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1 Introduction

Let Xt be a d-dimensional Brownian motion in Rd and let Tt be an α/2-stable subordinator

starting at zero, 0 < α < 2. It is well known that Yt = XTt is a rotationally invariant α-stable

process whose generator is −(−∆)α/2, the fractional power of the negative Laplacian. The

potential theory corresponding to the process Y is the Riesz potential theory of order α.

Suppose that D is a domain in Rd, that is, an open connected subset of Rd. We can kill

the process Y upon exiting D. The killed process Y D has been extensively studied in the

last five years and various deep properties have been obtained. For instance, when D is a

bounded C1,1 domain, sharp estimates on the Green function of Y D were established in [5]

and [15], while the intrinsic ultracontractivity of the semigroup corresponding to Y D was

proved in [4], [6] and [16].

Let ∆|D be the Dirichlet Laplacian in D. The fractional power −(−∆|D)α/2 of the nega-

tive Dirichlet Laplacian is a very useful object in analysis and partial differential equations,

see, for instance, [22] and [18]. There is a Markov process Z corresponding to −(−∆|D)α/2

which can be obtained as follows: We first kill the Brownian motion X at τD, the first exit

time of X from the domain D, and then we subordinate the killed Brownian motion using

the α/2-stable subordinator Tt. Note that in comparison with Y D the order of killing and

subordination has been reversed. The difference between the processes Y D and Z can be

explained as follows: Look at a path of the Brownian motion in Rd, and put a mark on it at

all the times given by the subordinator Tt. In this way we observe a trajectory of the process

Y . The corresponding trajectory of Z is given by all the marks on the Brownian path prior

to τD. There is the first mark on the Brownian path following the exit time τD. If this mark

happens to be in D, the process Y has not been killed yet, and the mark corresponds to a

point on the trajectory of Y D, but not to a point on the trajectory of Z. If, on the other

hand, the first mark on the Brownian path following the exit time τD happens to be in Dc,

then trajectories of Z and Y D are equal.

Despite its importance, the process Z has not been studied much. In [12], a relation

between the harmonic functions of Z and the classical harmonic functions in D was estab-

lished. In [14] (see also [10]) the domain of the Dirichlet form of Z was identified when D is

a bounded smooth domain and α 6= 1.

In this paper we study the process Z and some of its potential-theoretic properties. One

way to understand the process Z is to describe its killing and jumping measures. It turns

out that, at least when D is Lipschitz, the killing measure is comparable with the killing
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measure of the process Y D. This fact, shown in Sections 2 and 3 of the paper, follows

from an analysis of the lifetimes of processes Z and Y D. In order to do that, we have to

give a precise description of both processes in terms of the underlying Brownian motion

Xt and the subordinator Tt. The process Z, being a symmetric Markov process, has an

associated Dirichlet form. By using the comparability of killing measures of Z and Y D, we

show that the corresponding Dirichlet forms are also comparable. This fact is then used in

Section 4 to prove the intrinsic ultracontractivity of the semigroup corresponding to Z. As

a consequence of this result we derive a lower bound on the Green function of Z in terms of

the first eigenfunction of the Dirichlet Laplacian ∆|D. In the last section we derive upper

bounds on the Green function of Z for C1,1 domains. These bounds may not be sharp, but

they show that the behaviors of the Green functions of Z and Y D are very different. In the

same vein we obtain bounds for the jump kernel of Z which confirm that the jump kernel

vanishes near the boundary of D.

2 Subordinate killed Brownian motion

Let X1 = (Ω1,F1,F1
t , X1

t , θ1
t ,P1

x) be a d-dimensional Brownian motion in Rd, and let T 2 =

(Ω2,G2, T 2
t ,P2) be an α/2-stable subordinator starting at zero, 0 < α < 2. We will consider

both processes on the product space Ω = Ω1×Ω2. Thus we set F = F1×G2, Ft = F1
t ×G2,

and Px = P1
x×P2. Moreover, we define Xt(ω) = X1

t (ω1), Tt(ω) = T 2
t (ω2), and θt(ω) = θ1

t (ω
1),

where ω = (ω1, ω2) ∈ Ω. Then X = (Ω,F ,Ft, Xt, θt,Px) is a d-dimensional Ft-Brownian

motion, and T = (Ω,G, Tt,Px) is an α/2-stable subordinator starting at zero, independent

of X for every Px. From now on, all processes and random variables will be defined on Ω.

Let At = inf{s > 0 : Ts ≥ t} be the inverse of T . Since (Tt) is strictly increasing, (At) is

continuous. Further, ATt = t and TAs− ≤ s ≤ TAs .

We define a process Y subordinate to X by Yt = XTt . It is well known that Y is a

rotationally invariant α-stable process in Rd. If µ
α/2
t is the distribution of Tt (i.e., (µ

α/2
t , t ≥ 0)

is one-sided α/2-stable convolution semigroup), and (Pt, t ≥ 0) the semigroup corresponding

to the Brownian motion X, then for any nonnegative Borel function f on Rd, Ex(f(Yt)) =

Ex(f(XTt)) = Ex(
∫∞

0
f(Xs) µ

α/2
t (ds)) =

∫∞
0

Psf(x)µ
α/2
t (ds).

Let D ⊂ Rd be a bounded domain, and let τY
D = inf{t > 0 : Yt /∈ D} be the exit time of

Y from D. The process Y killed upon exiting D is defined by

Y D
t =

{
Yt, t < τY

D

∂, t ≥ τY
D

=

{
XTt , t < τY

D

∂, t ≥ τY
D
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where ∂ is an isolated point serving as a cemetery.

Let τD = inf{t > 0 : Xt /∈ D} be the exit time of X from D. The Brownian motion

killed upon exiting D is defined as

XD
t =

{
Xt, t < τD

∂, t ≥ τD

We define now the subordinate killed Brownian motion as the process obtained by subor-

dinating XD via the α/2-stable subordinator Tt. More precisely, let Zt = (XD)Tt , t ≥ 0.

Then

Zt =

{
XTt , Tt < τD

∂, Tt ≥ τD
=

{
XTt , t < AτD

∂, t ≥ AτD

where the last equality follows from the fact {Tt < τD} = {t < AτD
}. Note that AτD

is

the lifetime of the process Z. Moreover, it holds that AτD
≤ τY

D . Indeed, if s < AτD
, then

Ts < τD, implying that Ys = XTs ∈ D. Hence, s < τY
D . Therefore, the lifetime of Z is less

than or equal to the lifetime of Y D.

Here is a very rough picture illustrating the differences between the processes Z and Y D.

Figure 1: trajectories of Z and Y D

In the picture above, the curve is a Brownian path, the points on the path marked by the

little crosses, circles and squares represent a trajectory of Y , the points on the path marked
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by the little crosses, circles represent a trajectory of Y D, and the points on the path marked

by the little crosses represent a trajectory of Z.

We compare now the semigroups corresponding to Y D and Z. For any nonnegative Borel

function f on D, let

Qtf(x) = Ex[f(Y D
t )] = Ex[f(Yt), t < τY

D ] = Ex[f(XTt), t < τY
D ]

Rtf(x) = Ex[f(Zt)] = Ex[f(XD)Tt ] = Ex[f(XTt), t < AτD
]

Since AτD
≤ τY

D , it follows that Rtf(x) ≤ Qtf(x) for all t ≥ 0.

The following result will be needed in order to compare the killing functions of the

processes Z and Y D.

Proposition 2.1 Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C for every

t > 0 and every x ∈ ∂D. Then

(1− C)(1−Rt1(x)) ≤ 1−Qt1(x) ≤ 1−Rt1(x) (2.1)

for every t > 0 and every x ∈ D.

Proof. Let τ 1
D(ω1) = inf{t > 0, X1

t (ω1) /∈ D}, i.e., τ 1
D(ω1) = τD(ω). Then F1

τ1
D
× G2 ⊂ FτD

.

Indeed, for A1 ∈ F1
τ1
D

and A2 ∈ G2, (A1×A2)∩{τD ≤ t} = (A1∩{τ 1
D ≤ t})×A2 ∈ F1

t ×G = Ft.

Thus, A1 × A2 ∈ FτD
. Since such sets generate Fτ1

D
× G2, the claim follows.

We want to show that TAτD
is Fτ1

D
×G2- measurable. Note first that τD and Tt, t ≥ 0, are

Fτ1
D
× G2-measurable. Therefore, {Tt < τD} ∈ Fτ1

D
× G2. Since {AτD

> t} = {Tt < τD}, it

follows that {AτD
> t} is Fτ1

D
×G2-measurable. Clearly, As is F0×G2 ⊂ Fτ1

D
×G2-measurable.

Therefore, {TAτD
≥ s} = {As ≥ AτD

} ∈ Fτ1
D
× G2.

For any nonnegative Borel function f on Rd, let Nt(x, f) = Ex(f(Xt)). Since τD and

TAτD
are Fτ1

D
×G2 -measurable, and TAτD

= τD +(TAτD
− τD), by an extended version of the

strong Markov property (see [2], pp. 43-44),

Ex[1D(XTAτD
)|FτD

] = Ex[1D(XτD+(TAτD
−τD))|FτD

] = NTAτD
−τD

(XτD
, 1D) a.s. (2.2)

By using the assumption of the proposition, we get Nt(y, 1D) = Py(Xt ∈ D) ≤ C for every

t > 0 and every y ∈ ∂D. From (2.2) we obtain that Px(XTAτD
∈ D|FτD

) ≤ C a.s. for every
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x ∈ D. Since F1
τ1
D
× G2 ⊂ FτD

, it follows that Px(XTAτD
|F1

τ1
D
× G2) ≤ C a.s. Further,

Px(AτD
≤ t < τY

D ) ≤ Px(AτD
≤ t, AτD

< τY
D )

= Px(AτD
≤ t,XTAτD

∈ D)

= Px[Px(AτD
≤ t,XTAτD

∈ D)|F1
τ1
D
× G2]

= Ex[1(AτD
≤t)Px(XTAτD

∈ D)|F1
τ1
D
× G2]

≤ CPx(AτD
≤ t) .

It follows that

Px(AτD
≤ t) = Px(τ

Y
D ≤ t) + Px(AτD

≤ t < τY
D )

≤ Px(τ
Y
D ≤ t) + CPx(AτD

≤ t) ,

hence

Px(AτD
≤ t) = Px(τ

Y
D ≤ t) + Px(AτD

≤ t < τY
D )

≤ Px(τ
Y
D ≤ t) + CPx(AτD

≤ t) .

Since Px(AτD
≤ t) = 1−Rt1(x) and Px(τ

Y
D ≤ t) = 1−Qt1(x), (2.1) follows. 2

A domain D ⊂ Rd is said to satisfy an exterior cone condition if there exist a cone K

with vertex at the origin and a positive constant r0, such that for each point x ∈ ∂D, there

exist a translation and a rotation taking the cone K into a cone Kx with the vertex at x

such that

Kx ∩B(x, r0) ⊂ Dc ∩B(x, r0) .

Here B(x, r0) denotes the ball of radius r0 centered at x. We show now that the condition in

Proposition 2.1 is true for a bounded domain D ⊂ Rd satisfying an exterior cone condition.

Let Kx(r0) = Kx ∩B(x, r0) and K(r0) = K ∩B(0, r0). Then we have for each x ∈ ∂D,

Px(Xt /∈ D) ≥ Px(Xt ∈ Kx(r0)) = P0(Xt ∈ K(r0)) .

By scaling,

P0(Xt ∈ K(r0)) = P0(X1 ∈ 1√
t
K(r0)) ≥ P0(X1 ∈ K(r0)) =: C1 ∈ (0, 1)

for every t ∈ (0, 1], where for any ρ > 0, ρK(r0) is defined to be the set {ρx : x ∈ K(r0)}.
The last two displays show that Px(Xt /∈ D) ≥ C1, for every t ∈ (0, 1] and every x ∈ ∂D.

Since D is bounded, there exists R > 0 such that for every x ∈ ∂D, D ⊂ B(x,R). Hence,

Px(Xt /∈ D) ≥ P0(|Xt| > R) ≥ P0(|X1| > R) =: C2 ∈ (0, 1)
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for every t ≥ 1 and every x ∈ ∂D. Let C = 1 − min{C1, C2}. Then C ∈ (0, 1) and

Px(Xt ∈ D) ≤ C for every t > 0 and every x ∈ ∂D.

It is well known (see [4], for instance) that the transition semigroup Qt corresponding to

the killed stable process has a density with respect to the Lebesgue measure. Let q(t, x, y)

be this density. Let r(t, x, y) be the density of Rt and let pD(t, x, y) be the transition density

of the killed Brownian motion XD. The density r(t, x, y) is given by the formula

r(t, x, y) =

∫ ∞

0

pD(s, x, y) µ
α/2
t (ds) , (2.3)

where (µ
α/2
t , t ≥ 0) is the one-sided α/2-stable convolution semigroup. Let GD(x, y) and

GY
D(x, y) denote Green functions of Z and Y D respectively. The Green function of Z is given

by

GD(x, y) =

∫ ∞

0

r(t, x, y) dt =
1

Γ(α/2)

∫ ∞

0

pD(t, x, y)tα/2−1 dt . (2.4)

Proposition 2.2 Let D be a bounded domain in Rd.

(i) The transition density r(t, x, y) of Z is jointly continuous in (x, y) for each fixed t.

Further, r(t, x, y) ≤ q(t, x, y) for all t > 0 and all (x, y) ∈ D ×D.

(ii) When d ≥ 2 or α ≤ 1 = d, the Green function GD(x, y) is finite and continuous on

D × D \ {(x, x), x ∈ D}. When α > 1 = d, the Green function GD(x, y) is finite and

continuous on D ×D. Further, GD(x, y) ≤ GY
D(x, y) on D ×D.

Proof. (i) Note that pD(s, x, y) ≤ (2πs)−d/2 exp{−|x− y|2/2s} ≤ (2πs)−d/2 for all x, y ∈ D.

It follows from the asymptotic behavior near zero of the density of µ
α/2
t given in [20] that the

integral
∫∞
0

s−d/2µ
α/2
t (ds) is finite. So the continuity of r(t, ·, ·) follows from the dominated

convergence theorem. Since Rtf(x) ≤ Qtf(x) for every x ∈ D and every nonnegative Borel

function f , we get r(t, x, y) ≤ q(t, x, y) for all y ∈ D \N(x) with N(x) having zero Lebesgue

measure. By continuity, the inequality holds for all x, y ∈ D .

(ii) The fact that GD(x, y) ≤ GY
D(x, y) follows immediately from r(t, x, y) ≤ q(t, x, y).

We now prove the continuity of GD by treating three cases separately. (a) The case when

d ≥ 2 or when α < 1 = d. Let x, y ∈ D, |x − y| > 2η > 0. Let (xn, yn) be a sequence in

D ×D converging to (x, y) such that |xn − yn| > η. Note that,

pD(t, xn, yn)t−1+α/2 ≤ (2πt)−d/2 exp{−|xn − yn|2/2t}t−1+α/2 ≤ c1t
−d/2+α/2−1 exp{−η2/2t}

which is integrable on (0,∞). The continuity now follows from the dominated convergence

theorem. (b) The case when α = 1 = d. Let x, y ∈ D, |x − y| > 2η > 0. Let (xn, yn)
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be a sequence in D × D converging to (x, y) such that |xn − yn| > η. Using the intrinsic

ultracontractivity of the killed Brownian semigroup on a bounded interval and Theorem

4.2.5 of [8], we know that there exists a T > 0 such that for any t ≥ T ,

pD(t, x, y) ≤ 3

2
e−λ0tφ0(x)φ0(y), x, y ∈ D,

where −λ0 < 0 and φ0 are the first eigenvalue and eigenfunction of the Dirichlet Laplacian

in D respectively. Thus in this case, the functions pD(t, xn, yn)tα/2−1 = pD(t, xn, yn)t−1/2 is

dominated by the function

g(t) =

{
c1t

−1 exp{−η2/2t}, t ≤ T
c2t

−1e−λ0t, t ≥ T

which is integrable on (0,∞). Now we can repeat the argument in the first case to arrive at

the claimed continuity. (c) The case when α > 1 = d. In this case, the family of functions

{pD(t, ·, ·)tα/2−1 : x, y ∈ D} is dominated by the function

h(t) =

{
c1t

−3/2+α/2, t ≤ T
c2t

−3/2+α/2e−λ0t, t ≥ T

which is integrable on (0,∞). The continuity now follows from the dominated convergence

theorem. 2

3 The Dirichlet form of the subordinate killed Brown-

ian motion

Recall that Y is a rotationally invariant α-stable process in Rd with α ∈ (0, 2). It is well

known that the Dirichlet form (EY ,F) associated with Y is given by

EY (u, v) =
1

2
A(d,−α)

∫

Rd

∫

Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dxdy

F =

{
u ∈ L2(Rd) :

∫

Rd

∫

Rd

(u(x)− u(y))2

|x− y|d+α
dxdy < ∞

}
,

where

A(d,−α) =
αΓ(d+α

2
)

21−α πd/2 Γ(1− α
2
)
.

It follows from Remark 4 in Section 2.5.1 of [21] that F is the same as the space W α/2,2(Rd).
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Recall that, for any s ∈ R, the classical Bessel potential space Hs(Rd) is defined to be

Hs(Rd) = {u ∈ S ′(Rd) :

∫

Rd

(1 + |ξ|2)s|û(ξ)|2dξ < ∞},

where S ′(Rd) stands for the space of tempered distributions on Rd and û stands for the

Fourier transform of u. Using Fourier analysis, one can easily show (cf. Example 1.4.1 of [11])

that the spaces Wα/2,2(Rd) and Hα/2(Rd) are the same. Hence we have F = W α/2,2(Rd) =

Hα/2(Rd).

In this section we assume that D is a bounded domain in Rd. The Dirichlet space

on L2(D, dx) of the killed rotationally invariant α-stable process Y D is (EY , H
α/2
0 (D)) (cf.

Theorem 4.4.3 of [11]), where

H
α/2
0 (D) = {f ∈ Hα/2(Rd) : f = 0 q.e. on Dc}.

Here q.e. is the abbreviation for quasi-everywhere with respect to the Riesz capacity de-

termined by (EY ,W α/2,2(Rd)) (cf. [11]). The space H
α/2
0 (D) can also be characterized as

the EY -closure of C∞
0 (D), the space of smooth functions with compact support in D. For

u ∈ H
α/2
0 (D),

EY (u, v) =

∫

D

∫

D

(u(x)− u(y))(v(x)− v(y))JY (x, y) dxdy +

∫

D

u(x)v(x)κY (x)dx,

where

JY (x, y) =
1

2
A(d, −α)|x− y|−(d+α) (3.1)

κY (x) = A(d, −α)

∫

Dc

1

|x− y|d+α
dy (3.2)

are the densities of the jumping and killing measures of Y D.

Recall that Z is the process obtained by subordinating the killed Brownian motion on D

with the one-sided α/2-stable process. Z is a symmetric Markov process and so there is a

Dirichlet form (E , D(E)) associated with Z. It follows further from Theorem 1.18.10 of [21]

that the domain D(E) of E is the complex interpolation space [L2(D), H1
0 (D)]α/2. It follows

from Proposition 2.2 of [7] that, when D is a bounded Lipschitz domain, [L2(D), H1
0 (D)]α/2 =

H
α/2
0 (D). Recall that Hilbert spaces are identified if they coincide in the set theoretical sense

and if they have equivalent norms. Therefore, there exists a constant C such that for any

u ∈ H
α/2
0 (D),

C−1(EY (u, u) + (u, u)) ≤ E(u, u) + (u, u) ≤ C(EY (u, u) + (u, u)).
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One immediate consequence of the comparability above is that for a Borel subset A of D,

A is polar for Z is equivalent to that A is polar for the killed rotationally invariant α-stable

process Y D, which in turn is equivalent to that A is polar for the rotationally invariant

α-stable process Y .

Let PD
t be the transition semigroup corresponding to the Brownian motion killed upon

exiting D and recall that the corresponding transition density is denoted by pD(t, x, y). It

follows from [3] and [17] (see also [13]) that the jumping measure J(x, dy) and the killing mea-

sure κ(dx) of the process Z have densities J(x, y) and κ(x) given by the following formulae

respectively:

J(x, y) =

∫ ∞

0

pD(t, x, y) ν(dt) (3.3)

κ(x) =

∫ ∞

0

(1− PD
t 1(x)) ν(dt) (3.4)

Here

ν(dt) =
α/2

Γ(1− α/2)
t−α/2−1 dt

is the Lévy measure of the α/2-stable subordinator.

It is easy to see from (3.3) that J(x, y) ≤ JY (x, y) for every x, y ∈ D. Now we are going

to compare κ(x) with κY (x). To do that we are going to use the following simple result.

Lemma 3.1 Let (Xt,Px) be a d-dimensional Brownian motion, and let τD be the exit time

of X from D. Then

κ(x) =
1

Γ(1− α/2)
Ex(τ

−α/2
D ) (3.5)

for every x ∈ Rd.

Proof. Let F denote the Px-distribution function of τD. Note that 1− PD
t 1(x) = Px(τD ≤

t) = F (t). By using (3.4)

κ(x) =
α/2

Γ(1− α/2)

∫ ∞

0

F (t)t−α/2−1 dt

=
α/2

Γ(1− α/2)

∫ ∞

0

∫ ∞

s

t−α/2−1 dt dF (s)

=
1

Γ(1− α/2)

∫ ∞

0

s−α/2 dF (s) =
1

Γ(1− α/2)
Ex(τ

−α/2
D )

2

It was proved in [12] that x → Ex(τ
−α/2

D ) is continuous, hence κ is a continuous function.

We will use this fact in the next result.
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Proposition 3.2 Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C for every

t > 0 and every x ∈ ∂D. Then

(1− C)κ(x) ≤ κY (x) ≤ κ(x), for every x ∈ D . (3.6)

Proof. By the proof of Lemma 4.5.2 in [11], there exists a sequence tn ↓ 0 such that

lim
tn→0

1

tn

∫

D

f(x)(1−Rtn1(x)) dx =

∫

D

f(x)κ(x) dx

lim
tn→0

1

tn

∫

D

f(x)(1−Qtn1(x)) dx =

∫

D

f(x)κY (x) dx

for every f ∈ C0(D). By Proposition 2.1 this implies that
∫

D

f(x)(1− C)κ(x) dx ≤
∫

D

f(x)κY (x) dx ≤
∫

D

f(x)κ(x) dx ,

for every nonnegative f ∈ C0(D). Since both κ and κY are continuous, the last relation

implies that

(1− C)κ(x) ≤ κY (x) ≤ κ(x) , x ∈ D .

2

Remark 3.3 Let δ(x) be the distance between x and ∂D. When D is a bounded Lipschitz

domain, it follows easily from (3.2) that there exists a positive constant C1 such that

C−1
1 (δ(x))−α ≤ κY (x) ≤ C1(δ(x))−α .

By using this and Proposition 3.2 it follows that there exists a constant C2 such that

C−1
2 (δ(x))−α ≤ κ(x) ≤ C2(δ(x))−α .

4 Intrinsic ultracontractivity

In this section we assume that D is a bounded Lipschitz domain and Z is the subordinate

killed Brownian motion on D. The generator of Z is −(−∆|D)α/2, where ∆|D is the Dirichlet

Laplacian in D. It is well known that if {−λk, k = 0, 1, . . . } are the eigenvalues of ∆|D written

in decreasing order and each repeated according to its multiplicity, and if {φk, k = 0, 1, . . . }
are the corresponding eigenfunctions, then {−(λk)

α/2, k = 0, 1, . . . } are the eigenvalues of

−(−∆|D)α/2 written in decreasing order and each repeated according to its multiplicity, and

{φk, k = 0, 1, . . . } are the corresponding eigenfunctions.

Similar to Theorem 4.1 of [4], we have the following result.
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Theorem 4.1 For any η > 0 and f ∈ H
α/2
0 (D) ∩ L∞(D, dx), we have

∫

D

f 2 log |f |dx ≤ ηE(f, f) + β(η)‖f‖2
2 + ‖f‖2

2 log ‖f‖2,

with

β(η) = − d

2α
log η + c

for some constant c > 0.

Proof. It follows from Proposition 2.2 that r(t, x, y) ≤ q(t, x, y), hence there exists a c > 0

such that r(t, x, y) ≤ ct−d/α. Now we can repeat the proof of Theorem 4.1 of [4] to arrive at

the conclusion. 2

The following lemma appears on p.71 of [14]. The key ingredient in the proof there is an

inequality (inequality (4.1) of [14]) proved in [19]. We include an elementary proof based on

the behavior of the killing function of Z.

Lemma 4.2 There exists a constant C1 > 0 such that

C−1
1 EY (u, u) ≤ E(u, u) ≤ C1EY (u, u), u ∈ H

α/2
0 (D).

Proof. Recall that the killing measures of Z and Y D have densities κ and κY respectively,

which are both of the order δ(x)−α. This implies that there is a constant c1 such that
∫

D

u2(x) dx ≤ c1

∫

D

u2(x)κ(x) dx (4.1)

From the last section we know that there exists a constant c2 > 0 such that

c−1
2 (EY (u, u) + (u, u)) ≤ E(u, u) + (u, u) ≤ c2(EY (u, u) + (u, u)), u ∈ H

α/2
0 (D).

Therefore the 1-norms are equivalent to the 0-norms for both forms. Thus there is a constant

C1 such that

C−1
1 EY (u, u) ≤ E(u, u) ≤ C1EY (u, u), u ∈ H

α/2
0 (D).

2

Recall that for any domain D in Rd, the quasi–hyperbolic distance between any two

points x1 and x2 in D is defined by

ρD(x1, x2) = inf
γ

∫

γ

ds

δ(x)

12



where the infimum is taken over all rectifiable curves γ joining x1 to x2 in D and δ(x) is the

Euclidean distance between x and ∂D. Fix a point x0 ∈ D which we call the center of D

and we may assume without loss of generality that δ(x0) = 1.

Lemma 4.3 There is a constant C2 = C2(D) > 0 such that for any β > 0

∫

D

(ρD(x0, x))βu2(x)dx ≤ C2E(u, u), u ∈ H
α/2
0 (D)

Proof. It follows from Lemma 3.2 of [6] that there is a constant c = c(D) > 0 such that for

any β > 0 ∫

D

(ρD(x0, x))βu2(x)dx ≤ cEY (u, u), u ∈ H
α/2
0 (D).

Now the result follows from Lemma 4.2. 2

Repeating the argument of Theorem 3.3 of [6](see also [1]), we get

Theorem 4.4 For any ε > 0 and any σ > 0 we have

∫

D

f 2 log
1

φ0

dx ≤ εE(f, f) + β(ε)‖f‖2
2, f ∈ H

α/2
0 (D)

with

β(ε) = C3ε
−σ + C4

for some positive constants C3 and C4.

Combining Theorems 4.1 and 4.4 we get

Theorem 4.5 For any ε > 0 and any σ > 0 we have

∫

D

f 2 log
|f |
ϕ0

dx ≤ ηE(f, f) + β(η)‖f‖2
2 + ‖f‖2

2 log ‖f‖2

for all f ∈ H
α/2
0 (D) ∩ L∞(D, dx), with

β(ε) = − d

2α
log ε + C5ε

−σ + C6

for some positive constants C5 and C6.

Using this and Corollary 2.2.8 of [8] we immediately get
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Theorem 4.6 The semigroup corresponding to the subordinate killed Brownian motion Z is

intrinsic ultracontractive.

Here is an immediate corollary of the intrinsic ultracontractivity. Recall that the Green

function of the process Z is given by the formula (2.4).

Corollary 4.7 There exists a constant C8 such that for all x, y ∈ D,

GD(x, y) ≥ C8φ0(x)φ0(y),

J(x, y) ≥ C8φ0(x)φ0(y).

Proof. The first inequality follows immediately from the intrinsic ultracontractivity and

Theorem 4.2.5 of [8]. Now we show the second inequality. Since the semigroup of the killed

Brownian motion in D is intrinsic ultracontractive, Theorem 4.2.5 of [8] implies that there

exists T > 1 such that for all t ≥ T ,

pD(t, x, y) ≥ 1

2
e−λ0tφ0(x)φ0(y), xy ∈ D.

Thus

J(x, y) = c1

∫ ∞

0

pD(t, x, y)t−α/2−1dt

≥ c1

2

∫ ∞

T

e−λ0tφ0(x)φ0(y)dt

= c2φ0(x)φ0(y).

2

Note that these lower bound of GD and J are of no use when x, y are away from the

boundary. The next result gives lower bound when x and y are away from the boundary and

it does not need the Lipschitz assumption.

Proposition 4.8 For any bounded domain D in Rd, there exists a constant C9 = C9(α, d)

such that if x, y ∈ D satisfy |x− y| ≤ max{δ(x)/2, δ(y)/2}, then

GD(x, y) ≥ C9|x− y|α−d , (4.2)

J(x, y) ≥ C9|x− y|−α−d . (4.3)
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Proof. We prove the first inequality. The second is proved in the same way. Let x, y ∈ D

such that |x− y| ≤ max{δ(x)/2, δ(y)/2}. By using (2.4) and the formula for the transition

density of the killed Brownian motion XD, we get that

GD(x, y) =
1

Γ(α/2)

∫ ∞

0

p(s, x, y)sα/2−1 ds− 1

Γ(α/2)
Ex

∫ ∞

τD

p(s,XτD
, y)sα/2−1 ds, , (4.4)

where p(s, x, y) denotes the transition density of the Brownian motion X. Since |XτD
− y| ≥

δ(y) for each y ∈ D, we obtain the estimate

1

Γ(α/2)
Ex

∫ ∞

τD

p(s,XτD
, y)sα/2−1 ds ≤ (2π)−d/2

Γ(α/2)

∫ ∞

0

s−d/2+α/2−1 exp{−δ(y)2)/2s} ds

≤ c1δ(y)α−d

≤ c1 2α−d|x− y|α−d .

The estimate (4.2) follows from (4.4) and the last display. 2

5 Upper bounds on the Green function and the jump-

ing kernel

For any bounded domain D in Rd, we have seen that

GD(x, y) ≤ GY
D(x, y), J(x, y) ≤ JY (x, y), x, y ∈ D.

Recall that GY
D and JY are the Green function and jumping function of Y D respectively.

These estimates are not useful near the boundary of D. Now we are going to derive estimates

that are useful near the boundary when D is a bounded C1,1 domain.

Theorem 5.1 Suppose that D is a bounded C1,1 domain in Rd. Then there exists a constant

C1 such that for all x, y ∈ D,

GD(x, y) ≤ C1
φ0(x)φ0(y)

|x− y|d+2−α
,

J(x, y) ≤ C1
φ0(x)φ0(y)

|x− y|d+2+α
.

Proof. The proof of these two inequalities are very similar. We only give the proof of the

first. It is well known that when D is a bounded C1,1 domain, there exists a constant c1

such that

c−1
1 δ(x) ≤ φ0(x) ≤ c1δ(x), x ∈ D.
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Now we can repeat the proof of Theorem 4.6.9 of [8] to get that the density pD of the killed

Brownian motion on D satisfies the following estimate

pD(t, x, y) ≤ c2t
−(d+2)/2φ0(x)φ0(y)e−

|x−y|2
6t , t > 0, x, y ∈ D,

where c2 is some constant independent of t, x, and y. Now using (2.4) we get that

GD(x, y) ≤ c2φ0(x)φ0(y)

∫ ∞

0

t−(d+2)/2e−
|x−y|2

6t tα/2−1dt

≤ c3
φ0(x)φ0(y)

|x− y|d+2−α
.

2

Remark 5.2 If we only assume that D is a bounded Lipschitz domain, then we can get a

similar upper bound for GD with d + 2 replaced by some number µ ≥ d, where µ depends on

the Lipschitz characteristics of D.

Remark 5.3 The estimates in the theorem above can also be written as

GD(x, y) ≤ C2
δ(x)δ(y)

|x− y|d+2−α
, x, y ∈ D

J(x, y) ≤ C2
δ(x)δ(y)

|x− y|d+2+α
, x, y ∈ D,

for some positive constant C2.

Summarizing our estimates on the Green function and the jumping kernel, we have the

following:

Theorem 5.4 Suppose that D is a bounded C1,1 domain in Rd. Then there exist positive

constants C3 and C4 such that for all x, y ∈ D,

C3δ(x)δ(y) ≤ GD(x, y) ≤ C4 min(
1

|x− y|d−α
,

δ(x)δ(y)

|x− y|d+2−α
),

C3δ(x)δ(y) ≤ J(x, y) ≤ C4 min(
1

|x− y|d+α
,

δ(x)δ(y)

|x− y|d+2+α
)

Comparing the estimates on the Green function of Z with the estimates on the Green

function of Y D obtained in [5] and [15], we see that their boundary behaviors are different.
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