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Abstract

In this paper we study the potential theory of symmetric geometric stable processes
by realizing them as subordinate Brownian motions with geometric stable subordina-
tors. More precisely, we establish the asymptotic behaviors of the Green function and
the Lévy density of symmetric geometric stable processes. The asymptotics of these
functions near zero exhibit features that are very different from the ones for stable
processes. The Green function behaves near zero as 1/(|z|?log? |z|), while the Lévy
density behaves like 1/|z|¢. We also study the asymptotic behaviors of the Green func-
tion and Lévy density of subordinate Brownian motions with iterated geometric stable
subordinators. As an application, we establish estimates on the capacity of small balls
for these processes, as well as mean exit time estimates from small balls and a Harnack
inequality for these processes.
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1 Introduction

Geometric stable distributions and geometric infinitely divisible distributions were first in-
troduced in [12]. Since their introduction they have played an important role in heavy-tail
modeling of economic data, see [16] and the reference therein. Despite the wide spread ap-
plications of geometric stable processes in mathematical finance and other fields, there has
not been much study of the potential theory of these processes. In this paper we take up
this task. In particular, we will study the behaviors of the Green function and the Lévy den-
sity of symmetric geometric stable processes. The asymptotic behaviors of these functions
near zero exhibit some new features that are dramatically different from the ones for stable
processes. The Green function behaves near zero as 1/(|x|*log? |z|), while the Lévy density
behaves like 1/]z|¢.

Let o € (0,2]. A Lévy process X = (X;,P,) is called a geometric strictly a-stable process
if its characteristic exponent W(¢) = — log(E, (e’ (X17X0))) is given by

T(€) =log(1+ @(¢)), €ER,

with exp(—®) being the characteristic function of some strictly a-stable distribution. In this
paper we will be mainly interested in the rotationally invariant geometric strictly a-stable
process in RY, that is, in the case when

T(€) =log(1+[¢]*), €eR”

We will simply call these processes symmetric geometric a-stable processes. The symmetric
geometric 2-stable process also goes by the name of symmetric variance gamma process and
it is used by some researchers to study heavy-tailed financial models (see [15], [9] and the
references therein).

Our approach to the potential theory of symmetric geometric stable processes is to realize
them as subordinate Brownian motions with geometric stable subordinators, and then use
Tauberian-type theorems to establish behaviors of the Green function and the Lévy density.
To be more precise, for any « € (0, 2], the subordinator S = (S; : ¢t > 0) with the Laplace
exponent

d(\) =log(1+AY2), A >0

is called a geometric «/2-stable subordinator. Note that for a = 2 the corresponding geomet-
ric stable subordinator is in fact the well-known gamma subordinator. Let Y = (Y; : ¢t > 0)
be a Brownian motion in R?, independent of the subordinator S. By computing the charac-
teristic exponent, it is easy to show that the subordinate process X = (X; : ¢t > 0) defined
by X; =Y (S;), t > 0, is a symmetric geometric a-stable process.

This approach has been used in [17] to study the Green function behavior of the sum
of a Brownian motion and an independent a-stable process. The Laplace exponent of the



corresponding subordinator is the sum of two power functions. This fact allowed for the
use of Karamata’s Tauberian theorem ([4], Theorem 1.7.1) and monotone density theorem
([4], Theorem 1.7.2). However, in the present case the Laplace exponent of the geometric
stable subordinator is of the logarithmic type which calls for the use of more delicate de
Haan’s Tauberian theorem ([4], Theorem 3.7.3) and de Haan’s monotone density theorem
([4], Theorem 3.6.8).

The Lévy density of the geometric a/2-stable subordinator is of the order «/(2z) for
x near zero, which makes it almost integrable near zero. One consequence is that such a
subordinator is very slow. This implies that the subordinate process is also slow and spends
a large amount of time in a ball centered at the starting point. This fact is reflected in the
behavior of the Green function near the origin which is on the brink of integrability.

The approach described above is also applicable to subordinate Brownian motions with
n-iterated geometric stable subordinators, i.e., subordinators whose Laplace exponents are
n-fold compositions of that of geometric stable subordinators. Iterated geometric stable sub-
ordinators and subordinate Brownian motions with iterated geometric stable subordinators
give two families of very concrete Lévy processes with fat-tails and they could be very useful
in applications.

The results on asymptotic behaviors of the Green functions can be used to establish
estimates on the capacity of balls for the corresponding processes, as well as the exit time
estimates from small balls. We present these results as a consequence of the more general
results for certain symmetric Lévy processes. Finally, as an application we establish the
Harnack inequality for geometric stable processes.

The content of this paper is organized as follows. In the next section we study the
asymptotic behaviors of the potential density and the Lévy density at zero and infinity
of geometric stable subordinators. These results are applied in Section 3 to establish the
asymptotic behaviors at zero and infinity of the symmetric geometric stable processes. In
Section 4, we refine the results of the previous two sections to iterated geometric stable
subordinators and subordinate Brownian motions. The results of this section extend most
of those of Sections 2 and 3, but the details of proofs are more cumbersome. This is why we
have decided to present them separately, after the reader has become acquainted with basic
ideas and techniques. In Section 5, we prove capacity estimates and the exit time estimates
for Lévy processes with radially symmetric decreasing Green functions. In the last section
we present the Harnack inequality for symmetric geometric stable processes.

In the paper we use following notation: If f and g are two functions, then f ~ g if f/g
converges to 1, and f < g if the quotient f/g stays bounded between two positive constants.



2 Geometric Stable Subordinators

In this section we assume that « € (0,2] and that S = (S; : t > 0) is a geometric «/2-stable
subordinator, that is, an increasing Lévy process taking values in [0, 00) whose Laplace
exponent is given by

d(\) = log(1+A¥?), X >0.

The function ¢ above can be written in the form

o(\) = / T e M), A0,

where 1 is a o-finite measure p on (0, 00) satisfying

/Oo(t A 1)p(dt) < oo.

The measure p is called the Lévy measure of S. Since the function ¢ is a complete Bernstein
function, the Lévy measure p has a complete monotone density p(t). For definition and
properties of complete Bernstein functions see, for instance, [10] or [17].

The potential measure of the subordinator S is defined by

U(A) :E/ L(s,ea)dt, (2.1)
0

and its Laplace transform is given by

1 1
o(\)  log(1+ rer2)”

LU =E / exp(—AS,) dt — (2.2)
0
In the sequel we will also use U to denote the function on [0, c0) defined by U(z) = U([0, z]).
Since limy_,o ¢(A) = 00, we must have p((0,00)) = oo. Therefore by Theorem 2.3 of [17]
the potential measure U has a density u which is completely monotone on (0,00). When
a = 2, the corresponding geometric stable subordinator is the gamma subordinator, and its
Lévy density is given by
pt)=ttet, t>0,

(see e.g. [18], p.45). Such an explicit formula for the Lévy density u is not available for
other values of a. The purpose of this section is to study the behaviors of the functions u
and p near zero and infinity. We will need the following versions of Tauberian and monotone
density theorems. The versions when x — oo are proved in [4], Theorem 3.7.3 and Theorem
3.6.8. We have not found in the literature the statements of the versions when = — 0, but
they could be proven by applying techniques from Chapter 3 of [4].



Theorem 2.1 (a) (de Haan’s Tauberian Theorem) Let U : (0,00) — (0, 00) be an increasing
function. If ¢ is slowly varying at oo (resp. at 0+), ¢ > 0, the following are equivalent:
(i) As x — oo (resp. x — 0+)
U(\x) —Ul(x)
((x)
(ii) As x — oo (resp. x — 0+)
LU(5;) — LU(3)
{(x)
(b) (de Haan’s Monotone Density Theorem) Let U : (0,00) — (0,00) be an increasing

— clog A, VA>0.

— clog A\, VA >0.

function with dU(x) = u(z)dx, where u is monotone and nonnegative, and let ¢ be slowly
varying at oo (resp. at 0+ ). Assume that ¢ > 0. Then the following are equivalent:
(i) As x — oo (resp. x — 0+)
U(\x) — Ul(x)
((x)

(i1) As © — oo (resp. x — 0+)

— clogh, VA > 0.

u(z) ~ cx ().

Now we are going to apply this result to establish the asymptotic behavior of the potential
density at zero.

Theorem 2.2 For any « € (0, 2], we have

2

—_— 0+.
ax(logx)?’ T o

u(z) ~

Proof. Recall that
LUN) = 1/6(X) = 1/log(1 + A¥/?).

Since LU — LU
Ly - LUty 2
£A A Zlogt, Vt>0
(log \)—2 o Bh
as A — 0+, we have by (the 0+ version of) Theorem 2.1 (a) that
U(te) = U 2
Ultr) = U@) 2.4 150
(logx)—2 a
as  — 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that
2
w(z) ~ az(logz)?
as r — 0+. O



Remark 2.3 One can easily show that

1
u(z) ~ e -0

[(a/2)
(see, e.qg. [17], proof of Theorem 3.3).
Theorem 2.4 For any « € (0,2], we have
(2) ~ o 0+ (2.3)
~ — — . .
BE ™o 7

Proof. The distribution function F,/, of the random variable S; is called by some authors
the Mittag-Leffler distribution (see [11], for example). It follows therefore from Theorem 2.2
of [11], that

p(@) = 5-(1= Fapla), @ >0.
Now the conclusion follows immediately. a

Since ¢(\) = log(1 + A%/?) is a complete Bernstein function, the function ¥(A\) = A/¢(\)
is also a complete Bernstein function. Let T = (T, : t > 0) be the subordinator with
Laplace exponent 1 and let V' be the potential measure of the subordinator 7. Since
lmy oo P(A)/A = limyo 1/9(A) = 0 and limy o ¢(\) = oo, the Lévy measure v of T
must satisfy v((0,00)) = co. Therefore by Theorem 2.3 of [17] we know that the potential
measure V of T has a density v which is completely monotone on (0, c0).

Theorem 2.5 For any o € (0,2), we have

«

W)~ ST a — ey T

Proof. Since

L ~ )\&/2—1 A — 0+

w(}\) 3 Y
we have, by Karamata’s Tauberian theorem, that the potential measure V of T satisfies

xlfoz/2
Vig) v ——— )
@)~ ta—amy T

Now using Karamata’s monotone density theorem we get that

1
o(@) ~ SR Zag2)

It follows from Corollary 2.4.8 of [21] that

Tr — OQ.

M((tv OO)) = U(t), t>0,

6



and so we have 1

p((t, 00)) ~ o201 — a/2) b= oo

Now applying Karamata’s monotone density theorem again we get

(t) - t
~ — OQ.
P ™ St D1 —a/2)”

O

It is known (see for instance [13]) that the distribution F,/, of S; is absolutely continuous
and the density f,/o is decreasing on (0,00). When a = 2 we have

filx)=¢e" x>0.

In the next result we establish the asymptotic behaviors of f, /2 for o € (0,2). We will need
the following fact. Let Z = (Z;,t > 0) be a Lévy process with characteristic exponent ® and
let 7 be an exponential random variable with parameter 1 which is independent of Z. Then
X = Z(7) is a geometric infinitely divisible random variable with characteristic function
exp(—V), where ¥ is given by W (§) = log(1+ ®(£)). Therefore the distribution of X is equal
to the 1-potential of the process Z.

Theorem 2.6 For any o € (0,2), we have

1 o,
n ~—x2 0+, 24
and N o
fayo(x) ~2wl(1 + 5) sin(I)x*I*%, T — 0. (2.5)
Proof. We first prove (2.4). Since the Laplace transform of the distribution of S; is given
by
! A>0
1+ \/2’ ’

we can easily get from Karamata’s Tauberian theorem that [}, /; is regularly varying at 0

1 o
F, ~——— %, 0+. 2.6
P~ Frram s o0t (26)

Now we can apply Karamata’s monotone density theorem to get (2.4).
Now we establish (2.5). From the paragraph preceding the theorem we know that

Xz

fa/g(fﬂ) = /0' eitﬁa/g(t, x)dt = /O eitti%ﬁa/Q(L %)dt

7



where P, /2(t, z) is the transition density of the a/2-stable subordinator. It follows from [19]
that

Paja(L,x) ~ 20T (1 + %) Sin(%)$*1*%7 v o0

and that for all z > 0
pa/z(lwr) < C<1 A x_l_%)7

for some positive constant ¢ > 0. Now we can apply the dominated convergence theorem to
arrive at (2.5). O

3 Green Functions and Jumping Functions of Symmet-
ric Geometric Stable Processes

Let Y = (Y;, t > 0) be a d-dimensional Brownian motion with the transition density given

by

4t
Let S = (Si,t > 0) be a geometric a/2-stable subordinator with the Laplace exponent
log(1 + A\*2), o € (0,2], and let u(t) be the potential density of S. Then we know from
Theorem 2.2 that

/2 |z —y[? d
pa(t,z,y) = (d4mt) Y2exp ( ———- ), z,y e RLt>0.

2
atlog?t

u(t)
If we assume that Y and S are independent, the symmetric geometric a-stable processes
X = (Xt,t > 0) can be obtained by X; = Y (5;).

Throughout this section we assume that d > «. This implies that the process X is
transient (see e.g., [3], p.33). The potential operator Gf(z) := E” [[* f(X;)dt of X has a
density G(z,y) = G(y — z) with

Glz) = / pa(t, 0, 2)u(t) dt.
0

The Lévy density of X is given by

() = /0 (0,2 (1),

where pu(t) is the Lévy density of S.

, t—0+ . (3.1)

In this section we will study the asymptotic behaviors of G and J. In order to establish
these asymptotic behaviors we start by defining an auxiliary function. For any slowly varying
function ¢ at infinity and any 3 > 0, let

0(1/y) :
— ) Wy Y< 5o



The following technical lemma will be crucial in establishing the asymptotics of G and J.

Lemma 3.1 Suppose that w : (0,00) — (0,00) is a decreasing function satisfying the fol-
lowing two assumptions:

(i) There exist a constant ¢o > 0 and a continuous functions { : (0,00) — (0,00) slowly
varying at +oo such that

Co

W)~ i

t— 0+ . (3.2)

(i) If d =1 or d =2, then there exist a constant ¢, > 0 and a constant v < d/2 such that

w(t) ~ coot’™t, t— +o0. (3.3)
Let g : (0,00) — (0,00) be a function such that

/ 142 e tg(t) dt < 0.
0

If there is 3 > 0 such that fop(y,t) < g(t) for all y,t > 0, then

°° _ajp _lal? r'(d/2) 1
I(z) = [ (dnt) eSS w(t)dt ~ 2 0.
(@)= [ m e g a ~ A e el —

|[?

Proof. Let us first note that the assumptions of the lemma guarantee that [(z) < oo for
every x # 0. By a change of variable we get

[ asy e a = BLEE [T e, (B2 4
0 A2 f 4t
e (b [ e [
= Tap | 1T +|x|~
4rd/2 0 S
1

— g 20 + el °1s)

We first consider Iy for the case d = 1 or d = 2. It follows from the assumptions that there
exists a positive constant ¢; such that w(s) < ¢;877! for all s > 1/(43). Thus

Blz|? ’x‘Q -1
I < / 1427207t [ 1 dt
; 4t
Blz/|?
< 02\33]2’72/ 421 gy
0

= cylz|P2.



It follows that

—d+2I
i 0 (3.4)
|z|—0 1
2l 70 1)

In the case d > 3, we proceed similarly, using the bound w(s) < w(1/(45)) for s > 1/(45).
Now we consider I5:

1 [e’e) ’x|2
! ’ |42 /5|z|2 © ( 4t )
- @) a1
_ 4 . / td/2—1€—tw (1‘“ é(ljf) dt .
|21 U5R) Sz s Qe
4t €(|z|2)

Using the assumption (3.2), we can see that there is a constant ¢ > 0 such that

|z
W
— 4 <ec,

z|? 4t
T UgE)

for all t and =z satisfying |z|?/(4t) < 1/(403). Since / is slowly varying at infinity,
(k)

1m

for all £ > 0. Note that

Therefore, by the dominated convergence theorem we have

|:c|2) 1
lim /21t 1‘” W)dt: / cot?? et dt = ¢oI'(d/2) .
122, 4t ~ 0

|x|—0 2|2 -2 14 At
Hence,
fd+2]
‘li|m0 MTQ = ¢o[(d/2). (3.5)




Finally, combining (3.4) and (3.5) we get

I I'(d/2
lim (f) _ (d 2/ ) .
2|0 ———— md/
[l 7E( 1)

Theorem 3.2 For any a € (0,2], we have
I'(d/2)
2a74/2|z|41og? ﬁ’

|z| — 0.

G(z) ~

Proof. We apply Lemma 3.1 with w(t) = w(t), the potential density of S. By (3.1),

u(t) ~ #g% as t — 04, so we take ¢y = 2/a and £(t) = log*t. Moreover, by Remark 2.3,

u(t) ~ /271 /(I'(a)/2) as t — 400, so we can take v = a/2 < d/2. Choose 3 = 1/2. Let

log? y
) y<2t7’
,U) = Jy ,U) = log” %
f,t) == fea2(y,t) { 0" >t
Define ,
log~ 2t 1
g(t) = 10gg22 » <1,
1, t>1.

In order to show that f(y,t) < g(¢), first let t < 1/4. Then y — f(y,t) is an increasing

function for 0 < y < 2t. Hence,

log? 2t
sup f(y,t) = f(2t,t) = log—22'

O<y<2t

Clearly, f(y,1/4) = 1. For t > 1/4, y — f(y,t) is a decreasing function for 0 < y < 1.

Hence
sup f(y,0) = £(0,2) =iy fy,0) = 1.

0<y<(2t)Al

Clearly,
/ 42 e tg(t) dt < 0.
0
O

Remark 3.3 The asymptotic behavior of G(x) as |x| — oo was proved in [17], Theorem 3.3

to be
1 I(%2)

a—d
G(x) 7].(1/22& 1’\(%) ‘x’ ) ‘33" — 0.

11



Now we establish the asymptotic behaviors of J.

Theorem 3.4 For every o € (0,2] we have

J(z) ~ al'(d/2)

20z|? =l =0

Proof. We again apply Lemma 3.1, this time with w(t) = p(t), the density of the Lévy
measure of S. By (2.3), u(t) ~ 5 as t — 0+, so we take ¢y = a/2 and £(t) = 1. By Theorem
2.5, u(t) is of the order t~*/2~1 as t — 400, so we may take v = —a/2. Choose 3 = 1/2 and

let g = 1. a

Theorem 3.5 For every o € (0,2) we have

a p(dJr_a

2 —d—«
J(IE) ~ Qat1yd/2 F(l _ %) |J:| ) |$| — 0.
Proof. Theorem 2.5 tells us that
o
e — T t .
MO~ S = ar2) T

Now combine this with Theorem 2.4 to get that
p(t) < Ot tvie27hy, (3.6)

By a simple change of variable we have

o) 2
/ (4mt) =2 exp (—@> w(t) dt
. At
1 iz [T apea s (|21
= /0 v K

00 i —a/2-1
= - le_d_a/ sH/272e7s . ( - > AR ds
87rd/2F(1 — 05/2) 0 o |z|2 —a/2-1 \ 45

2I'(1—a/2) ( s

— o —d—a > d/2+a/2—-1_—s
e ) e —— ()"
a/2)
Let |z| > 2. Then by (3.6),
|z[?

u () 2\
N7/ < Ll
<w>—a/2—l - C<(4S) v
< C(s%v1).

12



It follows that the integrand in the last display above is bounded by an integrable function,
so we may use the bounded convergence theorem to obtain

: 1 ® ks a  T(H*)
lim ——— [ (dmt)"4? t)dt = :
\z|linoo |ZE|_d_O‘ /0 ( 7 ) exXp ( At ) :u( ) 9ot d/2 F(l %) ) (3 7)

which proves the result. O

Theorem 3.6 When a = 2, we have

d—l@l‘

) 2 el =0

Proof. By making a simple change of variable we get that

L[ —d/2 |z
J(z) = 3/ t~ e " (4rt) exp(—T)dt

—d—1_—d/2|,.|—d a4y —7—‘1‘2
= 27 Y s2 e s ds
0

= 2R ),

[(r):/ sl ds.
0

Using the change of variable u = \/7; — \/Lg we get

where

I(r) = e /OO 581757 gs
0
[ 2w Ve 2r)?t
- / RGEed ’
U+ \/m U
ez
Therefore by the dominated convergence theorem we get

I(r) ~ 22\ /me ™ r T, 1 — oo.

2
““du

= 2T —+2) ~du

Now the assertion of the theorem follows immediately. a

Now we are going to study the asymptotic behavior of the transition density ¢, (1, z,y) =
¢o(l,y — x) at infinity of the process X. From the paragraph preceding Theorem 2.6 we
know that

Go(l,2) = /000 e 'pa(t, z)dt, (3.8)

where p,(t, z) is the transition density of the symmetric a-stable process.

13



Theorem 3.7 For a € (0,2) we have

a2 sin C0(H2)0(9)

dall, @) ~ ﬂg+1|x|d+a |z = o
For o = 2 we have ol
—|x
(1, x) ~ Q_ZW_T;T7 |z| — 0.

Proof. The proof of the case a = 2 is same as the proof of the previous theorem, so we only
give the proof of the case a € (0,2). Using the scaling property we get that

e A
qoé(l,m)—/O e 't pa(l,tl/a)dt.

Now we can use Theorem 2.1 of [5] and the dominated convergence theorem to arrive at our
conclusion. O

4 Extension to iterated subordinators

In this section we extend some of the results of the previous section to iterated geomet-
ric stable subordinators and subordinate Brownian motion with iterated geometric stable
subordinators.

Let g = 0, and inductively, e, = e“»~', n > 1. For n > 1 define [,, : (e,, 00) — (0, 00) by

l.(y) =loglog...logy, mn times.
Further, let Ly(y) = 1, and for n € N, define L, : (e,,00) — (0, 00) by

Ln(y) = Ly)la(y) ... la(y) .

Note that I/ (y) = 1/(yL,_1(y)) for every n > 1.
Let a € (0,2]. Define ¢(y) = ¢M(y) := log(1 + y*/?). For n € N define inductively
¢ (y) = (6" V(). Let kuly) == 1/ (y).

Lemma 4.1 Lett > 0. For every n € N,

i (ka(19) — k() Lo (0)la(9)” = —— lost

Y—00

14



Proof. The proof for n = 1 is straightforward and is implicit in the proof of Theorem 2.2.
We only give the proof for n = 2, the proof for general n is similar. Using the fact that

log(1+y) ~y, y— 0+, (4.1)

we can easily get that

lim (log —28Y 1
1m O O =
yoroo |0 log(yt) &Y

Using (4.1) and the elementary fact

1 logt
— lim |{ log osy T ot logy = —logt. (4.2)
y—00 logy

log(1+y) ~logy, y— oo,

we get that
lim (ka(ty) = ko () L1 (9)la(y)*
— Y“im ( log(1 4 y*/?) > log y(log log y)*
~ 2%\ log(1+ (19)°7%) ) (3) og(log (1 + y*/%)) log(1oa(1 + (1))
2 Jim (1og %Y 1o
= — l1im T 7 N
2
= ——logt.
«

O

We will assume that S™ = (St(") :t > 0) is a subordinator whose Laplace exponent is
given by ¢ ()). The function ¢™ can be written in the form

60 = [ =M@, >0
0
for some o-finite measure 1™ on (0, c0) satisfying the

/Oo(t A )™ (dt) < o0,

The measure 4™ is called the Lévy measure of S™. Since the function ¢(™ is a complete
Bernstein function, the Lévy measure 4™ has a complete monotone density ™ (t) (see for
instance [10]).

Note that if S~V and S are independent subordinators with Laplace exponents ¢~
and ¢, respectively, then the subordinator S™~1(S,) has the same distribution as St(n). In
this way we may regard S™ as an n-fold iteration of S by itself.

15



The potential measure of the subordinator S™ is defined by

U(")(A) = E/O 1(5,5(")614) dt , (4.3)

and its Laplace transform is given by

LUMN\) =E / exp(—AS™) dt = (4.4)
0

¢ (A)’
In the sequel we will also U™ to denote the function on [0,00) defined by U™ (x) =
U™([0,]). Since limy_, ¢™(A) = oo, we must have u™((0,00)) = oco. Therefore by
Theorem 2.3 of [17] the potential measure U™ has a density u(™ which is completely mono-
tone on (0,00). One of the purpose of this section is to study the behaviors of the functions
u™ and p™ near zero and infinity.

Theorem 4.2 For any « € (0, 2], we have

2

(n) ~

r—0+. (4.5)

Proof. Using Lemma 4.1 we can easily see that
LUC(E) - LU (3)
(Ln-1(3)l(3)?) !

as A — 0+4. Therefore, by (the 0+ version of) Theorem 2.1 (a) we have that

2
— —logt, Vt>0
a

U™ (tr) — (:zc
(Lnfl(%)ln(l)Q) '

as * — 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that

logt t>0

2

u(")(ZU) ~ arl,_ 1(%)[ (%)2

as r — 0+. O

Remark 4.3 One can easily show that

1 n
u™(z) v =———— 2" o

I'((e/2)") ’
(see, e.qg. [17], proof of Theorem 3.3).
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Since ¢™(\) is a complete Bernstein function, the function ¢™(X) = X/¢™(\) is
also a complete Bernstein function. Let 7™ = (Tt(n) : t > 0) be the subordinator with
Laplace exponent ¢ and let V™ be the potential measure of the subordinator 7. Since
My oo WM (A) /A = limy oo 1/0™(N) = 0 and limy o ™ (A) = oo, the Lévy measure v(™
of T must satisfy v(™((0,00)) = co. Therefore by Theorem 2.3 of [17] the potential measure

V() of T(™ has a density v(™ which is completely monotone on (0, o).

Theorem 4.4 For any a € (0,2), we have

n (/2)"
ul )(x) ~ 2@/ HD(1 — (o /2)7) L= 00

Proof. Since
L e

_— A
PN , A= 0+,

we have, by Karamata’s Tauberian theorem, that the potential measure V™ of T satisfies

(a2

R PR TTPT)

T — OQ.

Now using Karamata’s monotone density theorem we get that
o™ () ~ ! x — 00.
2@/2"T(1 — (a/2)")

It follows from Corollary 2.4.8 of [21] that

p((t, 00)) = v(t), >0,

and so we have 1

p((t, 00)) ~ t@/2" (1 — (a/2)7)

t — o0.

Now applying Karamata’s monotone density theorem again we get

(/2)"

p(t) ~ FO/ (1 = (a/2)7) t — oo.

O

Remark 4.5 Note that the previous theorem is proved for o € (0,2) only. We know that for
n =1, the Lévy density p™M(x) is equal to e=*/x. We expect similar behavior for n > 2 as

well. Unfortunately, we were unable to find precise asymptotic behavior of the Lévy density
™ (z) as x — oo in case a = 2 andn > 2. One of the difficulties is that all functions ¢™ (\)
are of the same order \ near zero. We were unable to find in the literature a Tauberian type

theorem that is applicable in this case.
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Let Y = (Y;, t > 0) be a d-dimensional Brownian motion as in the previous section. As-
sume that Y and S™ are independent. We define the subordinate process X = (Xt(n) >
0) by xM = Y(St(")). The process X™ has a transition density ¢ (t,z,y) = g (t,y — )
given by

4t 2) = / palt,0,2) £ (1, 5)ds (4.6)
0

where f(i%(t,s) is the density of S{™. Note that qg})(l,x) = ¢o(1, ), where q,(1,x) was
introduced in Section 3.
Throughout this section we assume that d > 2(«/2)". Similarly as in the previous

section, this implies that the process X(™ is transient. The potential operator G f(z) :=
E* [ F(X™)dt of XM has a density G™(z,y) = G™(y — ) = G™(|y — z|) with

o) 2
G (x) = /0 (4mt) =2 exp (—%) ul™ (t) dt,

where u(™ is the potential density of S™. The Lévy density of X is given by
[ee)
5@ = [ e 0.0 Wi
0

where (™ (t) is the Lévy density of S. Another expression for J™ is as follows:
JM () = / Pa(t,0,2)t e tdt (4.7)
0

where p, is the transition density of the symmetric a-stable process in R%. Note that J™ ()
depends only on |x|. Therefore, by slightly abusing notation we will define J™(r) := J™ ()
for r = || > 0. We want to study the asymptotic behavior of G™ using Lemma 3.1. In
order to check the conditions of that lemma, we need some preparation.
For n € N, define f,, : (0,1/e,) x (0,00) — [0,00) by
)ln(L)Q v Y<<,

Ln—l(
fn(y7t> = { Ln-1( v

0, y > 2.

)in(5)? 2

< "&@ |

Note that f,, is equal to the function f, g, defined before Lemma 3.1, with £(y) = L,,—1(y)l.(y)?
and 5 =e,/2. Also, for n € N, let

_ [ R(E, t<1/4,
gn(?) ‘_{ 1, t>1/4.

Moreover, for n € N, define h,, : (0,1/e,) x (0,00) — (0, 00) by

hn(y,t) ==

18



Clearly, for 0 < y < 62—5 A i we have that

Sy, t) = ha(y,t) . by (y, ) By, 1) (4.8)

Lemma 4.6 For all y € (0,1/e,) and all t > 0 we have f,(y,t) < gn(t). Moreover,
Joo Y2 et g, () dt < .

Proof. A direct calculation of partial derivative gives

Oy L) = In()
oy Y.ty = yLn—l(i)Ln—l(A‘t)ln(i—t)Q'

Y

The denominator is always positive. Clearly, the numerator is positive if and only if t > 1/4.
Therefore, for ¢t < 1/4, y + h,(y,t) is increasing on (0,2t/e,), while for ¢ > 1/4 it is
decreasing on (0, 2t/e,,).

Let t < 1/4. It follows from (4.8) and the fact that y +— h,(y,t) is increasing on (0, 2t/e,,)
that y — f,(y,t) is increasing for 0 < y < 2t/e,,. Therefore,

sup fn(y,t) < fn(zt/enat) :gn(t)'
0<y<2t/en

Clearly, f,.(y,1/4) = 1. For y > 1/4, it follows from (4.8) and the fact that y — h,(y,t) is
decreasing on (0,2t/e,) that y — f,(y,t) is decreasing for 0 < y < 1/e,,. Hence

sup  fu(y,t) = f(0,1) :=lim f(y,) = 1.
O<y< 2t AL y=

en €n

The integrability statement of the lemma is obvious. O

Theorem 4.7 We have

. (/2
22| x| L, 1 (1/]z|*)1.(1/]2|?)?

G (z)

|z| — 0.

Proof. We apply Lemma 3.1 with v(t) = u((t), the potential density of S™. By (4.5),

2
atL, 1 (1/t)0,(1/t)2°

so we take co = 2/a and £(t) = L,,_1(t)l,(t)*>. By Remark 4.3, u(™(t) is of order ¢(*/2"~1 as
t — 00, so we may take v = («/2)" < d/2. Choose § = 1/2. The result follows from Lemma
3.1 and Lemma 4.6 a

u™ (t) ~

t — 0+,
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Remark 4.8 The asymptotic behavior of G (z) as |z| — oo was proved in [17], Theorem
3.8. Denote a,, = a(a/2)"" 1. Then

1 F(d_%)kdan*d

~ 7d/290an F(%z)

G™(z)

, x| — o0,
Although we could not get the exact asymptotic behaviors of J™ the following result
about J™ will be useful later.
Proposition 4.9 For any o € (0,2) and n > 1, there exists a positive constant ¢ such that
JO(r)y < eJ™(2r),  forallr >0 (4.9)

and
JO @) <™ +1),  forallr > 1. (4.10)

Proof. Using Theorem 4.4 and repeating the proof of (4.6) in [17], we can easily prove
(4.10). We omit the details. Now we prove (4.9). Recall that p,(¢,x) is the transition
density of the symmetric a-stable process in R%. It is well known (see Theorem 2.1 of [5])
that there exist positive constants C and Cs such that

Cr(1 A 2|78 < po(1,2) < Co(L A |z, for all t > 0 and = € R%
Using this one can easily see that there exists C5 > 0 such that
palt, ) < cspa(t,2x), forallt >0 and z € R% (4.11)
Recall that

1 o0
JV(z) = 5/ pa(t,z)t e dt, forallt >0 and z € R%.
0

Similarly as in (3.8) we have
o 1
M (t,z) = / Pals, 1) =—s"te *ds, forallt >0 and v € R
0 '(t)

Combining the two displays above with (4.11) we immediately get that

JW(z) < C3JY(2z), forall z € RY, (4.12)
¢Vt x) < CsqM(t,2x), forallt>0and z € R (4.13)

We have further that

1 oo
7O (@) = / POt @)ptasa(t)dt, for all >0 and z € R?
0
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and
@ (t,x) = / Pa(8,2) fua(t, s)ds, forallt>0and z € R?,
0

where fi4/5(t) is the Levy density of the geometric a/2-subordinator. Combining the two
displays above with (4.13) we immediately get that

JA(z) < C3JP(2z), forall z € RY, (4.14)
(Pt x) < C3¢P(t,22), forallt>0andz e R (4.15)

Now we can use induction to get that

JM(z) < C3J™(2z), for all 2 € RY, (4.16)
¢M(t,z) < Csq\(t,2z), forallt>0andzeR? (4.17)
(]

5 Capacity and Exit Time Estimates for Some Sym-
metric Lévy Processes

The purpose of this section is to establish lower and upper estimates for the capacity of balls
and the exit time from balls, with respect to a class of general symmetric Lévy processes.

Suppose that X = (X;,P,) is a transient symmetric Lévy process on R?. We will assume
that the potential kernel of X is absolutely continuous with a density G(z,y) = G(|y — z|)
with respect to the Lebesgue measure. This implies that (see Theorem 4.1.2 of [8]) the
transition semigroup of X has a density with respect to the Lebesgue measure. We will
assume the following conditions: G : [0,00) — (0,00] is a positive and decreasing function
satisfying G(0) = oco. We will have need of the following elementary lemma.

Lemma 5.1 There exist a positive constant Cy = Cy(d) such that for every r > 0 and all
x € B(0,r),

c / Gyl dy < / G(z,y) dy < / G(ly) dy.
B(0,r) B(0,r)

B(0,r)

Moreover, the supremum of fB(O " G(z,y)dy is attained at x = 0, while the infimum is
attained at any point on the boundary of B(0,r).

Proof. The proof is elementary. We only present the proof of the left-hand side inequality
for d > 2. Consider the intersection of B(0,7) and B(z,r). This intersection contains the
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intersection of B(x,r) and the cone with vertex x of aperture equal to 7/3 pointing towards
the origin. Let C'(z) be that intersection. Then

/ G<|y—x|>dyz/ G<|y—x|>dy2cl/ G<|y—x|>dy:cl/ G(lyl) dy
B(0,r) C(x) B(z,r)

B(0,r)

where the constant ¢; depends only on the dimension d. It is easy to see that the infimum
of fB(O " G(z,y) dy is attained at any point on the boundary of B(0,r). O

Let Cap denote the (0-order) capacity with respect to X. For a measure p denote

Gule) i= [ Gl ().

For any compact subset K of R%, let Px be the set of probability measures supported by
K. Define

e(K) := inf /Gu(:z:) p(dx) .

HEPK
Since the kernel G satisfies the maximum principle (see, for example, Theorem 5.2.2 in [6]),
it follows from ([7], page 159) that for any compact subset K of R¢
1 1

Cap(K) = - = . 5.1
p( ) lnf,UEPK SuprSupp(,u) G:u(x) €<K) ( )

Furthermore, the infimum is attained at the capacitary measure px. The following lemma
is essentially proved in [14].

Lemma 5.2 Let K be a compact subset of R%. For any probability measure 1 on K, it holds
that
inf  Gu(x) <e(K)< sup Gu(x). (5.2)
z€Supp(p) zE€Supp(p)
Proof. The right-hand side inequality follows immediately from (5.1). In order to prove the
left-hand side inequality, suppose that for some probability measure g on K it holds that
e(K) < infesupp(u) Gr(x). Then e(K) + € < infegupp(u) Gi(x) for some € > 0. We first have

/K Gu(x) pg(dr) > / (e(K) +¢€) ug(dr) = e(K) + €.

K
On the other hand,

| Gute) i) = [ Guclo) utda) = [ () utd) = e(56),

where we have used the fact that Gux = e(K) quasi everywhere in K, and the measure of
finite energy does not charge sets of capacity zero. This contradiction proves the lemma. O
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Proposition 5.3 There exist positive constants Cy < Cs depending only on d, such that for

allr >0
CQTd

fB(o,r) G(|y|) dy —

Proof. Let m,(dy) be the normalized Lebesgue measure on B(0,r). Thus, m,(dy) =

C3T
fB (0,r) |y|

< Cap(B(

dy/(c1r?), where ¢; is the volume of the unit ball. Consider Gm, = sup,c () Gm.(z). By
Lemma 5.1, the supremum is attained at x = 0, and so

1

Gm, = —; G(ly|)d
art Jaon (ly)dy
Therefore from Lemma 5.2
d
cr
Cap(B( (5.3)
* Toon Gy
For the right-hand side of (5.2), it follows from Lemma 5.1 and Lemma 5.2 that
—_— 1 cyrd cyrd
Cap(B(0,1)) < - <
Gm,(2) fB(o,r) G(zy C1 [y (0,r) |3/‘
where in the first line, z € 0B(0, 7). 0

In the remaining part of this section we assume in addition that G is regularly varying
at 0 with index 8 < 0. This implies that

. G(2u)
1 =27
w0 G(u)
Therefore, there exists a constant ry such that
1
5(26 +1)G(u) > G(2u), 0<u<ry. (5.4)
Proposition 5.4 There exists a positive constants Cy such that for all v € (0,ry/2)
04/ G(ly|) dy inf  E,7poy < sup E,7per) < / G(ly])dy.  (5.5)
(0,r/6) fEB(O r/6) 2€B(0,r) B(0,r)

Proof. Let G'p(,(x,y) denote the Green function of the process X killed upon exiting
B(0,7). Clearly, Gpon(z,y) < G(x,y), for z,y € B(0,r). Therefore,

EmTB(O,r) - /( \ GB(O,T’) (.I, y) dy
B(0,r

/ Gl y) dy < / G(ly]) dy.
B(0,r) B(0,r)
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For the left-hand side inequality, let r € (0,7¢/2), and let z,y € B(0,r/6). Then,

GB(O,T)(Iay) - G(l‘,y)—EzG<X(TB(077~)>,y)
> Gly—=]) - G2y —=|).

The last inequality follows because |y — X (7o) = 37 > 2|y — z|. Let ¢; = (1—27)/2. By
(5.4) we have that for all u € (0,7¢), G(u)—G(2u) > ¢;G(u). Hence, G(ly—z|)—G(2|ly—=z|) >
c1G(ly — x|), which implies that Gpr)(z,y) > c1G(z,y) for all x,y € B(0,r/6). Now, for
x € B(0,7/6),

EITB(O,T) = /( ) GB(O,T) ('1'7 y) dy
B(0,r

> / G (T, y)dy
B(0,r/6)

> / G(z,y)dy
B(0,7/6)

e / Glyl) dy
B(0,r/6)

where the last inequality follows from Lemma 5.1. O

Example 5.5 We illustrate the last two propositions for the process X ™ studied in Section
4. Hence, we assume that d > 2(«/2)". By a slight abuse of notation we define a function
G™ . ]0,00) — (0,00] by G™(|z|) = G™(x). Note that by Theorem 4.7, G is regularly
varying at zero with index § = —d. Let o be the constant from (5.4) with this 5. Let us
first look at the asymptotic behavior of || BOr) G™(|y|) dy for small r. We have

/ G(")(|y|)dy = cd/ ud’lG(”)(u)du
B(0,r) 0

cal'(d/2) [T ud=?
R / WL (e

o ch(d/Q) " 1
- and? /0 uLp 1 (1/u)l,(1/u)? du
ch(d/Q) 1

= Tamir Lm0

It follows from Proposition 5.3 that there exist positive constants C5 < Cy such that for all
re(0,1/ey,),
Cs1,(1/r) < Cap(B(0,7)) < Ceril,(1/7).
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Similarly, it follows from Proposition 5.4 that there exist positive constants C7; < Cg such
that for all » € (0, (1/e,) A (10/2)),
C7 CS

——— < inf E, N < E, < —. 5.6

L(1fr) = reslbwe 7000 = S BeTaon < 3 (56)
Here we also used the fact that [,, is slowly varying.

By use of Remark 4.8 and Proposition 5.3, we can estimate capacity of large balls. It

easily follows that as r — oo, Cap(B(0,) is of the order r(/2"",

6 Harnack inequality

In this section we indicate the main steps in the proof of Harnack inequality for nonnegative
harmonic functions for the subordinate process. We do not provide all of the details, because
they have already appeared in some other papers. The methodology was introduced in [2]
and refined in [1]. We are going to use the notation and the approach from [20], combined
with some results and ideas from [17] and [22].

Let S™ be a subordinator whose Laplace exponent ¢ is defined in Section 4. For the
case o = 2 we assume that n = 1. Let Y be a d-dimensional Brownian motion independent
of S and let XM (t) = Y(an)). As in Section 4, we assume that d > 2(a/2)". A
nonnegative Borel function h on R? is said to be harmonic with respect to X in a domain
(i. e., a connected open set) D C R? if it is not identically infinite in D and if for any
bounded open subset B C B C D,

h(l‘) = Ex[h<X(n)(7—B))1TB<OO]? Vi € Ba

where 75 = inf{t > 0 : xm ¢ B} is the first exit time of B.

We say that the Harnack inequality holds for X if for any domain D C R? and any
compact subset K of D, there is a constant C' > 0 depending only on D and K such that
for any nonnegative function A harmonic with respect to X™ in D,

h(z) < C inf h(z).
sup (x) < C inf h(z)
The following auxiliary results are needed for the proof of Harnack inequality. Let ry be
the constant from Example 5.5.

Lemma 6.1 There exists a positive constant Cy such that for any r € (0,(1/e,) A (10/2))
we have
sup E.7po, <C1  inf  E.7p0,).

z€B(0,r) 2€B(0,r/6)
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Proof. This follows immediately from the estimate (5.6). O

Note that it follows from Theorem 4.7 that there exist two positive constants Cy and C5
such that

Cy Cs 1
< GM(z) < .zl < — (6.1
TP = ¢ @ S o S an O
Let us define
g™ (u) = ! u < ! :
udL, 1 (1/u?)l,(1/u2)?’ €ni1

It follows by calculus that there exists p,, 0 < p, < 1/e,i1, such that u — ¢ (u) is

decreasing on (0, p,). Define
1 [4C5\ "1
a:nmx{§<zf) ,1}. (6.2)

Since u — L,,_1(1/u?)l,,(1/u?)? is slowly varying as u — 0, there exists p,, 0 < p,, < 1/e, 11,

such that I (1)l (1)2
1 n—1\73 )tn\72 ~
- < . “ <2, u<p,. (6'3)
2 Ln—l ( 36012u2 )l”(36012u2 )2
Let 1
. ~ TO
R, = PPy (- 64
mm{en+1 Pn; P 2} (6.4)

Then u — g™ (u) is decreasing on (0, R,), and both (6.1) and (6.3) are valid for |z| < R,
and u < R, respectively.

Lemma 6.2 Let 3 € (0,1). There exists Cy > 0 such that for any r € (0,(7¢)™'R,,), any
closed subset A of B(0,r), and any y € B(0,r)

Cap(4)

P (T cr >C ﬁ—.
y(Ta < TB7er)) = Car Cap(B(0,7))

Proof. Without loss of generality we may assume that Cap(A) > 0. Let Gg?o Ter) be the
Green function of the process obtained by killing X (™ upon exiting from B(0, 7er). If v is
the capacitary measure of A with respect to X then we have for all y € B(0,7),

Gg()07707")1/<y) - Ey[GgL()OJCT)V(XT(Z)) 1Ty < TB(O,?CT‘)]
S;lﬂgi Gg()0,7cr)y(z)Py (TA < 7-13’(0,707"))

]P)y (TA < TB(0,7cr) ) .

IN

IN
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On the other hand we have for all y € B(0,r),

z€B(0,r)

Cora?®) = [ G0 20(d2) 2 v() i Gl (029

= Cap(A) 2613% Y GB(O 7ery (U5 2) -
In order to estimate the infimum in the last display, note that G(n)o (07er) (U5 2) = G (y, z) —

E,[G™ (X TB<O rerys 2)]- Since |y — 2| < 2r < Ry, it follows by (6.1) and the monotonicity of
(n)
g\"™ that

G (y,2) > Cog™ (|2 — y|) > Cog™(2r). (6.5)
Now we consider G(")(Xﬁgzmm,z). First note that |X£§20 veny — 2| > Ter —r > 6er. If
|Xng0 vy — 2| < Ry, then by (6.1) and the monotonicity of g™
GOV(XE), 12) < Cag(j2 = XL, 1) < Cag® (6er).
If, on the other hand, |XTB(07 . — 2| = Ry, then G"( TBEO reny»2) < G™(w), where w € R?

is any point such that |w| = R,,. Here we have used the monoton1c1ty of G™. For |w| = R,
we have that G (w) < Cs9™ (Jw|) = C59™ (R,,) < C39™ (6¢r). Therefore
E,[G™ (XM 2)] < Csg™ (6er). (6.6)

TB(0,7cr)’

By use of (6.5) and (6.6) we obtain

G™(y,z) > Cog™(2r) — g™ (6cr)
= g(”)(2r) CQ - Cg

(2r)4 L, (1/4r%)1,(1/4r%)? )
(6¢r)?L,—1(1/36¢%12)1,,(1/36¢%1r2)?

1 )d Lo 1 (1/472)1,(1 /472)2 )

3¢ —1(1/36¢2r?)1,,(1/36¢%r2)?

IV
Q/\
3
o
-
N N NN
3
| |
&
N
Ool,_.
N———
=
[\
N——

> g™ (2r) C-—ﬂkii)
Gy Co 1
= 29" = S L L e

where in the fourth line we used (6.3). From Example 5.5 we have that Cap(B(0,7)) >
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csr?/1,(1/r). By using this in the previous display, we get

> 9 1 Cr 1
= 8 Ly 1(1/4r2)1,(1/4r2)2 1,(1/r) Cap(B(0, 1))
0205 1 1
8 Ly 1(1/4r?)l,,(1/4r%)%1,,(1/r) Cap(B(0,r))

1
> B
= O (B (0,7)

G (y, z)

To finish the proof, note that

(n) ﬁCap—w
Py(Ta < 7B(0,70r)) 2 Go7en V() = Car Cap(B(0,7))

Remark 6.3 It is clear from the proof that the function r — 12 can be replaced by a function
which approaches zero more slowly.

Using Proposition 4.9 and Lemma 3.5 of [20] we immediately get the following result.

Lemma 6.4 There ezist positive constants Cs and Cg such that if r € (0,7¢/2), z € B(0,r)
and H is a nonnegative function with support in B(0,2r)¢, then

B.H(X" (ra00))) < Co(Euraon) [ H5)I™ )y

and

E.H(X™(1500,))) > Co(E.T0,)) / H(y)J™ (y)dy.

It follows from Lemma 6.1 and Lemma 6.4 that there exists a positive constant C; such
that for any r € (0, R,), any y, z € B(0,r/2) and any nonnegative function H supported in
B(0,2r)°

E.H(X"™(750,)) < CEE,H(X "™ (T80,))) (6.7)

Lemma 6.5 Let 8 € (0,1). There exists a positive constant Cs such that for all 0 < p <
r<l/emi
d
Cap(B(0,p)) (2) .
Cap(B(0,7))
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Proof. By Example 5.5
d d

L < Cap(B(0,7) <

b(1/7)

for every r < 1/e,, 1. Therefore,

Cap(B(0, p))
Cap(B(0,7))

>

s (1)) _ s (0110
cer? /L, (1/r) g (1/p)

,
Note that 1/r > e,41 and hence [,(1/r) > l,(e,41) = 1. Further, there exists a constant
c7 > 0 such that

1
—— >cp% forall pe (0,1/e,.1).
ln(l/l)) _C7p or a p ( ) /6 +1)

The lemma is proved by taking Cs = ¢5¢7/cs. O

The following Harnack inequality is proved along the same lines as the ones in Theorem
3.1 1in [22] and Theorem 4.5 in [17]. We omit the details.

Theorem 6.6 Let R, and c be defined by (6.4) and (6.2) respectively. Letr € (0, (14¢c)™'R,,).
There exists a constant Cy > 0 such that for every zy € R? and every nonnegative bounded
function u in R which is harmonic with respect to X™ in B (20, 14cr) we have

h(z) < Coh(y), =,y € B(zo,1/2).
Following the well-known arguments, this theorem can be improved to

Theorem 6.7 For any domain D of R% and any compact subset K of D, there exists a
constant Cyo > 0 such that for any function h which is nonnegative in R? and harmonic with
respect to X™ in D, we have

h(l’) S Cloh(y)7 T,y € K.

Acknowledgment: We thank the referee for careful reading of the paper and for helpful
comments.
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