞)).
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By the change of variables z = xey we have:∫
(0,∞),|z−x|>ϵ

(f(z)− f(x))B(x, z)|x− z|−1−αdz

=

∫
R,|xey−x|>ϵ

(f(xey)− f(x))B(x, xey)|x− xey|−1−αxey dy

= x−α

∫
R,|ey−1|>ϵ/x

(f(xey)− f(x))B(1, ey)|1− ey|−1−αey dy

= x−α

∫
R,|ey−1|>ϵ/x

(f(xey)− f(x))µB(y) dy

= x−α

(∫
R,|ey−1|>ϵ/x

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
µB(y) dy

+xf ′(x)

∫
R,|ey−1|>ϵ/x

y1[−1,1](y)µ
B(y) dy

)
=: x−α(J1(ϵ) + xf ′(x)J2(ϵ)).

By the dominated convergence theorem,

lim
ϵ→0

J1(ϵ) =

∫
R

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
µB(y) dy.

Since L̃f(x) is well defined, we see that there also exists

lim
ϵ→0

J2(ϵ) = lim
ϵ→0

∫
R,|ey−1|>ϵ/x

y1[−1,1](y)µ
B(y) dy =: −b̃.

Thus

L̃f(x) = −b̃x1−αf ′(x) + x−α

∫
R

(
f(xey)− f(x)− xf ′(x)y1[−1,1](y)

)
µB(y) dy.

By Lemma 6.3 we see that b̃ = b and thus L̃ = L. 2

Now we turn to the question of the behavior of the pssMp X at its absorption time. We
assume that ∫ −1

−∞
|y|eyB(1, ey)dy +

∫ ∞

1

ye−αyB(1, ey)dy <∞. (6.5)

Then
∫
R,|y|≥1

|y|µB(y)dy <∞, hence ξ1 has finite expectation given by

Eξ1 = −b+
∫
R,|y|≥1

yµB(y)dy, (6.6)

cf. [28, Theorem 25.3, Example 25.12].
For γ ∈ R let

σγ(x) :=
e(1+γ)x

(ex − 1)1+α
− e−(1+γ)x

(1− e−x)1+α
=
e−x(e(γ−α+1)x − 1)

(1− e−x)1+α
, x > 0.

The next lemma follows immediately from the second expression of σγ above.

Lemma 6.5. For every x > 0 it holds that σγ(x) > 0 for α < 1+ γ, σγ(x) = 0 for α = 1+ γ,
and σγ(x) > 0 for α > 1 + γ.

In the next result, we will also assume that, in addition to (B1)-(B3), B satisfies

(B4) Symmetry: B(x, y) = B(y, x) for all x, y > 0.
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Proposition 6.6. Let X be a pssMp with the infinitesimal generator L given in (6.3) where
the jump kernel is B(x, y)|x − y|−1−α and the linear term given in (6.4). Assume that B
satisfies (B1)-(B4) and (6.5). Let ξ be the corresponding Lévy process through the Lamperti
transform. Then Eξ1 > 0 if α ∈ (0, 1), Eξ1 = 0 if α = 1, and Eξ1 < 0 if α ∈ (1, 2).

Proof. Note that by Lemma 6.3 and the fact that B(1, ey) = B(ey, 1) = B(1, e−y), it holds
that

−b = p.v.

∫ 1

−1

yµB(y)dy = lim
ϵ→0

∫ 1

ϵ

y(µB(y)− µB(−y))dy = lim
ϵ→0

∫ 1

ϵ

yσ0(y)B(1, ey)dy.

Similarly, ∫
R,|y|≥1

yµB(y)dy =

∫ ∞

1

y(µB(y)− µB(−y))dy =

∫ ∞

1

yσ0(y)B(1, ey)dy.

The claim now follows from (6.6) and Lemma 6.5. 2

We can also cover some cases with non-symmetric B(x, y).

Proposition 6.7. Let X be a pssMp with the infinitesimal generator L given in (6.3) where
the jump kernel J(x, y) = (y/x)γ|x− y|−1−α with γ ∈ (−1, α) and the linear term is given in
(6.4). Let ξ be the corresponding Lévy process through the Lamperti transform. Then Eξ1 > 0
if α ∈ (0, 1 + γ), Eξ1 = 0 if α = 1 + γ, and Eξ1 < 0 if α ∈ (1 + γ, 2).

In particular, if γ ∈ [α/2, α) then Eξ1 > 0.

Proof. Since B(x, y) = (y/x)γ with γ ∈ (−1, α), we have that (6.5) holds and that µB(y) −
µB(−y) = eγyµ(y)− e−γyµ(−y) = σγ(y) for y > 0. By Lemma 6.3, it holds that

−b = p.v.

∫ 1

−1

yµB(y)dy = lim
ϵ→0

∫ 1

ϵ

y(µB(y)− µB(−y))dy = lim
ϵ→0

∫ 1

ϵ

yσγ(y)dy.

Similarly, ∫
R,|y|≥1

yµB(y)dy =

∫ ∞

1

y(µB(y)− µB(−y))dy =

∫ ∞

1

yσγ(y)dy.

The claim now follows from Lemma 6.5. 2

We end this subsection with a class of examples of modifying functions, satisfying (B1)-
(B4), which appeared in our papers [14, 15] on the potential theory of Dirichlet forms with
jump kernels decaying at the boundary. For β ≥ 0 and γ ≥ 0 with γ = 0 if β = 0, we define

B̃(x, y) =

(
x ∧ y
x ∨ y

)β (
log

(
1 +

x ∨ y
x ∧ y

))γ

. (6.7)

It is easy to check that B̃(x, y) satisfies (B1)-(B4). Since x∧y
|x−y| ∧ 1 ≍ x∧y

x∨y and x∨y
|x−y| ∧ 1 ≍ 1,

B̃(x, y) is comparable to the B(x, y) in [14, (1.8)] with β = β1, γ = β3 and β2 = β4 = 0

When B(x, y) is equal to cB̃(x, y), we have that the Lévy measure µB(y) of ξ is equal to c
times

ey

|ey − 1|1+α

(
1 ∧ ey

1 ∨ ey

)β (
log

(
1 +

1 ∨ ey

1 ∧ ey

))γ

=
ey

|ey − 1|1+α

(
1(y<0)e

yβ
(
log(1 + e−y)

)γ
+ 1(y>0)e

−yβ (log(1 + ey))γ
)

=
ey

|ey − 1|1+α
e−|y|β (log(1 + e|y|)

)γ
.
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If γ = 0 (so there is no logarithmic term), we see that µB is the Lévy measure of a Lamperti
stable process in the sense of [7].

Clearly, if B(x, y) is comparable to B̃(x, y), then the corresponding Lévy measure µB
∗ satisfies

µB
∗ (y) ≍ µB(y), y ∈ R \ {0}.

7. Appendix

Proof of Lemma 4.2: We claim that for any 0 ≤ j ≤ k,∫
(0,∞)

uj(1 + xu)−1−α−km(du) = 0, x > 0. (7.1)

(7.1) is valid for k = 0 by assumption. Note that, for k = 1, 2, . . . ,

| ∂
k

∂xk
(1 + xu)−1−α| ≤ (1 + xu)−1−α, x > 0, u > 0.

Combining this with the integrability assumption of the lemma, we can exchange the order of
the differentiation and integration when we take the derivative of the left hand side of (4.2).
Taking derivative with respect to x in (4.2) we get∫

(0,∞)

u(1 + xu)−1−α−1m(du) = 0, x > 0, (7.2)

and so (7.1) is valid for k = j = 1. Since∫
(0,∞)

(1 + xu)−1−α−1m(du)

=

∫
(0,∞)

(1 + xu)−1−αm(du)−
∫
(0,∞)

xu(1 + xu)−1−α−1m(du) = 0, x > 0,

(where the last equality follows from the assumption and (7.2)), we get that (7.1) is valid for
k = 1 and j = 0. Now suppose that (7.1) is valid for 0 ≤ j ≤ k. Taking derivative with
respect to x in (7.1), we get∫

(0,∞)

uj+1(1 + xu)−1−α−k−1m(du) = 0, x > 0.

Thus (7.1) is valid for 1 ≤ j ≤ k + 1. Noting that∫
(0,∞)

(1 + xu)−1−α−k−1m(du)

=

∫
(0,∞)

(1 + xu)−1−α−km(du)−
∫
(0,∞)

xu(1 + xu)−1−α−k−1m(du) = 0, x > 0,

we get that (7.1) is valid for 0 ≤ j ≤ k + 1.
Taking x = 1, we get that for any 0 ≤ j ≤ k,∫

(0,∞)

uj

(1 + u)k
(1 + u)−1−αm(du) = 0.

Since the linear span of the set { uj

(1+u)k
: 0 < j < k} is an algebra of real-valued continuous

functions on (0,∞) which separates points of (0,∞) and vanishes at infinity, by the Stone-

Weierstrass Theorem, the linear span of the set { uj

(1+u)k
: 0 < j < k} is dense in C∞(0,∞)

with respect to the uniform topology. Thus for all g ∈ C∞(0,∞),∫
(0,∞)

g(u)(1 + u)−1−αm(du) = 0,
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which implies (1+u)−1−αm(du) is the zero measure on (0,∞). Thereforem is the zero measure
on (0,∞). 2
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Stoch. Proc. Appl. 47 (1993), 17–35.

[2] R. M. Blumenthal, R. K. Getoor. Markov processes and potential theory. Academic Press, New York-
London, 1968.

[3] K. Bogdan, K. Burdzy and Z.-Q. Chen. Censored stable processes. Probab. Theory Rel. Fields 127 (2003),
89–152.

[4] K. Bogdan, T. Grzywny, K. Pietruska-Pa luba and A. Rutkowski. Extension and trace for nonlocal oper-
ators, J. Math. Pures Appl. 317 (2020), 33–69.

[5] T. Budd. The peeling process on random planar maps coupled to an O(n) loop model. arXiv:1809.02102
(2018).

[6] M. E. Caballero, L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. J.
Appl. Probab. 43 (2006), 967–983.

[7] M. E. Caballero, J. C. Pardo and J. L. Perez. On Lamperti stable processes. Probab. Math. Statist. 30
(2010), 1–28.

[8] M. E. Caballero, J. C. Pardo and J. L. Perez. Explicit identities for Lévy processes associate to symmetric
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[19] A. E. Kyprianou. Fluctuations of Lévy processes with applications. Introductory lectures. Second edition.
Universitext. Springer, Heidelberg, 2014.
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