A probabilistic approach to a non-local
quadratic form and its connection to the
Neumann boundary condition problem

Zoran Vondracek *

Abstract

In this paper we look at a probabilistic approach to a non-local quadratic form
that has lately attracted some interest. This form is related to a recently introduced
non-local normal derivative. The goal is to construct two Markov processes: one corre-
sponding to that form and the other which is related to a probabilistic interpretation of
the Neumann problem. We also study the Dirichlet-to-Neumann operator for non-local
operators.
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1 Introduction

Let D = R, d > 2, be a bounded open set. For a € (0,2) set k(z,y) = c(d,a)|z — y|~42,
z,y € R, where ¢(d, ) is a positive constant. Consider the symmetric bilinear form

A 1
Eo =g [ ) a0 ok dyde, (L

where u, v : RY — R. This form has recently attracted quite some interest, cf. [6, 8, 13, 19, 21]
where different question related to the form were studied. In particular, [8] introduces a new
"non-local normal derivative”

Nu(z) = /D(u(x) —u(y))k(z,y) dy, reRAD, (1.2)

with the aim to solve the Neumann problem

(—=A)2y = f in D,
Nu=0 inRA\D,
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for the fractional Laplacian (—A)a/ 2 as well as the corresponding heat equation with homo-

geneous Neumann conditions. The authors offer the following probabilistic interpretation of
the Neumann heat equation:

(1) The solution u(x,t) of the Neumann heat equation is the probability distribution of the
position of a particle moving randomly inside D.

(2) When the particle exits D, it immediately comes back into D.

(8) The way in which it comes back inside D is the following: If the particle has gone to
x € RU\D, it may come back to any point y € D, the probability density of jumping
from x to y being proportional to k(z,vy).

In view of the fact that the variational structure of the Neumann problem involves the
symmetric bilinear form & (u, v) where u and v are functions defined on all of R? (and not only
on D), the above probabilistic interpretation is somewhat ambiguous. One goal of this note
is to construct two stochastic processes, one living on R?, the other on D, which might fit the
intended interpretation. To be more precise, for x € D¢, let p(x) := [, k(z,y)dy, define the
measure m(dz) := 1p(x)dx + 1pe(x)pu(x)dr, and set F := {u € L*(R%, m(dx)), g(u,u) < 0},
We will show that (£, F) is a quasi-regular Dirichlet form on L*(R?,m(dz)), hence there is
a Markov process Y on R? (more precisely, on R4\ 0D) properly associated with ((E;\ , F). The
behavior of Y can be described as follows: starting in D, the process moves as the isotropic
stable process until the first exit time from D. At the exit time, it jumps out of D according
to the kernel k(z,y). It sits at the exit point y for an exponential time with mean one, then
jumps back to D according to probability distribution k(y,x)/k(y) and starts afresh. By
deleting the part of this process which lives in D¢, we get a process with state space D.

The other goal of the note is to look at the corresponding Dirichlet-to-Neumann operator.
In the context of the Laplace operator, the classical Dirichlet-to-Neumann operator can be
roughly described as follows: take a function ¢ defined on the boundary ¢D (for simplicity,
here we do not specify the function space that ¢ belongs to). Let u be the solution of the
Dirichlet boundary value problem (for the Laplacian) with the boundary value ¢. Let ¢ be
the normal derivative of u. The mapping ¢ — 1 is called the Dirichlet-to-Neumann oper-
ator. There exists a substantial amount of literature on the classical Dirichlet-to-Neumann
problem, the results depending on the roughness of the domain and the appropriate function
spaces, see for example [1, 2, 10, 11| for the functional-analytic approach and [4] for a prob-
abilistic approach. In this note, we solve the Dirichlet-to-Neumann problem for non-local
operators, both probabilistically and analytically, and show that the problem is simpler
than the one for local operators. In view of the non-locality of the underlying operator
(such as the fractional Laplacian), the boundary 0D is replaced by the exterior D° and the
Dirichlet-to-Neumann operator is the mapping between functions defined on D°. In the an-
alytic approach, we define the Dirichlet-to-Neumann operator on L?(D¢, u(z)dxz). For the
Dirichlet-to-Neumann operator (related to the fractional Laplacian) on different function
spaces we refer to [15]. Another closely related research is [12, 17| where the authors study
functions spaces and Dirichlet forms of subordinate reflected diffusions on the closure D of
a (smooth) open set D in the Euclidean space. They obtain a Weyl decomposition which



is the key to construction of a Dirichlet-to-Neumann operator. Their methods of using the
spectral synthesis techniques are close in spirit to our approach.

Organization of the paper: in the next section we introduce the singular kernel k(z,y)
which generalizes |z — y|~9=® and recall the relevant function spaces based on this kernel.
Then we briefly discuss the Dirichlet problem for the corresponding non-local operator and
define the Dirichlet-to-Neumann operator in an analytic way. In Section 4 we prove that
(€, F) is a quasi-regular Dirichlet form on L?(R¢, m(dx)), explain the behavior of the corre-
sponding process Y with state space R? and argue that its trace on D¢ gives a probabilistic
interpretation of the Dirichlet-to-Neumann operator. In the last section, starting from Y,
we construct a stochastic process Z with the state space D and calculate its bilinear form.
This last process fits the description from [8] that when the particle exits D, it immediately
comes back into D. Finally, in the appendix, we provide an alternative construction of the
process Y and compute its bilinear form.

2 Preliminaries on function spaces

In this section we introduce the singular kernel as the Lévy density of the underlying stochas-
tic process X. We also recall several function spaces related to the process X (or the kernel)
that were studied in [13] (see also [8]). Instead of the fractional Laplacian, we will work with
a more general non-local operators, in fact generators of isotropic Lévy processes.

Let (X;,P,) be a Lévy process on R% d > 2, with the characteristic exponent ® of the
form

B(¢) - / (1= 69 e, 21 oy (d),
R\{0}

that is E,[e“¢X1~2] = e7*®©), Here v(dz) is the Lévy measure of X, i.e., [p.(1A|z[*)v(dz) <
0. We will assume that v has a strictly positive non-increasing radial density (with respect to
Lebesgue measure): v(dx) = j(|z|)dz with 5 : (0,00) — (0, 00) non-increasing. We introduce
the symmetric kernel k(x,y) := j(|lz — y|), z,y € R%.

Let D < R? be a bounded open set such that the Lebesgue measure of its boundary 0D
is zero. Recall the following function spaces:

WE2RY) = fu: R R; ve LA(RY), // (v(z) — v(y))2k(z, ) dy dz < ),
R4 x R4
WEARY = {ve WF2(RY); v=0ae. on DY,

VE2(D) = {v:R*—>R; vpeLl*D // ) v(y))?k(z,y) dy dz < o0}.
DxR

In [13, Definition 2.1] these spaces were denoted by H(R% k), Hp(R% k) and V(D;k) re-
spectively.
For u,v € W*2(RY) set

3 [ () =)o) = o). g) dyda.



Then (€, W*?2(R?)) is the regular Dirichlet form corresponding to the L?-semigroup of the
process X. Moreover,

1/2
Julweeeey = ([l + &, u)

is a Hilbert norm on W"?2(RRY).
By symmetry of k(z,y) we have

| [ )=o) vkt dvde = [ [ o) = aw)w) = ow)le. ) dyds,

5] ) = uwe) — o)) dy e,

and

A 1
Ewn) = //(Md\(mc (uw) — uly)(ole) — vk ) dyde (21)
= (u,v) //C y)(v(z) —v(y))k(z,y) dy dx.

In case k(z,y) = c(d, a)|lz—y|~97*, [8, (3.1), (3.2)] introduces the space H} , of functions
u : RY — R such that HUH%Q(D) + E(u,u) < oo with the corresponding norm. It is easy to see

that Hj, , = V*2(D) in our notation. Denote the corresponding norm by

~ 1/2
ulveay = ([l + E@w)

Clearly, this is an inner product norm. It is proved in |8, Proposition 3.1| that (V*2(D),
| [lvre(py) is a Hilbert space. Although k(z,y) = c(d, a)|z — y|~@~* in [8], the proof carries
over to k;(a:,y) as in our setting. Moreover, the proof shows that if (u,),>1 is a Cauchy
sequence in (V*2(D), |- [yr2(p)), then a subsequence converges a.e. in RY.
Let
VE2(D) := {ue VF*(D); u =0 ae. in D} = W5*(R?Y).

Then V5*(D) is a closed subspace of (V*2(D), |- lvr2(py). Indeed, let (uy)n=1 < V5?(D) and
u = limy, o0ty in (VF2(D), |- |yre(py). Then there is subsequence of (u,,) which converges
a.e. in R? to u. Hence, u = 0 a.e. in D¢, i.e. u e VE*(D).

Let u € L4(RY) := {v e L*(R%);v = 0 a.e. on D}. Then

f(u,u) = &EP(u,u) +/D/(u(x) —u(y))’k(x,y) dy dx

[utwr ([ way)ar= [ ur( [ i) i) ds
> c/Du(x)de,

A\



where ¢ > 0 is a constant not depending on x € D. Therefore, for any u € L%(R?), and in
particular for any u € V5*(D), we have that

[ul72py < ¢LE(u,u) < .

For u € V}*(D), let HuHV,c ., :=&(u,u). The above inequality shows that (VEX(D),

| - ]\VDk,z(D)) is a Hilbert space and the norm | - HV£,2(D) is equivalent to | - [[ykz2(p).

Lemma 2.1. For u € V*(D), let F : V}*(D) — R be defined by F(v) := E(u,v), v e
V(D). Then there exists a unique ug € V7*(D) such that F(v) = & (ug,v).

Proof. We have that

|F(v)| = |§(u,v)| = [E(u,v)| < E(u,u)V?E (v, v)V? = :S'(u,u)l/gg(v,v)l/2 = 5(u,u)1/2\|v||vg,z(D).

This shows that F' is a continuous linear functional on the Hilbert space (V5*(D), |- HVDk,z (D))

Hence, there exists a unique uy € V?(D) such that F(v) = é\(u(), v). O
Given ¢ : D¢ — R, we extend it to all of R? by letting ¢(z) = 0 for z € D. Assume that
such extended ¢ € V*2(D). This is equivalent to

/D . o(x)*k(z,y) dv dy = /C¢(x)2/Dk(x,y) dy dz < . (2.2)

Define p : D¢ — [0, 0] by
p(z) ¢=/k‘(x7y) dy, weD",
D

and note that for z € D°, we have u(x) < co. Indeed, this is clear since for z € D°, y € D, it
holds that |z — y| > dlSt(l‘ 0D), hence p(z) < j(dist(z,0D))|D|. For x € 0D, it will usually
be the case that p(z) = oo. Let L*(D¢, u(x)dx) be the usual L? space with the inner product
given by

(0, X) L2 (D p(w)dz) = ¢( Ix( dl’—/ P(x (z) dx

/c /D $(@)x(x)k(w,y) dy dz .

Extend ¢ € L*(D¢ u(z)dr) to D by letting ¢(z) = 0, x € D. Then we may regard
L3(D¢, u(z)dz) as a (closed) subspace of V¥2(D) and

16172 (e payany = €(5 D) -

We would like to have a sort of a converse, namely that if u € V*2(D), then ulpe €
Vk2(D). Note that

c

E(ulpe,ulpe) = /C/D(uch(x)—uch(y))2k(x,y) dydxz/ u(z)*u(r) d . (2.3)

5



Since the right-hand side need not be finite for u € V*2(D), we introduce another function
space. Let m(dx) = 1p(x)dx + 1pe(x)p(x)de. Since it may happen that [,. p(z)de = o0
(e.g.,if k(z,y) = |[r—y|? = for 1 < a < 2), the measure m(dz) need not be a Radon measure.
Set

F = {ueV*(D): / u(z)*p(r) dr < o}

c

= {u:R? > R:ue LXRY m(dz)), E(u,u) < o}
For u € F define

[ull% = lulfapy +/ u(@)*u(@) dr = |ula g many) + E ().

c

Then (F,| - |#) is a Hilbert space. Indeed, the norm is clearly an inner product norm.
Suppose that (u,)n,>1 is a Cauchy sequence in (F,| - |#). Then it is a Cauchy sequence
in (V*2(D), || - [vre(p)). Hence, there exists u € V¥2(D) such that |u, — ulyrep — 0.
Moreover, a subsequence of (u,) converges to u a.e. in R? hence also m-a.e. Further,
(un|pe) is a Cauchy sequence in L?(D¢, pu(x)dx), hence converges to some v € L*(D¢, u(x)dz).
Since a subsequence converges to u m-a.e., we see that v = ujp. m-a.e. This proves that
u = lim,, o u, in (F,| - ||7). Therefore, the following result holds true.

Lemma 2.2. (1) (F,| - |#) is a Hilbert space;
(ii) If ue F, then ulpe and ulp are also in F;
(1) If ¢ € L*(D¢, u(x)dx), then ¢ extended to be zero on D is in F.
Proof. (ii) If u € F, then ulpc € F by (2.3). It follows that ulp = v — ulpe € F. O

3 Dirichlet-to-Neumann operator

We start this section by recalling the exterior value Dirichlet problem. Let

Cutr) =PV [ (0(0) —u)kto )y =l [ (u(a) o) k() -
R e y—x|>€

Consider the following exterior value Dirichlet problem (cf. [13, Definition 2.5 (D)]). Let

¢ € L?(D¢, u(z)dz). A function u € V*2(D) is a solution of

{£u=0 in D,

u=q on D¢, (3.1)

if u—¢eWE*(RY) = Vi?*(D) and E(u,v) = 0 for all v e W5*(RY). Since for v e W,*(R%)
it holds that v = 0 a.e. on D, this last condition can be written as £(u,v) = 0.
It is shown in [13, Theorem 3.5 and Theorem 4.4] that there exists a unique solution

u € V*2(D) of the above Dirichlet problem. Moreover, since u = ¢ a.e. on D¢, we see that
in fact u € F. Further, it is also shown in [13, (3.3)] that there exists C' > 0 such that

|ulvezpy < CldllLzpe ue)dz) -

6



In particular
E(u, u)"? < C|| 12(De p(ayn) - (3.2)
Let
Fp:={ueF:u=0m—a.e. in DY,
and note that Fp = VDk’Q(D). Define now the following simple trace operator. For u € F

let Tr(u) := wjpe. Then ker Tr = Fp. Next we define the space of harmonic functions in D
(with respect to the non-local operator £). Let

H(D) := {ueF; E(u,v) =0 for all v € ker Tr}
= {ueF; g(u,v)=0f0r all ve Fp}.

Note that H(D) is a closed subspace of F. This is a consequence of the continuity of the
form &£, cf. [13, Lemma 2.4]. We also note that the solution v € F of (3.1) is in H(D).
Further, Fp n H(D) = {0}. Indeed, if v is in the intersection, then &(v,v) = 0. Since E(-,-)
is a norm on Fp, it follows that v = 0.

Lemma 3.1. It holds that
F=Fp@®H(D)

in the sense that any u € F can be uniquely decomposed as u = v+w with v € Fp, w € H(D)

and E(v,w) = 0. Moreover, ker Tr(F) = ker Tr(H(D)).

Proof. By Lemma 2.1, there exists a unique v € Fp such that g’(u,@b) = g(v,@b) for all

W e Fp. Let w:=wu—v e F. Then for any ¢ € Fp we have &(w, v)) = & (u, 1) — E(v, ) = 0.

Uniqueness follows from the fact that Fp n H(D) = {0}. The last assertion follows from

ker Tr(Fp) = {0}. O
For u e F, let

Nu(w)i= [ (ule) = uly)k(eg)dy, v D
D
cf. [8, (1.2)] where (up to a constant) N is called a non-local normal derivative. Let

_Nula) _ [plule) —u@kandy
p(x) fD k(z,y)dy ’

be the normalized non-local normal derivative, see [8, (3.8)].

We continue by constructing the Dirichlet-to-Neumann operator. Let ¢,x : D¢ — R
and assume that ¢, x € L?(D¢, u(x)dz). Let u,v € F be the corresponding solutions of the
Dirichlet problem (3.1). Since u — ¢ € WE(R?), we see that Tr(u) = ¢, and similarly,
Tr(v) = x. Moreover, u,v e H(D) .

Define the form C : L?(D¢, p(x)dz) x L*(D¢, p(x)dz) — R by

Nu(z) :

Y

~

C(op,x) = C(Tr(u), Tr(u)) := E(u,v) = E(u,v) .
By using (3.2) in the second inequality below, we see that
C(@ 01 = |Eu,0)| < Euw,u) (v, 0)2 < O] 220w [X |12 D o1 -

7



This show that the linear functional y — C(¢,€) is bounded on L?*(D¢ pu(x)dx). Hence,
there exists ¢ € L?(D¢, p(z)dz) such that C(¢, x) = (¥, X)12(De u(x)dr)- Define the operator
N : L*(D¢, p(x)dz) — L*(D¢, p(x)dz) by N¢ = 1. Since

(NG, X)) L2 (D¢ u(wyiay = C(0,X)| < C?ID]| L2 (De p(apa) X | £2(De ) )
we see that the operator N is bounded. Thus, we have proved the following proposition.

Proposition 3.2. There exists a bounded operator N : L?(D¢, u(z)dz) — L*(D¢, u(x)dx)
such that

(N¢7 X)LQ(DC,[L(x)dI) = C(¢> X) = é\(ua U)
for all ¢,x € L*(D¢, u(x)dz).

We call N the Dirichlet-to-Neumann operator. This is in accordance with the definition
of the Dirichlet-to-Neumann operator in the classical setting of the Laplacian, cf. [2, p.9].
Another justification is provided by the following observation. Write v = vlpe + vlp =
v1 4+ vg. Then (since v; = 0 on D and v; = x on D°),

Py

é(uv U) = u, vl)

(u(x) = u(y))(vi(x) = vi(y))k(z,y) dy dx

D¢ JD

- /CX@)/D(“(@’)—U(y))k(x,y) dy dx
— /Cx(x)/D(u(:p) —u(y))k(z, y) dy dz

D

~

= / X(x)Nu(z) de = /\N/u(:r;)x(x)u(x) dx = (Nu, X)2(pe () dz) -

D¢ De

This shows that N¢ = Nu.

4 The Dirichlet form and the corresponding process

In this section we show that ((SA’ , F) is a quasi-regular Dirichlet form on L?*(R%, m(dz)) and
investigate the corresponding Markov process. Recall that m(dz) = 1p(x)dx+1pe(x)p(z)dz
(and need not be a Radon measure on Borel subsets of R?),

F={u:R*>R:ue L*R? m(dr)),E(u,u) < 0},

and |ju|% = E(u,u) + Hu”ig(Rd m(azy)- L€t us introduce the standard notation in the theory of
Dirichlet forms, R R
& (’LL, U) = g(ua U) + <u7 U>L2(]Rd,m(dx) ) u,v € JT:v

so that |u|% = & (u.u). Further note that
f

Fp={ueF:u=0m—a.e. in D}



is equal to V}7*(D) and | -|| 7 restricted to Fp is equal to | - |vx.2(py restricted to V52(D) (and

both are equivalent to é(, 1)). Let X be the process X killed upon exiting D, (PP);>o the
corresponding L2(D, dx) semigroup, and (CP,D(CP)) the Dirichlet form. Recall from [14,
Theorem 4.4.3] that D(CP) = {u € W**(R?) : u = 0 a.e. on D} = V*(D) = Fp and that
(CP, Fp) is a regular Dirichlet form. For u,v € Fp we have

CP (u,v) = EP(u,v) —I—/ u(z)v(x)k(x) dx
D
where
K(z) = / k(z,y)dy, xeD
is the killing function. Also, let
ClD(ua U) = CD(uv U) + <u7 U>L2(D,d$) 5 u,v € FD .

Remark 4.1. (i) Let w € F. Then by Lemma 2.2, ulp,ulp. € F. Moreover, ulp € Fp
while ulpe € L*(D¢, u(z)dz). This show that every u € F can be written as a sum of two
functions, one from Fp, the other from L?(D¢ u(x)dx). Clearly, such a decomposition is
unique. Hence we can write F = Fp @ L*(D¢, u(x)dx). Note that this decomposition is
different than the one from Lemma 3.1.

(ii) Note that by Fubini’s theorem

/ dy—/c/ xydydx—/()d.

This shows that the measure m(dx) is finite if and only if the killing function k is integrable.

Let u,v € F and recall from Lemma 2.2 that ulp,vlp,ulpe,vlpc € F. First note that
E(ulp,vlp) = EP(u,v) / / k(x,y) dydr = CP(u,v).

We rewrite &(u,v) now as follows:

E(u,v) = E(ulp + ulpe,vlp + vlpe)
= S(U]_D,’U]_D)—FE(U]_DC U]_Dc +5 UlD,'U]_Dc +(€(U1Dc UlD)

— CD(u,v)+/C u(z)v( dm—/ / y) + u(y)v(z))k(z,y) dy dx .

More importantly, we have that

Euu) — ED(u,u)—i—/D/C(u(x)—u(y))2dydx
< SD(u,u)+2/D/C(u(x)2+u(y)2)dydx

= EP(u,u) + 2/ u(z)?k(z)dr +2 | u(y)*u(y)dy

D De

< 2 <CD(u,u) —I—/Cu(.w)z,u(x) d:c)). (4.1)

9



Proposition 4.2. (€, F) is a Dirichlet form on L2(R%, m(dz)).

Proof. Clearly, £is a symmetric bilinear form. Next, we argue that F is dense in
L3R4, m(dz)). Let u € L?*(RY m(dx)) and write u = ulp + ulpe. The function ulpe
is already in F, cf. Lemma 2.2 (iii). Next consider ulp € L?(D,dx). Since D(C”) = Fp
is dense in L?(D,dz), there exists a sequence (u,),>1 < Fp such that wp = lim,u, in
L*(D;dx). Extend u, to all of R? by setting u,(x) = 0 for z € D°. Then u,, + ulp. € F and
converges to u in L?(R4, m(dx)).

Further, since (F,| - |#) is a Hilbert space, the form (é’\ , F) is closed. Finally, let v be a
normal contraction of u € F. Then |v(z) — v(y)| < |u(z) — u(y)| for all z,y € R?, and thus
clearly €(v,v) < £(u,u) < o0, hence normal contraction operates on &. O

Remark 4.3. Note that the Dirichlet form (c‘?, F) is a special case of [14, Example 1.2.4].

Indeed, let
' _ ] 1 k(x,
i@, dy) §1D(x)k(x, y)dy + §1DC(~T>1D(y) /g(x?;) dy

Then j(z,dy) satisfies (j.1), (j.2) and (j.3) from [14, Example 1.2.4|. Further, if J(dz, dy) :=
Jj(z,dy)m(dzx), then J(dz,dy) is a symmetric measure and

J(dz,dy) = 1p(x)k(z,y)dy dz + 1pe(2)1p(y)k(z,y)dy dx .

Hence
//Rd Rd(u(l’) - u(y))(v(:c) — U(y))J(daj', dy)

1

-5 () ~ u(u)) (v(2) — v(W)k(, y)dy dx = E(u,v).
(R xR4)\(De x D¢)

Since F is dense in L?(R? m(dx)) (see the proof above), it follows from |14, Example 1.2.4]

that (£, F) is a Dirichlet form.

Next we will show that the form (£, F) is quasi-regular. For all unexplained notions
(such as nests and quasi-continuity) we refer the reader to [7].

Theorem 4.4. The form (5, F) is a quasi-reqular Dirichlet form on L*(R? m(dx)).

Proof. For a closed subset F' = RY, let Fr := {u € F: u =0 m-a.e on R\F}. We check
that the three properties of |7, Defintion 1.3.8.| are satisfied.

(i) First we show that there exists an E-nest (F})j=1 of compact sets. Since (CP, Fp) is a
regular Dirichlet form, there exists a CP-nest (A;);>1 of compact subset of D. This means
that | J;o, Fa, is dense in Fp with respect to C{’(-,-). Next, let (B;);>1 be an increasing
sequence of compact subsets of D such that Uj=1Bi = D°. For any u € L*(D¢, p(z)dz),
we have that ulp, € Fp,. Further, since 15C\Bjc_ — 1;p = 0 m-a.e., by the dominated
convergence theorem we get |u — ulp, |r2(pem(de)) = Hulﬁc\B;HLQ(Dc7m(dw)) — 0. Set Fj :=

AjUB;j, j = 1. Then Fj is a compact subset of R%. For u € F and € > 0 we can find j > 1, v €

10



Fa, and w € Fp, such that CP(ulp—v,ulp—v) < € and (ulpe—w, ulpe —wW)r2(pe m(dz)) < €.
Then v +w € Fp, and by (4.1)

Eiu— (v+w),u—(v+w))
= SA(u — (Wt w),u—(v+w))+{u—(v+w),u—(V+w))rwdmids)
< 2 (C’D(ulD —v,ulp —v) +<{ulpe — w,ul pc — w>L2(Dc7m(dx)))

+u = (v+w),u— (v +w))r2Ra m(dr)

4e .

N

This proves that (F});>1 is an E-nest of compact sets. Note also that ﬂjzl(Rd\Fj) = 0D
implying that 0D is g—polar.

(ii) Since (CP, Fp) is a regular Dirichlet form, C.(D) n Fp is CP(-,)-dense in Fp. On the
other hand, C,(D) is dense in L?(D¢, ju(x)dz). For v € C.(D) n Fp, we denote by the
same letter the function on R? extended to be zero on D¢. Similarly, for w € C.(D°), the
same letter denotes the function on R¢ extended to be zero on D. Let G := {u: u=
v+ w,v € Co(D) N Fp,w € C(D)}. Each function in G is continuous, and therefore é-
quasi-continuous. Moreover, G is dense in (F, (‘,A’l) Indeed, for v € F and € > 0, there
exist v € C,(D) n Fp such that CP(ulp — v,ulp —v) < ¢, and w € Co(D") such that
(ulpe — v, ulpe — V)r2(pem(ds)) < € By (4.1), analogously as in part (i), we get that
Elu—(v+w),u—(v+w)) < e

(iii) Let (A;);>1 be an increasing sequence of compact subsets of D such that A; < int(A4;)
and (J;5, 4; = D. Similarly, let (B;);>1 be an increasing sequence of compact subsets of
D° such that B; < int(B;,,) and Uj=1 Bi = D°. Let v; € Co(D) n Fp such that v; = 1
on A; and v; = 0 on D\A,;. Similarly, let w; € C.(D°) such that w; = 1 on B; and
w; = 0 on D°\Bj;. Then u; := v; + w; is continuous on R? and u; € F. Thus (ux)g=1 is a
family of continuous (hence g—quasi—continuous) functions which clearly separates the points
of R\GD. Since 0D is E-polar, the third property is verified. O

Remark 4.5. It is easy to see that (SA ,F) need not be a regular Dirichlet form. Indeed,
the measure m(dz) need not be a Radon measure which by itself prevents (€, F) to be
regular. Moreover, if the form were regular, then by |7, Remark 1.3.11.], F n C.(R%) would
separate the points of R? (here C.(R?) are continuous functions with compact support). But
note that if u € F n C,(RY), then also ulp. € F, meaning that [, u(z)?u(z)de < oo,
Since lim,_,p ,op° #(7) = +o0 (and u is continuous), in case when m (D) = oo, this forces
u(x) = 0 for every x € dD. Therefore, F n C.(R?) does not separate points in dD. On the
other hand, by the general theory, cf. [7, Theorem 1.4.3], (é\ , F) is quasi-homeomorphic to a
regular Dirichlet form on a locally compact separable metric space E. It is easy to identify
the space E and the form: we take E := RN\dOD = D u D°, the disconnected union of open
sets D and D°, and the form is given by the essentially same formula as &

~

E(u,v) = //E\(Dchc)(U(w) —u(y))(v(z) —v(y)k(z,y)dyde,  w,veF,

where

F={u:E—->R: Eu,u) <}

11



Then (£, F) is a regular Dirichlet form on L*(E, mig).

Since (é\ , F) is a quasi-regular Dirichlet form on L*(R?, m(dxz)) we can state the following
theorem.

Theorem 4.6. There exists a Hunt process Y = (Y;,Q,) on RNAOD properly associated with
(&, F).
Proof. We deduce from |7, Theorem 1.5.2.| that there exists an g’—polar set N < R?% and an
m-symmetric, m-tight special Borel standard process Y = (Y;, Q,) on RA\N that is properly
associated with (é, F). By inspecting the proof of |7, Theorem 1.5.2.] and using Remark 4.5,
we can conclude that N = 0D and that Y is a Hunt process on RN\dD properly associated
with (€, F). O
Let ¢ denote the lifetime of Y. It is easy to see that the part process of Y on D is
precisely A X D the underlying process X killed upon exiting D, and that the part process
of Y on D° is the process that sits at its starting point for an exponential amount of time
(of parameter 1) and then it dies. The behavior of Y is described as follows: starting from
xr € D, Y moves as the underlying process X until 7)) = inf{t > 0: Y; ¢ D}, the first exit
time from D. If 73 < ¢, then Y jumps out of D according to the kernel k(Yoy_,Y,y) and

yi=Yye€ D°. Then Y sits at y for an exponential amount of time (of parameter 1) and
then jumps back to D according to the probability distribution k(y,z)/u(y). Once in D, the
process starts afresh.

We argue now that under a certain weak assumption, the lifetime ¢ of Y is infinite.
Indeed, assume that ]P)x(Xq—i_f € 0D) = 0 for every x € D, i.e., when X exits D it does so by
jumping into EC Sufficient conditions for this to hold can be found in [18 20, 22]. Then
also Yy e D° and Y spends an exponential time (of parameter 1) in D’ before coming
back. This will be repeated infinitely many time and since the exponential sitting times are
independent, the lifetime has to be infinite.

In the appendix we give an alternative construction of the process Y and verify that the
corresponding bilinear form is indeed £.

Remark 4.7. It has been proved in [21, Lemma 2.20] (when k(z,y) = |z — y|~%7%) that in
case of a smooth open set D, (é ,F) is a regular Dirichlet form on L?(R¢, dz). This means
that the corresponding Hunt process Y can start from any point of ¢D. Away from the
boundary 0D, Y behaves like a time-changed process Y.

In the remaining part of this section we look at the trace process of Y on D° and revisit
the Dirichlet-to-Neumann operator. Let

¢
B, = / Liy,cpeyds, oy :=inf{s > 0: B, > t},
0

and let W, :=Y,, be the trace process. This process is a continuous-time Markov chain in
D° which sits at the point 2 an exponential time with mean one, and then jumps to the
point z according to the jump distribution p(x, z)dz that we are now going to compute. Let

12



Pp(y,2), y € D, z € D¢ be the Poisson kernel of X. Then clearly, Pp(y, z)dz is the exit
distribution of Y from D. Let

Tp:=inf{t >0: Y,e D}.

Then Kz, y)
_ Ty
Q.(Yr, €dy) = u(z) dy,
and hence )
p(z,2) = /])@$(YTD € dy)Pp(y, z) = /D l(j’x?;) Pp(y,z)dy.

In order to identify p(z, 2), let ¢ : D° — [0, 90) be a measurable function. We probabilistically
solve the exterior value Dirichlet problem with the exterior data ¢. Thus, let

uly) = [ Polw.5)él2)dz. yeD.

be the harmonic extension. Then

Let Q¢ := 1. Then

(1= Qota) = oto) ~ [ BEB iy = [ (0lo) w7y = Mula) = Nofo).
(4.2)

Thus, I — @ = N is the Dirichlet-to-Neumann operator. In other words, the operator —N
is the infinitesimal generator of the trace process.

Recall that m(dz) = 1p(x)dz + 1pe(x)p(r)dz. Then mpe is the symmetrizing measure
for the kernel p: p(x,dz)m(dx) = p(z,dz)m(dz). Indeed, denote the Green function of D
with respect to X by Gp. Then

P, Julx) = /D k(. 5) Py, =) dy — /

D

_ /D k(2 w) /D Gp(w, y)k(y. z) dy dw = p(z,2)u(2).

k(x,y) /D Gp(y, w)k(w, z) dw dz

We end this section by recovering |6, Corollary 5.2|. By (4.2),

Bn) = [ Auw)oe) ds - / (¢<x>— | plezjoc >dz) Sw)u(z) do

_ //D (@, 2 dzdx—//CXDc Vul2)p(e, ) dz da

- 5 L6 - o) Putant, ) dz .
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Therefore we have,
ey = By [ (ule) = )bl dydo
- % //D (0la) = 6(0)* (ua)pla. ) + ki) dyd

5 The process Z

Now we transform the process Y so that the resulting process lives only in D. This new pro-
cess corresponds to the description in [8] of a process that after it jumps from D immediately
returns to D.

Let C, := f(f liv,epyds be the time Y spends in D until the fixed time ¢. Then C
is a positive continuous additive functional whose support is D (cf. [14, (5.1.21)]). Let
7, = inf{s > 0 : Cs > t} be the right-continuous inverse of C'. Define the new process
Z = (Zy)i=0 by Z; = YTt This construction amounts to deleting from the path of Y the
part that Y spends in D°. The process Z is a right Markov process with the state space D
(cf. [7, p.175]). For a non-negative Borel function u on R%, let

u(:z:), xeD,
Hu(x) := E,[u(Yr,), Tp < o] = D Loyuly)dy, we D,
rxedD.

Further, let
F ={¢¢€ LQ(D dx): ¢ =u a.e. on D for some u € F.}
(gb ¢) = (Hu Hu): ¢pe F,¢p =uae. on DueF,.

Here F. denotes the extended Dirichlet space. By |7, Theorem 5.2.2. and Theorem 5.2.7]
(c‘,v’ ) F ) is a quasi-regular Dirichlet form and the process Z is properly associated with it.
Moreover, if we regard (é, F ) as a regular Dirichlet form (£, F) on L*(RNOD, mgaap),
then it follows from [14, Theorem 6.2.1], that (£, F) is in fact a regular Dirichlet form on
L*(D,dx).

We compute now £ (¢, ¢). For simplicity, let

~ k k
k(x,y)::/ LRI LICT )Ry

and note that for any z € D,

/D@(w,y)dy = // IZ]; >dzdy:/DC kff(;;) (/Dk(z,y)dy> dz

= /c k(z,z)dz = k(x). (5.1)

Hence k is an integrable kernel.
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We have
(¢, 9)

A~

E(Hu, Hu)

//Hu(x xydydx+// (Hu(x k(x,y) dy dx
D

/D/Du(x)—U(y)) k(x, y)dydx+/D ()2/D k(z,y) dy do
-2 ux/DHu a:ydydx+/ Hu(y /k:(:z:,y)dxdy
u(y))?

(
D ) D
/(u(x) k(x,y dyda:+/jj u(z)?k(7) dx

(
)

(x)/ < ) (:c,y)dyd:H/Dc (/D k&;’;)U(Z)dZ)Qu(y)dy
)

/(u(:v) u(y )) (a: y)dydr + | u(z)*k(z)de

[ (] 1 FHWENEII
” (/D’f@ )< ()
(z) —

u(y))’k(z,y dydx+/ u(z)?k(r) do

I I
DO | —

N | —

N | —
u\

[\9
Q

DN | —
b\
b\;

[\3

D

/D
fo )
Z/D u(z z) xzdzdx+// z) (x,2)dzdx

//@( xy@%+/¢ () dar — //¢ W@, y) dy da

= CP(¢,9) - //cb ()k(x,y) dydz.

Note that the calculation above shows that

| olepryda= [ [ ooty dyds = [ [ (i) - K@, y) dydz > 0.

Moreover, by use of (5.1) we have that

[ e | oor ] (2

implying

/¢ ) dx — //(;5 k(z,y)dyde = = // N2k(z,y) dy dz .

Therefore, we finally have that

0.0 =5 [ [ (00a) = )bt 9) + Fo.9) dy .
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6 Appendix: An alternative construction of the process
Y

In this appendix we give an alternative construction of the process Y and compute the
bilinear form. The process Y in D behaves like X, once it jumps outside D, sits at the
landing point x for an exponential time, returns to D according to the normalized measure
k(x,y)dy, and then starts afresh.

Let X = (X;,P,) be the isotropic Lévy process in R? introduced in Section 2, and let
T =1p = inf{t > 0: X; ¢ D} be the first exit time from D. According to [9, Theorem 10.3,
p.305], the stopped process X7 is a standard process. Since its lifetime is infinite, X7 is in
fact a Hunt process. Define

t
Ay = / 1(X§eﬁc) ds, My = e
0

Then M = (M;) is a continuous strong multiplicative functional, cf. [5, III (3.11)]. Moreover,
if (R,) is an increasing sequence of stopping times converging to R, then Mg, — My
a.s. on {R < oo}, cf. [5, III (3.14)]. Let X = ()A(t,]?"x) be the canonical subprocess of X7
corresponding to M, cf. [5, IIT 3.]. By [5, III (3.16 Corollary)], X is a Hunt process. Note
that the lifetime ¢ of X is finite almost surely. We see that X is the process that behaves
as X while in D. If the first exit from D is in D° (which happens a.s.), then X sits at the
exit place X, for an exponential time with mean one, and then it dies. If the exit place is
on 0D (which will be the case P,-a.s. for a regular point x € dD ), then X sits at the exit
point forever. Also, if X starts at a regular point x € D, then X stays at x forever.

Now we use the piecing out procedure from [16]. The instantaneous distribution p(w,dy)
is defined by

Lo()k(Xe (@), )y
B(Xe- ()

p(w, dy) =

That is, once X is killed it reappears at y € D according to the normalized jumping kernel
k(z,y) (wherex = X,y e D). Let Y = (Y;,Q,) be the process constructed in [16, Theorem
1.1] by the piecing out procedure. The lifetime of the process Y is infinite. (This is clear
because X will be resurrected infinitely many times, and the sum of independent exponential
random variables, each with mean 1, is infinite.) Moreover, the lifetime ¢ of X is a totally
inaccessible stopping time. Therefore, according to [16, Corollary of Proposition 4.2|, Y is a
Hunt process.

In the remaining part of this appendix we compute the bilinear form of the Hunt process
Y. For a bounded measurable u : R? — R let Qqu(z) := Q,u(Y;), t = 0 be the semigroup of
(Y;, Q). Recall that XP is the process X killed upon exiting D, (PP);>o the corresponding
L*(D, dx) semigroup, (CP,D(CP)) the Dirichlet form, and D(CP) = Fp. The killing function
k: D — [0,00) was defined as

k(x) ::/ck:(x,y)dy, xeD.
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Then for u € D(CP) = Fp,

1 [ [ ) - uw)Prpdyds + [ soput? s
= eD(u,u)+/Du(x)2 (/ck;(x,y) dy) dz .

Proposition 6.1. Let u,v : R* — R be bounded function such that wp € C(D) n Fp,
vp € Fp, wpe € L*(D°, p(z)dx) and vpe € L'(D¢, p(x)dx). Then

lim ~ [ (u(e) = Quuta))o@)m(dz) = E(uv). (6.1)

t—0 t

Proof. Clearly, u € L*(R% m(dz)). Recall that Tp = inf{t > 0: Y; € D} and

Q.(Yr, e dy) = dy =:n(z,y)dy. (6.2)

Under Q,, x € ﬁc, Tp has an exponential distribution with mean 1. Thus for x € bc,

Quu(Yy) = Qufu(Vy),t <Tp]+ Qulu(Yr), ¢ = Tp]
w(@)Qu(t < Tp) + Qulu(Yr),t = Tp]
— e tu(z) + Qu[u(¥i),t > To)
hence
u(r) — Qu(r) = u(z)(1 — ") — Q. [u(Y;), t = Tp]. (6.3)
By (6.2) and the fact that (Y7, 1+):>0 is independent of T, we get

Q> 7o] = ([ 200, w0 dy) Qute < 7o)
- (=) [ Qu)n(ep)dy.

By the assumption on v and v (up bounded and continuous, vjpe € L'(u(x)dz)), the use of
the dominated convergence theorem below is justified, and we get

i+ [ o@Qu (D).t > Tolm(da
~ iy = [ o) [ (o0, () dy )

Further,

= /Cv(ﬂf)/D n(z, y)u(r) dyda:—/c/ k(z,y)dydz . (6.4)
i = [ wo@man) = [ @@= [ [ @)y,

lim
(6.5)
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It follows from (6.3)— (6.5) that

g7 [ (ula) = Quu(a))ole) m(d)

5 /C/ xydya@—/c/ k(z,y) dy dx
/D / _uly)o(y)k(z, y) dy de — /D / “ulw)o(y)k(z,y) dy dv (6.6)

Now assume that z € D and let 7p = inf{t > 0: X; ¢ D}. Then we have
Quu(Y;) = Qqlu(Yi),t < 7p] + Qu[u(Yy),t =
= E.|[u(Xy),t <7p|+ Qulu(Ys),t = 7p]
= PPu(x) + Q.[u(Yy),t = 7p],
hence
u(z) — Qu(z) = u(x) — PPu(r) — Q.[u(Y:),t = p]. (6.7)
Since up,vp € Fp = D(CP), we get
lim ( () = PPu(x))v(x) de = CP(u,v)

t—0

- 5/ | ) = u) @)~ o)k ) dyda (6.5)

+ /D u(z)v(z) ( / k() dy) dz. (6.9)

Finally, we consider Q.[u(Y;),t = 7p|. Let e be an independent exponential random
variable as in the construction of the process X (i.e., e is the waiting time in D° before
jumping back to D). Then

Q:lu(Vy),t = mp] = Q.[u(Y}), 70 <t <71p+e] + Q. u(Ys),t = 1p,t =7p + €]
= Quu(Yr,), ™o <t <71p+e]l+Q.uY),t=1p+e€]
= Qulu(Yr,), 70 < 1] = Qufu(Yr,), t = 7p + €] + Quu(YV3), t =
), 7o < t] — Qu[u(Y;,),t = mp +e| + Q.lu(Y;),t =1 +e] (6.10)

Note that

t t
Qu(tp +e<t) = / e °Qu(tp+ s <t)ds = et/ e’ Qu(mp < s)ds.
0 0

Hence, by right-continuity of s — Q,(7p < s) and the fact that Q,(7p < 0) = 0, we get
1 : 1 —t ! s
Pm Qu(tp+e<t)= Pr% Ze e’ Q.(tp < s)ds =0. (6.11)
—0 — 0
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Since w is bounded, (6.11) implies that

1
lim sup — ’Qgg Y;),t=>71p+e] < HUHOOPI% ;Qx(TD +e<t)=0, (6.12)

t=0

and, similarly,
lim Qx[(T)t>TD+e]=0. (6.13)

t—0 t

In order to handle the term E,[u(X,,), 7p < t] we will use the compensation formula

tATD
B Y F(X..X) / F(X0,y)k(X,,y) dy ds
Rd

0<s<tATD
with F(z,y) = 1p(z)1pe(y)u(y). Then

Eo[u(X.,), 70 <t]=E, > F(X. X,)

0<s<tATp
tATD
_ &, / / 1x.cpyu(y)k(Xe, y) dy ds
- / / o (Lxescrmk(Xory)July) dy ds

Since for x € D and y € D¢, lim, 0 Ex[1(x,ep,s<rp)k(Xs, y)| = k(z,y), we get that

lim E [w(X,,), 70 < 1] = /Cu(y)k(x,y) dy. (6.14)

t—0 t

Now it follows from (6.12)-(6.14) that

%irré / Q.[u(Y), x)dr = / / k(x,y)dydx. (6.15)
Now (6.7), (6.8) and (6.15) imply that

lim + (@) - Quuta) / / )(w(z) — v(y))k(z,y) dy dz

// kz,y d’yd“”_/ / k(z,y) dy da . (6.16)

Putting together (6.6) and (6.16) we obtain

hm (u(m) — Quu(x))v(x) m(dx)

t—0 ¢
- 2 /D | (wle) = a0 = o) (a.y) dyda
n /D /D C u(y))(v(x) — v(w)k(z,y) dy di = E(u,v).
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