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Abstract

In this paper we look at a probabilistic approach to a non-local quadratic form
that has lately attracted some interest. This form is related to a recently introduced
non-local normal derivative. The goal is to construct two Markov processes: one corre-
sponding to that form and the other which is related to a probabilistic interpretation of
the Neumann problem. We also study the Dirichlet-to-Neumann operator for non-local
operators.
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1 Introduction
Let D Ă Rd, d ě 2, be a bounded open set. For α P p0, 2q set kpx, yq “ cpd, αq|x ´ y|´d´α,
x, y P Rd, where cpd, αq is a positive constant. Consider the symmetric bilinear form

pEpu, vq :“
1

2

¨
pRdˆRdqzpDcˆDcq

pupxq ´ upyqqpvpxq ´ vpyqqkpx, yq dy dx , (1.1)

where u, v : Rd Ñ R. This form has recently attracted quite some interest, cf. [6, 8, 13, 19, 21]
where different question related to the form were studied. In particular, [8] introduces a new
”non-local normal derivative”

Nupxq “
ˆ
D

pupxq ´ upyqqkpx, yq dy, x P Rd
zD , (1.2)

with the aim to solve the Neumann problem
"

p´∆qα{2u “ f in D,
Nu “ 0 in RdzD,
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for the fractional Laplacian p´∆qα{2, as well as the corresponding heat equation with homo-
geneous Neumann conditions. The authors offer the following probabilistic interpretation of
the Neumann heat equation:

(1) The solution upx, tq of the Neumann heat equation is the probability distribution of the
position of a particle moving randomly inside D.

(2) When the particle exits D, it immediately comes back into D.

(3) The way in which it comes back inside D is the following: If the particle has gone to
x P RdzD, it may come back to any point y P D, the probability density of jumping
from x to y being proportional to kpx, yq.

In view of the fact that the variational structure of the Neumann problem involves the
symmetric bilinear form pEpu, vq where u and v are functions defined on all of Rd (and not only
on D), the above probabilistic interpretation is somewhat ambiguous. One goal of this note
is to construct two stochastic processes, one living on Rd, the other on D, which might fit the
intended interpretation. To be more precise, for x P Dc, let µpxq :“

´
D
kpx, yqdy, define the

measure mpdxq :“ 1Dpxqdx`1Dcpxqµpxqdx, and set F :“ tu P L2pRd,mpdxqq, pEpu, uq ă 8u.
We will show that ppE ,Fq is a quasi-regular Dirichlet form on L2pRd,mpdxqq, hence there is
a Markov process Y on Rd (more precisely, on RdzBD) properly associated with ppE ,Fq. The
behavior of Y can be described as follows: starting in D, the process moves as the isotropic
stable process until the first exit time from D. At the exit time, it jumps out of D according
to the kernel kpx, yq. It sits at the exit point y for an exponential time with mean one, then
jumps back to D according to probability distribution kpy, xq{kpyq and starts afresh. By
deleting the part of this process which lives in Dc, we get a process with state space D.

The other goal of the note is to look at the corresponding Dirichlet-to-Neumann operator.
In the context of the Laplace operator, the classical Dirichlet-to-Neumann operator can be
roughly described as follows: take a function φ defined on the boundary BD (for simplicity,
here we do not specify the function space that φ belongs to). Let u be the solution of the
Dirichlet boundary value problem (for the Laplacian) with the boundary value φ. Let ψ be
the normal derivative of u. The mapping φ ÞÑ ψ is called the Dirichlet-to-Neumann oper-
ator. There exists a substantial amount of literature on the classical Dirichlet-to-Neumann
problem, the results depending on the roughness of the domain and the appropriate function
spaces, see for example [1, 2, 10, 11] for the functional-analytic approach and [4] for a prob-
abilistic approach. In this note, we solve the Dirichlet-to-Neumann problem for non-local
operators, both probabilistically and analytically, and show that the problem is simpler
than the one for local operators. In view of the non-locality of the underlying operator
(such as the fractional Laplacian), the boundary BD is replaced by the exterior Dc and the
Dirichlet-to-Neumann operator is the mapping between functions defined on Dc. In the an-
alytic approach, we define the Dirichlet-to-Neumann operator on L2pDc, µpxqdxq. For the
Dirichlet-to-Neumann operator (related to the fractional Laplacian) on different function
spaces we refer to [15]. Another closely related research is [12, 17] where the authors study
functions spaces and Dirichlet forms of subordinate reflected diffusions on the closure D of
a (smooth) open set D in the Euclidean space. They obtain a Weyl decomposition which
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is the key to construction of a Dirichlet-to-Neumann operator. Their methods of using the
spectral synthesis techniques are close in spirit to our approach.

Organization of the paper: in the next section we introduce the singular kernel kpx, yq
which generalizes |x ´ y|´d´α and recall the relevant function spaces based on this kernel.
Then we briefly discuss the Dirichlet problem for the corresponding non-local operator and
define the Dirichlet-to-Neumann operator in an analytic way. In Section 4 we prove that
ppE ,Fq is a quasi-regular Dirichlet form on L2pRd,mpdxqq, explain the behavior of the corre-
sponding process Y with state space Rd and argue that its trace on Dc gives a probabilistic
interpretation of the Dirichlet-to-Neumann operator. In the last section, starting from Y ,
we construct a stochastic process Z with the state space D and calculate its bilinear form.
This last process fits the description from [8] that when the particle exits D, it immediately
comes back into D. Finally, in the appendix, we provide an alternative construction of the
process Y and compute its bilinear form.

2 Preliminaries on function spaces
In this section we introduce the singular kernel as the Lévy density of the underlying stochas-
tic process X. We also recall several function spaces related to the process X (or the kernel)
that were studied in [13] (see also [8]). Instead of the fractional Laplacian, we will work with
a more general non-local operators, in fact generators of isotropic Lévy processes.

Let pXt,Pxq be a Lévy process on Rd, d ě 2, with the characteristic exponent Φ of the
form

Φpξq “

ˆ
Rdzt0u

p1´ eixξ,xy ´ ixξ, xy1t|x|ă1uqνpdxq,

that is Exreixξ,Xt´xys “ e´tΦpξq. Here νpdxq is the Lévy measure of X, i.e.,
´
Rdp1^|x|

2qνpdxq ă
8. We will assume that ν has a strictly positive non-increasing radial density (with respect to
Lebesgue measure): νpdxq “ jp|x|qdx with j : p0,8q Ñ p0,8q non-increasing. We introduce
the symmetric kernel kpx, yq :“ jp|x´ y|q, x, y P Rd.

Let D Ă Rd be a bounded open set such that the Lebesgue measure of its boundary BD
is zero. Recall the following function spaces:

W k,2
pRd
q “ tv : Rd

Ñ R; v P L2
pRd
q,

¨
RdˆRd

pvpxq ´ vpyqq2kpx, yq dy dx ă 8u,

W k,2
D pRd

q “ tv P W k,2
pRd
q; v “ 0 a.e. on Dc

u,

V k,2
pDq “ tv : Rd

Ñ R; v|D P L
2
pDq,

¨
DˆRd

pvpxq ´ vpyqq2kpx, yq dy dx ă 8u.

In [13, Definition 2.1] these spaces were denoted by HpRd; kq, HDpRd; kq and V pD; kq re-
spectively.

For u, v P W k,2pRdq set

Epu, vq :“
1

2

¨
RdˆRd

pupxq ´ upyqpvpxq ´ vpyqqkpx, yq dy dx .
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Then pE ,W k,2pRdqq is the regular Dirichlet form corresponding to the L2-semigroup of the
process X. Moreover,

}u}Wk,2pRdq :“
´

}u}2L2pRdq ` Epu, uq
¯1{2

is a Hilbert norm on W k,2pRdq.
By symmetry of kpx, yq we have

ˆ
D

ˆ
Dc
pupxq´ upyqpvpxq´ vpyqqkpx, yq dy dx “

ˆ
Dc

ˆ
D

pupxq´ upyqpvpxq´ vpyqqkpx, yq dy dx.

Let
EDpu, vq :“

1

2

¨
DˆD

pupxq ´ upyqpvpxq ´ vpyqqkpx, yq dy dx ,

and

pEpu, vq :“
1

2

¨
pRdˆRdqzpDcˆDcq

pupxq ´ upyqpvpxq ´ vpyqqkpx, yq dy dx (2.1)

“ EDpu, vq `
ˆ
D

ˆ
Dc
pupxq ´ upyqpvpxq ´ vpyqqkpx, yq dy dx .

In case kpx, yq “ cpd, αq|x´y|´d´α, [8, (3.1), (3.2)] introduces the space Hs
D,0 of functions

u : Rd Ñ R such that }u}2L2pDq `
pEpu, uq ă 8 with the corresponding norm. It is easy to see

that Hs
D,0 “ V k,2pDq in our notation. Denote the corresponding norm by

}u}V k,2pDq :“
´

}u}2L2pDq `
pEpu, uq

¯1{2

.

Clearly, this is an inner product norm. It is proved in [8, Proposition 3.1] that pV k,2pDq,
} ¨ }V k,2pDqq is a Hilbert space. Although kpx, yq “ cpd, αq|x´ y|´d´α in [8], the proof carries
over to kpx, yq as in our setting. Moreover, the proof shows that if punqně1 is a Cauchy
sequence in pV k,2pDq, } ¨ }V k,2pDqq, then a subsequence converges a.e. in Rd.

Let
V k,2
D pDq :“ tu P V k,2

pDq; u “ 0 a.e. in Dc
u “ W k,2

D pRd
q .

Then V k,2
D pDq is a closed subspace of pV k,2pDq, }¨}V k,2pDqq. Indeed, let punqně1 Ă V k,2

D pDq and
u “ limnÑ8 un in pV k,2pDq, } ¨ }V k,2pDqq. Then there is subsequence of punq which converges
a.e. in Rd to u. Hence, u “ 0 a.e. in Dc, i.e. u P V k,2

D pDq.
Let u P L2

DpRdq :“ tv P L2pRdq; v “ 0 a.e. on Dcu. Then

pEpu, uq “ EDpu, uq `
ˆ
D

ˆ
Dc
pupxq ´ upyqq2kpx, yq dy dx

ě

ˆ
D

upxq2
ˆˆ

Dc
kpx, yq dy

˙

dx ě

ˆ
D

upxq2
ˆˆ

Bpx,diampDqqc
jp|x´ y|q dy

˙

dx

ě c

ˆ
D

upxq2 dx ,

4



where c ą 0 is a constant not depending on x P D. Therefore, for any u P L2
DpRdq, and in

particular for any u P V k,2
D pDq, we have that

}u}2L2pDq ď c´1
pEpu, uq ă 8 .

For u P V k,2
D pDq, let }u}2

V k,2D pDq
:“ pEpu, uq. The above inequality shows that pV k,2

D pDq,

} ¨ }V k,2D pDqq is a Hilbert space and the norm } ¨ }V k,2D pDq is equivalent to } ¨ }V k,2pDq.

Lemma 2.1. For u P V k,2pDq, let F : V k,2
D pDq Ñ R be defined by F pvq :“ pEpu, vq, v P

V k,2
D pDq. Then there exists a unique u0 P V

k,2
D pDq such that F pvq “ pEpu0, vq.

Proof. We have that

|F pvq| “ |pEpu, vq| “ |Epu, vq| ď Epu, uq1{2Epv, vq1{2 “ Epu, uq1{2 pEpv, vq1{2 “ Epu, uq1{2}v}V k,2D pDq.

This shows that F is a continuous linear functional on the Hilbert space pV k,2
D pDq, }¨}V k,2D pDqq.

Hence, there exists a unique u0 P V
k,2
D pDq such that F pvq “ pEpu0, vq.

Given φ : Dc Ñ R, we extend it to all of Rd by letting φpxq “ 0 for x P D. Assume that
such extended φ P V k,2pDq. This is equivalent to

ˆ
D

ˆ
Dc
φpxq2kpx, yq dx dy “

ˆ
Dc
φpxq2

ˆ
D

kpx, yq dy dx ă 8 . (2.2)

Define µ : Dc Ñ r0,8s by

µpxq :“

ˆ
D

kpx, yq dy , x P Dc ,

and note that for x P Dc, we have µpxq ă 8. Indeed, this is clear since for x P Dc, y P D, it
holds that |x´ y| ě distpx, BDq, hence µpxq ď jpdistpx, BDqq|D|. For x P BD, it will usually
be the case that µpxq “ 8. Let L2pDc, µpxqdxq be the usual L2 space with the inner product
given by

pφ, χqL2pDc,µpxqdxq :“

ˆ
Dc
φpxqχpxqµpxq dx “

ˆ
D
c
φpxqχpxqµpxq dx

“

ˆ
Dc

ˆ
D

φpxqχpxqkpx, yq dy dx .

Extend φ P L2pDc, µpxqdxq to D by letting φpxq “ 0, x P D. Then we may regard
L2pDc, µpxqdxq as a (closed) subspace of V k,2pDq and

}φ}2L2pDc,µpxqdxq “
pEpφ, φq .

We would like to have a sort of a converse, namely that if u P V k,2pDq, then u1Dc P
V k,2pDq. Note that

pEpu1Dc , u1Dcq “
ˆ
Dc

ˆ
D

pu1Dcpxq ´ u1Dcpyqq
2kpx, yq dy dx “

ˆ
Dc
upxq2µpxq dx . (2.3)
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Since the right-hand side need not be finite for u P V k,2pDq, we introduce another function
space. Let mpdxq “ 1Dpxqdx ` 1Dcpxqµpxqdx. Since it may happen that

´
Dc
µpxqdx “ 8

(e.g., if kpx, yq “ |x´y|d`α for 1 ă α ă 2), the measure mpdxq need not be a Radon measure.
Set

F :“ tu P V k,2
pDq :

ˆ
Dc
upxq2µpxq dx ă 8u

“ tu : Rd
Ñ R : u P L2

pRd,mpdxqq, pEpu, uq ă 8u .

For u P F define

}u}2F :“ }u}2V k,2pDq `

ˆ
Dc
upxq2µpxq dx “ }u}2L2pRd,mpdxqq `

pEpu, uq .

Then pF , } ¨ }Fq is a Hilbert space. Indeed, the norm is clearly an inner product norm.
Suppose that punqně1 is a Cauchy sequence in pF , } ¨ }Fq. Then it is a Cauchy sequence
in pV k,2pDq, } ¨ }V k,2pDqq. Hence, there exists u P V k,2pDq such that }un ´ u}V k,2pDq Ñ 0.
Moreover, a subsequence of punq converges to u a.e. in Rd, hence also m-a.e. Further,
pun|Dcq is a Cauchy sequence in L2pDc, µpxqdxq, hence converges to some v P L2pDc, µpxqdxq.
Since a subsequence converges to u m-a.e., we see that v “ u|Dc m-a.e. This proves that
u “ limnÑ8 un in pF , } ¨ }Fq. Therefore, the following result holds true.

Lemma 2.2. (i) pF , } ¨ }Fq is a Hilbert space;

(ii) If u P F , then u1Dc and u1D are also in F ;

(iii) If φ P L2pDc, µpxqdxq, then φ extended to be zero on D is in F .

Proof. (ii) If u P F , then u1Dc P F by (2.3). It follows that u1D “ u´ u1Dc P F .

3 Dirichlet-to-Neumann operator
We start this section by recalling the exterior value Dirichlet problem. Let

Lupxq :“ P.V.
ˆ
Rd
pupxq ´ upyqqkpx, yq dy “ lim

εÑ0

ˆ
|y´x|ąε

pupxq ´ upyqqkpx, yq dy .

Consider the following exterior value Dirichlet problem (cf. [13, Definition 2.5 (D)]). Let
φ P L2pDc, µpxqdxq. A function u P V k,2pDq is a solution of

"

Lu “ 0 in D ,
u “ φ on Dc ,

(3.1)

if u ´ φ P W k,2
D pRdq “ V k,2

D pDq and Epu, vq “ 0 for all v P W k,2
D pRdq. Since for v P W k,2

D pRdq

it holds that v “ 0 a.e. on Dc, this last condition can be written as pEpu, vq “ 0.
It is shown in [13, Theorem 3.5 and Theorem 4.4] that there exists a unique solution

u P V k,2pDq of the above Dirichlet problem. Moreover, since u “ φ a.e. on Dc, we see that
in fact u P F . Further, it is also shown in [13, (3.3)] that there exists C ą 0 such that

}u}V k,2pDq ď C}φ}L2pDc,µpxqdxq .
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In particular
pEpu, uq1{2 ď C}φ}L2pDc,µpxqdxq . (3.2)

Let
FD :“ tu P F : u “ 0 m´ a.e. in Dc

u,

and note that FD “ V k,2
D pDq. Define now the following simple trace operator. For u P F

let Trpuq :“ u|Dc . Then ker Tr “ FD. Next we define the space of harmonic functions in D
(with respect to the non-local operator L). Let

HpDq :“ tu P F ; Epu, vq “ 0 for all v P ker Tru

“ tu P F ; pEpu, vq “ 0 for all v P FDu.

Note that HpDq is a closed subspace of F . This is a consequence of the continuity of the
form E , cf. [13, Lemma 2.4]. We also note that the solution u P F of (3.1) is in HpDq.
Further, FD XHpDq “ t0u. Indeed, if v is in the intersection, then pEpv, vq “ 0. Since pEp¨, ¨q
is a norm on FD, it follows that v “ 0.

Lemma 3.1. It holds that
F “ FD ‘HpDq

in the sense that any u P F can be uniquely decomposed as u “ v`w with v P FD, w P HpDq
and pEpv, wq “ 0. Moreover, ker TrpFq “ ker TrpHpDqq.

Proof. By Lemma 2.1, there exists a unique v P FD such that pEpu, ψq “ pEpv, ψq for all
ψ P FD. Let w :“ u´ v P F . Then for any ψ P FD we have pEpw,ψq “ pEpu, ψq´ pEpv, ψq “ 0.
Uniqueness follows from the fact that FD X HpDq “ t0u. The last assertion follows from
ker TrpFDq “ t0u.

For u P F , let

Nupxq :“

ˆ
D

pupxq ´ upyqqkpx, yq dy , x P D
c
,

cf. [8, (1.2)] where (up to a constant) N is called a non-local normal derivative. Let

rNupxq :“
Nupxq
µpxq

“

´
D
pupxq ´ upyqqkpx, yq dy´

D
kpx, yq dy

, x P D
c
,

be the normalized non-local normal derivative, see [8, (3.8)].
We continue by constructing the Dirichlet-to-Neumann operator. Let φ, χ : Dc Ñ R

and assume that φ, χ P L2pDc, µpxqdxq. Let u, v P F be the corresponding solutions of the
Dirichlet problem (3.1). Since u ´ φ P W k,2

D pRdq, we see that Trpuq “ φ, and similarly,
Trpvq “ χ. Moreover, u, v P HpDq .

Define the form C : L2pDc, µpxqdxq ˆ L2pDc, µpxqdxq Ñ R by

Cpφ, χq “ CpTrpuq,Trpuqq :“ Epu, vq “ pEpu, vq .

By using (3.2) in the second inequality below, we see that

|Cpφ, χq| “ |pEpu, vq| ď pEpu, uq1{2 pEpv, vq1{2 ď C2
}φ}L2pDc,µpxqdxq}χ}L2pDc,µpxqdxq .
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This show that the linear functional χ ÞÑ Cpφ, ξq is bounded on L2pDc, µpxqdxq. Hence,
there exists ψ P L2pDc, µpxqdxq such that Cpφ, χq “ pψ, χqL2pDc,µpxqdxq. Define the operator
N : L2pDc, µpxqdxq Ñ L2pDc, µpxqdxq by Nφ “ ψ. Since

|pNφ, χq|L2pDc,µpxqdxq “ |Cpφ, χq| ď C2
}φ}L2pDc,µpxqdxq}χ}L2pDc,µpxqdxq ,

we see that the operator N is bounded. Thus, we have proved the following proposition.

Proposition 3.2. There exists a bounded operator N : L2pDc, µpxqdxq Ñ L2pDc, µpxqdxq
such that

pNφ, χqL2pDc,µpxqdxq “ Cpφ, χq “ pEpu, vq

for all φ, χ P L2pDc, µpxqdxq.

We call N the Dirichlet-to-Neumann operator. This is in accordance with the definition
of the Dirichlet-to-Neumann operator in the classical setting of the Laplacian, cf. [2, p.9].
Another justification is provided by the following observation. Write v “ v1Dc ` v1D “

v1 ` v2. Then (since v1 “ 0 on D and v1 “ χ on Dc),

pEpu, vq “ pEpu, v1q

“

ˆ
Dc

ˆ
D

pupxq ´ upyqqpv1pxq ´ v1pyqqkpx, yq dy dx

“

ˆ
Dc
χpxq

ˆ
D

pupxq ´ upyqqkpx, yq dy dx

“

ˆ
D
c
χpxq

ˆ
D

pupxq ´ upyqqkpx, yq dy dx

“

ˆ
D
c
χpxqNupxq dx “

ˆ
Dc

rNupxqχpxqµpxq dx “ p rNu, χqL2pDc,µpxqdxq .

This shows that Nφ “ rNu.

4 The Dirichlet form and the corresponding process

In this section we show that ppE ,Fq is a quasi-regular Dirichlet form on L2pRd,mpdxqq and
investigate the corresponding Markov process. Recall thatmpdxq “ 1Dpxqdx`1Dcpxqµpxqdx
(and need not be a Radon measure on Borel subsets of Rd),

F “ tu : Rd
Ñ R : u P L2

pRd,mpdxqq, pEpu, uq ă 8u ,

and }u}2F “ pEpu, uq` }u}2
L2pRd,mpdxqq. Let us introduce the standard notation in the theory of

Dirichlet forms,
pE1pu, vq :“ pEpu, vq ` xu, vyL2pRd,mpdxq , u, v P F ,

so that }u}2F “ pE1pu.uq. Further note that

FD “ tu P F : u “ 0 m´ a.e. in Dc
u

8



is equal to V k,2
D pDq and } ¨}F restricted to FD is equal to } ¨}V k,2pDq restricted to V k,2

D pDq (and
both are equivalent to pEp¨, ¨q). Let XD be the process X killed upon exiting D, pPD

t qtě0 the
corresponding L2pD, dxq semigroup, and pCD,DpCDqq the Dirichlet form. Recall from [14,
Theorem 4.4.3] that DpCDq “ tu P W k,2pRdq : u “ 0 a.e. on Du “ V k,2

D pDq “ FD and that
pCD,FDq is a regular Dirichlet form. For u, v P FD we have

CDpu, vq “ EDpu, vq `
ˆ
D

upxqvpxqκpxq dx

where
κpxq “

ˆ
Dc
kpx, yq dy , x P D

is the killing function. Also, let

CD1 pu, vq :“ CDpu, vq ` xu, vyL2pD,dxq , u, v P FD .

Remark 4.1. (i) Let u P F . Then by Lemma 2.2, u1D, u1Dc P F . Moreover, u1D P FD
while u1Dc P L2pDc, µpxqdxq. This show that every u P F can be written as a sum of two
functions, one from FD, the other from L2pDc, µpxqdxq. Clearly, such a decomposition is
unique. Hence we can write F “ FD ‘ L2pDc, µpxqdxq. Note that this decomposition is
different than the one from Lemma 3.1.
(ii) Note that by Fubini’s theoremˆ

Dc
µpyq dy “

ˆ
Dc

ˆ
D

kpx, yq dy dx “

ˆ
D

κpxq dx .

This shows that the measure mpdxq is finite if and only if the killing function κ is integrable.

Let u, v P F and recall from Lemma 2.2 that u1D, v1D, u1Dc , v1Dc P F . First note that

pEpu1D, v1Dq “ EDpu, vq `
ˆ
D

ˆ
Dc
upxqvpxqkpx, yq dy dx “ CDpu, vq .

We rewrite pEpu, vq now as follows:

pEpu, vq “ pEpu1D ` u1Dc , v1D ` v1Dcq
“ pEpu1D, v1Dq ` pEpu1Dc , v1Dcq ` pEpu1D, v1Dcq ` pEpu1Dc , v1Dq

“ CDpu, vq `
ˆ
Dc
upxqvpxqµpxq dx´

ˆ
D

ˆ
Dc

`

upxqvpyq ` upyqvpxq
˘

kpx, yq dy dx .

More importantly, we have that

pEpu, uq “ EDpu, uq `
ˆ
D

ˆ
Dc
pupxq ´ upyqq2 dy dx

ď EDpu, uq ` 2

ˆ
D

ˆ
Dc
pupxq2 ` upyq2q dy dx

“ EDpu, uq ` 2

ˆ
D

upxq2κpxq dx` 2

ˆ
Dc
upyq2µpyq dy

ď 2

ˆ

CDpu, uq `
ˆ
Dc
upxq2µpxq dxq

˙

. (4.1)
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Proposition 4.2. ppE ,Fq is a Dirichlet form on L2pRd,mpdxqq.

Proof. Clearly, pE is a symmetric bilinear form. Next, we argue that F is dense in
L2pRd,mpdxqq. Let u P L2pRd,mpdxqq and write u “ u1D ` u1Dc . The function u1Dc
is already in F , cf. Lemma 2.2 (iii). Next consider u1D P L2pD, dxq. Since DpCDq “ FD
is dense in L2pD, dxq, there exists a sequence punqně1 Ă FD such that u|D “ limn un in
L2pD; dxq. Extend un to all of Rd by setting unpxq “ 0 for x P Dc. Then un` u1Dc P F and
converges to u in L2pRd,mpdxqq.

Further, since pF , } ¨ }Fq is a Hilbert space, the form ppE ,Fq is closed. Finally, let v be a
normal contraction of u P F . Then |vpxq ´ vpyq| ď |upxq ´ upyq| for all x, y P Rd, and thus
clearly pEpv, vq ď pEpu, uq ă 8, hence normal contraction operates on pE .

Remark 4.3. Note that the Dirichlet form ppE ,Fq is a special case of [14, Example 1.2.4].
Indeed, let

jpx, dyq “
1

2
1Dpxqkpx, yqdy `

1

2
1Dcpxq1Dpyq

kpx, yq

µpxq
dy .

Then jpx, dyq satisfies (j.1), (j.2) and (j.3) from [14, Example 1.2.4]. Further, if Jpdx, dyq :“
jpx, dyqmpdxq, then Jpdx, dyq is a symmetric measure and

Jpdx, dyq “ 1Dpxqkpx, yqdy dx` 1Dcpxq1Dpyqkpx, yqdy dx .

Hence ¨
RdˆRd

pupxq ´ upyqqpvpxq ´ vpyqqJpdx, dyq

“
1

2

¨
pRdˆRdqzpDcˆDcq

pupxq ´ upyqqpvpxq ´ vpyqqkpx, yqdy dx “ pEpu, vq .

Since F is dense in L2pRd,mpdxqq (see the proof above), it follows from [14, Example 1.2.4]
that ppE ,Fq is a Dirichlet form.

Next we will show that the form ppE ,Fq is quasi-regular. For all unexplained notions
(such as nests and quasi-continuity) we refer the reader to [7].

Theorem 4.4. The form ppE ,Fq is a quasi-regular Dirichlet form on L2pRd,mpdxqq.

Proof. For a closed subset F Ă Rd, let FF :“ tu P F : u “ 0 m-a.e on RdzF u. We check
that the three properties of [7, Defintion 1.3.8.] are satisfied.
(i) First we show that there exists an pE-nest pFjqjě1 of compact sets. Since pCD,FDq is a
regular Dirichlet form, there exists a CD-nest pAjqjě1 of compact subset of D. This means
that

Ť

jě1FAj is dense in FD with respect to CD1 p¨, ¨q. Next, let pBjqjě1 be an increasing
sequence of compact subsets of Dc such that

Ť

jě1Bj “ D
c. For any u P L2pDc, µpxqdxq,

we have that u1Bj P FBj . Further, since 1DczBcj Ñ 1BD “ 0 m-a.e., by the dominated
convergence theorem we get }u ´ u1Bj}L2pDc,mpdxqq “ }u1DczBcj }L

2pDc,mpdxqq Ñ 0. Set Fj :“

AjYBj, j ě 1. Then Fj is a compact subset of Rd. For u P F and ε ą 0 we can find j ě 1, v P
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FAj and w P FBj such that CD1 pu1D´v, u1D´vq ă ε and xu1Dc´w, u1Dc´wyL2pDc,mpdxqq ă ε.
Then v ` w P FFj and by (4.1)

pE1pu´ pv ` wq, u´ pv ` wqq

“ pEpu´ pv ` wq, u´ pv ` wqq ` xu´ pv ` wq, u´ pv ` wqyL2pRd,mpdxqq

ď 2
`

CDpu1D ´ v, u1D ´ vq ` xu1Dc ´ w, u1Dc ´ wyL2pDc,mpdxqq

˘

`xu´ pv ` wq, u´ pv ` wqyL2pRd,mpdxqq

ď 4ε .

This proves that pFjqjě1 is an pE-nest of compact sets. Note also that
Ş

jě1pRdzFjq “ BD

implying that BD is pE-polar.
(ii) Since pCD,FDq is a regular Dirichlet form, CcpDq X FD is CD1 p¨, ¨q-dense in FD. On the
other hand, CcpD

c
q is dense in L2pDc, µpxqdxq. For v P CcpDq X FD, we denote by the

same letter the function on Rd extended to be zero on Dc. Similarly, for w P CcpD
c
q, the

same letter denotes the function on Rd extended to be zero on D. Let G :“ tu : u “

v ` w, v P CcpDq X FD, w P CcpD
c
qu. Each function in G is continuous, and therefore pE-

quasi-continuous. Moreover, G is dense in pF , pE1q. Indeed, for u P F and ε ą 0, there
exist v P CcpDq X FD such that CD1 pu1D ´ v, u1D ´ vq ă ε, and w P CcpD

c
q such that

xu1Dc ´ v, u1Dc ´ vyL2pDc,mpdxqq ă ε. By (4.1), analogously as in part (i), we get that
pE1pu´ pv ` wq, u´ pv ` wqq ď 4ε.
(iii) Let pAjqjě1 be an increasing sequence of compact subsets of D such that Aj Ă intpAj`1q

and
Ť

jě1Aj “ D. Similarly, let pBjqjě1 be an increasing sequence of compact subsets of
D
c such that Bj Ă intpBj`1q and

Ť

jě1Bj “ D
c. Let vj P CcpDq X FD such that vj “ 1

on Aj and vj “ 0 on DzAj`1. Similarly, let wj P CcpD
c
q such that wj “ 1 on Bj and

wj “ 0 on DczBj`1. Then uj :“ vj ` wj is continuous on Rd and uj P F . Thus pukqkě1 is a
family of continuous (hence pE-quasi-continuous) functions which clearly separates the points
of RdzBD. Since BD is pE-polar, the third property is verified.

Remark 4.5. It is easy to see that ppE ,Fq need not be a regular Dirichlet form. Indeed,
the measure mpdxq need not be a Radon measure which by itself prevents ppE ,Fq to be
regular. Moreover, if the form were regular, then by [7, Remark 1.3.11.], F X CcpRdq would
separate the points of Rd (here CcpRdq are continuous functions with compact support). But
note that if u P F X CcpRdq, then also u1Dc P F , meaning that

´
Dc
upxq2µpxq dx ă 8.

Since limxÑBD,xPD
c µpxq “ `8 (and u is continuous), in case when mpDcq “ 8, this forces

upxq “ 0 for every x P BD. Therefore, F X CcpRdq does not separate points in BD. On the
other hand, by the general theory, cf. [7, Theorem 1.4.3], ppE ,Fq is quasi-homeomorphic to a
regular Dirichlet form on a locally compact separable metric space E. It is easy to identify
the space E and the form: we take E :“ RdzBD “ D YD

c, the disconnected union of open
sets D and Dc, and the form is given by the essentially same formula as pE :

rEpu, vq “
¨
EzpD

c
ˆD

c
q

pupxq ´ upyqqpvpxq ´ vpyqqkpx, yq dy dx, u, v P rF ,

where
rF “ tu : E Ñ R : rEpu, uq ă 8u.
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Then prE , rFq is a regular Dirichlet form on L2pE,m|Eq.

Since ppE ,Fq is a quasi-regular Dirichlet form on L2pRd,mpdxqq we can state the following
theorem.

Theorem 4.6. There exists a Hunt process Y “ pYt,Qxq on RdzBD properly associated with
prE , rFq.

Proof. We deduce from [7, Theorem 1.5.2.] that there exists an pE-polar set N Ă Rd, and an
m-symmetric, m-tight special Borel standard process Y “ pYt,Qxq on RdzN that is properly
associated with ppE ,Fq. By inspecting the proof of [7, Theorem 1.5.2.] and using Remark 4.5,
we can conclude that N “ BD and that Y is a Hunt process on RdzBD properly associated
with prE , rFq.

Let ζ denote the lifetime of Y . It is easy to see that the part process of Y on D is
precisely XD, the underlying process X killed upon exiting D, and that the part process
of Y on Dc is the process that sits at its starting point for an exponential amount of time
(of parameter 1) and then it dies. The behavior of Y is described as follows: starting from
x P D, Y moves as the underlying process X until τYD “ inftt ą 0 : Yt R Du, the first exit
time from D. If τYD ă ζ, then Y jumps out of D according to the kernel kpYτYD´, YτYD q and
y :“ YτYD P D

c. Then Y sits at y for an exponential amount of time (of parameter 1) and
then jumps back to D according to the probability distribution kpy, xq{µpyq. Once in D, the
process starts afresh.

We argue now that under a certain weak assumption, the lifetime ζ of Y is infinite.
Indeed, assume that PxpXτXD

P BDq “ 0 for every x P D, i.e., when X exits D it does so by
jumping into Dc. Sufficient conditions for this to hold can be found in [18, 20, 22]. Then
also YτYD P D

c and Y spends an exponential time (of parameter 1) in D
c before coming

back. This will be repeated infinitely many time and since the exponential sitting times are
independent, the lifetime has to be infinite.

In the appendix we give an alternative construction of the process Y and verify that the
corresponding bilinear form is indeed pE .

Remark 4.7. It has been proved in [21, Lemma 2.20] (when kpx, yq “ |x´ y|´d´α) that in
case of a smooth open set D, ppE ,Fq is a regular Dirichlet form on L2pRd, dxq. This means
that the corresponding Hunt process rY can start from any point of BD. Away from the
boundary BD, rY behaves like a time-changed process Y .

In the remaining part of this section we look at the trace process of Y on Dc and revisit
the Dirichlet-to-Neumann operator. Let

Bt :“

ˆ t

0

1pYsPDcqds , σt :“ infts ą 0 : Bs ą tu,

and let Wt :“ Yσt be the trace process. This process is a continuous-time Markov chain in
D
c which sits at the point x an exponential time with mean one, and then jumps to the

point z according to the jump distribution ppx, zqdz that we are now going to compute. Let
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PDpy, zq, y P D, z P Dc be the Poisson kernel of X. Then clearly, PDpy, zqdz is the exit
distribution of Y from D. Let

TD :“ inftt ą 0 : Yt P Du .

Then
QxpYTD P dyq “

kpx, yq

µpxq
dy ,

and hence
ppx, zq “

ˆ
D

QxpYTD P dyqPDpy, zq “

ˆ
D

kpx, yq

µpxq
PDpy, zq dy .

In order to identify ppx, zq, let φ : D
c
Ñ r0,8q be a measurable function. We probabilistically

solve the exterior value Dirichlet problem with the exterior data φ. Thus, let

upyq :“

ˆ
Dc
PDpy, zqφpzq dz , y P D ,

be the harmonic extension. Then

ψpxq :“

ˆ
D
c
ppx, zqφpzq dz “

ˆ
D
c
φpzq

ˆ
D

kpx, yq

µpxq
PDpy, zq dz dy

“

ˆ
D

kpx, yq

µpxq

ˆ
Dc
PDpy, zqφpzq dz “

ˆ
D

kpx, yq

µpxq
upyq dy.

Let Qφ :“ ψ. Then

pI ´Qqφpxq “ φpxq ´

ˆ
D

kpx, yq

µpxq
upyq dy “

ˆ
D

pφpxq ´ upyqq
kpx, yq

µpxq
dy “ rNupxq “ Nφpxq .

(4.2)
Thus, I ´ Q “ N is the Dirichlet-to-Neumann operator. In other words, the operator ´N
is the infinitesimal generator of the trace process.

Recall that mpdxq “ 1Dpxqdx ` 1Dcpxqµpxqdx. Then m|D
c is the symmetrizing measure

for the kernel p: ppx, dzqmpdxq “ ppz, dxqmpdzq. Indeed, denote the Green function of D
with respect to X by GD. Then

ppx, zqµpxq “

ˆ
D

kpx, yqPDpy, zq dy “

ˆ
D

kpx, yq

ˆ
D

GDpy, wqkpw, zq dw dz

“

ˆ
D

kpz, wq

ˆ
D

GDpw, yqkpy, xq dy dw “ ppz, xqµpzq .

We end this section by recovering [6, Corollary 5.2]. By (4.2),

pEpu, uq “

ˆ
Dc

rNupxqφpxq dx “
ˆ
Dc

ˆ

φpxq ´

ˆ
Dc
ppx, zqφpzq dz

˙

φpxqµpxq dx

“

¨
DcˆDc

φpxq2µpxqppx, zq dz dx´

¨
DcˆDc

φpxqφpzqµpxqppx, zq dz dx

“
1

2

¨
D
c
ˆD

c
pφpxq ´ φpzqq2µpxqppx, zq dz dx.
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Therefore we have,

Epu, uq “ pEpu, uq ` 1

2

¨
D
c
ˆD

c
pupxq ´ upyqq2kpx, yq dy dx

“
1

2

¨
D
c
ˆD

c
pφpxq ´ φpyqq2 pµpxqppx, yq ` kpx, yqq dy dx.

5 The process Z
Now we transform the process Y so that the resulting process lives only in D. This new pro-
cess corresponds to the description in [8] of a process that after it jumps from D immediately
returns to D.

Let Ct :“
´ t

0
1pYsPDq ds be the time Y spends in D until the fixed time t. Then C

is a positive continuous additive functional whose support is D (cf. [14, (5.1.21)]). Let
τt :“ infts ą 0 : Cs ą tu be the right-continuous inverse of C. Define the new process
Z “ pZtqtě0 by Zt :“ Yτt . This construction amounts to deleting from the path of Y the
part that Y spends in Dc. The process Z is a right Markov process with the state space D
(cf. [7, p.175]). For a non-negative Borel function u on Rd, let

Hupxq :“ ExrupYTDq, TD ă 8s “

$

&

%

upxq, x P D,´
D
kpx,yq
µpxq

upyq dy, x P D
c
,

0, x P BD .

Further, let
#

qF “ tφ P L2pD, dxq : φ “ u a.e. on D for some u P Feu
qEpφ, φq “ pEpHu,Huq : φ P qF , φ “ u a.e. on D, u P Fe .

Here Fe denotes the extended Dirichlet space. By [7, Theorem 5.2.2. and Theorem 5.2.7]
pqE , qFq is a quasi-regular Dirichlet form and the process Z is properly associated with it.
Moreover, if we regard ppE , pFq as a regular Dirichlet form prE , rFq on L2pRdzBD,m|RdzBDq,
then it follows from [14, Theorem 6.2.1], that pqE , qFq is in fact a regular Dirichlet form on
L2pD, dxq.

We compute now qEpφ, φq. For simplicity, let

pkpx, yq :“

ˆ
Dc

kpx, zqkpz, yq

µpzq
dz , x, y P D ,

and note that for any x P D,
ˆ
D

pkpx, yq dy “

ˆ
D

ˆ
Dc

kpx, zqkpz, yq

µpzq
dz dy “

ˆ
Dc

kpx, zq

µpzq

ˆˆ
D

kpz, yq dy

˙

dz

“

ˆ
Dc
kpx, zq dz “ κpxq . (5.1)

Hence pk is an integrable kernel.
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We have

qEpφ, φq “ pEpHu,Huq

“
1

2

ˆ
D

ˆ
D

pHupxq ´Hupyqq2kpx, yq dy dx`

ˆ
D

ˆ
Dc
pHupxq ´Hupyqq2kpx, yq dy dx

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqq2kpx, yq dy dx`

ˆ
D

upxq2
ˆ
Dc
kpx, yq dy dx

´2

ˆ
D

upxq

ˆ
Dc
Hupyqkpx, yq dy dx`

ˆ
Dc
Hupyq2

ˆ
D

kpx, yq dx dy

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqq2kpx, yq dy dx`

ˆ
D

upxq2κpxq dx

´2

ˆ
D

upxq

ˆ
Dc

ˆˆ
D

kpy, zq

µpyq
upzq dz

˙

kpx, yq dy dx`

ˆ
Dc

ˆˆ
D

kpy, zq

µpyq
upzq dz

˙2

µpyq dy

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqq2kpx, yq dy dx`

ˆ
D

upxq2κpxq dx

´2

ˆ
D

ˆ
D

ˆˆ
Dc

kpx, yqkpy, zq

µpyq
dy

˙

upxqupzq dz dx

`

ˆ
Dc

1

µpyq

ˆˆ
D

kpy, zqupzq dz

˙ˆˆ
D

kpy, xqupxq dx

˙

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqq2kpx, yq dy dx`

ˆ
D

upxq2κpxq dx

´2

ˆ
D

ˆ
D

upxqupzqpkpx, zq dz dx`

ˆ
D

ˆ
D

upxqupzqpkpx, zq dz dx

“
1

2

ˆ
D

ˆ
D

pφpxq ´ φpyqq2kpx, yq dy dx`

ˆ
D

φpxq2κpxq dx´

ˆ
D

ˆ
D

φpxqφpyqpkpx, yq dy dx

“ CDpφ, φq ´
ˆ
D

ˆ
D

φpxqφpyqpkpx, yq dy dx .

Note that the calculation above shows thatˆ
D

φpxq2κpxq dx´

ˆ
D

ˆ
D

φpxqφpyqpkpx, yq dy dx “

ˆ
D

ˆ
Dc
pHupxq ´Hupyqq2kpx, yq dy dx ě 0 .

Moreover, by use of (5.1) we have that
ˆ
D

ˆ
D

φpxq2pkpx, yq dy dx “

ˆ
D

ˆ
D

φpxq2
ˆ
Dc

ˆ

kpx, zqkpz, yq

µpzq
dz

˙

dy dx “

ˆ
D

φpxq2κpxq dx ,

implyingˆ
D

φpxq2κpxq dx´

ˆ
D

ˆ
D

φpxqφpyqpkpx, yq dy dx “
1

2

ˆ
D

ˆ
D

pφpxq ´ φpyqq2pkpx, yq dy dx .

Therefore, we finally have that

qEpφ, φq “ 1

2

ˆ
D

ˆ
D

pφpxq ´ φpyqq2pkpx, yq ` pkpx, yqq dy dx .
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6 Appendix: An alternative construction of the process
Y

In this appendix we give an alternative construction of the process Y and compute the
bilinear form. The process Y in D behaves like X, once it jumps outside D, sits at the
landing point x for an exponential time, returns to D according to the normalized measure
kpx, yqdy, and then starts afresh.

Let X “ pXt,Pxq be the isotropic Lévy process in Rd introduced in Section 2, and let
τ “ τD “ inftt ą 0 : Xt R Du be the first exit time from D. According to [9, Theorem 10.3,
p.305], the stopped process Xτ is a standard process. Since its lifetime is infinite, Xτ is in
fact a Hunt process. Define

At :“

ˆ t

0

1pXτ
s PD

c
q ds , Mt :“ e´At

ThenM “ pMtq is a continuous strong multiplicative functional, cf. [5, III (3.11)]. Moreover,
if pRnq is an increasing sequence of stopping times converging to R, then MRn Ñ MR

a.s. on tR ă 8u, cf. [5, III (3.14)]. Let pX “ p pXt, pPxq be the canonical subprocess of Xτ

corresponding to M , cf. [5, III 3.]. By [5, III (3.16 Corollary)], pX is a Hunt process. Note
that the lifetime ζ of pX is finite almost surely. We see that pX is the process that behaves
as X while in D. If the first exit from D is in Dc (which happens a.s.), then pX sits at the
exit place Xτ for an exponential time with mean one, and then it dies. If the exit place is
on BD (which will be the case Px-a.s. for a regular point x P BD ), then pX sits at the exit
point forever. Also, if X starts at a regular point x P BD, then pX stays at x forever.

Now we use the piecing out procedure from [16]. The instantaneous distribution µpω, dyq
is defined by

µpω, dyq :“
1Dpyqkp pXζ´pωq, yqdy

kp pXζ´pωqq
.

That is, once pX is killed it reappears at y P D according to the normalized jumping kernel
kpx, yq (where x “ pXζ´, y P D). Let Y “ pYt,Qxq be the process constructed in [16, Theorem
1.1] by the piecing out procedure. The lifetime of the process Y is infinite. (This is clear
because pX will be resurrected infinitely many times, and the sum of independent exponential
random variables, each with mean 1, is infinite.) Moreover, the lifetime ζ of pX is a totally
inaccessible stopping time. Therefore, according to [16, Corollary of Proposition 4.2], Y is a
Hunt process.

In the remaining part of this appendix we compute the bilinear form of the Hunt process
Y . For a bounded measurable u : Rd Ñ R let Qtupxq :“ QxupYtq, t ě 0 be the semigroup of
pYt,Qxq. Recall that XD is the process X killed upon exiting D, pPD

t qtě0 the corresponding
L2pD, dxq semigroup, pCD,DpCDqq the Dirichlet form, and DpCDq “ FD. The killing function
κ : D Ñ r0,8q was defined as

κpxq :“

ˆ
Dc
kpx, yq dy, x P D .
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Then for u P DpCDq “ FD,

CDpu, uq “ 1
2

ˆ
D

ˆ
D

pupxq ´ upyqq2kpx, yq dy dx`

ˆ
D

κpxqupxq2 dx

“ EDpu, uq `
ˆ
D

upxq2
ˆˆ

Dc
kpx, yq dy

˙

dx .

Proposition 6.1. Let u, v : Rd Ñ R be bounded function such that u|D P CpDq X FD,
v|D P FD, u|Dc P L2pDc, µpxqdxq and v|Dc P L1pDc, µpxqdxq. Then

lim
tÑ0

1

t

ˆ
Rd
pupxq ´Qtupxqqvpxqmpdxq “ pEpu, vq . (6.1)

Proof. Clearly, u P L2pRd,mpdxqq. Recall that TD “ inftt ą 0 : Yt P Du and

QxpYTD P dyq “
kpx, yq

µpxq
dy “: npx, yq dy . (6.2)

Under Qx, x P D
c, TD has an exponential distribution with mean 1. Thus for x P Dc,

QxupYtq “ QxrupYtq, t ă TDs `QxrupYtq, t ě TDs

“ upxqQxpt ă TDq `QxrupYtq, t ě TDs

“ e´tupxq `QxrupYtq, t ě TDs ,

hence
upxq ´Qtupxq “ upxqp1´ e´tq ´QxrupYtq, t ě TDs . (6.3)

By (6.2) and the fact that pYTD`tqtě0 is independent of TD, we get

QxrupYtq, t ě TDs “

ˆˆ
D

kpx, yq

µpxq
QypupYtqq dy

˙

Qxpt ă TDq

“ p1´ e´tq

ˆ
D

QypupYtqqnpx, yq dy .

By the assumption on u and v (u|D bounded and continuous, v|Dc P L1pµpxqdxq), the use of
the dominated convergence theorem below is justified, and we get

lim
tÑ0

1

t

ˆ
Dc
vpxqQxrupYtq, t ě TDsmpdxq

“ lim
tÑ0

1´ e´t

t

ˆ
Dc
vpxq

ˆ
D

npx, yqQypupYtqq dy µpxqdx

“

ˆ
Dc
vpxq

ˆ
D

npx, yqµpxqupyq dy dx “

ˆ
Dc

ˆ
D

vpxqupyqkpx, yq dy dx . (6.4)

Further,

lim
tÑ0

1´ e´t

t

ˆ
Dc
upxqvpxqmpdxq “

ˆ
Dc
upxqvpxqµpxq dx “

ˆ
Dc

ˆ
D

upxqvpxqkpx, yq dy dx .

(6.5)
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It follows from (6.3)– (6.5) that

lim
tÑ0

1

t

ˆ
Dc
pupxq ´Qtupxqqvpxqmpdxq

“

ˆ
Dc

ˆ
D

upxqvpxqkpx, yq dy dx´

ˆ
Dc

ˆ
D

vpxqupyqkpx, yq dy dx

“

ˆ
D

ˆ
Dc
upyqvpyqkpx, yq dy dx´

ˆ
D

ˆ
Dc
upxqvpyqkpx, yq dy dx (6.6)

Now assume that x P D and let τD “ inftt ą 0 : Xt R Du. Then we have

QxupYtq “ QxrupYtq, t ă τDs `QxrupYtq, t ě τDs

“ ExrupXtq, t ă τDs `QxrupYtq, t ě τDs

“ PD
t upxq `QxrupYtq, t ě τDs ,

hence
upxq ´Qtupxq “ upxq ´ PD

t upxq ´QxrupYtq, t ě τDs . (6.7)

Since u|D, v|D P FD “ DpCDq, we get

lim
tÑ0

ˆ
D

pupxq ´ PD
t upxqqvpxq dx “ CDpu, vq

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqqpvpxq ´ vpyqkpx, yq dy dx (6.8)

`

ˆ
D

upxqvpxq

ˆˆ
Dc
kpx, yq dy

˙

dx . (6.9)

Finally, we consider QxrupYtq, t ě τDs. Let e be an independent exponential random
variable as in the construction of the process pX (i.e., e is the waiting time in Dc before
jumping back to D). Then

QxrupYtq, t ě τDs “ QxrupYtq, τD ď t ă τD ` es `QxrupYtq, t ě τD, t ě τD ` es

“ QxrupYτDq, τD ď t ă τD ` es `QxrupYtq, t ě τD ` es

“ QxrupYτDq, τD ď ts ´QxrupYτDq, t ě τD ` es `QxrupYtq, t ě τD ` es

“ ExrupXτDq, τD ď ts ´QxrupYτDq, t ě τD ` es `QxrupYtq, t ě τD ` es (6.10)

Note that

QxpτD ` e ď tq “

ˆ t

0

e´sQxpτD ` s ď tq ds “ e´t
ˆ t

0

es QxpτD ď sq ds .

Hence, by right-continuity of s ÞÑ QxpτD ď sq and the fact that QxpτD ď 0q “ 0, we get

lim
tÑ0

1

t
QxpτD ` e ď tq “ lim

tÑ0

1

t
e´t
ˆ t

0

es QxpτD ď sq ds “ 0 . (6.11)
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Since u is bounded, (6.11) implies that

lim sup
tě0

1

t

ˇ

ˇQxrupYtq, t ě τD ` es
ˇ

ˇ ď }u}8 lim
tÑ0

1

t
QxpτD ` e ď tq “ 0 , (6.12)

and, similarly,

lim
tÑ0

1

t
QxrupYτDq, t ě τD ` es “ 0 . (6.13)

In order to handle the term ExrupXτDq, τD ď ts we will use the compensation formula

Ex
ÿ

0ăsďt^τD

F pXs´, Xsq “ Ex
ˆ t^τD

0

ˆ
Rd
F pXs, yqkpXs, yq dy ds

with F px, yq “ 1Dpxq1Dcpyqupyq. Then

ExrupXτDq, τD ď ts “ Ex
ÿ

0ăsďt^τD

F pXs´, Xsq

“ Ex
ˆ t^τD

0

ˆ
Dc

1pXsPDqupyqkpXs, yq dy ds

“

ˆ t

0

ˆ
Dc

Exp1pXsPD,săτDqkpXs, yqqupyq dy ds .

Since for x P D and y P Dc, limsÑ0 Exr1pXsPD,săτDqkpXs, yqs “ kpx, yq, we get that

lim
tÑ0

1

t
ExrupXτDq, τD ď ts “

ˆ
Dc
upyqkpx, yq dy . (6.14)

Now it follows from (6.12)-(6.14) that

lim
tÑ0

1

t

ˆ
D

QxrupYtq, t ě τDsvpxq dx “

ˆ
D

ˆ
Dc
vpxqupyqkpx, yq dy dx . (6.15)

Now (6.7), (6.8) and (6.15) imply that

lim
tÑ0

1

t

ˆ
D

pupxq ´Qtupxqqvpxq dx “
1

2

ˆ
D

ˆ
D

pupxq ´ upyqqpvpxq ´ vpyqqkpx, yq dy dx

`

ˆ
D

ˆ
Dc
upxqvpxqkpx, yq dy dx´

ˆ
D

ˆ
Dc
vpxqupyqkpx, yq dy dx . (6.16)

Putting together (6.6) and (6.16) we obtain

lim
tÑ0

1

t

ˆ
Rd
pupxq ´Qtupxqqvpxqmpdxq

“
1

2

ˆ
D

ˆ
D

pupxq ´ upyqqpvpxq ´ vpyqqkpx, yq dy dx

`

ˆ
D

ˆ
Dc
pupxq ´ upyqqpvpxq ´ vpyqqkpx, yq dy dx “ pEpu, vq .
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