ON POTENTIAL THEORY OF MARKOV PROCESSES WITH JUMP
KERNELS DECAYING AT THE BOUNDARY
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ABSTRACT. Motivated by some recent potential theoretic results on subordinate killed Lévy
processes in open subsets of the Euclidean space, we study processes in an open set D C R¢
defined via Dirichlet forms with jump kernels of the form J?(x,y) = j(|]z — y|)B(z,y) and
critical killing functions. Here j(|z — y|) is the Lévy density of an isotropic stable process (or
more generally, a pure jump isotropic unimodal Lévy process) in R?. The main novelty is that
the term B(z,y) tends to 0 when x or y approach the boundary of D. Under some general
assumptions on B(z,y), we construct the corresponding process and prove that non-negative
harmonic functions of the process satisfy the Harnack inequality and Carleson’s estimate. We
give several examples of boundary terms satisfying those assumptions. The examples depend
on four parameters, 51, 82, 83, B4, roughly governing the decay of the boundary term near the
boundary of D.

In the second part of this paper, we specialize to the case of the half-space D = R? =
{x = (Z,24) : x4 > 0}, the a-stable kernel j(|z — y|) = |z — y|~¢~ and the killing function
k(x) = cxy”, o € (0,2), where ¢ is a positive constant. Our main result in this part is a
boundary Harnack principle which says that, for any p > (a — 1), there are values of the
parameters (1, 82, 83, 4, and the constant ¢ such that non-negative harmonic functions of
the process must decay at the rate 2%, if they vanish near a portion of the boundary. We
further show that there are values of the parameters (1, 82, 83, B4, for which the boundary
Harnack principle fails despite the fact that Carleson’s estimate is valid.
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1. INTRODUCTION

When studying discontinuous Markov processes, one of the common assumptions is that
the jump kernel, which describes the intensity of jumps from one point in the state space to
another, is a function of the distance (or is comparable to a function of the distance) between
these two points. In the context of stable (or even stable-like) processes and Lévy processes in
the Euclidean space such an assumption is quite natural. For example, the jump kernel of the
isotropic a-stable process in R? is given by c|lz — y|~*%, d > 1, a € (0,2). The part process
of this process in an open subset D C R?, the so-called killed a-stable process in D, has the
same jump kernel — the intensity of jumps again depends only on the distance between the
points. By removing the killing part of the killed process one is led to the censored a-stable
process with the state space D C R9. Still, the jump kernel remains the same.

Panki Kim: This work was supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIP) (No. NRF-2015R1A4A1041675) .
Renming Song:Research supported in part by a grant from the Simons Foundation (#429343, Renming
Song).
Zoran Vondracek: Research supported in part by the Croatian Science Foundation under the project 4197.
1



2 PANKI KIM RENMING SONG AND ZORAN VONDRACEK

We note that both the killed stable process and the censored stable process, although living
in an open subset D of RY, are closely related to (and in some sense derived from) the stable
process in R?. On the other hand, subordinate killed Brownian motions in D C R, or more
generally, subordinate killed Lévy processes, are processes which are intrinsically defined in D
and are not a part of some larger processes living in R?. Potential theory of those processes
was recently studied in [13, [I4]. One of the key features of subordinate killed processes is
that their jump kernels depend not only on the distance between the points, but also on the
distance of each point to the boundary dD. This can be easily seen from the fact that the
jump kernel of the subordinate killed process is equal to the integral of the transition density
of the killed process (which depends also on the distance to the boundary) against the Lévy
measure of the subordinator.

To be more precise, let us describe some of the results from [I3], [I4] in the case of stable
processes and stable subordinators. Let D be a C! domain (connected open set) in R?. For
§ € (0,2], let ZP be a killed d-stable process in D and p”(t,x,y) be its transition density.
Further, let (T;) be an independent (of ZP) ~/2-stable subordinator, v € (0,2), and let
V;P := Zf be the subordinate process. Away from the boundary of D, the process Y”
behaves like the a-stable process with v = d/2. On the other hand, the boundary behavior
of the jump kernel JP(x,y) of YP which is studied in [13] [14], exhibits some sort of phase
transition. In case 6 = 2 (then Y'” is a subordinate killed Brownian motion), it holds that

JP(z,y) < <5D—(”T)/\1> <5D—(y>/\1) |z —y| 7. (1.1)

|z —y| |z —y|

Here and below, a =< b means that ¢ < b/a < ¢! for some ¢ € (0,1), a A b := min{a, b},
a Vb :=max{a,b}, and dp(x) denotes the distance between z and the boundary 9D.

In case 6 € (0,2) (then Y? is a subordinate killed d-stable process) the situation is more
complicated and more interesting. It holds that (recall that 2a = d),
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Define B(x,y) := JP(x,y)|z —y|*** so that JP(z,y) = B(x,y)|z —y|~¢"*. Then we can think
of B(z,y) as the boundary term of the jump kernel of Y which depends on dp(x),dp(y) and
|z —y| (as opposed to the term |z — y|~@~ which depends solely on |z —y|). Sharp two-sided
estimates for B(z,y) can be seen from and (L.2).

We note that the process Y is transient with its killing function &Y satisfying the lower
bound ¥ (x) > ¢dp(z)~*, cf. [14, (2.4)]. Note that the killing function is not in the usual
Kato class, i.e., lim; o sup,cp E,; fot /{YD(YSD)ds is not zero.

One of the main goals of [13], [14] was to prove a (scale invariant) boundary Harnack principle
(BHP) with exact decay rate for non-negative functions harmonic with respect to Y in case
D is a C*! domain. For the subordinate killed Brownian motion (§ = 2) it was shown in [13|,
Theorem 1.2] that BHP holds with the decay rate dp(z). In case of the subordinate killed
d-stable process via an independent v /2-stable subordinator (4,7 € (0,2)), the scale invariant
BHP holds in case v € (1,2) with the decay rate §p(z)%?2, cf. [T4, Theorem 7.2]. Surprisingly,
it turns out that, despite the fact that Carleson’s estimate is valid, the (non-scale invariant)
BHP fails when ~ € (0, 1], see [14], Section 9].

The goal of this paper is to study processes in open subsets of R? associated with Dirichlet
forms with jump kernels decaying at the boundary and critical killing functions, and to build
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a general framework which includes the processes studied in [I3] [14] as examples. To be more
precise, let X = (X, P,) be a pure-jump isotropic unimodal Lévy process whose jump kernel

Jj(x,y) = j(|Jz — y|) satisfies
j(r) < r®(r)~', forallr >0, (1.3)

where ® is an increasing function satisfying the following weak scaling condition: There exist
constants 0 < §; < 9, < 1 and aq, as > 0 such that

a1 (R/r)»r < % <ay(R/r)*2, 0<r<R<oo. (1.4)
A prototype of such a process X is the isotropic a-stable process in which case ®(r) = r<.
This particular case already contains all the essential features of our results.

For a given open set D C R, we consider the process Y? on D associated with a pure jump
Dirichlet form whose jump kernel has the form J”(x,y) = B(z,y)j(|z — y|). Here B(z,y) —
the boundary term — depends on dp(x),dp(y) and |z — y|, and is allowed to approach 0 at
the boundary. This is in contrast with previous works (see, for instance, [0 [7]) where B(x,y)
is assumed to be bounded between two positive constants, which can be viewed as a uniform
ellipticity condition for non-local operators. In this sense our paper is the first systematic
attempt to study the potential theory of degenerate non-local operators. Throughout this
paper we will assume that B is symmetric and bounded, namely

(B1) B(z,y) = B(y,z) for all z,y € D.
(B2) There exists a constant Cy > 0 such that B(z,y) < C, for all z,y € D.

Under these two conditions, the jump kernel J” gives rise to a regular Dirichlet form
(FP EP) on L*(D,dz). Thus (see, for instance, [10, Example 1.2.4]) there exists a Hunt
process Y'P associated with (FP,EP). Such a process is defined up to an exceptional set A
We next kill the process Y'? by using a killing function x : D — [0, 00) satisfying

k(x) < Clq) reD, (1.5)

1
o))
for some C; > 0, to obtain the Hunt process Y”*. Once killed, the process is sent to the
cemetery 0. We will use the convention that every function is automatically extended to be
zero at 0. We further impose the following general conditions on the boundary term B(z,y).
These conditions are satisfied by a quite a few classes of examples.

(B3) For every a € (0,1) there exists C35 = C3(a) > 0 such that B(z,y) > C3 whenever
dp(z) Adp(y) > alz —yl.

Condition (B3) ensures that, away from the boundary, the jumping kernel JP(z,y) is
comparable to j(|z — y|). In Subsection we use this condition to remove the exceptional
set N so that the process Y2 can start from every point in D. The next condition is needed
in the analysis of the generator of the process in Subsection [3.2]

(B4) If 05 > 1/2, then there exist § > 26, — 1 and Cy > 0 such that

0
wmm—mxm§@(5%%%@).

(B5) For every € € (0,1) there exists C5 = Cs(e) > 1 with the following property: For all
xo € D and r > 0 with B(xzg, (1 + €)r) C D, we have

Ci'B(xy, 2) < B(xg,2) < CsB(x1,2), for all x1, 25 € B(wg,r), 2 € D\ B(wg, (1+¢€)r).
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Roughly speaking, this condition says that jumping intensity from points close to each other
to a faraway point is comparable. We note that (B3) implies that B(z,y) > 0 for all x,y € D.

Under these conditions we prove two versions of Harnack inequality for non-negative har-
monic functions with respect to Y”*. Recall that a non-negative Borel function f defined on
D is said to be harmonic in an open set V C D with respect to YP* if for every bounded
openset UCc U CV,

f@) =K, [f(Y2")] and E, [f(Y,2")] < oo, for all x € U,
where 7 = 77" i= inf{t > 0: Y, ¢ U} is the first exit time of Y2 from U.

Theorem 1.1 (Harnack inequality). Suppose D C R® is an open set and assume that (B1)-

(B5) and ( . (L.5) hold true.

(a) There exists a constant C > 0 such that for any r € (0,1], B(xo,7) C D and any
non-negative function f in D which is harmonic in B(xg,r) with respect to YP® we
have

flx) < Cfly), for all z,y € B(xg,7/2).
(b) There exists a constant C' > 0 such that for anyy L >0, any r € (0,1], all 1,29 € D
with |1 — xo| < Lr and B(x1,r) U B(xe,r) C D and any non-negative function f in
D which is harmonic in B(z1,r) U B(xa,7) with respect to Y we have

flw) < CO3(1/(2(L + 1))~ L f(x1).

We then proceed towards Carleson’s estimate. Here we need two additional assumptions:
one on the killing function k, the other on the boundary term B. In addition to ([1.5) we
assume the corresponding lower bound: There exists Cg > 0 such that

1
k() > Cy——F——, x€D. 1.6
= S5, m) o)
We note in passing that the killing function of a subordinate killed Brownian motion in a
Lipschitz domain satisfies ((1.5]) and (1.6]), cf. [15, Proposition 3.2]. For the boundary term we
assume

(B6) There exist # > 0 and Cg > 0 such that if z,y,z € D satisfy dp(z) < dp(z) and
ly — 2| < M|y — x| with M > 1, then B(z,y) < CeMPB(z,y).

An open set D C R? is s-fat if there are & € (0,1/2] and R > 0 such that for all # € D
and all r € (0, R], there is a ball B(A,(x),xr) C DN B(x,r). The pair (R, %) is called the

characteristics of the k-fat open set D.

Theorem 1.2 (Carleson estimate). Suppose that D C R is a k-fat open set with charac-
teristics (R,R). Assume that (B1)-(B6) and (1.3)-(1.6) hold true. There exists a constant
C = C(R,R) > 0 such that for every Q € 0D, 0 < r < (RA1)/2, and every non-negative
Borel function f in D which is harmonic in D N B(Q,r) with respect to YP* and vanishes
continuously on 0D N B(Q,r), we have

flz) < Cf(xo) forallz € DN B(Q,1/2), (1.7)
where xo € D N B(Q,r) with dp(xo) > Rr/2.

These results comprise the first part of the paper and are foundations for the second part
in which we study in more detail the boundary behavior of non-negative harmonic functions
in case D =R? = {z = (T,24) : &g > 0}, j(z,y) = |z — y|" and k(z) = cx;® (where ¢
is any positive constant). The main goal is to explore conditions on B which ensure that the
BHP holds true and find the rate of decay of non-negative harmonic functions. Motivated
by the three examples of the boundary term in Section [2| that satisfy conditions (B1)-(B6),
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in the second part we assume that the boundary term B(z,y) satisfies (B1), (B4) and the
following sharp two-sided estimates:

(B7) There exist C; > 1 and S, 82, 83,84 > 0 with 81 > 0 if 83 > 0, and £y > 0 if 84 > 0
such that

C7'B(x,y) < B(z,y) < C:B(x,y),  z,y€RY, (1.8)
where E(xvy> = §51,52,53754 (x,y) is

<$d/\yd/\1)61<xdvyd/\1)ﬁ2 [log <1+($d\/yd)/\|x—y|)r3 [log (1+( [z — >r4.

|z —y| |z —y] Ta A ya | —y| TaVya) Ao —yl

The first three terms in the definition of B (x,y) with the parameters 3, B2 and f3 are moti-

vated by (1.2)), and the last term in the definition of B(z,y) with the parameter (3, is motivated
by [9] (see the paragraph above Lemma [2.2).

We show in Section [2] that the boundary term B(z,y) satisfies (B1)-(B6). Thus B also
satisfies (B2), (B3), (B5) and (B6).

. .. . . d
The following additional assumption on B(z,y) is natural for the state space RY.

(B8) For all z,y € R% a > 0, Blaz,ay) = B(z,y). In case d > 2, for all z,y € R and
ZeRMY Bz +(2,0),y + (%,0)) = B(z,y).

We now describe the BHP we establish in more detail. Let J& (z,y) = |2 — y| = *B(z, y),
z,y € RY, where the boundary term B(z,y) satisfies (B1), (B4), (B7) and (B8). To every

parameter p € ((a —1)4, o+ 1) we associate a constant C(«, p, B) € (0, 00) depending on «,
p and B defined, in case d > 2, as

_ 1 = D= smrh) —s)u, 1), seq) ds | du
terB)= [ iy () e B 9n d)d)du 9)

where ey = (0,1). In case d = 1, C(a, p, B) is defined as

C(a,p,B) = /0 (s” _(1)(1 — Saipil)[)’(l, s) ds.

1 —g)lta

Note that the function p — C(c, p, B) is non-decreasing, lim,—1), C(c, p,B) = 0 and that

limyyag, Co, p, B) = oo (see Lemma [5.4] and Remark [5.5)).
Let

k(z) = C(p, o, B)x;, r € RY, (1.10)

be the killing function. Note that x depends on p, but we omit this dependence from the
notation for simplicity. We denote by YELA the corresponding process killed by x.

We are now ready to state the BHP. We will only give the statement of the result for d > 2.
The statement in the d = 1 case is similar and simpler. For any a,b > 0 and w € R?!, we
define Dg(a,b) :={x = (T,z4) € R?: |7 — w| < a,0 < 24 < b}.

Theorem 1.3. Assume that (B1), (B4), (B7)-(B8) and hold true. Suppose that
p € (( = 1)y, a0+ By) and either (a) B = Po = 5 >0 and 3 = B4 =0, or (b) p < «.
Then there exists C > 0 such that for every r > 0, w € R¥!, any non-negative function f
m Ri which is harmonic in Dg(2r,2r) with respect to YELE and vanishes continuously on

B(w,2r) N ORL, we have

£@) _ 1)

D
Ly Ya

x,y € Dg(r/2,7/2). (1.11)
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Note that the power p in the decay rate comes from the constant C'(«, p, B) in the killing
function. In [3], a BHP is established for censored a-stable processes, o € (1,2), in smooth

domains. The censored process has no killing, B(x,y) = 1, and the explicit decay rate p in
the BHP of [3] is a — 1.

In case 1 = B2 =1, B3 = B4 = 0 and p = 1, this result covers the BHP (for D = R%)
from [I3]. In case § <p <, i = 2p —a and By = B3 = B4 = 0 it covers the BHP from
[14]. The main novelty of Theorem comes from part (a) where we can allow arbitrarily
large (5, hence arbitrarily large p, implying very fast decay rate of harmonic functions. For
fixed f3, this decay rate is a consequence of the constant C(«, p, B) in the killing term k. By
increasing [ we enlarge the possible range for parameter p € ((a — 1);,a + ). Note that
when B(z,y) = 1 (corresponding to the case 51 = 5 = B3 = 54 = 0), the possible range for
the parameter p is ((aw — 1)y, «). This says that the power p in the decay rate of non-negative
harmonic functions of —(—A)*/2 with critical killing can not be higher than a (see also [8]).
This is in sharp contrast with the case of Laplacian with critical killing, where the power p can
be arbitrarily large. Indeed, for f(z) = 2, it clearly holds that Af(z) — p(p — 1)x;,*f(x) =0
for all p € (1,00). The second novelty of Theorem is that in case p < a we can allow
B2 > 0 as well as logarithmic terms in B(x,y).

On the other hand, similarly as in [I4], for certain values of the parameters (31, 35, #3 and
B4, we can show that BHP fails. We say that the non-scale-invariant BHE holds near the
boundary of R% if there is a constant R € (0,1) such that for any r € (0, R], there exists a
constant ¢ = ¢(r) > 1 such that for all @ € OR% and non-negative functions f, g in R% which

are harmonic in R N B(Q, r) with respect to YELE and vanish continuously on ORI N B(Q, r),
we have

/()
f(y)

Theorem 1.4. Assume that (B1), (B4), (B7)-(B8) and (1.10)) hold true. Suppose that
a4+ [y < p<a+ pi. Then the non-scale-invariant boundary Harnack principle is not valid
for YRL#,

g(x) d
ch(y) for all z,y € (R N B(Q,r/2)).

Theorems and imply that, when a + 83 < p < a + f;, under the assumptions
(B1), (B4), (B7)-(B8) and (1.10), the Carleson estimate holds but the BHP fails. This is
quite interesting since it is known that, for diffusions, the Carleson estimate and BHP are
equivalent. See [I] and the references therein.

Now we describe the structure of the paper. We start with a section on examples of the
boundary term and check that they satisfy all of the conditions (B1)-(B8). The examples are
motivated by and are extensions of the boundary terms of the processes studied in [13] [14].
This section is not essential for understanding of the main development later in the paper and
the reader may wish to only glance through it first.

Section [3]is on the interior results and uses only assumptions (B1)-(B5) and (L.3)-(L.5). It
consists of three subsections. In the first one we remove the exceptional set /. The main step
towards this is the identification of the process Y P killed upon exiting a relatively compact
CY1-open subset U of D with a certain process which can start from every point of U. In
Subsection [3.2) we analyze the generator L of the process Y7, cf. (3.6)). The difficulty comes
from the boundary term which destroys the symmetry at the singularity. Assumption (B4)
plays a central role in getting around this difficulty. An important result of this subsection is
Proposition which gives a Dynkin formula for smooth functions of compact support. Note
that our process may not be a Feller process. In Subsection |3.3| we prove Theorem by
following the approach in [2] [16].
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In Section {f we add assumption (B6) and the lower bound on the killing function
k, and prove Theorem [I.2l The proof follows the method already used before in different
contexts. This section concludes the first part of the paper.

In the second part of this paper, we specialize to the case of the half-space D = Ri =
{x = (Z,24) : x4 > 0}, the a-stable kernel j(|z — y|) = |z — y| =% and the killing function
k(x) =cx;”, a € (0,2). We assume that (B1), (B2), (B4), (B7) and (B8) hold true. The
main purpose of Section [5] is to establish estimates related to exit probabilities from small
boxes near the boundary. To accomplish this, we first show that the action of the operator
LB on the function x — 2% is equal to 0. This indicates that if the BHP holds, the correct
decay rate has to be z!. Then we establish the following two-sided estimates:

TU
Em/ YO log Vi dt = a?, zeU, (1.12)
0

where U = {z = (T,zq) € RL : |T] < 5,24 < 3} and Y = (Y',..., V) stands for YRLs,
One direction is relatively easy, while the other requires constructing suitable test functions
and estimating the action of the operator L? on them, cf. Lemma . This turns out to be
a formidable task, and therefore we postpone the proof of this lemma to Section [§ Another
important ingredient in the proof of as well as some other results from Section [5| are
some extensions of Proposition to functions which are neither smooth nor of compact
support. In order not to interrupt the flow of the presentation, we relegate the rigorous proofs
of the extensions to Section @ Estimates are used in a rather straightforward way
to establish the already mentioned exit probability estimates from small boxes, c¢f. Lemma
m. These exit probability estimates together with are the main tools in proving the
BHP in Section [6] Additionally, Section [5] contains the following two-sided estimates when
a<p<a+p;and a+ [y <p:

U
Ez/ (Y2 dt <2917 zeU. (1.13)
0

These will be used in proving the failure of the BHP for the above range of parameters in
Section

Sections [6] and [7] contain proofs of Theorem [I.1] and Theorem respectively. These are
modeled after the corresponding proofs in [I4] and use the box method (first adapted to the
case jump processes in [4]), the Harnack inequality and Carleson’s estimate.

Throughout this paper, the positive constants (51, 82, (3, B4, 0, 01, 02, Oy, B will remain
the same. We will use the following convention: Capital letters C',C;,i = 1,2,... will denote
constants in the statements of results and assumptions. The labeling of these constants
will remain the same. Lower case letters c,¢;,7 = 1,2,... are used to denote the constants
in the proofs and the labeling of these constants starts anew in each proof. The notation
¢ = c¢i(a,bye,...), 1 =0,1,2,... indicates constants depending on a,b,c,.... We will use
“:=” to denote a definition, which is read as “is defined to be”. For any z € R?, r > 0 and
0 < r; <1y, weuse B(z,r) to denote the open ball of radius r centered at « and use A(z, 71, 72)
to denote the annulus {y € R?: r; < |y — 2| < ro}. For a Borel subset V in R, |V| denotes
the Lebesgue measure of V in RY, §;; := dist(U, D) and dy := diam(U). For a function space
H(U) on an open set U in R we let H.(U) := {f € H(U) : f has compact support} and
Hy(U) :={f € H(U) : f is bounded}. We use the shorthand notation log(1+a)” for the more
precise (log(1+ a))”.

For the convenience of the reader we give below the table of important constants and
operators used throughout the paper.
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Notation Description
01, 09 Indices of weak scaling condition of ® in ([1.4)
Bi, B2, B3, Ba Parameters in the definition of E(x, y) in (B7)
C(a,p, B) The constant in the killing function s defined in
LB The extended infinitesimal generator of the process Y defined in ({3.6))
LB The extended infinitesimal generator of the process YRLO defined in (15.7)).

TABLE 1. List of of the important notations

2. EXAMPLES OF THE BOUNDARY TERM

In this section we give examples of the boundary term B(z,y) that satisfy assumptions
(B1)-(B8). Our motivation comes from the boundary terms appearing in (|1.2)).

We start with three elementary lemmas. We recall that a function f: I — R, I C R, is
said to be almost increasing if there exists ¢ > 0 such that f(x) < ¢f(y) whenever z,y € I
and z < y. An almost decreasing function is defined analogously.

Let B1, B2, B3, 84 > 0 so that 51 > 0if B3 > 0, and [y > 0 if 54 > 0. For s,t,u > 0, define

B1 B2 B3 B
sAt sVt (sVit)Au u
t = 1 1 1 1+ — 1 1+ — .
Als, t,u) < u " > ( u " ) og( * s/\t/\u) og( +(s\/t)/\u)

Lemma 2.1. (a) The function u— A(s,t,u) is almost decreasing on (0, 00).
(b) The function s — A(s,t,u) is almost increasing on (0, 00).

Proof. In the proof we will use the following fact (which can be proved by elementary
calculus) several times:

For #>0and vy >0, s+ s’log (1+s7")" is almost increasing on (0, 1]. (2.1)
(a) Note that A is symmetric in s and ¢, hence we may assume that s > ¢. Note that
(log 2)Ps+Ps if s >t>u;
A(s, t,u) = (5)51 log (1 + %)Bg(log 2)P1, if s >u>t
(i)ﬁl (5)’82 log (1—1—%)63 log (1+%)ﬁ4, ifu>s>t.

Thus, by (2.1), we see that u — A(s,t,u) is almost decreasing on (0, o).
(b) Here we distinguish two cases:
Case (i): t > u. Then

A(s,t,u) = {

It follows from (2.1)) that s +— A(s,t,u) is almost increasing.
Case (ii): t < u. Then

(5)" log (1+ %) (log2)", ifs <u<t;
(log 2)Ps+/1, fu<s<toru<t<s.

(§)51 (f_t)ﬁﬁ-/@bl g(1+ ),3310g (1+ ) 47 ifs<t<u
A(s, t,u) = (5)51 (3) log (1 ) Hlog (1+ s) , ift <s<u;
(£)" log (1+ %)™ (log 2)*, ift <u<s.

By ({2.1), the function s — A(s,t,u) is almost increasing on (0,¢] and almost increasing on
[t,u]. It is clearly constant on [u,00). Thus, s +— A(s,t,u) is almost increasing on (0, 00). O
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Let D C R be an open set, and recall that dp(z) denotes the distance between x € D and
the boundary 0D. For simplicity, let

L(z,y) :=log (1 +

@D@)V&ﬂW)AMF-M)
dp(x) Nop(y) Az — |
and

. |z — 9|
K(z,y) =log <1+ (0p(z) Vip(y)) A |x—y|)'

Let 51, B2, B3, 04 > 0 so that 81 > 0 if 3 > 0, and B > 0 if B4 > 0. We define the function
B:D x D — (0,00) by

~ T D B NG . B2
B(z,y) = (W A 1) (W A 1) L(z,y)» K (z,y)* . (2.2)

Observe that lim,, ,, B(z,y) = (log 2)%%5 so for y = x we interpret the right-hand side above
as B(x,z) = (log2)%*5. Note that B(z,y) = A(dp(x),dp(y), |z — y|).
Note that when 8, = 85 = 3 and 3 = 54 = 0, we have

Eﬂuy)::(éB&Q—Al)B(EEEQ—Al)B, (2.3)

|z —y] |z —y|
which is, in case § = 1, comparable to the boundary term in . When f; = §(1 — v/2),
Ba=0and B3 = P4 =0, E(m, y) is comparable to the boundary term in the first line of .
When 51 =46/2, B2 =0, 3 =1 and 5, = 0, B(z,y) is comparable to the boundary term in
the second line of (L.2). If 81 = /2, B = (6/2)(1 —7) (0 <y < 1) and 5 = B4 = 0, then
B(x,y) is comparable to the boundary term in the third line of (T.2).

Finally, we outline an example where 5, = 1. For more details we refer the reader to [9,
Example 7.3] (where different notation is used). Let D = {z € R?: x4 > 0} be the upper
half space in R?, § € (0,2) and ¢ € [§ —1,) N (0,6). The underlying process Z” corresponds
to a Feynman-Kac semigroup of the part process in D of the reflected d-stable process in D
via a multiplicative functional involving parameter q. The process Z” is subordinated by an
independent ~y/2 subordinator, §y = 2, to obtain the process Y2. In the case ¢ = %5(1— (=
(6 — a)), the jump kernel J(z,y) of Y is comparable to |z — y|"*"B(z,y) where in B(z,y)
Wehaveﬁlzﬁgzq, ﬁganndﬁ4:1.

Lemma 2.2. The boundary term B(z,y) satisfies Assumptions (B1)-(B6).

Proof. Assumptions (B1) and (B2) are clear.

(B3) Let a € (0,1) and assume that dp(x) A dp(y) > alr — y|. Then the quantities in the
first two parentheses in B (x,y) are larger than a, and those in L(z,y) and K(z,y) are equal
to log 2. Therefore, B(z,y) > (log2)thrafith2 —: C5(a).

(B4) Suppose 6p(z) Adp(y) > |& — y|. Then clearly B(xz,y) = (log2)%+5 so (log 2)Ps+h —
E(m, y) = 0, and the assumption holds with any # > 0, in particular, we can take 6 = 1.
(B5) Let € € (0,1), zp € D, and r > 0 so that B(xg, (1 +¢)r) C D, and let z1, 29 € B(xg,7),
z € D\ B(xg, (14 ¢)r). It is easy to see that

1+€>4&ﬂ@)§&ﬂm)§<1+T%;>&ﬂ@)g&%@ﬂ,

and similarly 37! zy — 2| < |x; — 2| < 3|z — 2|. Now it is straightforward to obtain that

<5D(x1) N 1) _, <5D(m> No(:) | 1)

|z — 2] |zg — 2|

1
§5D(l’2> S (1 +
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and the analogous estimate with the minimum replaced by the maximum, L(xy, z) < 9L(x9, 2)
and K (z1,2) < 9K (x9,2). Hence B(zy,2) < 9A+P+5+51 B (7, 2).

(B6) Let M > 1 and let x,y, z € D satisty dp(z) < dp(2) and |y — z| < M|y —x|. By Lemma
, there is a constant ¢ = ¢(fy, B2, B3, B4) > 0 such that

B(x,y) = A@0p().0p(y), |z — yl) < cAW@p(2),0p(y), M|z — )
_ c(ép(z) Nop(y) 1)61 <5D<z> vV ip(y) (6p(2) V ap(y)) A (M2 — yy>>53

B2
A 1) log (1 +

M~z —y M=tz —y] op(2) ANdp(y) A (M~z —y|)
MYz —y)) 2
< log (1+ (0p(2) V op(y)) A M|z — y|>>

AP dp(z) Nop(y) B op(2) Vp(y) B2 o (6p(2) Vop(y)) A (lz — y|)\ P

< eMeis( iz — 9| ) z =9 A1) Clog (1+ 50 (2) A on(y) Az —yl) )
1z —yl) )54

(0p(2) V p(y)) Alz —yl)

— cMPHPB(zy) .

x log <1—|—

The second inequality above follows from the fact that, when s > u, t — Z—f\i and t — ﬁ are
increasing on (0, 00). O
Let
5 (0p(x) A dp(y)™ (9p(@) V dp(y))™ )
Be.y) = ( e A1) Ll g K (). (2.4)

The next result shows that B and B are comparable.
Lemma 2.3. For all z,y € D, B(x,y) > B(x,y) > 2~ V2 B(x,y) .

Proof. The first inequality is trivial, so we only prove the second. Without loss of generality,
we assume that dp(z) < dp(y). It is clear that the two sides are equal when dp(z) A dp(y) >
|z —y| or when ép(z) V op(y) < |z —y|. So we assume that dp(z) < |z —y| < 0p(y). Then
dp(y) < dp(z) + |y — x| < 2|z —y|. Thus

P D™ )y o (1) o () (B0l

|z — |t v —y|® [z —y|h | =y

O

Since B is comparable to B, we immediately obtain that B (x,y) also satisfies (B1)-(B3),
(B5) and (B6). If 6p(z) Adp(y) > |x — y|, we have that B(x,y) = (log2)?*% so (B4) also
holds with any 6 > 0. In particular, we can take § = 1.

We now introduce yet another boundary term. Let

. (0p(x) A dn(y))” (Op(x) V on(y))™

B@) = [ 4 (0n () A 0o () Gol0) v gz L oY) K@) (25)

The elementary inequalities % (% A 1) <5< 3A1l a,b>0,imply

15 =
Lemma 2.4. For all z,y € D, 27'B(x,y) < B(x,y) < B(z,y).

Thus B is comparable to B and B. Since Assumptions (B1)-(B3), (B5) and (B6) depend
only on comparability, we conclude that they are also satisfied by the boundary term B(z,y).
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Let z,y € D such that dp(z) Adp(y) > |z —y|. Then L(z,y) = K(z,y) =log2, so
|l‘ — y|51+52 ’x _ y’51+,32

(log 2)" % ~B(x,y) =

Hence (B4) is satisfied with 8 = 5 + f3s.

Note that when §; = By = 83 = 84 = 0, B(z,y), E(az,y) and B(z,y) reduce to 1, so the
trivial case B(z,y) = 1 satisfies all our assumptions.

Now we consider a subordinate killed Lévy process in an arbitrary open subset D C R? and
show that, under some mild assumptions, its boundary term satisfies (B1)-(B6).

Let Z be a subordinate Brownian motion R%, d > 2, via a subordinator whose Laplace expo-
nent ¢ is a complete Bernstein function satisfying the following global weak scaling condition:
There exist a;,as > 0 and 0 < 3 < 9, < 1 such that

ap <§)63 < Z((f)) < ay <§>54 , 0<r<R<oo. (2.6)

Then it has a continuous transition density pZ(t,|r — y|). Let ZP be the subprocess of Z
killed upon leaving D. Then the transition density p#P(t,z,y) of ZP has the form

Z,D(

p?P(s,2,y) = pPP (s, |z — y|) — B, [PZ(S — 15,1 Z7 —yl) : 7h < S} ,

where 75 :=inf{t > 0: Z, ¢ D}.

Let T'= (T})¢>0 be another subordinator, independent of Z, with Laplace exponent ¢ and
Lévy measure v. We assume that 1 is a complete Bernstein function (so that v has complete
monotone density v(z)) satisfying the following global weak scaling condition: There exist
bi1,bo > 0 and 0 < v; < 5 < 1 such that

R gat lﬂ(R) R Y2
— < —=< — < . .
b1<T> _@/}(T)_b2(r> , 0<7”_R<OO (27)
So 1 also has no drift.

Let Y; and X; be the processes defined by Y; := Zﬁ and X; := Zp,, respectively. The jump
kernel JP(z,y) of Y and the jump kernel J(|z — y|) of X are given respectively by

JP () = / P (s, 2, y)w(s)ds and J(|x — y]) = / (s, Jo — yl)w(s)ds

It is clear that JP(z,y) < J(|x — y|). By [12, Theorem 3.4], there exists ¢ > 1 such that
~1Wop)(r—y[™) (Yo p)(lz —y[™)

|z — y|¢ |z — y|d

Let B(z,y) = JP(x,y)/j(Jx — y|) for x # y and B(z,z) = 1. Then B(z,y) < 1.
We first check that B satisfies (B4). Assume that ép(y) > dp(z) > |z — y|. Then

<J(e -y <e L aty (28)

§(z —yl) - JP(x,y) = / T 07 Je — yl) — 9P (s ) w(s)ds

= / E, [pz(s — 15|22 —y|) 1 7h < s} v(s)ds = Ex/ (s = 15,122 — y|)v(s)ds
0 D 7_Z D

D

=E,

S—
3

p? (v, |2z — yv(v+15)ds < Ez/ p” (v, Z,7 — yv(v)ds =E, [J(|ZT§ — y|)} .
0

[ =y £ (0 (2) A b (1) (0p(2) V 3p(p) — (0(e) A dp ()7
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Since |Z,z — y| > dp(y) and j is monotone, we have j(|z —y|) — JP(z,y) < j(6p(y)). Hence

by .0), .7 and 23),

I ]
B(z,z) — B(z,y) =1—B( ,Z/)Sj(|x—y|)

(!x—y!)d (¢o@)Fn(y) ) _ (|x—yl)d”“53

<c — <c . (2.9)
op(y) /) Wow)(z—yl™?) dp(y)

Thus (B4) holds with 6 = d+ 2,63 > 1. If D is a bounded k-fat open set, then it follows from
[T4, Propositions 4.5 and 5.3, and the proof of Theorem 5.5] that B(z, y) satisfies assumptions
(B1)-(B3), (B5) and (B6) as well.

If Z is instead a Brownian motion in R? with d > 3, then by following the same argument
one can show that the corresponding boundary term B(x, y) satisfies (B4) with 0 = d+2~,. If
D is either a bounded C''! domain, or a domain consisting of all the points above the graph of
a bounded globally C'! function, or D is a C'! domain with compact complement, it follows
from [13] that the corresponding boundary term B(z,y) satisfies assumptions (B1)-(B3),
(B5) and (B6) as well.

In the remaining part of this section we assume that D =R?%, Z = Z () is a §-stable process
in R? and 7} is an independent (y/2)-stable subordinator where d € (0,2] and v € (0,2). Let

d
o = 6v/2 and denote by J@®L (2, y) the jump kernel of ¥, := Z:(Ff)’R+ It follows from (|1.1]) and
(1.2) that the boundary term B(z,y) = J(z,y)/j(|x —y|) satisfies the assumption (B7) with

B4 = 0. Let p(‘s)’Ri (t,x,5) be the transition density of Z©) RY. By using the scaling property
in the third equality and the change of variables s = a’t in the fourth equality below, we get

d

J(a)’Ri(axaay) = 0(7)/ p((s)’&(aé(a_és),ax,ay)s_l_%ds
0
=) [ O s s s
0

= 8e(a) [P ) = a0 ),
0

This proves that B(x,y) is homogeneous. The second part of (B8) follows from translation
invariance property of the transition density: p® &% (¢, 2 4 (2,0),y + (2,0)) = pO &L (¢, 2, y)
for all z,y € RY and all 2 € R4

3. INTERIOR RESULTS

et D C R? be an open set, D # R% From now on we always assume that (B1)-(B3)
(1.3)—(1.5) hold. Recall that dp(z) := dist(z,0D) and that we have defined the kernel
z,y) as JP(z,y) = B(x,y)j(|r — y|). Define

/ ] (wle) = ) w(e) = ) 77 ) dy

By Fatou’s lemma, (C°(D), EP) is closable in L?(D,dz). Let F be the closure of C>°(D)
under &P := EP + (-, ) r2(p,dz)- Then (FP,EP) is a regular Dirichlet form on L?(D, dx).

Recall that k : D — [0, o) is a Borel function satisfying (L.5]), namely x(z) < C1®(6p(z)) 7,
x € D, for some C > 0. This implies that x is locally bounded in D. Set

L
and
JD(

EPR(u,v) = EP(u,v) +/ u(z)v(z)k(z) de .

D
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Since k is locally bounded, the measure x(z)dz is a positive Radon measure charging no set of
zero capacity. Let FPF := FPNL2(D, k(x)dr), where FP is the family of all quasi-continuous
functions on FP. By [10, Theorems 6.1.1 and 6.1.2], (FP*, EP*) is a regular Dirichlet form on
L2(D,dz) having C°(D) as a special standard core. Let (Y;”" P,), t > 0, z € D\ N, be the
associated Hunt process with lifetime ¢, where N is an exceptional set. We add a cemetery
point @ to the state space D and define Y;”"" = 9 for t > ¢. We will write Dy = D U {d}.

For an open set U C U C D, let YP*U be the process Y”* killed upon exiting U, that
is, the part of the process Y'?* in U. The Dirichlet form of Y2V is equal to (F;", EP),
where F" = {u € FP*: u =0 q.e. on D\ U}. For u,v € F",

EP* (u,v) / / ) (v(z) —v(y)JP (z,y) dydx+/ w(x)u(y)ky(z)de, (3.1)

U
where

ku(z) = /D\U JP(x,y)dy +k(z), €U, (3.2)

Moreover, by [5, Theorem 3.3.9], since C°(D) is a special standard core of (FP* EP®) the
set {u € C°(D) : supp(u) C U} = C=*(U) is a core of (F" EP).

3.1. Regularization of the process. In this subsection we show that one can remove the
exceptional set N and start the process Y”* from every point € D. For this purpose, we
will use the process Z on R?, with jump kernel J., defined below, as a tool. The process Z
can start from every point in R?.

Let U be a relatively compact C1! open subset of D. Note that for z,y € U, dp(x) A
dp(y) > dist(U,0D), so with a := dist(U, 9D)/diam(U) we have that dp(z) Adp(y) > alx—y|.
Therefore, it follows from (B2) and (B3) that there exists a constant ¢; = ¢1(U) > 1 such
that ¢! < B(x,y) < cfor all z,y € U. Together with this implies that there exist co > 0
and ¢; > 0 such that

Co C3

|z =yl (|z — yl) |z — y|*®(lz —yl)

For v > 0 define a kernel J,(z,y) on R x R? by J (z,y) = JP(z,y) for z,y € U, and
Jy(x,y) = vj(|lz — y|) otherwise. By(1.3) and (3.3)), there exist ¢4 > 0 and ¢5 > 0 such that

Cy Cs
|z = y|9®(|z — yl) |z —y|"®(jz —yl)
It is now straightforward to check that all conditions of [7, Theorem 1.2] (as well as the
geometric condition of the paper) are satisfied. For u € L*(R?, dx), define

= E/Rd /Rd(u(x) —u(y))*J,(x,y) dx dy and D(C) := {u € LA(RY) : C(u,u) < oo} .

Note that C>°(R?) is a special standard core of D(C).
Let

< JP(z,y) < r,yeU. (3.3)

< Jy(z,y) < z,y € RY.

- t
q(t,z,y) == d(t) "2 A ,
(h,y) = 20N o g =)

It follows from [7] that there exists a conservative Feller and strongly Feller process Z asso-
ciated with (D(C),C) that can start from every point in R?. Moreover, the process Z has
a continuous transition density function p(t,z,y) on (0,00) x R? x R? (with respect to the
Lebesgue measure) that satisfies the following estimate: There exists ¢g > 1 such that

t >0, x,yERd.

cglqt,z,y) < plt,x,y) < csqlt,z,y), t>0, v,y € R,
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Denote the part of the process Z killed upon exiting U by ZY. The Dirichlet form of ZY is
(Dy(C),C), where for u,v € Dy(C),

Cwe) = 5 [ [ @) =)o@ o)y + [ @i d

U
1
= 5 [ [ o) = ue) o) ~ o)) dyda + | aleo(ored(a) da
vJu U

with

)= [ = [ -y, sev,

RA\U RAN\U

and Dy (C) = {u € D(C) : u=0q.e. on R\ U}. Again, by [5, Theorem 3.3.9], C>*(U) is a
core of (Dy(C),C).

Recall 0y = dist(U, D) and dy = diam(U). For all z,y € U we have that dp(x) Adp(y) >
(8y/dy )| — yl, hence by (B3) we have B(z,y) > ¢; (where ¢; = C3(27 1 A (6p/dy))) implying
together with (B2) that

crj(lz —yl) < J(z,y) = Bz, y)j(lz —yl) < Coj(lz —yl), @yeU. (3.4)
Next, let V' be the 0y /2-neighborhood of U, that is V := {z € D : dist(z,U) < éy/2}. Then
i) = [ Padys [ Iy,
D\V V\U

Similarly as above we conclude that cgj(|x—y|) < JP(z,y) < Coj(jx—y]|) for all z,y € V with
cs = C3((0p/2)/(dy + 61 /2)) > 0. Moreover, sup, fD\V JP(z,y)dy =: cg < oo (this can be
shown by splitting the integral into two parts —over (D\ V)N B(0, Ry) and (D\V)NB(0, Ry)°
for appropriate Ry) and ||k || =: cio < 0o. Therefore

Cg/ j(]x—y])dygﬁy(m)§09+02/ J(le —yl)dy 4+ c1o, z€U.
VAU V\U
Since

inf / il =yl dy > |V \ Ulj(diam(V)) = eny > 0.
V\U

zeU

we conclude that

Further, since

it =2 ([, de=ass [ e=yhar) . wev

and sup, fRd\Vj(\x —y|)dy =: c13 < 00, we see that there is a constant ¢4 > 0 such
| it -whdy <@ <en | ia-ady, e,
V\U V\U

It follows that ¢y rp(z) < Yy ké(z) < cucg'ky(x) for all x € U with positive constants
g, C12, 14 not depending on v. Now we choose v > 0 so small that 7cl4c§1 < 1. With this
choice we get that xZ(z) < ky(x) for all z € U. In particular, with c¢i5 := ¢}, we see that

cisko () < ki () < Kp(z), reU.
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It follows that for u € C*(U),

EPPuu) = EP"(u, u)—l—/u(:c)2dx

= // V2P (2, y dydx—I—/Uu dx+/Uu(x)2dx
= 5/(]/U(u(a:)—u( V2T, (2, y dydx—i—/Uu dx+/l]u(x)2d:v
~ Cluu) + /U w(z)2dz = Cy (u, ).

Since C2°(U) is a core of both (F}/"",EP*) and (C,Dy(C)), we conclude that F}"* = Dy (C).

We now define % : U — R by %(z) := sy(x) — k& (x), z € U. By the choice of v we have
that % > 0. On the other hand, since x is bounded in U and U is !, it follows from
that there is a constant c¢;g > 0 such that

R S moa) = [ P dytnte) < Gt

Let pu(dx) = K(x) dz be a measure on U. For t > 0 and a > 0 define

NUH(t) := sup// q(s,x,z)u(dz)ds.
z€R4 z€U:0y (2)>a®P—

By the definition of § and (3.5) one can check that sup,_, NV#(t) < oo and limy_,o Ny *(t) = 0
for every relatively Compact open set V. C U, that is, 4 € K;(U) in the notation of [8|
Definition 2.12].

Let A, := [y ®(Z])ds. Then (A;);>o is a positive continuous additive functional of ZY
in the strict sense (i.e. without an exceptional set) with Revuz measure k(x)dzx. For any
non-negative Borel function f on U let

TVR f(2) = Bylexp(—A) f(ZY)], t>0,z€U,

be the Feynman-Kac semigroup of ZY associated with %(z)dz. By [8, Propostion 2.14], the
Hunt process ZY% on U corresponding to the transition semigroup (TtU’“)tZO has a transition
density ¢V (t,z,y) (with respect to the Lebesgue measure) such that ¢V (¢, z,y) < c17q(t, z,y)
for t < 1. Further, (t,y) — ¢Y(t,z,y) is continuous for each = € U.

According to [I0, Theorem 6.1.2], the Dirichlet form CU* corresponding to T" is regular
and is given by

CY%(u,v) / / N(w(z) —v(y)J? (z,y)dydx + / u(z)v(x)ky(x) dx

U

zeU. (3.5)

with the domain Df; = Dy (C)NLA(U, k(x)dx) . Since (D, CYF) is regular, the set DENC,(U) =
Dy(C) N C(U) is its core. By comparing with (3.1)) we see that

EP# (u,v) = CYF(u,v), u,v e CX(U).

Now we have to argue that the Dirichlet spaces (F;,", EP*) and (Dj,CY") are equal. We
know that C>°(U) is a core for EP*. One can easily check that this should be also true
for CY%. Further, C>(U) C C.(U) N {u € L*(U,dz) : CY(u,u) < oo} (which is a core).
Clearly, C°(U) is dense in C.(U) with uniform norm. It is easy to see that C'2°(U) is dense
in Co(U)N{u € LA(U,dz) : CY(u,u) < co} with C"" norm. Thus the process ZUF coincides
with Y2#®U, We summarize the above discussion in the following lemma.
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Lemma 3.1. The process YP%U can be refined to start from every point in U. Moreover, it
1s strongly Feller.

Proposition 3.2. The process Y can be refined to start from every point in D.

Proof. Let (U,),>1 be a sequence of bounded smooth open sets such that U,, C U, C Uns1
and U,>1U,, = D. For each n > 1, let Yy = yPrUn and let ¢ be the lifetime of Y™
The Dirichlet form of Y™ is (F/)", £P*"), where F}" = {u € FP*: uw =0 q.e. on D\ U,}.
It follows from Lemma that each process Y can start from every point in U,,. These
processes are consistent in the sense that Y;(”H) = Yt(n) for t € [0,¢™). We define a new
process Y by Y, = Y,V for ¢ € [0,¢M), and for each n > 1, Y, = Y™ for t € [¢n=1) ¢,
The process Y can start from every point in D. It is easy to check that the Dirichlet form of
Y is (FP# £P%). Thus we can assume the process ;" can start from every point in D. O

3.2. Analysis of the generator. In this subsection we assume that, in addition to (B1)-
(B3), (B4) also holds. Let

C?*(D;RY = {f: D — R : there exists u € C*(R?) such that u = f on D}

be the space of functions on D that are restrictions of C?(R?) functions. Clearly, if f €
C?(D;R%) then f € C}(D)N L*(D).
We introduce the operator

LEf(z) = puv. /D () — F(@) TP (@, y) dy — r(2) () (3.6)
= lim ol (f(y) = f(2))IP(x,y) dy — K(2)f(x), z€D,

defined for all functions f : D — R for which the principal value integral makes sense. We
will show that this is the case when f € C?(D;R?). Let us start with the following auxiliary
result.

Lemma 3.3. There exists a constant Cy > 0 such that for any bounded Lipschitz function
with Lipschitz constant L, we have for all x € D and r € (0,dp(z)],

/ [f(y) = F@)](ly — 2))IB(x, 2) = Bz, y)| dy < Co([|fllc +rL)2(r)"".  (3.7)

Proof. Since the proof for the case d; < 1/2 is simpler, we give the proof for the case do > 1/2.
Note that

/|f ) 4(ly — =)z, 2) — Bz, )| dy
/D Ly slilly =Bt 2) Bl dy

4G £ / iy —al)dy = I+ Iy,

D’|y7x|27‘/2
where we used (B2) in the inequality. It follows from dp(x) > r that, if |y — x| < /2, then
dp(y) > r/2 and thus dp(y) A dp(x) > r/2 > |y — x|. Thus by (B4), (1.3)) and (1.4)),

L < aCiL2 / ly — o[y — 2D (ly — 2])~ dy
ly—z|<r/2

o —9 1 "/ 59‘13(7’/2)
caCy L2%r <I>(r/2)/0 st

IN
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2 252 7‘/2
< a20204L29r_9u/ §97202 gs < csLr®(r)~t.
0

®(r/2)
Similarly, using (1.3)) and (1.4), Ir < ¢4 fl]oo fTO/OQ t4=15(t) dt < cs)| fllo®(r)~t . Combining the
estimates for I; and [, we get the statement of the lemma. O

Proposition 3.4.  (a) Let f € C?(D;R?Y). Then LBf is well defined and for all x € D
and r > 0,

L8f(a) = Bla.o) [ () = ue) = Vulo)Lymsien (0 = )il i)y
#B(ra) [ (ute) — )i — oy

+/D (u(y) — u(@))j(lz = y))(Bly, ) — Bz, x))dy — r(z)u(z), (3-8)

where u € C2(RY) is any function such that uw = f on D.
(b) There exzists a constant Cyo > 0 such that for any f € C*(D;R%), any x € D and any
r € (0,0p(x)] we have

ILEf(@)] < Cro (rP10%ulloo + 7l Vulloo + ulle) ()7 (3.9)

where u € C?(R?) is any function such that w = f on D.
(c) Let f € C*(D). Then for all 0 < ey < dist(0D, supp(f))/2,

IZ% flloe < Cro (6110 flloo + 0lIV flloo + 1 flloc) ®(e0) ™" -

Proof. (a) Let u € C?(R?) be such that u = f on D. Fix z € D and let ¢ < r A (0p(x)/2).
Then

L) = @il B vy

=B [ (wl) i sy
) il = o (Bry) ~ Bl )y

=B(z,x u(y) —u(x))j(le —y|))dy + B(x, u(xr) —u (| — y|)d
o) [ ) —unie =y B [ ()~ )il sy
) il = o (Blry) ~ Bl )y

=Be) [ (o) o) = V)L (= )i )

w8 ) [ ) ()il vy

+ [ ()~ ) ) (B) ~ Bl )y

In the the first integral above, we have used (B1). By letting ¢ — 0 and using Lemma
(with r there being dp(z)) for the third integral, we obtain (3.8)).
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(b) Let u € C*(R?) be any function such that w = f on D. Fix x € D and let r € (0,dp(x)].
Then by part (a),

LPf(x) = B(z, ) / (u(y) — u(z) — Vu(@)Ly—p<r - (v — 2)) §(ly — z|) dy

R4

#Ba) [ (wl) )iy =) dy

+ /D(f(y) — f(@))i(ly = z)(Bly, x) — Bz, x)) dy — k() f(x)
= I+I1I+1IT+1V.
For I, we use
u(y) — ule) = V(@) Lyomicr - (4 — 2)] < [8ullocly — 2Ly air + 2l oclyyeps,
to get

I < B(z, ) /Rd (0% ullscly = 2*1y—ai<r + 2ullooLiy-zi=r) 5 (ly — 1) dy

< B(x,z)c(d) (||82u||oo/ t 2o () dt +/ 2|t D (1)t dt>
0 T
< B(z, 2)c(d)([|0%ullor?® + 2||ufl o) (r) .
For I we use that dp(z) > r to get

1T < 2B, 2)||ull / i(ly — o) dy
B(z,6p(z))

< c(d)B(z, 2)||ull«®(0p(2)) ™" < c(d)B(z, z)e(d)|[ull®(r) .
117 is estimated in Lemma , while for IV we use to get
IV < G| flloe®(0p ()" < Cill flloc®(r) "
(c) Take x € D such that dp(z) < €9. Then B(x,¢y) N D C D \ supp(f). Since f(z) =0 and
also f(y) = 0 for y € DN B(xz,¢), we have that

LEf(x)] < / [F )P (y, ) dy < ||f||oo/ J(ly = =2l) dy < c(d)|| flloc®e0) ™" -

ly—z[=>e€o ly—z[=e€o

On the other hand, if 6p(z) > €y, then we can take r = ¢y and a function u € C?(D;R?) such
that u = f on D with [[uflec = [[fllsc; [Vttlloe = [Vllse and [[0%ulee = [[0*ullo in (3.9) to get

ILEf(@)] < Cuo (65110 flloe + €l V flloo + [1fllsc) Ple0) ™"
]

We mention in passing that the right-hand sides of (3.7 and (3.9)) tend to co as r — 0. We
will apply them with fixed r» > 0.

Corollary 3.5. Let (A, D(A)) be the L*-generator of the semigroup (T})¢>o corresponding to
EPr . Then C2(D;RY) C D(A) and A|cz(p.ray = LP|c2(pra).-

Proof. Since x is locally bounded, it suffices to show that, for u € C?(D;R?) and v € C?(D),

/D /D (uly) — u(@))(v(y) — (@) TP (@, y)(z,y) dy dz = 2 /D (LPu() — w(x)u(x))o(z) d.
(3.10)
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Note that, by the Lebesgue dominated convergence theorem and the symmetry of B,
[ [ ) = u@)et) = o@)ille - DB, )dyds
pJD
—tm [/ (uly) — u()) (o(y) = v(2))j (1~ ) Bz, y)dyda
D JyeD:|z—y|>e

el0

ot [ ] ()~ i DBy (@)

el0
~ 21 / " / ) = @)~ ) vy () (3.11)

Let ¢ < g¢ := dist(0D, supp(v))/2. Then by the estimates of I, I1 and I1] in the proof of
Proposition (b), we have that

sup / (uly) — u(@))j(|z — y))B(z, y)dy
xesupp(v),e<eo |J yeD:|z—y|>e

< c1 (0]10%ulloo + €0l Voo + [lulloc) P(e0) ™ < 00

Thus we can use the Lebesgue dominated convergence theorem to conclude that (3.10)) holds.
O

Corollary says that L is the extended generator of the semigroup (7});>0 corresponding
to EP*F.

Consider now the process YU — the process Y " killed upon exiting U C U C D. Denote
LBu := LPYy — kY(-)u, where

LB’Uu(z) = p.v. / (u(y) — u(2))JP (y, 2) dy — x(2)u(z), uelU,
U

and
kY (2) = / JP(z,y)dy, zeU.
D\U

We can write

Lbu() = pv. [ (uly) = u@) I (w2 dy ~ mp(ulz), e,
U

where vy = k + kY. If U is a Ct1-open set, then kY (z) < Clm' Since x is bounded in
U we have that ky(z) < CQW. Thus L5 has the same form in U as L® in D. Hence, the
analog of Proposition [3.4] is valid. In particular, if u € C%(U), then ||LBu| . < oo.

Further, if u € C?(U) C C%(D), then for z € U,

B =t [ () )7, 2y~ ()
IggIH_K(M@—u@MW@%M%ﬂggMU_kad—UQ»W@&My—M@M@

= LBPYu(z) — kY (2)u(2) — k(2)u(z) = LEu(z).

Recall that our basic process is YP* = (Y;D’”,IP’:B,:U € D). The part of this process in
UcUcDisYPwU = (Y,P"Y P,z elU).
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Lemma 3.6. Suppose that U is a C%'-open set and U C U C D. For any u € C*(U) and
any x € U,

t
M= u(VP ) < uVP ) - [ LBuy2et) ds (3.12)
0

is a Py-martingale with respect to the filtration of YP"U.

Proof. We follow the proof of [I1, Lemma 2.2]. If (A, D(A)) denotes the L?-generator of the
semigroup 7; of YU then using an argument similar to that used in Proposition and
Corollary [3.5| we get that C2(U) C D(A) and Aczqr) = (LE)|c2(r). Then in the same way as
in the proof of [I1, Lemma 2.2] we get that

t
Tiu(z) — u(z) = / T, L5u(z) ds ae v eU.
0

Moreover, by the display before this lemma we know that L5u is bounded in U. Also, by
Lemmal[3.1} Y?*U is strongly Feller. Now we can follow word-by-word the second part of the
proof of [I1, Lemma 2.2] to get the desired conclusion. a

Recall that, for an open set U C D, 7y = 7" = inf{t > 0: ;""" ¢ U}.
Note that LEu(Y,>"V) = LPu(Y,"")licrne = LPu(Y"")licr, and that u(Y;”™") =

S

u(Y;”")1y<r,. Thus we can rewrite as
M = a2 e, w02~ [ B, (3.13)
0
Proposition 3.7. Foruw € C?(D) and xz € D,
M =) )~ [ 1P
0

1s a P,-martingale.

Proof. Let (U,) be an increasing sequence of relatively compact C'! open subsets of D such
that € Uy, supp(u) C Uy and U, 1+ D. Let M™ denote the martingale in (3.13) with
U =U,, that is,

t/\’TUn
M = ¥ i, =) = [ Ly,
0
By using that both u and LPu are bounded (by Proposition [3.4] (c)), we conclude that M is

a P,-martingale. a

Let u € CZ(D). Consider y € D and r > 0 such that B(y,2r) C D. Let 7 = 7. Since
u and LPu are bounded, applying the optional stopping theorem to M we get

B2 - ) =&, [ [ £outveas]

Note that for s < 7 it holds that dp(V.P"*) > r Py-a.s. Now Proposition implies that
|LBu(YP)| < C®(r)~! for s < 7. Therefore,

E,[u(Y2r ] —u(y) <C®(r)~'t, forall r € (0,1] and B(y,2r) C D. (3.14)

tATB(y,r)
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3.3. Harnack’s inequality. In this subsection we assume that (B1)-(B5) and (L.3)-(L.5)
hold true.

For any = € D and Borel subset A of Dy, we define N(x, A) = [, JP(z,y)dy+r(2)14(9).
Then it is known that (N,t) is a Lévy system for YP* (cf. [I0, Theorem 5.3.1] and the
argument in [0, p.40]), that is, for any non-negative Borel function f on D X Dy vanishing on
the diagonal and any stopping time 7T,

T
&EZﬂﬁVJ?ﬂ—E(/ f@?ﬂwmnWAw“) reb.
0o JDj

s<T

The following lemma is a simple consequence of Assumptions (B3) and (B5).

Lemma 3.8. (a) For alle € (0,1), xg € D and r > 0 such that B(zo, (1 +¢)r) C D, we
have
Cs(e/2)j(le —yl) < J"(w,y), =,y € Blxo,7). (3.15)
(b) For any € € (0,1], there exists a constant = Cy1(¢) > 1 such that for all zog € D and
all ¥ > 0 satisfying B(zo, (1 +¢)r) C D, it holds that

JP(z,21) < CnJP(2,29), 1,79 € B(wo,7), 2 € D\ B(wo,(1+¢)r). (3.16)

Proof. (a) For z,y € B(xo,7), we have ép(z) A dp(y) > er and |r — y| < 2r. Hence,
dp(x) A dp(y) > (e0/2)lx —y|. Thus by (B3), J”(x,y) = B(z,y)j(lx — y|) > Csj(lx — yl),
where C5 = C3(¢/2).

(b) By using (B5) we have JP(z,11) = B(z,11)j(2,71) < C5B(z, 22)j(2, 21). Since |, — 2| <
|zo — 2| + |21 — x| < | — 2|+ 2r < |wg — 2|+ (2/)|2x2 — 2| = (1 + 2¢)|x2 — 2|, it follows from
that j(]z — x1|) < ¢15(]z — x2|). This proves the estimate. O

Lemma 3.9. There exists a constant Cio > 0 such that for all x € D and r > 0 with
B(z,2r) C D, it holds that

]P)I(TB(x,T') <tA C) < 012(1)(7“)_125.

Proof. Let x € D and r > 0 be such that B(x,2r) C D. Let f : R? — [—1,0] be a C? function
such that f(z) = —1for |z| < 1/2, f(y) =0 for |z| > 1 and that ||V f|lc + [|0?f|lec =: ¢1 < 00.

Define
r= 1 (U0

Then f, € C*(D), f.(y) = —1for y € B(x,r/2) and f,(y) =0 for y € D\ B(z,r). Moreover,
IV filloo < e1/r, 10*fr]lc < c1/r? Using these and applying Proposition (c), we get

ILE filloe < c2®@(r)~".
Since f, € C%(D), by Proposition [3.7| that

ﬁmmwﬁwfﬂ—/L%ﬂ?ﬂ%

0

is a P,-martingale for every y € D. Thus for any y € B(x,r/2) and any stopping time S with
Ey[s] < o,

P,(|YE" — x| > 7,8 <) =E,[1 + f.(YO), [YE" — 2| >r, S <)

S
<E[1+ f,(Ys™)] = —f(y) + By [ (Ys™)] = Ey [/O LEf,(Y,P") dS}

< ILEfr [l By [S] < c2®(r) 'R, [S]. (3.17)
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The first inequality in the second line follows because 1 + f, > 0. Note that here fT(YSD’“)
makes sense regardless whether S < ¢ or not (by definition f,.(0) = 0).

Now take S = 7Tp(,) At and notice that {|Yf;(“T)M x| > r} = {Tp@y < t}. Indeed,

v.? ol (ac .t — &| = 7 implies that Tp(,) < ¢. Consequently we have that

{| TB(W)/\t —z| > T TRy N T < C} = {TB(z,r) < tA C} )
Now it follows form (B.17) that for y € B(z,r) we have
Py (TB(W) < t/\g) = (|Y£<: AL —x| >, TB(zr) N\t < C) < cz(I)(r)_l]Ey[TB(x’r)/\t] < Cz@(r)_lt
O

Lemma 3.10. For all x € D and all v > 0 such that B(x,2r) C D, it holds that Py(Tp(zr) =
C < t) < Olgq)(T)ilt where 013 = (.

Proof. By the Lévy system formula,

t
Pw(TB(Z‘,T) = C < t ]E Z 1B (z,r X{d} Y'SIZH’ YD H) = ]Em/ 1B(m,r)(}/;D,R)ﬁ(nD7n>dS-
0

s<t
Since k(y) < Cy/®(r) for y € B(z,r) by (1.5), we immediately get Py(7p@u,) = ¢ < t) <
01(1)(7“)_1 ([

Recall that A(z,71,72) denotes the annulus {y € R : ry < |y — x| < ry}.

Proposition 3.11. (a) There exists a constant Cy4 > 0 depending on ay, as,d1, 02 such that
for alltg € D and r > 0 with B(xq,r) C D, it holds that

E(LTB(QZ(),T) > 014(13(7’) , T E B<x07 7“/3)

(b) For every e > 0, there exists Ci5 > 0 depending on €, ay, as, 01, 62, C3, C5 such that for
all xg € D and all v > 0 satisfying B(zo, (1 +¢)r) C D, it holds that

ErTB(zer) < Ci15®(r), x € B(wo,7).
Proof. (a) Let € D and r > 0 be such that B(z,r) C D. It follows from Lemmas 3.10

and ( . that

Therefore,

Px(TB(gc,r/?)) < t) S Cl(I)(T')_lt .

EoTB@r/3) 2 tPa(Th(rz) > ) 2 H(1 —cl(I)( )1t
for all ¢ > 0. Choose t = ®(r)/(2¢1), so that 1 — ¢;®(r)~'t = 1/2. Then

1
E.TB(zr/3) > 5@(7’)/(201) = (7).

Now let B(zg,7) C D and x € B(zo,7/3). Then B(z,r/2) C B(xg,r) C D. By what was
proven above,

ExTB(mo,r) Z EZ‘TB(:E,T/G) Z 02(13(7“/2) Z 03(I>(7’) .
(b) Let g9 :==€/3, 29 € D and r > 0 so that B(xg, (1+3eq)r) C D. For x € B(xg, ), by using
Lemma (3.8 (b) in the third line,

1 > P, (YD“ € A(zo, (1 + o), (1 + 2e0)r))

TB(

TB(:CO 7‘) D D
- Eg;/ / 7w, Y7) duds
0 A(zo,(14e0)r,(14+2e0)T)
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> CﬂlclEITB(%m)/ JP (u, x0) du. (3.18)
A(zo,(1+e0)r,(142¢0)7)

For u € A(xzo,r, (1 + 2€0)7), we have by Lemma (a) that JP(u,z0) > C11j(Ju — x0)).

Therefore, by (1.3] . and .

JP(u,z) du > Cn/ J(lu = wo|) du
(CEO (].-i-Eo) (1+2£0) )

(142e0) 1 1
> ¢y / At >
(1+e0)r tq)(t) (I)(T)
By inserting this in (3.18)) we obtain 1 > ¢;E,7p(4y,)/P(r), which is the required inequality.
O

/14(xo,(1+50)7“7(1+250)7”)

Lemma 3.12. There exists Cig > 0 such that for all x € D and r > 0 with B(x,5r) C D,
and any Borel A C B(x,r),

AL
| B(x,r)|’
Proof. Without loss of generality assume that P, (T4 < Tpsn) < 1/4. Set T = Tp(zan)-
For y € B(x,2r) we have that B(y,3r) C D. Hence by Lemmas and [3.10 for every
y € B(z,2r), Py(r < t) < Py(rpys < t) < a®(r)~'t. Choose ty = ®(r)/(4e1), so that
P, (7 < to) < 1/4. Further, if 2 € B(x,3r) and w € A C B(x,r), then |u — z| < 4r. Since j is
decreasing, j(|u— z|) > j(4r). Moreover, ép(u) Adp(z) > r > (1/4)|u — z|, implying by (B3)
that B(u, z) > C3(1/4) = Cs. Thus,

Py(Ta<7) 2 E, Z Livpesy, vPrea

s<TANTAtg

Py(Ta < TB@3r)) = Cie y € B(x,2r).

TANTAtg
- ]Ey/ / J(lu— YSD’”|)B(U, YSD”‘) duds > Csj(4r)|A|E,[Ta AT Ato],
0 A

where in the second line we used properties of the Lévy system. Next,

t P
Ey[Ta AT Nto) 2> toPy(Ta > 7 > tg) > to[l = Py(Ta < 7) = Py(1 < to)] > 50 = SE:T>
1
The last two displays give that
_ O(r) 1 |A|
P, (T > (C3j(4r)|A > AlD(r) > c3——"—.
y( A< T) = 3j( 71)‘ ’ 8¢, — 027,[1(1)(70)‘ | (7“) = CS|B($,7’)|

Lemma 3.13. There exist C17 > 0 and Cg > 0 with the property that if r > 0, x € D are such
that B(z,2r) C D, and H is a bounded non-negative function with support in D\ B(x,2r),
then for every z € B(z,r),

TB(

C’171Ez [TB(:E,T')] /H(y)JD(.Z‘, y) dy < EzH(YD " ) S ClS]Ez [TB(x,r)] /H(Q)JD (.T, y) dy .

Proof. Let y € B(x,7) and u € D\ B(z,2r). By (B5) (or Lemma [3.§ (b)), JP(u,y) =
JP(z,y). Thus using the Lévy system we get

TB(z,r) TB(z,r)
E. [H( iy ) / /H )JP (u, YP ") duds < E / /H )JP (u, ) du ds.
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Proof of Theorem [1.1} (a) Proposition [3.11] (a)-(b), Lemmas and imply that con-
ditions (A1), (A2) and (A3) of [16] are satisfied for the process Y?*. Thus we can repeat the
proofs of [16, Theorems 2.2 and 2.4] to finish the proof of part (a). Note that conservativeness
does not play any role. We omit the details.

(b) By (a) we can and will assume that L > 2 and 2r < |z; — 23| < Lr. For simplicity, let
B; = B(z;,r), i = 1,2. Then by using harmonicity in the first inequality, Theorem [1.1](a) in
the second inequality, and the Lévy system formula in the second line, we have

f(21) > Eo,[f(Y2):Y2N € Blas,r/2)] > Ot f(22)By, (Y2 € Blaa,/2))

Y TBI

= O f(zy)E,, / 1 / JP(YP* 2)dzds. (3.19)
0 B(z2,r/2)

For y € By and z € B(xy,7/2) we have by Lemma [3.8/(b) (with ¢ = 1) that JP(y,z) >
CtJP (21, 2). Further, dp(z1) Adp(z) > r/2 > (2L + 2)~'|z; — 2|, hence by Lemmah (a),
JP(x1,2) > Csj(|z1 — 2]), where C5 = C3((2L + 2)7"'). By inserting this in (8.19), and by
using Proposition [3.11] (a) , we obtain

flz1) > C3f(3?2)E:eTBl/ Iz — 2|) dz

B(z2,r/2)
1
> d B 2
= ClC?Jf(’IQ) (T’) ((L + 1)’/“)dq>((L + 1)T) | (ZL‘Q,T/ )|
, O(r) Cde
> C! L4 ——~/~ __ > L4202
= 3f(5U2) <I>((L i 1)7’) = C4f($2)
The last inequality follows from (|1.4)). O

By repeating the arguments of [16, Theorem 4.9] and [2, Theorem 4.1], we immediately get
the following result.

Theorem 3.14. Let f be a non-negative bounded function in D which is harmonic in B(zg, 1)
with respect to YP®. Then there exist Cig > 0 and 3 > 0 such that for any r € (0,1] and
B(xo,7) C D,

[f(@) = FW)] < Cuoll flloclz —yl”, @,y € Blao,r/2).

4. CARLESON’S ESTIMATE

In this section we prove Carleson’s estimate. In addition to (B1)-(B5) and (1.5, we also
assume that (B6) and ((1.6]) hold.

Lemma 4.1. There exists a constant 0, > 0 such that for allz € D, P, (TB(W;D(I)/z) = C) > 0,
where C is the lifetime of Y.

Proof. Let z € D. By the Lévy system formula, (1.6) and Proposition [3.11] (a),

Py (75 dp@/2) =€) 2 Po (TB@sp@ys =¢) = Ea / LB(esp(a)/3) (Ve R(Y, ") ds
0

>E, [ P> — R >
= w/o k(Y )ds > W «TB(x,6p(z)/3) = C4-

O

Proof of Theorem In this proof, the constants d,,v,7, x,n and ¢;’s are always inde-
pendent of 7. Let f be a non-negative function on D which is harmonic in D N B(Q,r) and
vanishes continuously on 0D N B(Q,r). By Theorem (b) and a standard chain argument,
it suffices to prove for x € DN B(Q,%r/(24)).
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Let v := d + 28,. Recall that /3 is the constant from Assumption (B6). Choose 0 < v <
28, /(v + B). Fix an 79 € D N B(Q,r) with dp(ze) > ®r/2. For any = € D N B(Q,%r/(12)),
define

By(z) = B(z,0p(x)/2), By(x) = B(z,r6p(x)7)
and

By = B(xy,R0p(x0)/3), Bs = B(x,2Rp(x0)/3).
Since x € B(Q,rr/(12)), we have dp(z) < r/(12). In particular, we have that By(z) C
B(z,0p(z)) C Bi(z). By Lemma[d.1] there exists 6, = d.(R,A) > 0 such that

P (Thm =C) > 0., x€DNB(Q,7r/(12)). (4.1)
By Theorem [1.1}(b) there exists y > 0 such that
fz) < (0p(x)/r)Xf(xo), =z € DNB(Q,Er/(12)). (4.2)

Since f is harmonic in D N B(Q,r), for every x € D N B(Q,7r/(12)),
f(@) = Eu[f (Y2 (TBy())); Y 7" (o () € Ba(@)]

+ B [f (V7" (TBo@)); Y 7" (o)) € Bi(x)]. (4.3)
We first show that there exists n > 0 such that for all z € DN B(Q, &r/(12)) with dp(z) < nr,
E.[f (Y2 (Thy)); Y 7" (To(w)) & Ba(@)] < f (o). (4.4)
Step 1: There exists c; > 0 such that
flxo) > CQQD(T)/ TP (x0,9) f (y) dy (4.5)
D\Bj

Indeed, if z € By and y € D\ Bs, then by Lemma (b), JP(2,y) > c4JP (20, 7y). By using this
estimate in the second inequality below, Proposition [3.11] (a) in the third and dp(zo) > xr/2
in the fourth, we get that

F(20) = By [f(YP5(78,)); Y (73,) & Bs) = Es, / ( /D TPV ) £ () dy) "

\B3

TP (w0, ) f(y) dy > cs®(6p(x0)) / P20, y)f () dy

D\Bs

> C5E$0 [TBz] /

D\Bs
> ¢ (r) /D Lo ) dy

Step 2: For z € By(z) and y € D\ B;(z), by Lemma(b) it holds that JP(z,y) < cgJP(z,y).
By using this in the second line below and Proposition in the third, we get

E. [f (Y (T5(): Y 7" (o)) & Bulw / o / PR ) fy) dy dt
D\Bi(z

< CQEJ:TBo(x) / JD($a y)f(Q) dy
D\Bi ()

< c109(6p(x)) / JP(z,9) f(y) dy + / JP(x,y)f(y) dy
(D\B1(z))NBg (D\B1(z))NBs

=: 010(13(51)(13))(]1 + 12) (46)
Step 3: Suppose now that |y — z| > r'=76p(z)? and x € B(Q,%r/(12)). Then
ly — ol <y — 2|+ 2r < |y — 2| +2r70p(2) |y — x| < 3r70p () "y -,
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and 0p(x) < &r/12 < Rr/2 < 0p(xg). Set M = 3r7/dp(x)” > 1 so that |y — zo| < My — x|.
Thus, by using (B6) in the first inequality and ([1.4)) in the second inequality,

(5D(ZE)

_ —y(B+v)
JW%wé%M%@MM@f%—mDS%< ) Poy). (A7)

Now, using this and (4.5)) , we get

—y(v+B8)
) / JP (20, ) f (9) dy
(D\B1 (2))nBs

< c13®(r)! (‘517(9“") ) e F(zo). (4.8)

r

dp(z)

L §612<

Step 4: If y € Bs(z), then dp(y) < cior and |y — x| > |29 — Q| — |z — Q| — |y — zo| > dp(0)/2.
By Theorem [1.1] there exists C' > 0 such that f(y) < Cf(xo) for all y € Bs(z). Thus,

I, < cl4f(xo)/ JP(z,y) dy < 014f(a70)/ JP(z,y) dy
(D\B1(z))NBs ly—a|>6p (w0)/2
gqgww/ J(le — yl) dy < exs®(r) " o). (1.9)
ly—z|>dp(x0)/2

Step 5: Combining (4.6)), (4.8)), (4.9), and using (1.4 and the definition of ® in the last line,

we obtain

Eolf (Y2 (Tpo@)); Y7 (TBow)) ¢ Bi()]

T bl —y(v+B) oz
ot (2580 (1) 15

<t ( (22) 7 (22 (410)

Since 207 — y(v + ) > 0 (by the choice of 7), we can choose 1 > 0 so that

C1s <n25r'y(u+3) +n251) <1

Then for € D N B(Q,&r/(12)) with §p(x) < nr, we have by (4.10),
Eo [f(Y 7" (TBy@)); Y (7o) & Ba(x)] < 19 f(20) (77261_7(V+6) + 77261> < f(wo)-

This completes the proof of . We now prove Carleson’s estimate for x € DN
B(Q,®r/(24)) by a method of contradiction. Without loss of generality, we may assume
that f(zg) = 1. Suppose that there exists 21 € D N B(Q,7r/(24)) such that f(z;) > K >
nXV (1 +6;1), where K is a constant to be specified later. By and the assumption
f(x1) > K > n=X, we have (0p(z1)/r)™X > f(x1) > K > n~X, and hence dp(z1) < nr. By

and ([£3),
K < f(xl) < Eﬂm [f(YD(TBo(zl)));YD,K(TBO(JH)) € Bl<x1)] + 17

and hence

Eo, [f(YP" (Ty(@1)); Y7 (To(er)) € Bilw1)] > flan) — 1> !

149,

f(x1).
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In the last inequality of the display above we used the assumption that f(x;) > K > 144§,
If K > (24/8)X/7, then (6p(x1)/r)Y < &/(24). Thus By(z;) C B(Q,%r/(12)). We now get
from (4.1)) that

[ ( (TBo(m)))?YD’H(TBo(m)) € Bl(xl)]

E [f(YDﬁ(TBO(xl)))?YD,H(TBO(IH)) € Bl<x1) N D]

P,

<P, (YP"(Tgy(y)) € D) < sup f) < (1—4,) < sup f) :
Bi(z1) Bi(z1)
Therefore, supp, () f > f(21)/(1 = 82), i.e., there exists z, € D N B(Q,%r/(12)) such that

1

1
> .
e RAC U R

21 — 25| < T0p (1) and  f(x,) >

Similarly, if z;, € D N B(Q,%r/(12)) with f(xy) > K/(1 — 62)*7! for k > 2, then there exists
ZTr+1 € D such that
1

1
|.17]C — ZI?k+1| S Tl_,y(;D({Ek)v and f($k+1) > m f(l'k) > m K. (411)

From (4.2) and (4.11)) it follows that (5p(zx)/r)Y < (1 — 62)7E=D/XK=7/X | for every k > 1.
Therefore by this and (4.11)),
2, — Q| < |z — QHZWH ;] < —l—rz (Op (i) /r)
7=1

1
<K :
T 1— (1- 02

Choose

K =0V (1461 Vv [24/R7 (1 — (1= 68)7x) ]
so that K™/X (1 — (1 — 62)"X)~! < /(24). Hence z;, € D N B(Q,%r/(12)) for every k > 1.
Since limy_,o f(2) = oo by (4.11]), this contradicts the fact that f is bounded on B(Q,r/2).
This contradiction shows that f(z) < K for every x € DN B(Q,®r/(24)). This completes the
proof of the theorem. O

5. ESTIMATES IN THE HALF-SPACE

Starting from this section we assume that D = R% and j(|lz —y|) = |z —y[**, d>1. In
the rest of this section, we will only deal with the case d > 2, the case d = 1 being simpler.

For z € RL, we write x = (Z,24), T € R, 24 > 0, so that dp(z) = z4. We have
that J® (z,y) = B(z,y)|z — y|~¢* and note that with this assumption, ®(A) = A* so that
01 = 0y = /2. Further, for p € ((a — 1)y, a+ 1), let k(z) := C(a, p, B)x;*, where C(a, p, B)
is the constant defined in . For simplicity, we denote the process yREw by Y. Thus, Y is
the process associated with the Dirichlet form

/Rd /Rd |x _)(rd(j:a) — v(y))g(ac, y)dydzx + C(a, p, B) / w(e)o(w)e;dz.

d
RY

We first record the scaling property of Y here. For any r > 0, define a process Y") by
)/t(’r’) = T’anat.

Lemma 5.1. Assume that (B1), (B2) and (B8) hold. Then (Y, P,,) has the same law
as (Y,P,).
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Proof. For any function f, define f((z) = f(rz). Let Pt(r) be the semigroup of Y. Then
B f(x) = EDS (") = Bajef (rYeor) = Prear /O (/7).

Thus for any nice functions f and g,
1

n /Ri(Pt(T)f(l’) ~ f(2))g(x)dz = P

1
r—ot

| Pt ) = 1 fr)g e r)a

Since by (B8) B(z/r,y/r) = B(z,y), by letting t | 0 we get
ED(f,9) = Td*“c‘f(f(”, g(r))

( / / — YW@ =" W) g, e
Rrd JRE |z — y|ite 7

+ Cla,p,B) | f (fﬂ)g(”(fﬂ)ﬂffdl)
Rd

( / / (rz) ry>><g< %) =909 (2 \dyde
RY JRE |d+a ’

+ C(a,p, B) » f(m)g(m:)x;ada:>

y)(g(z) —g(y)) o
/Rd /Rd \:c | B(z,y)dydx + C(«, p, B) e f(x)g(x)z;“de = E(f,g).
Thus (Y, P,,) has the same law as (Y, P,). O

An easy consequence of Lemma is the following: Let V be an open subset of RZ 4, and
for > 0 denote rV :={rz: z € V} If v =inf{t > 0:Y; ¢ V}, then

E, .7y = r*E,7v, reV. (5.1)

Throughout the remainder of this section and below we always assume that B satisfies (B1),
(B2) and (B7)-(B8). Note that (B8) implies that © — B(z,z) is a constant on D. Without
loss of generality, will assume that B(x,z) = 1. Additional assumptions on B will be imposed
later when needed.

The following observation will be used several times in the sequel. Recall the function

B = Bg, 58,5, appearing in (B7). We note that if 5, > 0, then, for any € € (0, 32), there
exists ¢, > 0 such that

(log 2)7ﬁ43517527ﬁ3,0(x7 y) < 851752753,54 (.13, y) < CEBﬁlﬁz*Eﬂg,O (l‘, y)‘ (52)

We first establish some auxiliary estimates that will be useful throughout the rest of the
paper. Recall log(1 + a)” = (log(1 + a))”.

Lemma 5.2. (a) There ezists a constant Con > 0 such that for all z,y € R‘i satisfying
|z — y| > x4, it holds that
B(z,y) < Cooxy (|log zal™ v 1) (1 + Ljyz1 (log [y)) ™) |= — |~ (5.3)

(b) For all z,y € RY satisfying |v — y| > xq, xq < e~ ' and |y| < M, it holds that
B(z,y) < Coo(1 + (log M)*)zt | log 4| |z — y| 5.
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Proof. By using (/5.2)), without loss of generality, throughout the proof we assume that g, = 0.
(a) Since |z — y| > x4 we get that

(T4 V ya) A |z —y| < TaV Ya
TgANyg Nl —y| ~ xgANyg

Thus it follows from our assumptions on B that

B B3
Tq V Yd
B(x,y) <c ( ) log(1+ > . 5.4
.y) < o E] Ta N\ Ya (5:4)
If 24/2 < y4 < 2z4, then the log term above is estimated from above by a constant, implying

B3).
Note that for a,b > 0 with a > 20b, it holds that log(1 + a/b) < 2log(a/b). Using this and
(5.4) we see that if yq > 2x4 or y; < x4/2, then

B1 B3 B1
Tg N\ T
s < (F250) on (35)] <0 (5257) Qe + g
|z =y Tq |z — y

We now give the the proof for the case y; > 2x4 and the case yq < x4/2 separately.
Case 1. yq > 224 If y4 < 1, then |logyq| < |logza|, so B(z,y) < 2525 | log x4|% |z — y|~Fr .
If yq > 1, we use the estimate log y; < log|y| to get

B(z,y) < caxy' ([logzal™ + (loglyl)™) |z — y[~*.

Therefore
B(z,y) < csa) (|logzal®™ + 121 (log [y)*) [ — y|
cszy (|log za|® V 1) (1 + 121 (log [y[)*) |z — y| 77",

N

which is precisely (5.3)).
Case 2. y; < x4/2: It is straightforward to see that f(t) = t%((log(1/t))% Vv 1) is almost

increasing on (0, 00). Therefore, there exists ¢ > 0 such that y2'|log ya|® < ¢z (| log z4|% V

1). Hence, B(z,y) < ez (Jlog xq|? Vv 1)z — y| =1, implying (5.3)).
(b) This follows immediately from part (a). O

Lemma 5.3. Let ¢ < a+ f31.
(a) For all x € RY, it holds that

4
RY,[y—a|>2]2] |z — y|tte

(b) For every b > 0, there exists a constant Co = Cs1(b) > 0 such that, for all x € R, it
holds that

/ |y—|qdl3(x,y) dy
R y|dre

4 lyl> (1)l [T —

< Coy (b)) (| log 24| * v 1)/ |y (1 4 1,51 (log [y)®) dy < oo (5.6)

[y|=x|

Proof. First note that since ¢ < a + (31, it holds that
/| y [y 7 (1 4 Ly (log [y[) ™) dy < oo
y|=>|z

Further, if |y — x| > |2|z| or |y| > (1 4 b)|z|, then |y — x| < |y|. Now the conclusion for both
(a) and (b) follows immediately from Lemma[5.2] O
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For f: Ri — R, we set for x € Ri,
B(g) = fW) = f(=) _ _ Re
g2 = p. | I B dy = / W - fe) Sy, 6

whenever the principal value integral on the right hand side makes sense.
For ¢ > 0, let g,(y) := yi = 5Ri (y)?. Recall that C(«, p, B) is given in ((1.9)). The following

is the analog of [3 (5.4)].
Lemma 5.4. Letp € (o — 1)y, a4+ p1). Then C(a,p, B) is finite and
LBg,(z) = Cla,p,B)2™, xeRL.
Proof. Recall e; = (0,1). By (B8), we can for simplicity take = = (0, z4).
By the change of variables y = 242, and by using (B8), we have

-1 - - _
ngp( =2 “p.v. / / Zd B(eq, (Z, zq)) dzqdz =: 28I, .
Rd—1 Z Z,

Note that Lemma (a) takes care of mtegrablhty away of the point x. Using the change of
variables Z = |z4 — 1]u, we get Iy = [, (|u]? + 1)~/ [,() du, where

1—e¢
(i) = Iy = lim, (/ /+) |Zd_1|1+a6(ed,<|zd—1|ﬂ,zd>)dzd.

Fix u and, by using the change of variables s = 1/z,4, (B1) and (B8), we get that the second
integral is equal to

1

Tte g% 1 p_ g 1 _
/0 WB((l — S)U, 1), Sed)dS

1

1—e e 1-p Safl _ TTe Saflfp _ Safl _
:/0 WB(G — s)u, 1), seq)ds +/1 WB((G — 5)u, 1), seq)ds.

—€

Therefore,

1—e (Sp N 1) + (Sa—l—p — 30‘—1)6(«1 B S)a; 1)7 Sed) ds

I, =1i
2 = 1 ; (1— s)l+o
) %Jre Sa—l—p — ga-l _
iy [ LB - i sea) s = B+
Next
1—e _ _ op—(a—1)
) (1 —sP)(1 — 5P ¢ ) a1 _

I 2151(1) ; 1= sy s 1PB(((1 - s)w, 1), seq) ds.

Since B is bounded (uniformly in @) by (B7) and a < 2, the fraction is integrable near 1.
Further, if s € (0,1/2), then by using (B7) and (j5.2) we obtain the following estimate

B(<<1 - S)ﬁ7 1)7 Sed) < clsﬁl log<1/5)53 7

where the constant ¢; > 0 does not depend on u. The fact that p < a + 31 implies that the
function s + s*717PsP1log(1/s)% is integrable near 0. Thus there exists a constant cy > 0
independent of 7 € R?! such that

(sP —1)(1 — s>P~ 1) _
I = /0 (EBED B(((1—s)u,1),seq)ds < cy <00. (5.8)
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Here we used that the integrand is non-negative since p > a — 1. Now we show that Iy, = 0.
Indeed, since B is bounded, we conclude from [3], p.121] that

%Jre Sa—l—p _ Sa—l _
/1 ﬁlg((l — s)u, 1), seq)ds

§062.
—€ (1_5

Therefore,

(sP —1)(1 — s P71 - -
I1—/Rd 1 (|u|2—|—1 @ra)/ ( l—s)1+0‘ B(((1 - s)u,1), seq) ds) du .

By combining the uniform (in @) estimate for I5; and the fact that [p, , (Jul*+1)9"/2du <
oo, we see that I; = C(a, p, B) € (0,00). The proof is complete. O

Remark 5.5. (a) Note that p — (s —1)(1 — s*7?71) is increasing for s € (0,1). This implies
that p — C(a,p, B) is also increasing. Further, it is clear lim, 1), C(a,p, B) = 0 and, by
inspecting the integrand in (5.8) near 0 and using Fatou’s lemma, we see lim,yo+5, C(a,p, B) =
0.

(b) Note also that if o € [1,2), then the above proof shows that LBg, =0 for p = o — 1.

Next we set
LPf(z) == LEf(z) — C(a,p,B)z;°f(z), x€RYL, (5.9)

where L is defined in (5.7). Thus, LBg,(z) = 0, z € RL. Recall that LP was in a more
general setting already introduced in (3.6)).

For a,b,7 > 0 and w € R%!, we define
Dg(a,b) :={x = (T,14) €R*: |T — @] < a,0 < x4 < b}.

Without loss of generality, we will deal with the case w = 0 only. We will write D(a,b) for
Dg(a,b) and U(r) = Dg(5, 5). Further we use U for U(1).

Let hy(z) := gq(x)1pa,1y(z) = vi1pa ().

Lemma 5.6. (a) Let p € (o« — 1)y, + B1). There exists Coy > 0 such that for every
zeU,
0> LBhy(2) > —Choz|log 24| .

(b) Let (a — 1)y <p < q < a+ p1. There exist ry € (0,1/2] and Cy3 > 0 and Cyy > 0
such that for every z € D(3,79),

ngzg_a S Lth(Z> S 02423_0.

(c¢) Let (¢ — 1)y < qg<p<a+pi. There exist Co5 > 0, Cos > 0 and Co; > 0 such that
for every z € U,

—Cazd ™ — 027Zd1‘ log z4|* < LPh  (2) < —Capzd™.
Proof. (a) Let z € U. Then by using that LPg,(z) = 0, we see that
p
LPh,(z :—/ LBZ,@/ dy ,
»l2) D(1,1)°nR% ly — z|*te (=:9)

which is negative. Further, if y € D(1,1)¢, then |y| > v/2 > 2|z| (since z € U = D(1/2,1/2)).
Thus it follows from Lemma[5.3(b) (with b = 1), that

lyl”
|LBhp<Z)| < /|y|>(2|z ) WB(Z y) dy < C1zd1| log Zd|53
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(b) Let z € U. Then by using Lemma
q
L%h,(2) = (Clava.B) ~ Clap B = [ By dy.
B(0,1)°NRY ly — 2|

Since the second term is non-negative, by removing it we obtain the upper bound. In the
same way as before (this uses ¢ < a + /1),

q
Ya
B(z,y) dy
/B(O,l)cﬂR‘j_ |y — z|dte
Thus, for any z € U,

LBhy(2) > (C(a, g, B) — Cla, p, B))z4* — ¢25" | log zq|* .
Since ¢ — a < 4 and C(a, q,B) — C(a,p,B) > 0, we can find 7y € (0,1/2] such that the
function t — (C(a, q,B) — C(a, p, B))t9=* — c5tP1|log t|% is positive and bounded away from
zero for all t € (0,79). This concludes the proof of the lower bound.
(c) This is almost the same as the proof of (b) except that now C(a,q,B) — C(a,p,B) < 0

and we keep the term with 27| log z4|/® in the lower bound (hence do not have to shrink). O

< 20 log 24| .

For r € (0,1), let C(r) := (D(1,1) \ D(v/r,/7) N {y € RL : y4 > |y|} be the part of the
cone in D(1,1) \ D(y/r,+/r). Note that for z € U(r) and y € C(r) we have |z — y| < 2|y|,
ly| < V24, 12| < |yl/v/2, and therefore y4/4 < |y|/4 < |2 —y| < 2v/2y4. Now we find a lower
bound for B(z,y), z € U(r), y € C(r). By using (B7), the lower bound in (5.2), z4 < y4 and
Ya < [z —y| < |y, we get

B1 Ba Bs
B A v V ya) A |za —
() > @ (zd Ya 1) (Zd Ya . 1) log (1 (24 V ya) A lza ydl)
|2 =yl |z =y Za Nya N\ |z =y

B1
2 (ﬁ) log(1 + @)ﬁ?’ :
] Zd

Since yq > +/r and z4 < r/2, we see that ya/zq > 2/4/z4, hence log(1 + ya/za) > log(ya/za) >
log(1/y/za) = |log za|/2. Thus, B(z,y) > c3 (zd/|y|d)51 |log z4|/% . By using the Lévy system
formula we get for € U(r) (with constants ¢4, ¢5 not depending on ),

Eolhy (Yo )] = Ealhp(Yay,, ), }/"I'U(r) € C(r)]

TU(r) Tu(r)

v d vy ” d
> oF, / / ¥, — |4 (—) [log Y2y dy dt
C(r)Jo ‘y
D, |—d—a—pB1 e d\p d|B3
> 5 ()yd!y\ dy | E. (V) [ log Y[ dt |
C(r 0

Since fD(l " yhly| =421 dy = +o0, we can choose ry small enough so that
05/ y5|y’—d—a—61 dy > 1, for all r € (0, TO]-
C(r)
Hence, for all r € (0, rq]

TU(r)

TU (r)
B, [0 log Vi dt < Bulhy (V)] o € UG). (5.10)
0

In the remainder of this section, we will, in several places, need Lemma [9.5] an extension
of Proposition to functions which are neither smooth nor of compact support. Since its
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proof is rather technical, in order not to interrupt the flow of the presentation, we postpone
it to Section [9

Lemma 5.7. (a) For all r € (0,79] and x € U(r),
B [0 o Vi e < (5.11)
0
(b) There exist a constant Cas > 0 such that for all x € U,
E, / Y VP log YIP dt < Cosa. (5.12)
0
Proof. (a) By Lemma [9.5|it holds that
Eolhy(Yey )] = g + Eo /TU(T) LEh,,(Ys) ds < afy,
0

where the inequality follows from Lemma (a). The required estimate is a consequence of
(5.10]).
(b) Let ng?]) be the first time that the process Y(0) = (Yol 'y (0)d) exits rolU = U(r).

Then it is easy to check by definition that ng,(}) = rg7y. Using this, one can easily see that

(ro)

roU TU
me/ (O log (V) B ds - = TSC%Ew/ (V)7 [log(roYy)|™ ds
0 0

TU
> pethig, / (Y [ log Y|P ds.  (5.13)
0

In the last line we used that since rq < 1, for all £ € (0,1/2) it holds that |log(rot)| > |logt|.
Hence, for any x € U we have
(rg)

roU

TU
E, / (Y log Y% ds < 15" "'E,y, (Y ro)dyBi | log (Y o)) P g
0

—a—31 p__ ,—a—Pi+p p __ D
< 7 (roxq)? = rg zh = Cogl)

with ng = 7’070[7’81+p. O

Next we want to prove the opposite inequality under the additional assumption (B4). In
the rest of this section we assume that (B4) also holds. The key step towards this goal is the
following lemma.

Lemma 5.8. Let p € ((o — 1)y, + f1) and assume that 6 > (o — 1) 4.
(a) There exist a function v : R? — [0,00) and a constant Cag > 0 such that

LBy (z) < Oyl |logzy®, ze€U

and the following assertions hold:
(b) The function ¢(x) = hp(a:)N— Y(z), x € R, satisfies the following properties:
(bl) ¢(x) = b for all x = (0,24) € U with 0 < x4 < 1/4;
(b2) ¢(x) <0 for allz € UNRYL;
(b3) There exists Cso > 0 such that LE¢(x) > —Cagz |log 24| for all x € U.
(c) Let (a — 1)y < q¢ < p. The function o(x) = hy(x) — (x) satisfies the following
properties: N
(cl) p(x) =22 for all x = (0,24) € U with 0 < x4 < 1/4;
(c2) ¢(z) <0 for all z € U°NRY;
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(¢3) There exist C3; > 0 and Csy > 0 such that LPo(x) > —Caad™ — ngxgl | log 4|7
forallz e U.

The proof of the lemma is rather involved, we defer it to the Section

Combining Lemma (b1) with a formal application of Proposition to ¢, we can get
the following inequality opposite to (5.12)). However, since ¢ is not smooth, we can not apply
Proposition 3.7 to ¢ directly. Therefore we postpone its proof to Section [9}

Lemma 5.9. Let p € ((a — 1), a+ B1). For any = = (0,24) with 0 < x4 < 1/4 it holds that
TU
B, [0 [log Y di = Cyla, (5.14)
0

where Csq is the constant from Lemma[5.8,

Note that there exists ¢ > 0 such that z°1|log z|% < ¢ for all z € (0,1). Since V¢ € (0,1)
for t < 7y, (5.14) immediately implies the following estimate for the expected exit time from
U:

E,7v > ¢ 10%tah, 2= (0,24) with 0 < 24 < 1/4. (5.15)
One can easily obtain the following exit probability estimate by combining Lemmas and

10.9]

Lemma 5.10. Letp € (o« —1)4,a+51). There exists Cs3 > 1 such that for x € D(1/4,1/4),

P (Y, € D(1/2,1)\ D(1/2,3/4)) < Cyl, (5.16)
and for x = (0,24) € D(1/8,1/8),
PV € D(L/A 1)\ D(1/4,3/4)) > Clal. (5.17)

Proof. For y € U = D(1/2,1/2) and z € D(1/2,1) \ D(1/2,3/4), it holds that y; < 24,
ly — 2| =< zg and yq < 2|y — z|. Hence, B(y,2) = (ya/ly — 2|)* log (1 + (24/ya)) . Since
1 > z4 > (3/2)yq, we have that log(1/yqs) < log(zq/ya) < log(l + za/ya) < clog(za/ya) <
clog(1/yy). We conclude that B(y, z) =< (yq/|y — z|)ﬁ1 |log y4|”. Hence, by using the Lévy
system formula, we get

P, (Y, € D(1/2,1)\ D(1/2,3/4))

< ¢ E, / (V)P | log Y|P3 / ——dzdt
0 ! ! D(1/210\D(1/2,3/4) |Ye — z|TTeth

TU
<oB, [0 log Y di
0
and
Py (Ve yusn € D(1/4,1)\ D(1/4,3/4))

> ¢ /TD““’”“)(Yd)ﬁlu Y|P / L at
Z C3liy 0g a2
0 ! ! D(1/4,1\D(1/4,3/4) |Y: — z[4Hoth

TD(1/4,1/4) N 418
el [0 gV dr
0

The claim now follows from Lemmas (b) and |5.9} O
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Lemma 5.11. Let (o — 1)y <p < a+ 5 and a+ B2 < p. There exist 11 > 0 and C34 > 0
such that for all v > 0 and x = (0,x4) with 0 < x4 < rir, it holds that

TU(r)
E, / (Y dt > Cpya®to | (5.18)
0

Proof. Let ¢ := a+ (5. Note that ¢ < p by assumption. By combining Lemma (c3) with
a formal application of Proposition to ¢, we can get the assertion of this lemma. However,
since ¢ is not smooth, we can not apply Proposition to ¢ directly. Therefore, the rigorous
proof is postponed to Section [9] a

Lemma 5.12. Let (a — 1)y < p < a+ [ and o+ [y < p. There exist a constant Cs5 > 0
such that for all v > 0 and x € U(r),

TU(r)
E, / (YH)P2dt < Casas . (5.19)
0

Proof. Let ¢ = a + 5. Note that ¢ < p by assumption. By combining Lemma [5.6] with
a formal application of Proposition to hy — hy,, we can get the assertion of this lemma.
However, since h, — h, is not smooth, we can not apply Proposition to hgy — h, directly.
Therefore, the rigorous proof is postponed to Section [9] O

The following counterpart of (5.15)) is considerably simpler than the previous results, but
has an additional restriction on the range of p.

Lemma 5.13. Suppose that p € ((a — 1)4, ). There exist a constant Css > 0 such that
ExTU < 036.1'5, xeU. (520)

Proof. Choose q € (p,a) and let n(z) := hy(z) — hy(z), € RL. By combining Lemma
with a formal application of Proposition to n, we can get the assertion of this lemma.
However, since 7 is not smooth, we can not apply Proposition to n directly. Therefore The
rigorous proof is postponed to Section [0 a

6. BOUNDARY HARNACK PRINCIPLE
In this section we give the proof of Theorem

Lemma 6.1. There exists Cs; > 0 such that for all0 < 4r < R <1 and w € D(r,r),
raJrBl w_g
Ra'i‘ﬁl rP )

]P)w (K—B(w,r)ﬂki < A(w’ R7 4) a Ri) S 037

Proof. Let y € B(w,r) NR% and z € A(w, R,4) NR%. By Lemma (b) we have that
B(y, 2) < ey’ Nogyal [y — 2|7 < oy |log yal ™ lw — 2|7
Thus for all 0 < 4r < R <1 and w € D(r,r) ,

P, <Y7B(WmRle € A(w, R,4) N Ri)

T w,r +
< oF, / PO () | log YAt /
0 B

T w,r +
< ;RPE, / PNy )P | Log Y|Pt
0

1

(w,R)*
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Since B(w,r) NRY C D(2r,2r), applying Lemma and scaling, we get that there exists
¢y > 0 such that for all 0 < 4r < R <1 and w € D(r,r),

P, (YTB e A(w, R, 4) mRi)

(w,r)ﬁRi

roth wh

TD(2r,27)
—a— d d -
< ch a 51Ew/0 (Y;t )ﬁl HOgY; |53dt < C42a+ﬁ1 pwr—p.

Lemma 6.2. There exists Css > 0 such that for any x € D(27°,27),
P, (Y, € D(1,1)) < Csgah.
Proof. Let
Hy= (Yo € D(L1)}, H, = (Yo € D(1/2.1)\ D(1/2,3/4)}.

We claim that P,(H,) < ¢P,(H;) for all z € D(27°,27°). Combining this claim with ([5.16)
we arrive at the conclusion of this lemma. Now we prove the claim. Note that by (5.17)),

P, (H,) > Py (Y, € Dg(1/4,1)\ Dz(1/4,3/4)) > cywh, w e D(27°,27%).  (6.1)

TDg(1/4,1/4)

For ¢ > 1, set

11 1«1 —i—3 —i—4

j=1
Note that 1/(20) < s; < 1/(16). Define for ¢ > 1,

P.(H. ~ ’
( 2) JZ = D(Sl;l, 27173), T, — Tj'i. (62)

di = )

Repeating the argument leading to [13] (6.29)], we get that for z € J; and i > 2,
P,(Hs) < ( sup dk>IF’Z(H1) + P, (Y, € D(1,1) \ Ut Ji) . (6.3)

1<k<i—1

For i > 2, define 0,9 = 0,0;1 =inf{t > 0: |Y; = Yo| > 273} and 0y 11 = 0im + 05106
for m > 1. By Lemma we have that there exists k; € (0,1) such that

Pw(Yai,l S :]:) < 1— Pw(ai,l = C) < 11— Pw<TB(w,5D(w)/2) = C) < 1{51, w e j; (64)

Tim

For the purpose of further estimates, we now choose a positive integer [ such that k! < 2-(@+61),
Next we choose ig > 2 large enough so that 27¢ < 1/(2001:%) for all i > iy. Now we assume
i > 1ig. Using (6.4) and the strong Markov property we have that for z € J;,

P.(7; > 0,) <P.(Yy,, € Ji,1 <k <1i)
_E. []P’yoi (Yo, €)Y

i li—1

€Y, €1 gkgzi—z]
<P, (Yai’k €T 1<k<li— 1) ki < K (6.5)

Note that if z € J; and y € D(1,1)\ [J;U(UiZL Ji)], then |y — 2| > (s;_1 —s;) A (274 —2773) =
1/(400i2). Furthermore, since 2773 < 1/(400i2) (recall that i > i), if Y, (w) € D(1,1)\Ui_} Jx
and 7;,(w) < 0;(w), then 7,(w) = 0;x(w) for some k = k(w) < li. Dependence of k on w
will be omitted in the next few lines. Hence on {Y,, € D(1,1) \ Ui_ Jy, 7 < o;5} with

Yo = z € J;, we have |Y,,, — Y, Y, — Yo| > =55 for some 1 < k < li. Thus for

i,Ol = 2002
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some 1 < k < I, Z§:o Yy, — Yo, .| > (400i*)~" which implies for some 1 < j < k <[4,
Yo, — Yo, | = (k400¢*)~" > (13)~"(400:*)~" . Thus, we have

(Y e DA, D\ U Tk, 70 < 04}

Uélzl {|Y0i,j - 01] 1| > 1/(800lZ )’ 04,5 € D(17 1) 04,5—1 S J}

Now, using Lemmal6.1] (with r = 27=% and R = 1/(8001:®)) (noting that 4-27"=2 < 1/(4001:%)
for all i > i), and repeating the argument leading to [I3], (6.34)], we get that for z € J;,

P. (Y € DL\ U e, 7 < oup) < lisupP, (Yo, — 2| > (8000i°) 1, Y, , € D(1,1))

zeJ;

800143 ) ot

<P, (4 > |Y0¢,1 - Z| > (800[23)_1) < cq9lt <W

By this and (6.5)), we have for z € J;, i > iy,

- y (/8003 * T
P. (Y, € D(1,1) \ UL Ji) < K + eoli S . (6.6)
By our choice of [, we have
(80063 7 a+B1 l+atB1 14+3(atB1) (9—(a+Br)\ —(a+B))E > (i
li 573 = 100*t"] i (2 ) > (2 ) > (k1) (6.7)
Thus combining with , and then using (6.1)), we get that for z € J;, i > i,
Pz()/ﬂ € D(17 1) \ Uz_zlljkj oy 80014° ot 14+3(atB1) 9 (p—a—pr)i
P.(H,) < ¢3li2"® 53 < eyt A ) (6.8)
By this and (6.3), for z € J;, i > ig,for all i > i
P.(H. P.(Y,, € D(1,1)\ U:Zt J, j1+3(th)
( 2) < sup dk + ( i = ( ) ) \ k=1 k) < sup dk + 642

PZ(Hl) o 1<k<i—1 Pz(Hl) - 1<k<i—1 2(0‘+Bl_p)i.
This implies that for all ¢ > 1
i j1+3(a+p1) o j1+3(atp)

d; < sup dk+C4Z sup di + ¢4

1<k<ig—1 P 1<k<ig—1

m:5C5<OO.

9(a+B1—p)i <
k=1

Thus the claim above is valid, since D(27%,27%) C U2, J;. The proof is now complete. O

Proof of Theorem By scaling, we just need to consider the case r = 1. Moreover, by
the Harnack inequality, the continuity of harmonic functions and a standard chain argument,
it suffices to prove for z,y € Dg(278,278).

Since f is harmonic in Dg(2,2) and vanishes continuously on B(w,2) N JRY, it is regular
harmonic in Dg(7/4,7/4) and vanishes continuously on B(w,7/4) N OR%. Throughout the
remainder of this proof, we assume that x € Dz(278,27®). Without loss of generality we take
w = 0.

Define zy = (7, 1/(16)). By the Harnack inequality and Lemma [5.10} we have

F@) = Balf (Vep o o)) 2 Balf (Yon 225 Yepajonse € D(1/2,1) \ D(1/2,3/4)]
> le<x0)PI(K'Di(1/4,1/4) € D5(1/47 1) \ D(1/47 3/4)) = CQf(xh)a:Z' (69)
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(a) The case py = B = >0, B3 =1 =0. For z € U and y € R% \ D(1,1), we have
ly — z| < |y|. Thus, by using (2.3)),

B B
[ f(y)dm( “a M) ( v M) “
RE\D(1,1) |z — | |z =y |z =yl

B B B
<[ B () (Ban) w=s (a1
R4\D(1,1) |yl Y| Y| R4\D(1,1) Y |y

Hence

TU ﬁ
B0 )Y € DO =B [0y [ G (M) ay

4\D(1,1 Y

Combining the above with Lemmas [5.7}(b) and [5.9 we get

B
B (V2 )5, # D(L 1)) =2 [ )|yf;(3+ﬁ (Zn1) an (610

RI\D(1,1 i
On the other hand, by Theorem and Lemma (6.2, we have
E, [f(Ys,); Y, € D(1,1)] < c3f(20)Py(Yr, € D(1,1)) < cyf (xo)ah. (6.11)
Combining , and , we get
F() = Ba [f (Y2 )i Yoy & D(L1)] + Ex [f(V2); Vo, € D(1,1)]

f() (yd >6
<csih | f(x +/ — A1) dy
° d< (o) R\ D(1,1) |ly|dret? \ |yl

and
F(r) > SE. [F(Va )iV, € D(1/2,1)\ DO/2,3/4)] + 5B, [[(Ya ): Ve, & D(1,1)
o ) (@ )5
= Cotd (f( o)+ /Ri\p(l,l) i \jy dy) '
Therefore 5
fla) = a7 ( Flao) + /R o |y|€(i>+ﬁ (%“’ A 1) dy> . (6.12)

For any y € D(27%,278), we have the same estimate with f(yy) instead of f(zg), where
yo = (y,1/(16)). By the Harnack inequality, we have f(z¢) < f(yo). Therefore it follows from

(6.12) that for all x,y € D(278,278),

—_— ~ C _7
fly) = "

which is same as the conclusionNOf the theorem.

(b) The case p < . Set w = (0,277). Then

f(w> > Ky [f(Y:ru)vy;U ¢ D(1> 1)]

TB(w,2—10) Rl
>, [ [ Tyt
0 RI\D(1,1)

> C10EwTB(w,2-10) /

RI\D(1,1)

TE (w,y) f(y)dy = 011/ T (w,y) f(y)dy,  (6.13)
RI\D(1,1)

where in the last line we used Proposition [3.11] (a).
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We now show that there is a constant ¢15 > 0 such that for any z € U and y € R% \ D(1,1)
it holds that
d d
‘]R+ (Z7y) S CI2JR+ (w7y) (614)
To prove this, first note that |z — y| < |w — y| < |y|. We consider two cases. The first case is
when y; > 1/2. Then

R4 Zglygz B B || o
J(zy) = Wlog(l_'_l/zd) * (1 + | logyal”) log (1—1—%) ,
R ygz 5 |y| Ba
S (w,y) = [y|Fratit (1+ |logyal™)log 1+E ,

implying (6.14]) since ¢ — 7 log(1 + 1/t)? is bounded on (0,1/2]. Here we use notation <
to denote that the left-hand side is smaller than the right-hand side multiplied by a constant.
The second case is y; < 1/2. In this case,

|| )
log (1 + = log |y|,
(wavy) Alyl) = 8
and hence 5
d Yy !
T (w,y) = et |18 yal™ (log [y|)™ . (6.15)

If z4 < yq, then (24 V ya) A |y| = ya, so that

Y| o
log (1 + Coa vy Aol = (log [y| + | log ya|)™ =< (log y])* + | log ya|**.
Therefore
R Zglygz Ya B3
S (2,y) Wlog (1 + Z_d) ((log[y))* + [log yal™)
2 8 2 8
| log za|™ (log |y[)™ + ———9——]log z4| *y,*| log ya|**

W |y|d+a+51 +B2

b1
< 2 log yl® (log [y])*
’Z/‘ +a+51+062

where the last approximate inequality follows from the fact that ¢ ~ t%|logt|% is almost
increasing ¢ — t72|log t|% bounded on (0,1/2] and y; < 1/2. By comparing with ([6.15)), we
see that (6.14) holds true.

If z4 > yq, then (24 V ya) A ly| = 24, so that

Ba
o) = ol + Hog ™ = (loglul)* + |log ™

log | 1+
g( (24 V ya)

Therefore
Rd ygl 252 Ya B3 5 5
e © padhnd 4 4
S (zy) 2 |y[d+atBiths log (1 - Zd) ((log [y])™ + |log 24|™)

B1 5
J y
< W| log yd|53 (log |y|),34 + W‘ log yd|53zg2| log Zd|54

581

y
——=t——log ya|™ (log [y])™.
’y| B1+52

Again, by comparing with (6.15)), we get (6.14]).
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Combining (6.14]) with - and - we now have
B (Vo )i¥e € DO =B, [ [ 4 (Y 0) )yt
RE\D(1,1)

<ouBary [ ) fo)dy < cudhf(w) (6.16)
\D(1,1)

On the other hand, by the Harnack inequality, Carleson’s estimate and Lemma/6.2, we have
Eo [f (Y ); Yz, € D(1,1)] < c15f(20)Ps (Yo, € D(1,1)) < cr6f (20)2g- (6.17)

Combining (6.16]) and (6.17)), and using the Harnack inequality and Carleson’s estimate again,
we get

fla) =Eo [f(Yry, ); Yy, € D(L D]+ Eo [f(Yr,); Yo, € D(1,1)]
< g (f (o) + f(w)) < crsay f (o).
Together with we get that

f(x) < b f(xo). (6.18)
Using (6.18]) instead of (6.12)), we also conclude that the theorem holds by the same argument.
O

7. PROOF OF THEOREM [1.4]

In this section we assume that the assumptions of Theorem hold. In particular, the
parameters satisfy a + 6 < p < a + f;.

Suppose that the non-scale invariant BHP holds near the boundary of ]R‘fr (see the paragraph
before Theorem .

Note that by taking g(z) = P, (Y5, € D(1/2,1)\D(1/2,3/4)), we see from Lemmal[5.10] that
there exists R € (0,1) such that for any r € (0, R] there exists a constant Cyg = Co(r) > 0
such that for any non-negative function f in le_ which is harmonic in RZNB(0, 7) with respect
to Y and vanishes continuously on dR% N B(0, r),

f(z) Tq d
— < C , forall z,y € RT N B(0,r/2). 7.1
fly) = 39 o Y + (0,7/2) (7.1)

Let rg = E/Zl and choose a point zy € OR? with |z9| = 4. For n € N, B(z9,1/n) does not
intersect B(0,2rq). We define

K, = / [log(ya)| ™ dy . fuly) = K, ya ™ Lzd o m (0),
R NB(z0,1/n)

and
TU(ro)
nle) =B 1Yoy, =Be [ [ T (Vg ful)dydt, € Ulro).
0 RZNB(z0,1/n)
Lemma 7.1. There exist Cyp > 0 and ay € (0,1) such that
lim inf g, (z) > Cyoz2 ™ (7.2)
n—o0

or all z = ) = 6,3 € RL with s € (0,rpay).
+
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Proof. Since
6>z—yl>2>ysAzg for (y,2) € (RE N B(z0,1/n)) x Ulry),
using (B7) we have for (y,z) € (R N B(zy, 1/n)) x U(ry),
1 Ba
& <Zd v yd)

( 1 ) Ba
log :
Zq V Yd

RY - By B zaVya\”
S5 (2,y) < (2a Aya)" (24 V ya) ™ log [ 1+ lo
24 N\ Yd

= 20y (2q V oya) ) log (l—i- z;l)

Therefore, for x € U(ry),

gn(r) <
TU (rg) Y B3 1 Ba
K,'E, / 1o / Y, (B1=62) g <1 yd) lo (—) dydt.
0 () RimB(zo,l/n)( V) e Y4 A yq & YAV yq Y
(7.3)
Note that, using sup,~, t~ #1752 log(1 + t)* < oo, for z € U(ry),
B3 Ba
K;l (24 V yd)’(ﬁl’f@) log <1 + Za v yd) log ( L ) dy
R4 NB(20,1/n) 2d N\ Yd 2d V Yd
y 1 Ba
<k ) 0 | (va/ 70) 8 1o (1 ¥ ) log (—) dy
R? NB(z0,1/n)N{za<ya} <d Yd
5 B3 1 Ba
+ K;l(zd)_(ﬁl_ﬁz)/ log <1 + —d> log (—) dy
R4 NB(20,1/n)N{z4>ya} Ya Zd
B3+Ba
ScKnl(Zd)(mﬁQ)/ log (_) dy < Czd*(ﬁlfﬁz) (7.4)
R4 NB(zp,1/n) Ya
and
B3 Ba
lim K, (za V ya)" ") log (1 i yd) log ( > dy =2,
n—00 RLNB(z0,1/n) Zd N\ Yd Zd V Yd

Moreover, by Lemma [5.12) E, [V (Y)?dt < oo for all x € U(ry). Thus we can use the
dominated convergence theorem to get that for all x € U(r),
1 Ba
1 dydt
% <Ytd v yd> ’

TU (rg) Y
lim KglEgj/ 0 (Y;d)ﬁl/ (Y;d V. Zd) (B1—B2) log (1 + yd)
n—c0 0 R? AB(20,1/n) Vi Ay

TU(ro) d d TU (o) d
— ]Ea:/ (Y; )51 (Y; )*(Bl*ﬁz)dt — Ez/ (Y; )/Bzdt. (7.5)
0 0
Combining (|7.5)) with Lemma we conclude that ((7.2) holds true. O
Proof of Theorem [1.4} From (7.3), (7.4) and Lemma we see that for all z € U(ry),
gn(T)

TU (rg) Yd V, B3 1 Ba
S CK;IEQ;/ 0 (Ytd)ﬁl / (Y;d)—(ﬂl—@) log (1 + td yd) log ( _ > dydt
0 R? (B(20,1/n) YN ya YV ya

TU(rg)
< (K, / " (Yrdt < calite (7.6)
0
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Thus the g,’s are non-negative functions in R% which are harmonic in R% N B(0,27%rq) with
respect to YEH# and vanish continuously on OR% N B(0,27%ry). Therefore, by (7.1,

0l _ o W

gn(w) (wa)?
where w = (0,273r) and Csy = Cs0(272r). Thus by (7.6), for all y € RY N B(0,273r),

for all y € DN B(0,2 3r),

. . (yd>p P
lim sup g, (y) < Csolimsup g, (w) oy S ca(ya)®.

n—o00 n—o00 ( d)p o
This and (7.2) imply that for all z = 2 = (0,s) € R? with s € (0,2 %ary), a2t < egh
which gives a contradiction because 5y + a < p . O

8. PROOF OF LEMMA 5.8

In this section we prove Lemmal[5.8, Throughout this section, we assume that (B1), (B4),
(B7), (B8) and hold. Recall that, because of (B4), we can, without loss of generality,
assume that B(z,z) = 1. We start with three auxiliary lemmas estimating certain integrals,
and then state and prove a technical lemma needed later. We then define the function v, show
that (b1), (b2), (c1) and (c2) are immediate consequences of the definition of ¥, and that (b3)
and (c3) follow directly from Lemma and Lemma (a). The remaining part, namely the
proof of (a), is divided into two cases depending on the location of the point z € U.

8.1. Auxiliary lemmas. In the next lemma and throughout the section we use the notation
R? = {z = (T,74) € R?: x4 < 0},

Lemma 8.1. For a € [1,2),

1 Lo € (1,2);
/ d—i—a—ldy < 041 K “ ( ) zeU.
R? N{|y—z|<6} ly — 2| |log zq|, a=1,
Proof. Immediate by enlarging the area of integration to B(z,6) \ B(z, z4). O

Lemma 8.2. Fork € N, let I(k) := fD(7,7) ly — 2|74 *B(y, 2) dy. There exists Cyg > 0 such
that
(a) if a <k < a+ B, then I(k) < Cizk™|log 24| #* for z € D(271,271);
(b) if k is the smallest integer such that k > a + By, then I(k) < Cuzt |log zq% for
ze D271 27h).

Proof. We write

B d B d
J Bl | Bl gy
D(7, 1) {|ly—z|<z4} ly — 2| D(7, 1) {|ly—z|>24} ly — 2|

Then, by using that B(y, z) < (Y,
24
1< C’l/ ly — 2|7 Ry < cl/ roiethdr < gpzke
D(7, 1) {|ly—z|<za} 0

For 11 we use Lemma (b) together with the fact that |y| < 7v/2 for y € D(7,7), to get
the estimate B(y, z) < c32,'|1og 24| ® |y — 2|7%1. This implies that
32| log 24| ZC; rrime btk < e 2h T log 2Bt ifa < k< a4 fi;
Cq

IT < < e325| log z4]% - rdr < c52h % log z4|% ! if o <k=a+pb;
c3zi| log 24| fC; rrlme Btk dr < g2 | log 24 if k> o+ f;.

z
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O
Lemma 8.3. For a € [1,2),
1 Lo € (1,2);
/ — |11 = By, 2)|dy < Cus K a€(1,2) ze D271, 27h).
b |y — 2[4 |log zq|, a=1,
Proof. We write
1 — B(y,
/ |—(ﬁwi)1|dy:/ +/ —I+11.
D(7,7) ly — 2| D(7, 1) {ly—z|<z4/2} D(7,1){|y—z|>2a/2}
If y € B(z,27'2,), then |y — 2| < 2z4/2 < yq and y4 < 24 hence by (B4), we have that
z4/2
I< clzge/ ly — 2|04y = szd_e/ Py = c3257 .
ly—2|<zq4/2 0
Clearly, |1 — B(y, z)| < ¢4. Therefore,
K l1—a
; € (1,2);
I < / |y_Z|—d—oz+1dy _ 05/ o< co 24 : (07 ( )
D(7,7)"{|y—2|>2a/2} /2 log =, a=1
O

Lemma 8.4. Let N > 2 be an integer and C' > 0. Fort,s > 0, let

¢ N N-—1 + N—k
F(t,S,C,N) = (g) —CZ (g) |10g$|1+/83
k=1

There exists & = k(C, N, 83) € (0,e71) such that if s <& and t > s'/2, then F(t,s;C, N) > 0.
Proof. By defining ¢; = C(N — 1), we can rewrite F'(t,s;C, N) in the form

N-1 N—k
1 t t\*
F(t,S,O,N) = m (g) ((;) —Cl|10g8|1+63>
k=1

=, A
> - - 1 1483
_N—lz(s> (s c1|log s| )

k=1

provided that ¢ > s. Since lim,_,os'/?|logs|®*! = 0, there exists & = (c1,33) € (0,e7)
such that for s < % we have ¢;5"/?|logs|®*! < 1. If now t > s'/2 | then t/s'/? > 1 >
c15Y2|log s|%+1 implying t/s — ci|log s|/%*! > 0. This implies that F(t,s;C,N) > 0 for
s <k andt > s'/2. O

8.2. Definition of ¢. Let N := |a + (1] + 1 (the smallest integer larger than o + /31) and
assume v > 2N + 2. Let ¢ be a non-negative CV function in the upper half space with
bounded support such that

g, ye D(272,27%);
vly) =91  yeDE2,2\U;
0, yeD(3,3),
and ¥(y) > 477 for y € U\ D(272,272). The function % in the half space can be constructed

so that, for y = (¥, yq) with y4 € (0, %), ¥ (y) depends on y only. We extend v to be identically
zero in the lower half space.
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We recall the definition of the operator L? from (5.9). For o € (0,1), L5¢(z) is not really
a principal value integral. For a € [1,2), it follows from Proposition (a) that, for z € RY,
the principal value integral L51(z) can be interpreted as the expression after the last equality
in the display below

) = ) = VN o =), [ O

R |y — 2|**e < |y — zldte

U(y) —¥(2)

— o|d+
R% ly — 2|+

” B PSR e W22 1 = B0, - 1y

- [, TR D,
~ e R Z%Ziﬁf*“ W=D gy ay

o T 0=y [ s 0=
B /Rin{y—zke} s w(z : Zvli(‘f) e Z)B(y’ 2)dy

—¥(2) /]R I WB(% 2)dy

I U ==

Thus, since |y| > |y — 2| — |2| > 5 for z € U and |y — 2| > 6, we have
Lable) < /Rinﬂyz«s} e MIZ?i - Zji(j) o Z)B(y’ 2)dy
+ /R i1 VQTZ(JZE 'ﬁ; 2 (B(y, 2) —1)dy — /R . VQTZ(JZE 'ij; Z>dy. (8.1)

8.3. Proof of Lemma (b) and (c). Let p € ((a —1)4,a+ 31), and recall that h,(z) =
281paqy(z). Define ¢ := h, — 1. The functioil ¢ is obviously non—positivg on U°, hence
Lemma (b2) holds true. Moreover, since 1((0,z4)) = 0, we have that ¢((0,z4)) = a4, for
(0,24) € U, which is Lemma (bl). Similarly, for (¢ —1); < ¢ < p,the function ¢ := h,—1
satisfies Lemma 5.8 (c1) and (c2). Furthermore Lemma [5.8| (b3) and (c¢3) follow from Lemma
and Lemma [5.8 (a). In fact,

LB¢(2) = LPhy(z) — LP(z) > (—Ch — Co)zy" |log zal™,  x € U(ro).
By Lemma [5.6| (c) and part (a) of this lemma, for all € U we have

LBQO(JT) = Lth(QT) — LB’QD([L’) > —ngzg_o‘ - (027 + ng)$§1| log $d|’83.

([

8.4. Proof of Lemma (a). It remains to prove Lemma (a). The proof is split into
two cases: (i) z € D(272,272), and (ii) 2 € U \ D(27%,272).
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8.4.1. Proof when z € D(272,272). Throughout this subsection we assume that z € D(272 272)
so that 1(z) = ¥(2) = |Z|7. We will use Taylor’s theorem in d — 1 variables for the function
¥ (Z) so we first briefly go over the notation. For a mulit-index p = (p1, ..., ps—1), we define
lpl :=p1+ -+ pa—1 and

D) = ool = 50D

= P1 Pd—1 *
821 A azd_l

Let further p! = py!...pg_1! and 2P = 24" ... 27", Then (recall that N = |a + (1] + 1)

R I L e e (5.2

! P!
lp|<N-1 lp|=N

for some ¢ € (0,1). It is easy to see that, for any non-negative integer k < N,

|5 2 < oy (53

|
=t

for some ¢(y, k) > 0. Similarly, the terms in Taylor’s formula (8.2)) are estimated as

> apﬁ'(a =2 <CHEMMT-2"<CRM My -2, k<N-1, (84
lol=k
(e + (1 - 0)3)
|3 PUTHR=9D G zy| < oy - =, &
Ipl=N '

for some constants C(k) = C(v,k) >0, k=0,1,...,N.
Recall that N = |a+ 1] + 1 and v > 2N + 2. Suppose first that a € (0,1) and expand
LBy (2) further:

U(y) — ¥(z) 1
LB = By, z)dy — B(y, z)d
a¥(2) /Rim{|yz|<6} ly — z|d+o (y, 2)dy — ¥(2) /Rim{|yz|>6} ly — z[d+o (y, 2)dy
Y(y) —¥(2)
—~ B d 8.6
S/Riﬂ{|y—z|<6} |y — z|dte (9. 2)dy (8.6)

Y(y) —¥(z) — Z1<\,;\<N_1 a%ﬁ&(g_ z)F
== — — - B ) d
/Riﬁ{|yz|<6} |y - Z|d+a (y Z) Y
0" p(z) (y—=2)°
" /]R oty — Z|d+"‘8<y’ =)y

Elly=213<6 o p<n—1

a 77—
+ VB W=2) gy = 1+ 1T+ 111,
R ]| 1 |y — z|¢te
T{ly—=[}<6

When «a € [1,2), we use (8.1)) to expand LB further to get

Y(y) —v(z) — Z1<| |<N-1 M(g_ z)F
LB =lF= £ B d
wasf, T (4. 2)dy
Y(z) (y—2)°
B(y, z)d
+ /Rim{|y—z|}<6 e pl |y — z|dte (y, 2)dy
Vi(z) - (y — 2) Vi(z) - (y — 2)

(B(y,2) — 1) dy — /

o
RIA{ly—z<6) Y — 2|TTe RO A{ly—z<6} Y — 2T
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= I+ I1I+1V.

By using (8.2) we estimate the numerator in I by (8.5). The obtained integral is then
estimated by use of Lemma (b) by a constant multiple of ;' | log 24| to get that

I < C(N)252" |log 24| .

The terms in /1 are estimated by (8.4)), and the obtained integrals by Lemma (a) to get
that

=

—1
IT <Y O ZP 28 | log 24|
2

By the same argument we get the estimate

I1T < (D)2 257 |log 24|71
The terms in IV are estimated by use Lemmas [8.3] and [8.1] to get that
IV < clZ2]71 22 log 24| < c|Z]7 71227 log 24| .

Combining the estimates for I, 11, 111 and IV, we get that for a € (0,2) it holds that

LEB(z) < ( ' log 24| +Z| 2R log 24 Iﬁg“) (8.7)

e
[|

for some constant C’\ > 0.

Hence
LPy(2)
R N1
< 20 |log 2| + C Z 1217 F A log 24| # T — C(a, p, B)|Z]7 2, (8.8)
k=1

= 27 |log 24| — C(a B)"gp—N El ) C NZI El | o | log z4|% ™
= d g Zd ) P Zg_N 2 C(Oé,p g2d
- N (2 N\
= ngl |log 24" — C(a, p, B) |ZLN ((u) —C Z (%) | log zd|ﬁ3+1> , (8.9)

d

where C' := a/C(oz,p, B),
Now we take z4 < kK(C, N) (where kK comes from Lemma and |z| > Z;/ ?. Then it follows
from and Lemma [8.4] that

~y—N
L5y(2) < Gz | log 24l — Clasp, B) L

F(|z|,24;C,N) < 6251| logzd|’83.

Zd

In case when |z] < zcl/ * and z; < R, we estimate the middle term in (8.8) as

3 ek RSP C N o (/R
2 2y [log 2| T = ———75 ( : 2) (z/°)"| log z4|7**
k=1 Zq N(Zd/ )l (za)"/
2\ 3-3-a st (N JFNYE 1
= (1—/2> % | log za|™ Z(l—/g> (247)
Zd k=1 ~d

a1
< zdg 27" log zq) BTN — 1) < ezt
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In the last line we first used that |E|/ZC1/2 <1 and z; <1 and then that v/2 —1/2 —a > .
Thus, in this case we can disregard the last term in and obtain again that LBy(z) <
044251| log Zd|63 with 044 = Cé\.

Finally, it follows from that for z € U with 24 > k := & it holds that L5(2) < Cys
for some constant Cy5 = Cy5(k) > 0.

Set Cys := Cus((k71(log2)%)) vV 1)71. Then LBy(z) < (Cuy V Cug)zs'|log 24| for all z €
D(272,27%).

8.4.2. Proof when z € U \ D(27%,272). Throughout this subsection we assume that z €
U\ D(27%,272). We show that there exist constants Cy; > 0 and x € (0,1/2) such that (i)
for 2y < k and |Z] € (1/4,1) it holds that LBy(z) < 0; (ii) For z4 € [k,1/2) and |2] € (1/4,1)
it holds that L5y(2) < Cyr.

When «a € (0,1) we see from that

1
o <e | Bl dy.
pr7) [y — z[dte!
Combining this with Lemma [8.2| we get that
LBy (2) < Cyg (zgl + z}l_o‘) |log 24| %!, 2z€U. (8.10)

When « € [1,2) we use (8.1)) to estimate

1 1
ng(z < c(/ ——=B(y, 2 dy+/ |1 - B(y, 2)| dy
) D(7,7) \y - Z|d+(k2 ( ) D(,7) |y — z\d+a*1‘ ( )

1
+/ ——B(y,2)dy | .
R A{|y—z|<6} [Y — 2[T7!

Combining this with Lemmas [8.1H8.3| we get that there exists a positive constant, which by
slight abuse of notation we denote by Cys > 0, such that

LBy (2) < Cyg <z§_a + 20 4 zcll_o‘> |log zq|# ™, 2€U. (8.11)

Let
f(zq) := (zg LA zd> |log 24|71 .
Assume that |Z] € (471,1). By the assumption on ), we have that ¥(z) = ¥(Z,24) > 477.
Since lim,, o f(z4) = 0, we can choose k > 0 so that
—
Cla,p, B)A™ _

0
Cus N

f(za) —

for all z4 € (0, ). Then,
LPy(z) = Lgu(z) — Cla,p, B)zg*y(2) < Lgi(2) — Cla,p, B)A 725"

< Cusag® ((f(zd) - %488)4_7) <0

for all z € U\ D(272,272) with |z] € (471, 1) and z4 € (0, k).
Finally, it follows from (8.10)) and (8.11]) that there exists Cy; = Cy7(x) such that LBy (z) <
LBy (2) < Cyy for all z € U with z4 > k. O
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9. PROOFS OF LEMMAS 5.9 AND 5.11-5.13

Before we give the proofs of these lemmas, we first do some preparation.

Let v € C®°(R?) be a non-negative smooth radial function such that v(y) = 0 for |y| >
1 and [p,v(y)dy = 1. For any a > 0, set D(a) := {& = (T,z4) € R? : 24 > a} and
Uds(r) :=={y € U(r) : dyy > a}. We write U, for U,(1) and recall that U = D(1/2,1/2). For
b>10 and k > 1, set v(y) := b*v(bFy). Next we define gy, := vg * (91p(s-+)) for a bounded
function g vanishing on R?\ R%. Since b™% < 57%, we have g, € C°(R%) and hence LPg; is
defined everywhere. Also note that vy * g € C2°(R%;R?) and thus LB(vy,  g) is well defined
(cf. Subsection 3.2).

Let (ax)r>1 be a decreasing sequence of positive numbers such that limy_, ar = 0 and

ap > 9—k(B1/2+1)/(1+a+351/2) > 9=k

Lemma 9.1. Let g : R* — [0,1] be a Borel function vanishing on R\ RL. For any z € U it
holds that

klim Lg% g —gr)(2) = 0. (9.1)
— 00
Moreover, there exists Cyg > 0 independent of g such that for all k > 2 and z € U,,

0 < LB(vp % g — gi)(2) < Cug(2/3)FA/2H0 0 (9.2)

Proof. Let z € U,,. We first estimate the difference

(e * 9)(y) = gr(y)) = (e * 9)(2) — gr(2))
R4, |y—z|>e |y - Z’d+a
—C(Oé,p, B)Z;a(vk *g — gk)(2>

Note that for & > 2, v € B(0,b*) and y € R% with yq4 > 37", yg —uq > 37" —107F > 57,
Therefore

LB x g — gp)(2) = lim

e—0

(y,2) dy

Since vy, is supported in B(0,b7*), for all k > 2 and z € R? with z4 > a; > 27F,

/Rd<1 — 1D(57k)(2 —u))hy(z — u)vp(u)du = 0.

Thus (v * g — gr)(2) = 0. Because of the same reason we have that for z € U,,,

/ ((or % 9) (W) — gr(y)) — ((ve * 9)(2) — gr(2))
Ri,|y—z|>5

|y — z|d+e
L
B
§/ vk(u)du/ %dy
R4 R,y <3~ ly — 2|

B1/2
1
< Cl/ dta ( - ) dy
ya<3—F ly — 2| ly — 2|

00 td_2

—k\B1/2+1
< 02(3 ) /0 (t2 + czé)(d+a+51/2)/2 dt

d—2

_ —k\B1/2+1 ,—1—a—B1/2 - S
= c3(377) T 2y /0 (s2 + 1)(@+atBi/2)2 ds

B(y,z)dy

1 — 1)y — _
ly—z|>eya<3—* JRA |y — z|¢te

< 64(2/3)k(61/2+1)251 )
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In the third line we used that 0 < g <1, in the fourth the fact that (together with ((5.2)))
B1 B3 B1/2
A\ V Ny —
(yd A 1) log (1 + Wa ¥ za) Ay Z|> <c ( Yi_ p 1) ,

ly — 2| Ya N za Ny — 2| ly — 2|
in the fifth integration in polar coordinates in R9~!, in the sixth the change of variables
t = ¢'/?z4s, and in the last line the fact that 2_’“(51/2“)2;170‘7351/2 < 1 which follows from

zq > a;, and the choice of a;. Note also that it is clear from the second line that the first line
is non-negative. Thus by letting e — 0 we get for z € U,,,

0< LBux g — g)(=) < ca(2/3)HA/2D200

Now take z € U. Then there exists ky > 1 such that z € U,, for all k£ > ko, and it follows
from above that

lim LB(v, * g — gx)(2) = 0.

k—o0 0

Lemma 9.2. Assume that g : RY — [0,1] is a function which is C* on D(1,1). For any
k>2, 2€U,, and |u] <b7*,
gly—u)—glz—u
p.v./ ( ) =4 )B(y, 2) dy (9.4)
R

|y — 2|4+

d
+
is well defined. Moreover, for z € U,, ,

Lf(vk xg)(z) = /Rd v (u) (p.v./R gy —u) —g(z — U>B(y, 2) dy) du | (9.5)

. ly — 2|4t
and there exists Cso(z) > 0 such that |LB(vy x g)(2)| < Cso(2) for all k > 2.
Proof. Let z € U,, and |u| < b%. Let G(y, z,u) := (9(y — u) — g(z — u))|y — 2|7, For
0 <e<n< z4/10, consider

/ Gy, 2 w)B(y, =) dy — / Gy, 2 w)B(y, =) dy
Ri,e<|y—z\

RY m<|y—2|

- / Gy, = w)B(y, =) dy
R4 e<|y—z|<n

_ / Gy / Gly. 2 u)(B(y, =) — 1) dy

e<|ly—z|<n

= 1+1I.
Since g is C? on D(1,1) and y — u,z —u € D(1,1), we see that

1| < / lg(y —u) — g(z —u) = Vg(z — u)L(y—u)-(z—u)<1) - (¥ — 2)] dy
" Je<ly—u)—(—u)l<n [(y —u) — (2 — u)|d+e
<c¢  sup  [0Pg(w)] ly — 2|77 dy = e (2) (P> — €79).

weB(z,24/5) e<|y—z|<n
Further, by using the mean value theorem in the first line and (B4) in the second, we get

1By, z) — 1]

1< sw [Vg(w)l .

wEB(2,24/5) e<ly—z|<n |Y

—d—a |y - Z| ’
<o [ - (—A dy
e<|ly—z|<n Yd I\ Zd
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< C4C3(Z)Zd_0/ ly — 2|77 dy = c5(2) (n? ot — 7oty
e<ly—z|<n

The estimates for I and I imply that the principal value integral in (9.4)) is well defined.
Let z € U,,. For € < 24/10 and |u| < b~ we have

/ Gy, 2, u)Bly, =) dy
RY Jy—z|>e

< +

/ Gy, 2, u)Bly, =) dy
Rin—Z\ZZd/lO

= [IT+1V.

/ G(y, 2 u)B(y, =) dy
RY e<|y—z|<zq/10

By estimating g by 1, we get that
17 < 2/ ly — 2|7 dy < o2 = cr(2) .
ly—z|>2a/10
The integral in IV is estimated in I and I1 with n = z;/10, so we have

IV < cy(2)(24/10)* 7 + C5(Z)<Zd/10)9_a+1 = cg(2).
Thus we have that

< cg(2) - (9.6)

/ ( ) dia )B(y,Z) dy
R‘i,\yfz|>e |y - Z|

Hence we can use the dominated convergence theorem to conclude that

L (v g)() = lim e 9)) = (o * 9B gy, 2) ay

=0 ]R‘i,|y—z\>e |y - Z|d+a
= lim v (u) / 9y —u) = ‘ZS — u)B(y, 2) dy du
€0 |u|<b=F Ri,|y—z|>e |y - Z’
. 9y —u) — g(z —u)
= v (u) hm/ B(y,z)dy | du,
/u<b_k (EHO R‘_i“\yfz|>e |y - z|d+a
which is (9.5). The last statement follows from . O

We note also that since ¢ is continuous in D(1,1), it holds that limy . (vg * g)(2) = g(2)
for all z € D(1,1).
Recall that the function h, was defined in Section : he(x) = 291pa).

Lemma 9.3. Let g € (o — 1), + f1) and set

a4 1= 9 HaTIEEB)/ (@158 \/ 9—k(248)/(Ltact §51—a)

There ezists a constant Cs; > 0 such that for any k > 1 and z € U, ,

|LP (v % hy)(2) — LPhy(2)| < Csy (g) : (9.7)

In particular, the functions z — |LP(vy, % hy)(2) — LPh,(2)| are all bounded by the constant
Csion U, and for any z € U, limy_o0 | LB (vy, % he)(2) — LPhy(2)| = 0.
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Proof. First note that a; > 27" since the first term in its definition is larger than 27%. Next,
by using Lemma [9.2] E 2| with g = hy in the third line below we see that

LE(vg * hy)(2)
= Lg( Uk*h) Cla, p, B)zg  (vk * hy)(2)
(p v /Rd |yu>_ Zlgj-gzz — U)B(y7 Z)dy> du — C’(a,p, B)Zc;a(vk * hQ>(Z)
- / (o) (p e e z)dy> au
+C(,p, B)z5(hg(2) — (vi * hg)(2)) + LPhy(2).

Note that for z € U,,,

[hg(2) = (vk * hg)(2)] = /B(O - () (hg(2) = hg(z = w))du| < co(1/5)"2]. (9.8)
Set b = 10V 24@=2-+3_ Now we write, for u € B(0,b7"),
[ =)=l ) =
R |y — z|¢re ,

+

—"_ /
/[)(1+b—k,1+b—k)\U,yd>5—k D(1+b=%14+b= k) yg<5-k

+/ +/ = I1+I1I+I1I1+1V.
Uya>5"k ly—z|>2"124 Uya>5"%,B(z,24/2)

We deal with I first. For u € B(0,b%),

] = / —|—/ = Il + [2.
D(14+b=F 14+b=F)\D(1—b—k 1-b=Fk),y;>5-F D(1—b=F 1—b—k\U,ys>5-*
Obviously, we have |I;]| < ¢;b*.
Let Ay := (D(1=b"%1-b"")\U)N{y:ys> 5%} Then, we have
(Ya — ua)? — yg — (24 — ug)? — 27)

|| = B(y, z)dy

‘ 0, ly — z|dta |

4(ya — 2a) - Jy (20— ua+ 0(ya — 22))"" = (24 + O(ya — 2a)""")) db

= ‘ \y—2|d+a B(ya Z)dyl

< CQb*kQ?)k(qf?)— < 022*’6(((1*2)—%)7
where in the first inequality we use mean value theorem inside the integral in the numerator.
For 11, we have
yd + 28+ bk
DO+ 1+b-F)gy<s—r Y — 2]

Similarly as in the proof of Lemma [9.1| we first estimate

yd 4+ bk
/ WB(y,Z)dy

D(14b—*,14b—F) yd<5 k |?/

yitE o ke
d+a+3p dyady
Rd-1 —Z‘ a+3 061
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00 td—Q
< 5—k(Q+1+%ﬂ1) dt
=G B (tQ + ng)(d-&-oa—&-%ﬁl)/?

d—2
=c 5—k(q+1+%,31) *1*047551 /OO S d
0 (24 1)(d+a+§ﬂ1)/2
< cr(2/B)kat A 0
For the remaining part, we use a similar argument:

q
/ — 2By, z)dy

d
D(14b-F 14b-k) yg<sk |y — 2[T

5k /51/2
< cgz dyady
8d/Rd1/ ’y Z|d+°‘+ 51 Yaay

—2
< 15~ k(1+181) dt
Cozy 0 (tg +Czd)(d+a+%ﬁ1)/2

T N o d
= 2
ClOZd Zd ; (82 n 1)(d+o¢+%ﬁ1)/2 S

1_a_tL
< oy (4)5)FAF Bk AT10m300 (g 15 k(g8 0

Thus

11| < c1a((2/5)Mat 1435 4 (4/5)k0+350) 0

Let B :=UN{ys>5"n{y:|y— 2zl >27'2;}. Then, we have

/ (Ya — ua)? — yg — (20 — ua)? — 24
By

|y _ Z‘d-l—a

(11| = >B(y, z)dy

B / Ya — Zd) fo 2a — g+ 0(ya — 2))7" — (24 + 0(ya — 24))""") O

- ‘y_z‘dJra B(ya Z)dy
1
< epgb”r2R / W
U,ly—z|>2"1z4 |y - Z| “

1 1
< C15(4/5) 2" 3k( LV log ) < 016<4/5) Zd(’Zd \ log Z-),
d

where in the first inequality we use mean value theorem inside the integral in the numera—
tor and the fact the derivative of the integrand is bounded above by ¢(57% — p=*)=(1=2)- <
c23k(P=2)—

Let F(yd, zd,ud) = q(q — 1) fol ((Zd — Uq + H(yd — Zd))q_2 — (Zd + H(yd — Zd>>q_2) (1 — 9)d6

For § € [0,1], u € B(0,b7%) and y € B(z, 32a), za — ta + 0(ya — z4) and zq + 0(yq — zq) are
both comparable with z;. Thus, for IV, we have for large k,

IR R Y B
|]V| _ / (yd ud) Ya (Elid ud) Zd)[):o(y7 Z)dy'
Uya>5—F,B(2,27124) |y - Z| ¢
q(q — 1) (Ya — 2a)*F (Ya, 2a, ta
= / ( ( )d+a )B(.%Z)dy
Uya>5—F B(2,2=124) ly — 2|

— — 1 —1l-« k_g+l—o
S Cl7b qu 3/ —dy Clgb Z < C18(4/5) a 3
¢ B(z,271z4) |y - Z|d+a_2 !

where in the first inequality we used the mean value theorem inside the integral in the numer-
ator.
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By putting together and the estimates for I, I1 , II] and IV we see that is true
for some constant C' (independent of z and k > 1). O

Recall that the function 9 in the next lemma was introduced in Section [§]

Lemma 9.4. Let (a)r>1 be a decreasing sequence of positive numbers such that limy_,o ap = 0
and ay, > 27FC+81)/2+e+38)  There erists a constant Cso > 0 such that for every k > 1 and
z € Uy,

| LB (v, % ) (2) — LPY(2)| < Cso (%) : (9.9)

In particular, for any z € U, limy_,o0 | LB (v % ¥)(2) — LB4y(2)| = 0.

Proof. The proof is similar to the proof of Lemma (9.3, By using Lemma 9.2 with ¢ = ¢ in
the third line below we see that

LE (g, % ¥)(2)
= La(ve * ¥)(2) = Cla, p, B)zg® (ve * ¥)(2)

= /Rd v (u) (p.v. » Ply —w) — v - U)B(y, z)dy) du — C(a,p, B)z; “ (v, * ) (2)

|y — Z|d+o¢

B / (@) (p i ) ] ek e G4 () B A ) P dy) "

|y _ Z|d+a

+Cla,p, B2z (1(2) — (v 9)(2)) + LEW(2).
Set b =10 v 24@=2-+3_ Note that for z € U,,,

BE) — e =] [ e v -] <@t 910

Now we write, for u € B(0,b7*),

Yy —u) =Pz —u) = Yy - ¢(Z))B

— |d+
R% ly — z|dte

(y, 2)dy

—"_ /
/D(3+b—k,3+b—k)\U,yd>5—’f D(3+b=% 3+b=Fk) yg<5-k

+/ +/ =1+ I1I+1I1+1V.
vad>57k7|y_zl>27lzd vad>57ka(zvzd/2)

We deal with I first. For u € B(0,b7%),
- / + / — L+ .
D(34+b=*,34+b=F)\D(3—b=Fk 3—b=Fk) y;>5=F D(3—b=*,3—b=F)\U,yg>5=*

Obviously, we have |I;| < cb™. Let Ay := (D(3—b"%3—-b"")\U)N{y:ys> 5"} Then,
we have

Yy —u) —P(y) — (V(z —u) — ¢(2)B

m=1f 2l e
1
| [ G T M) - Vel = I, o
Ag B

where in the first inequality we use mean value theorem inside the integral in the numerator.
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For 11, we have

1
11| < 6/ T By, 2)dy
D(3+b—F 34b—F) yg<5—F ly — 2|

5=k ,31/2
dyqdy
/Rd 1/ ’y Z|d+a+ b1 Ydy

4d—2
= 0o @+ czd)<d+a+%ﬁ1>/2

g1 o] Sd—z
— o5 k+3B)  Tlmamah d
‘ “ 0 (524 @rarban ™

< 6(4/5)k(1+%ﬁl)Q—k(2+61)z;1—a—%51 < 6(4/5)k(1+%/81)zé+517

since @y, > 2 FC2+81)/(2+a+3061)
Let By :==UN{ya > 5"} N{y: |y — 2| > 27" 24}. Then, we have

)= [ PO S R gy
| R Tk by =) = T oty = )

ly — z|d+a B(y,z)dy‘

1
< bt / -y
U,ly—z|>2"124 |y - Z|d+a_1
1

1
c(4/5)" 27 (27 V1og —) < e(4/5)F23(2 7 v 1og —),
Zd Zd

where in the first inequality we use mean value theorem inside the integral in the numerator
and the fact the derivative of the integrand is bounded.

Let F(y,z,u) := fol (V2(z—u+0(y —2)) = V(2 +0(y — 2))) (1 — §)df. For IV, we
have

Yy —u) —Py) — @z —u) —P(2))
= B(y, z)d
| | ‘ /U,yd>5_k,B(z,2—1zd) |y — z’d+a (y Z) y‘
(y—2)®(y—2) Fly, zu)
N B(y, 2)d
| \/Uyd>5 k B(2,27124) ’y — Z’d+o¢ (y7 Z) y‘

1
gcb—k/ Ay =ch R
B(z,2712q) |y - Z|d+a 2

where in the first inequality we use mean value theorem inside the integral in the numerator.
By putting together (9.10) and estimates for I, I1 , I1] and IV we see that is true
for some constant C' (independent of z and k > 1). O

Lemma 9.5. Let r < 1. For every x € U(r) it holds that
TU(r)
B (Vi) = hola) +Bx [ LOhy(Y0) ds. (9.11)
0

Proof. Set gy := v * (hplpz-+)). By combining Lemmas and (with ¢ = p), we see
that for every z € U(r) with r < 1/2,

lim [LPgy(z) — LPh,(2)| =0
k—o0



MARKOV PROCESSES WITH JUMP KERNELS DECAYING AT THE BOUNDARY 55

and |LBgy(z) — LBh,(2)| is bounded by the constant C5; > 0. Let € U(r), r < 1. There
is ko > 1 such that = € U, (r) for all k > ky. Note that since g € C’fo(]Ri), it follows from
Proposition [3.7 that for all ¢ > 0,

t
]E"E Lgk(n/\TUak (?“))] = gk(x) + ]Ex / 1S<TUak(T) Lng(i/s) dS :
0

Clearly, limy_, o TUay (r) = TU(r)- Since g — hy, as k — 0o, we get that the left-hand side above
converges to E; [, (Yirr,,,)]. Further, by Lemma

hm <15<TUak(7") Lng(Ys) - 1S<TU(r) LBhp(YS)) - Oa

k—o0

18<TUak<T) Lng’(Y:s) - 18<7'U(T) LBhp(Y;)
5.6 (a), 0 > LBh,(2) > —Chy25"|log z4|%, and hence that

and

is bounded by the constant C5; > 0. By Lemma

t
Em/ Locry, LPhp(Ys)| ds < oo
0

Thus we can use the dominated convergence theorem to conclude that

t t
: B _ B
klgxoloEm/o Locn,, o LP0u(Y2) ds _EZ/O Loy, LBy (V) ds.

By letting t — oo we obtain ((9.11)). O

Proof of Lemma . From Lemma (b) we know that ¢(z) = 2%, for all z = (0, z,),
Pp(x) < 0 for z € U°NRE and LB¢(x) > —Cy0 [ log z4|® for all z € U. In particular,
LB¢(x) > —Cs for all x € U.

Let gr = v * (@1lp(s-+y). It follows from Lemmas , and that limy o [LPgr(2) —
LB¢(z)| = 0 for every z € U, and the sequence of functions |LPg.(z) — LB¢(2)| on U is

bounded by some constant C. Then LPgy(z) > LB¢(2) — C > —C3y — C for every z € U.
Note that since gy € C2°(R%), it follows from Proposition that for all t > 0,

t
Bol04 (Vi ) = 0(0) + o [ Lucy, Lo0u(Y) ds.
0

Clearly, limy_,o T, = TU- Since g — ¢ as k — oo, we get that the left-hand side above
converges to E,[¢(Yinr,)]. Further

llm <1S<TUak Lng;(}/:S)> = 15<TULB¢(Y:9)

k—o0

and 15<TU% LBg.(Y,) > —Csy — C. Thus we may use Fatou’s lemma to conclude that

t t
Ex/ 15<TULB¢(Y;) ds < lim ianEx/ 18<TU% Lng(Y;,) ds.
0 0

k—o0

By using that the right-hand side above is equal to E,[¢(Yinr, )] —¢(2) and then letting ¢ — oo,
we arrive at

E.[6(Y)] — 6(z) > E, /0 Y LBo(Y,) ds > —CyE, /0 Y (v log YA ds.

Since E,[¢(Y7,)] < 0 and ¢(x) = 2%, this concludes the proof. O
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Proof of Lemma [5.11] Let ¢ := a+ (2. Note that ¢ < p by assumption. By repeating the
proof of Lemma- 5.9| (with h, replaced by h,, and Lemma (5.8 . ) replaced by Lemma .(c)),

we get that z = (0, 24) € U( ),
T (r) T (r)
CaE, / (V)P dt + C,R, / (Y51 log Y% dt > 5.
0 0
By Lemma we have E, [[V(Y,)|log V|% dt < Cosal) for € U. Thus for z € U,
Ex/ (Y;d)52 dt 2 C:;ll(.fg — ngCQgLL’Z) .
0

There exist a; > 0 and C34 > 0 so that the last term is greater than Csyz) whenever 0 < 24 <
ay. By scaling, we can replace U by U(r). O

Proof of Lemma [5.12] Let ¢ := oo+ 8 and 5(z) := hy(x) — hy(x). Note that ¢ < p by
assumption. For z ¢ D(1,1), n(z) = 0, while if z € D(1,1) we have n(z) = 2% — 28, > 0.
Since (o — 1); < ¢ < p, by Lemma (a) and (c), for all z € U we have that L5h,(z) >
—CoeaPt| log 24|% and Lth(m) < —COyx?™® = —Cosx™. Thus, since By < By, we can find
r1 € (0,1/2] such that

LPn(z) = LPhy(z) — LBhy(z) < —Coszl)? + Conl)|logza® < —27'Chsaly?, € U(n)
and, also by Lemma (c),
LPn(z) = LPhy(z) — LOhy(x) > —Cogzy ® — Oz log zal®, 2 € U(r).
Repeating the proof of Lemma [0.5] we get that for x € U(ry),

TU(r1)
EmM%wnzmw+&/“ LEy(Y,) ds.
0

Thus for x € U(ry),

TU
B0V, )) < 1e) 27 Cu [ (V.
0

Since n > 0 everywhere, we get 0 < 28 — 271CysE, [ (V)P dt for all 2 € U(ry). Now -
follows from this and the scaling argument in ((5.13)).

Proof of Lemma Choose ¢ € (p,a) and let n(x) := hy(z) — hy(x), x € R%. For
z ¢ D(1,1), n(z) = 0, while if z € D(1, 1) we have n(z) = 2, — 2§ > 0. By Lemma5.6], for all
z € U(rg) we have that LPh,(z) < 0 and LPh,(z) > Cozz®~%. Thus we can find r; € (0,7
such that

LPn(z) = LPhy(z) — LPhy(x) < —Cos§ 7 < —1, z e U(r). (9.12)

Let gr = v * (Nlpp-+). It follows from Lemmas and applied to h, and h, that

LBg, — LPn on U and the sequence of functions |LPg, — LPn| is bounded by some constant
C > 0. In particular,

— LPgi(2) > —LPn(z)—C>1-C, zeU(r),r<r;. (9.13)
It follows from Proposition [3.7] that for all ¢ > 0,

t
Bolg1 (Vi) = 960) =Ex [ Lo, Lo0u(Y) ds.
0
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As k — oo, the left-hand side converges to E;[1n(Yirr,,, )] — n(z). For the right-hand side we
can use Fatou’s lemma (justified because of (9.13))) to conclude that

t t
lim sup Ex/ 15<TU%(T) Lng(YS) ds < Em/ 1S<TU(T)L87](Y;,) ds < =E.(t A uey) -
0 0

k—o00

Thus we get that E;[1(Yiar,,,)] — n(z) < —E.(t A 7v(), and by letting ¢ — oo,

(@) < Eu[n(Yey,))] = n(#) < —Eamur) -

Thus we get E, 7y < n(x) < of. By using that U(ry) = rU and (p.1), for any = € U,

_ —Q _ P~ _p
Ea:TU =T ETNUTHU < Ty (rlxd)p =T Zg-

This proves the claim with Csg = 7). O
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