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HEAT KERNEL ESTIMATES FOR SUBORDINATE MARKOV PROCESSES AND

THEIR APPLICATIONS

SOOBIN CHO, PANKI KIM, RENMING SONG AND ZORAN VONDRAČEK

Abstract. In this paper, we establish sharp two-sided estimates for transition densities of a large class
of subordinate Markov processes. As applications, we show that the parabolic Harnack inequality and
Hölder regularity hold for parabolic functions of such processes, and derive sharp two-sided Green function
estimates.
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1. Introduction

Transition densities of Markov processes are of central importance in both probability and analysis.
The transition density p(t, x, y) of a Markov process X with generator L is the fundamental solution of
the equation ∂tu = Lu. Hence the transition density p(t, x, y) is also known as the heat kernel of L. The
heat kernel is rarely known explicitly. Due to the importance of heat kernels, there is a huge amount of
literature devoted to estimates of heat kernels.

The purpose of this paper is to study heat kernel estimates for subordinate Markov processes. The
main motivation comes from [42], where it was established that the jump kernels of subordinate killed
Lévy processes have an unusual form not observed before. It is therefore plausible that the heat kernels
of those processes will have some new features. It turns out that this is indeed the case. To illustrate the
new features, we explain below the motivating and also the simplest example covered by our results.

Let D ⊂ R
d, d ≥ 1, be a bounded C1,1 open set. For x ∈ D, let δD(x) denote the distance between x

and Dc. Let Y be an isotropic α-stable process in R
d, α ∈ (0, 2] and let Y D denote the part process of Y

killed upon exiting D. When α = 2, we further assume that D is connected Sharp two-sided estimates
of the heat kernel pD(t, x, y) of Y

D were obtained in [27, 53] (for α = 2) and [9] (for α < 2): there exist
positive constants ci, i = 1, . . . , 8, such that following estimates hold true. For (t, x, y) ∈ (0, 1] ×D ×D,

c1h(t, x, y)
(
t−d/α ∧

t

|x− y|d+α

)
≤ pD(t, x, y) ≤ c2h(t, x, y)

(
t−d/α ∧

t

|x− y|d+α

)
, for α < 2,

and
c3h(t, x, y) t

−d/2e−c4|x−y|
2/t ≤ pD(t, x, y) ≤ c5h(t, x, y) t

−d/2e−c6|x−y|
2/t, for α = 2,

where the boundary function h(t, x, y) is given by

h(t, x, y) =
(
1 ∧

δD(x)
α

t

)1/2(
1 ∧

δD(y)
α

t

)1/2
=
(
1 ∧

δD(x)

t1/α

)α/2(
1 ∧

δD(y)

t1/α

)α/2
.

For (t, x, y) ∈ [1,∞) ×D ×D,

c7e
−λ1tδD(x)

α/2δD(y)
α/2 ≤ pD(t, x, y) ≤ c8e

−λ1tδD(x)
α/2δD(y)

α/2,

where λ1 is the smallest eigenvalue of the Dirichlet (fractional) Laplacian (−∆)α/2
∣∣
D
.

Let S = (St)t≥0 be a β-stable subordinator, β ∈ (0, 1), independent of Y D, and let X = (Xt)t≥0 be

the subordinate process: Xt := Y D
St
. The generator of X is equal to (the negative of)

(
(−∆)α/2

∣∣
D

)β
–
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the fractional power of the Dirichlet fractional Laplacian. In particular, when α = 2,
(
−∆

∣∣
D

)β
is called

a spectral fractional Laplacian in the PDE literature, see, for instance, [5] and the references therein. In
this respect, the process X bears some similarity with the isotropic αβ-stable process. The heat kernel
q(t, x, y) of the subordinate process X is given by

q(t, x, y) =

∫ ∞

0
pD(s, x, y)P(St ∈ ds), t > 0, x, y ∈ D.

Note that the distribution of St is not explicitly known, making the above integration rather delicate.
To handle this integral, we establish some estimates on the distribution of St (in fact, for much more
general subordinators than the stable ones). Using these, we can obtain sharp two-sided estimates of
q(t, x, y). To present those estimates, we first introduce some notation. Denote a ∧ b := min{a, b} and
a∨ b := max{a, b}. The notation f(s) ≃ g(s) means that there exist comparison constants c1, c2 > 0 such
that c1g(s) ≤ f(s) ≤ c2g(s) for specified range of the variable s. For x, y ∈ D, let

δ∨(x, y) = δD(x) ∨ δD(y), δ∧(x, y) = δD(x) ∧ δD(y),

m∨(t, x, y) = (t1/(αβ) ∨ δ∨(x, y)) ∧ |x− y|, m∧(t, x, y) = (t1/(αβ) ∨ δ∧(x, y)) ∧ |x− y|.

Our main results, specialized to the present situation, are summarized below.

Theorem 1.1. (1) Suppose (t, x, y) ∈ (0, 1] ×D ×D.
(i) If |x− y|αβ ≤ t, then

q(t, x, y) ≃
(
1 ∧

δD(x)

t1/(αβ)

)α/2(
1 ∧

δD(y)

t1/(αβ)

)α/2
t−d/(αβ). (1.1)

(ii) If |x− y|αβ > t and α = 2, then

q(t, x, y) ≃
(
1 ∧

δD(x)

|x− y|

)(
1 ∧

δD(y)

|x− y|

) t

|x− y|d+2β
. (1.2)

(iii) If |x− y|αβ > t and α ∈ (0, 2), then

q(t, x, y) ≃





(
1 ∧

δD(x)

t1/(αβ)

)α/2(
1 ∧

δD(y)

t1/(αβ)

)α/2(m∧(t, x, y)

|x− y|

)α(1−β) t

|x− y|d+αβ
β ∈ (1/2, 1),

(
1 ∧

δD(x)

|x− y|

)α/2(
1 ∧

δD(y)

|x− y|

)α/2(m∨(t, x, y)

|x− y|

)−αβ t

|x− y|d+αβ
, β ∈ (0, 1/2),

(
1 ∧

δ∧(x, y)

|x− y|

)α/2(
1 ∧

δ∨(x, y)

t1/(αβ)

)α/2 t

|x− y|d+αβ
log
(
e+

m∨(t, x, y)

m∧(t, x, y)

)
, β = 1/2.

(2) For all (t, x, y) ∈ [1,∞) ×D ×D,

q(t, x, y) ≃ e−tλ
β
1 δD(x)

α/2δD(y)
α/2,

where λ1 is the smallest eigenvalue of the Dirichlet (fractional) Laplacian (−∆)α/2
∣∣
D
.

From Theorem 1.1(1), one can see that, for x, y away from the boundary (in the sense that δ∧(x, y) ≥
|x− y| ∨ t1/(αβ)), and for all β ∈ (0, 1), it holds that

q(t, x, y) ≃ t−d/(αβ) ∧
t

|x− y|d+αβ
.

Recall that the same two-sided estimates are valid for the heat kernel of the isotropic αβ-stable process
in the whole space. The novelty of the estimates for q(t, x, y) is in the boundary term, which is quite
unusual and involves interplays among δ∨(x, y), δ∧(x, y) and time t itself. In this respect, the form of the
boundary term is very different from the boundary function h(t, x, y) for the underlying process Y D.

All the estimates in Theorem 1.1 are consequences of Theorems 4.2, 4.7 and Lemma 7.1, see Example
7.2. Integrating the heat kernel estimates, we can obtain sharp two-sided estimates on the Green function
of X, see Theorem 5.8 and Example 7.2.

In this paper, we obtain sharp two-sided heat kernel estimates for subordinate Markov processes in a
setting which is more general, in several directions, than that of the example above. We allow (i) quite
general subordinators, (ii) Markov processes with state space D that is either a bounded or an unbounded
subset of a locally compact separable metric space, and (iii) very general form of two-sided estimates of the
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heat kernel pD(t, x, y) of the underlying process. In the remaining part of the introduction, we describe
some of our assumptions and results and lay out the structure of the paper.

In Section 2, we first introduce the main assumption on the subordinator S = (St)t≥0. Let ν denote
its Lévy measure and w(t) := ν(t,∞). We assume that there exist constants R1 ∈ (0,∞], c1, c2 > 0 and
β2 ≥ β1 > 0 such that

c1

(R
r

)β1
≤

w(r)

w(R)
≤ c2

(R
r

)β2
for all 0 < r ≤ R < R1.

This assumption is quite weak – it implies that the Laplace exponent φ of the subordinator S satisfies
weak scaling conditions near infinity with lower index β1 and upper index β2 ∧ 1. Note that β2 > 1
is allowed. Building upon the results from [22, 23], we show several auxiliary results leading to the
important estimate (2.24) saying that P(St ≥ s) ≃ tw(s) for 2φ−1(1/t)−1 < s < R1/2.

Sections 3–4 are central to the paper. We start with the setup in Section 3: the underlying space is
a locally compact separable metric space E with a Radon measure m having full support and satisfying
volume doubling conditions. The state space is a proper open subset D of E, bounded or unbounded,
and Y D is a Hunt process living on D. We assume that Y D admits a transition density pD(t, x, y).
The main assumption on the transition density is given in Definition 3.6. Depending on whether D is
bounded or unbounded, the assumptions are somewhat different. Roughly speaking, at least for small
times, pD(t, x, y) is comparable to the product of two parts which we may call the boundary part and the
interior part. The latter is specified in terms of the volume and two functions – Ψ ≥ Φ – both enjoying
the scaling property, and also includes a Gaussian part. We note that although in most examples it
holds that Ψ ≃ Φ, allowing for different functions enlarges the scope of examples. The boundary part is
described through a boundary function h(t, x, y) which is not specified but is required to satisfy certain
assumptions – see Definition 3.3. To justify our assumptions on the heat kernel pD(t, x, y), we provide a
number of examples from the literature satisfying those assumptions.

The main object of our study is the subordinate process Xt := Y D
St
. In Subsection 4.1, see Theorem

4.1, we first establish sharp two-sided estimates of the jump kernel J(x, y) of X, thus generalizing [42,
Theorem 8.4]. Subsection 4.2 contains sharp two-sided estimates of the heat kernel q(t, x, y) of X which
are the main results of the paper. The case of a bounded set D and small time is given in Theorem 4.2,
and the case of unbounded D and all time in Theorem 4.3. The near-diagonal estimates have a rather
simple form, but the off-diagonal estimates are quite involved, containing four terms which cannot be
compared under general assumptions. The form of the estimates is somewhat simplified in case when the
upper scaling index β2 < 1 and Ψ ≃ Φ, see Corollary 4.4. Finally, Theorem 4.7 provides the large time
estimates in case of bounded D.

In Section 5 we apply our sharp two-sided heat kernel estimates to derive sharp two-sided estimates of
the Green function G(x, y) ofX. The most general form of the estimates is given in Proposition 5.3. These
can be simplified under additional assumptions on the boundary function h(t, x, y). We obtain several
forms of the estimates depending on the relationship between the parameters in the volume doubling
condition, the scaling indices of the functions w and Φ, and the parameters coming from h. The main
results of this section are Theorems 5.8, 5.10 and 5.11.

In Section 6 we show that parabolic functions with respect to X satisfy Hölder regularity and the
parabolic Harnack inequality. By using the rough upper estimates and the interior estimates for the heat
kernel from Proposition 4.5 and Corollary 4.6 together with the jump kernel estimates from Theorem
4.1, we establish that the process X satisfies all the assumptions from [16, 19] used in the proofs of those
results.

Finally, in Section 7, we provide a concrete and explicit example which includes the motivating example
from the beginning of this introduction, and, with help of Lemma 7.1, derive the heat kernel estimates
using the general Theorems 4.2, 4.3 and 4.7. We also derive the jump kernel estimates and Green function
estimates using Theorem 4.1, and Theorems 5.8, 5.10, 5.11 respectively. As an application of these
estimates, combined with the main results of [44], we completely determine the region of the parameters
where the boundary Harnack principle holds for the process Xt = Y D

St
, where D is the upper half-space,

Y D is the process in Example 3.9 (b-4) and St is an independent β-stable subordinator, β ∈ (0, 1). At
the end we provide an interesting example in which the upper scaling index β2 > 1 and the two scaling
function Φ and Ψ are different.

Notations: Values of lower case letters with subscripts ci, i = 0, 1, 2, ... are fixed in each statement
and proof, and the labeling of these constants starts anew in each proof. Recall that a ∧ b := min{a, b},
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a ∨ b := max{a, b}. We use two notations for comparison of functions. First, the notation f(x) ≃ g(x)
means that there exist constants c1, c2 > 0 such that c1g(x) ≤ f(x) ≤ c2g(x) for specified range of x. On
the other hand, the notation f(x) ≍ g1(x) + g2(x)h(cx) means that there exist constants c3, c4, c5, c6 > 0
such that c3(g1(x) + g2(x)h(c4x)) ≤ f(x) ≤ c5(g1(x) + g2(x)h(c6x)) for specified range of x. We use the
convention 1/∞ = 0.

2. Estimates on distributions of subordinators

Let S = (St)t≥0 be a driftless subordinator (i.e., a non-decreasing pure-jump Lévy process on R with
S0 = 0) with Laplace exponent φ given by

φ(λ) = − logEe−λS1 =

∫ ∞

0
(1− e−λs)ν(ds).

Let w(r) := ν(r,∞). Using that φ(λ) = λ
∫∞
0 e−λsw(s)ds, it is easy to see (cf. the proof of [22, Lemma

2.1]) that

e−1λ

∫ 1/λ

0
w(s)ds ≤ φ(λ) ≤ 2λ

∫ 1/λ

0
w(s)ds, λ > 0. (2.1)

The following is our main assumption on the subordinator S.

(Poly-R1) There exist constants R1 ∈ (0,∞], c1, c2 > 0 and β2 ≥ β1 > 0 such that

c1

(R
r

)β1
≤

w(r)

w(R)
≤ c2

(R
r

)β2
for all 0 < r ≤ R < R1.

Suppose that (Poly-R1) holds. Then by [22, Lemma 2.1(ii)], in case R1 < ∞, for every r0 > 0, there
exists c3 = c3(r0) > 0 such that

φ(R)

φ(r)
≤ c3

(R
r

)β2∧1
, r0 < r < R. (2.2)

On the other hand, by adapting the proof of [23, Lemma 2.3(3)], we can get that, for every r0 > 0, there
exists c4 = c4(r0) > 0 such that

φ(R)

φ(r)
≥ c4

(R
r

)β1
, r0 < r < R. (2.3)

As a consequence of (2.2) and (2.3), we see that β1 ≤ 1 and that φ−1 enjoys the following scaling: For
every t0 > 0, there exist c5, c6 > 0 depending on t0 such that

c5

( t
s

)1/(β2∧1)
≤
φ−1(t)

φ−1(s)
≤ c6

( t
s

)1/β1
, t0 < s < t. (2.4)

In case when (Poly-∞) holds, (2.2) and (2.3) are valid for all 0 < r < R, and (2.4) is valid for all
0 < s < t.

Lemma 2.1. Assume (Poly-R1) holds. For any a > 0, there exists c1 = c1(a) ∈ (0, 1) such that

c1φ(λ) ≤ λφ′(λ) ≤ φ(λ), λ > a. (2.5)

Further, if (Poly-∞) holds, then (2.5) holds for all λ > 0.

Proof. The second inequality follows from the fact 1 − e−u − ue−u ≥ 0 for u ≥ 0. The first inequality
follows from [37, Lemma 1.3] and its proof. ✷

Lemma 2.2. Assume (Poly-R1) holds. For any a > 0, there exists c1 = c1(a) > 0 such that

|φ′′(λ)| ≤ c1λ
−1φ′(λ), λ > a. (2.6)

Further, if (Poly-∞) holds, then (2.6) holds for all λ > 0.
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Proof. The proof is similar to that of [23, Lemma 2.1(3)], where the existence of Lévy density is assumed.
We give a detailed proof for the reader’s convenience.

Since e−x ≤ x−2 for all x > 0, we see that for all λ > 1/R1,

λ|φ′′(λ)| =

∫ 1/λ

0
λy2e−λyν(dy) +

∫ ∞

1/λ
λy2e−λyν(dy) ≤

∫ 1/λ

0
yν(dy) + λ−1w(1/λ). (2.7)

By (Poly-R1), there exists ǫ ∈ (0, 1/2) such that w(ǫ/λ) ≥ 2w(1/λ) for all λ > 1/R1. Hence,
∫ 1/λ

0
yν(dy) ≥ ǫλ−1

∫ 1/λ

ǫ/λ
ν(dy) ≥ ǫλ−1w(1/λ) for all λ > 1/R1.

It follows that

φ′(λ) ≥ e−1

∫ 1/λ

0
yν(dy) ≥ (2e)−1ǫ

(∫ 1/λ

0
yν(dy) + λ−1w(1/λ)

)
. (2.8)

Combining (2.8) with (2.7), we get that in the case R1 = ∞, (2.6) holds for all λ > 0 with c1 = ǫ/(2e),
and in the case R1 <∞, (2.6) holds with

c1 =
ǫ

2e
∨ sup
λ∈[a,1/R1]

(
λ|φ′′(λ)|/φ′(λ)

)
.

✷

Let H : (0,∞) → (0,∞) be defined by H(λ) := φ(λ) − λφ′(λ), λ > 0. The function H is strictly
increasing, H(0+) = 0, limλ→∞H(λ) =

∫∞
0 ν(ds) = w(0+), and satisfies

H(λ)

λ2
= −

(φ(λ)
λ

)′
=

∫ ∞

0
e−λssw(s)ds, λ > 0. (2.9)

Since 1− e−λs − λse−λ ≥ 1− 2/e when s ≥ 1/λ, we see that

φ(λ) ≥ H(λ) ≥

∫ ∞

1/λ
(1− e−λs − λse−λs)ν(ds) ≥

e− 2

e
w(1/λ), λ > 0. (2.10)

Suppose that (Poly-R1) holds. Then it follows from the proof of [23, Lemma 2.3(3)] that, for every
r0 > 0, there exists a constant c = c(r0) > 0 such that

H(R)

H(r)
≥ c
(R
r

)β1
, r0 < r ≤ R. (2.11)

As a consequence of (2.11), we have the following upper scaling for the inverse function H−1:

H−1(t)

H−1(s)
≤ c−1/β1

( t
s

)1/β1
, H(r0) < s ≤ t. (2.12)

In case when (Poly-∞) holds, (2.11) and (2.12) hold with r0 = 0. Note that (2.11) implies that
limλ→∞H(λ) = +∞.

Next we look at the function b : (0,∞) → (0,∞) defined by

b(t) := (φ′ ◦H−1)(1/t) =

∫ ∞

0
se−H

−1(1/t)sν(ds), t > 0.

The function b is strictly increasing, b(0+) = 0, and limt→∞ b(t) =
∫∞
0 sν(ds) = φ′(0+). This implies

that t 7→ tb(t) is also strictly increasing and limt→∞ tb(t) = +∞. Moreover, according to [22, Lemma
2.4(ii)], cf. also [23, (2.13)], it holds that

φ−1(7/t)−1 ≤ tb(t) ≤ φ−1(1/t)−1 for all t > 0. (2.13)

Hence, under (Poly-R1), we see from the scaling of φ−1 in (2.4) that, for every t0 > 0, there exists
c1 = c1(t0) > 0 such that

c1φ
−1(1/t)−1 ≤ tb(t) ≤ φ−1(1/t)−1 for all 0 < t < t0. (2.14)

Moreover, if (Poly-∞) holds, then (2.14) holds with t0 = ∞.
Finally, we introduce the function σ = σ(t, s) : (0,∞) × (0,∞) → [0,∞) defined by

σ = σ(t, s) := (φ′)−1(s/t)1(0,φ′(0+))(s/t), s, t > 0.
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Note that s 7→ σ(t, s) is decreasing with lims→0 σ(t, s) = ∞ and lims→∞ σ(t, s) = 0, while t 7→ σ(t, s)
is increasing with limt→0 σ(t, s) = 0 and limt→∞ σ(t, s) = ∞. Further, by using the former and the fact
that H is increasing, we conclude that

t(H ◦ σ)(t, tb(t)) = 1 and t(H ◦ σ)(t, s) < 1 for s > tb(t). (2.15)

The function σ plays a crucial role in estimating the left tail of the subordinator S. We first state a
result which follows from [22, Lemma 2.11] and [32, Lemma 5.2].

Proposition 2.3. There exist constants c1, c2 > 0 such that for all t > 0,

c1 exp
(
− c2t(H ◦ σ)(t, s)

)
≤ P(St ≤ s) ≤ e exp

(
− t(H ◦ σ)(t, s)

)
.

Proof. If s ≤ tb(t), then it follows from [22, Lemma 2.11] and [32, Lemma 5.2] that there exist c1, c2 > 0
independent of s and t such that c1 exp

(
− c2t(H ◦ σ)(t, s)

)
≤ P(St ≤ s) ≤ exp

(
− t(H ◦ σ)(t, s)

)
. (Note

that the function b(t) in this paper is the same as t−1b(t) in [22].) In particular, taking s = tb(t) and
using (2.15), we get c3 := c1e

−c2 ≤ P(St ≤ tb(t)) ≤ e−1.
If s > tb(t), then by the second part of (2.15), exp(−t(H ◦ σ)(t, s)) ≥ e−1, and thus P(St ≤ s) ≤ 1 ≤

e exp
(
− t(H ◦ σ)(t, s)

)
which gives the desired upper bound. For the desired lower bound,

P(St ≤ s) ≥ P(St ≤ tb(t)) ≥ c3 ≥ c3 exp
(
− c2t(H ◦ σ)(t, s)

)
.

✷

Lemma 2.4. Suppose (Poly-R1) holds. Then, for any a > 0, there exists δ = δ(a) > 0 such that

σ(t, u)

σ(t, s)
≥ 2−δ

( s
u

)δ
, 0 < u ≤ s ≤ tφ′(a). (2.16)

Moreover, if (Poly-∞) holds, then (2.16) holds for all 0 < u ≤ s < tφ′(0+).

Proof. Let a > 0. For all 0 < 2w ≤ tφ′(a), it holds that σ(t, 2w) ≥ a. By the mean value theorem, the
fact that both |φ′′| and s 7→ σ(t, s) are decreasing, and Lemma 2.2, we get

w

t
= (φ′ ◦ σ)(t, 2w) − (φ′ ◦ σ)(t, w) ≤ |(φ′′ ◦ σ)(t, 2w)|(σ(t, w) − σ(t, 2w))

≤ c1
(φ′ ◦ σ)(t, 2w)

σ(t, 2w)
(σ(t, w) − σ(t, 2w)) =

2c1w

t

(σ(t, w) − σ(t, 2w))

σ(t, 2w)
. (2.17)

Let δ = log2(1 + 1/(2c1)). Then, we see from (2.17) that for all 0 < 2w ≤ tφ′(a),

2δσ(t, 2w) ≤ σ(t, w). (2.18)

For any 0 < u ≤ s ≤ tφ′(a), let n = n(u, s) be the largest integer such that 2nu ≤ s. Then, by (2.18), we
obtain

σ(t, u)

σ(t, s)
≥ 2δn

σ(t, 2nu)

σ(t, s)
≥ 2δn ≥ 2δn2−δ(n+1)

( s
u

)δ
= 2−δ

( s
u

)δ
.

This proves the first assertion.
Assume now that R1 = ∞. Then (2.6) is valid for all λ > 0 so that (2.17) holds for all 0 < 2w < tφ′(0+).

Hence, (2.18) holds for all 0 < 2w < tφ′(0+). We conclude the proof as in the first assertion. ✷

Lemma 2.5. Suppose that (Poly-R1) holds. Then, for all κ,N > 0 and T > 0, there exists a constant
C = C(T, κ,N) > 0 such that for all 0 < t ≤ T and 0 < s ≤ φ−1(1/t)−1,

exp
(
− κt(H ◦ σ)(t, s)

)
≤ C(sφ−1(1/t))N . (2.19)

Moreover, if (Poly-∞) holds, then for all κ,N > 0, there exists a constant C = C(κ,N) > 0 such that
(2.19) holds for all 0 < s ≤ φ−1(1/t)−1.
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Proof. Choose an arbitrary t ∈ (0, T ]. In view of (2.14), since e−x ≤ 1 for all x ≥ 0, it suffices to prove
(2.19) for 0 < s ≤ tb(t). Recall that t(H ◦ σ)(t, tb(t)) = 1. Hence, by (2.11), Lemma 2.4 and (2.14), we
have that, for all 0 < s ≤ tb(t),

t(H ◦ σ)(t, s) =
(H ◦ σ)(t, s)

(H ◦ σ)(t, tb(t))
≥ c1

( σ(t, s)

σ(t, tb(t))

)β1
≥ c2

(φ−1(1/t)−1

s

)δβ1
,

where δ = δ(T ) is the constant from Lemma 2.4. Let c3 := supx>0 x
N/(δβ1)e−κx. Then

exp
(
− κt(H ◦ σ)(t, s)

)
≤ c3

( 1

t(H ◦ σ)(t, s)

)N/(δβ1)
≤ c2c3

(
sφ−1(1/t)

)N
.

This proves the first assertion. Moreover, we can see that the second assertion is true by using that (2.12)
and (2.14) hold for r0 = 0 and t0 = ∞, respectively and the second assertion of Lemma 2.4. ✷

Lemma 2.6. Let f : (0,∞) → (0,∞) be a given function. Assume that (Poly-R1) holds and there exist
constants c1, p > 0 such that spf(s) ≤ c1t

pf(t) for all 0 < s ≤ t. Then for every T > 0, there exists a
constant C = C(T, c1, p) > 0 such that for any t ∈ (0, T ],

E[f(St) : St ≤ r] ≤ Cf(r) exp
(
−
t

2
(H ◦ σ)(t, r)

)
, 0 < r ≤ φ−1(1/t)−1. (2.20)

Moreover, if (Poly-∞) holds, then there exists a constant C = C(c1, p) > 0 such that (2.20) holds for all
t > 0.

Proof. By using Proposition 2.3 in the second and Lemma 2.5 (with κ = 1/2 and N = p + 1) in the
third inequality below, we get that

E[f(St) : St ≤ r] =

∞∑

j=0

∫ 2−jr

2−j−1r
f(s)P(St ∈ ds) ≤ c12

p
∞∑

j=0

f(2−jr)P(St ≤ 2−jr)

≤ c212
pf(r)

∞∑

j=0

2jp exp
(
−
t

2
(H ◦ σ)(t, 2−jr)

)
exp

(
−
t

2
(H ◦ σ)(t, 2−jr)

)

≤ c2f(r) exp
(
−
t

2
(H ◦ σ)(t, r)

) ∞∑

j=0

2jp
(
2−jrφ−1(1/t)

)p+1
≤ 2c2f(r) exp

(
−
t

2
(H ◦ σ)(t, r)

)
.

✷

Proposition 2.7. Suppose that (Poly-R1) holds. Then for any T > 0, there exist constants δ ∈ (0, 1)
independent of T and ǫ = ǫ(T ) ∈ (0, 1) such that

P
(
ǫφ−1(1/t)−1 ≤ St ≤ φ−1(1/t)−1

)
≥ δ, t ∈ (0, T ). (2.21)

Moreover, if (Poly-∞) holds, then there exist ǫ, δ ∈ (0, 1) such that (2.21) holds with T = ∞.

Proof. By Proposition 2.3, (2.15) and (2.14), there exists a constant c1 ∈ (0, 1) such that P(St ≤
φ−1(1/t)−1) ≥ c1 for all t > 0. Let c2 = log(2/c1). Then, using Proposition 2.3 again, we get that for all
t > 0,

P
(
tb(t/c2) ≤ St ≤ φ−1(1/t)−1

)
≥ c1 − P

(
St < tb(t/c2)

)
≥ c1 − e−c2 = c1/2. (2.22)

Since (Poly-R1) holds, by (2.14) and (2.4), there exists ǫ ∈ (0, 1) such that

tb(t/c2) ≥ ǫφ−1(1/t)−1, t ∈ (0, T ). (2.23)

We also see that if (Poly-∞) holds, then (2.23) holds with T = ∞. Combining this with (2.22), we
obtain (2.21). ✷

Lemma 2.8. Suppose that (Poly-R1) holds. Then, for any κ > 0, there exists a constant a1 = a1(κ) > 0
such that for all φ−1(1/t)−1 ≤ s < R1/2, we have exp

(
− κsH−1(1/t)

)
≤ a1tw(s).
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Proof. According to [22, Lemma 2.2], there exists c1 > 0 such that H(1/s)1+β2 ≤ c1φ(1/s)
β2w(s),

s ∈ (0, R1/2]. Note that by (2.9), the map λ → λ−2H(λ) is decreasing. Let c2 := supx>0 x
2(1+β2)e−κx.

Then by using (Poly-R1) and the fact that φ is increasing, we get that for all φ−1(1/t)−1 ≤ s < R1/2,
since 1/s ≤ φ−1(1/t) ≤ H−1(1/t),

exp
(
− κsH−1(1/t)

)
≤ c2

( 1/s

H−1(1/t)

)2(1+β2)
≤ c2

(H(1/s)

1/t

)1+β2

≤ c1c2t
1+β2φ(1/s)β2w(s) ≤ c1c2t

1+β2φ
(
φ−1(1/t)

)β2w(s) = c1c2tw(s).

This proves the lemma. ✷

Proposition 2.9. Suppose that (Poly-R1) holds. Then, for all 2φ−1(1/t)−1 < s < R1/2,

P(St ≥ s) ≃ tw(s). (2.24)

In particular, there exists a constant M > 1 such that for all 2φ−1(1/t)−1 < s < R1/(2M),

P(St ∈ [s,Ms]) ≃ tw(s).

Proof. The lower bound of (2.24) follows from [22, Lemma 2.6] (note that tφ(s−1) ≤ 1). The upper
bound of (2.24) comes from the proof of [22, Proposition 2.7] with a bit of modification. We provide
most of the proof for the reader’s convenience.

Pick an arbitrary s ∈ (2φ−1(1/t)−1, R1/2). Let ǫ = log(5/4)/2 ∈ (0, 1). We set

µ1 := 1(0,ǫ/H−1(1/t)]ν(dx), µ2 := 1(ǫ/H−1(1/t),s]ν(dx) and µ3 := 1(s,∞)ν(dx)

and denote by S1, S2 and S3 the independent driftless subordinators with Lévy measures µ1, µ2 and µ3,
respectively. Then St ≤ S1

t + S2
t + S3

t (note that it may happen that s < ǫ/H−1(1/t)) and hence

P(St ≥ s) ≤ P(S1
t ≥ 3s/4) + P(S2

t ≥ s/4) + P(S3
t > 0).

Since S3 is a compound Poisson process, it holds that P(S3
t > 0) = 1− e−tw(s) ≤ tw(s). Moreover, by

following the proof of [22, Proposition 2.7], one can obtain from [34, Proposition 1 and Lemma 9] that
P(S2

t ≥ s/4) ≤ ctw(s). Lastly, by using Markov’s inequality and [22, Lemma 2.5], since s > 2tb(t) due to
(2.13), we have that

P(S1
t ≥ 3s/4) ≤ E

[
exp

(
−(3s/4)H−1(1/t) +H−1(1/t)S1

t

)]

= exp
(
− (3s/4)H−1(1/t) + t

∫ ǫ/H−1(1/t)

0
(eH

−1(1/t)x − 1)ν(dx)
)

≤ exp
(
− (3s/4)H−1(1/t) + e2ǫtH−1(1/t)

∫ ǫ/H−1(1/t)

0
xe−H

−1(1/t)xν(dx)
)

≤ exp
(
− (3s/4)H−1(1/t) + (5/4)H−1(1/t)tb(t)

)
≤ exp

(
− 2−3sH−1(1/t)

)
.

We used the fact that ey − 1 ≤ ye−ye2y for all y ≥ 0 in the third line. Hence, by Lemma 2.8, we get that
P(S1

t ≥ 3s/4) ≤ ctw(s) and hence the first assertion holds.
The second assertion follows from (Poly-R1). ✷

3. Setup and main assumptions

Let (E, ρ) be a locally compact separable metric space such that all bounded closed sets are compact,
and let m a positive Radon measure on E with full support. We use B(x, r) to denote the open ball in
(E, ρ) of radius r centered at x, and V (x, r) := m(B(x, r)) its volume.

Throughout the remainder of this paper, we assume the following volume doubling and reverse volume
doubling properties with localization radius RE ∈ (0,∞]: There exist constants d2 ≥ d1 > 0 such that,
for every a ≥ 1, there exists a constant CV = CV (a) ≥ 1 satisfying

C−1
V

(R
r

)d1
≤
V (x,R)

V (x, r)
≤ CV

(R
r

)d2
for all x ∈ E and 0 < r ≤ R < aRE. (3.1)
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As a consequence of (3.1), we see that for all R0, ǫ, η > 0, there exists a constant C = C(R0, ǫ, η) > 0
such that

V (x, r) ≤ CV (y, ηr) for all x, y ∈ E and ǫρ(x, y) < r ≤ R0. (3.2)

Indeed, since B(x, r) ⊂ B(y, r + ρ(x, y)), we get from (3.1) that V (x, r) ≤ V (y, r + ρ(x, y)) ≤ V (y, (1 +
1/ǫ)r) ≤ c1V (y, ηr). Moreover, if the localization radius RE is infinite, then the above constant C is
independent of R0 and (3.2) holds for ǫρ(x, y) < r <∞.

LetD be a proper open subset of E. We use diam(D) to denote the diameter ofD. If diam(D) <∞, i.e.,
D is bounded, then by the assumption on E it holds that m(D) <∞. For x ∈ D, let δD(x) = ρ(x,E \D).
In most applications, D will be an open subset of the Euclidean space R

d, d ≥ 1, and m(dy) will be the
Lebesgue measure. For simplicity we write dy instead of m(dy). Let Y D = (Y D

t ,P
x) be a Hunt process

in D. We assume that the semigroup of Y D admits a density pD(t, x, y), which we call the heat kernel of
Y D. Thus, for any non-negative Borel function f on D,

E
x[f(Y D

t )] =

∫

D
f(y)pD(t, x, y) dy.

Let S = (St)t≥0 be a driftless subordinator independent of Y D. We will be interested in the subordinate
process Xt := Y D

St
. It is well known (cf. [6, p.67, pp. 73–75] and [50]) that X is also a Hunt process and

admits a heat kernel q(t, x, y) which is given by the formula

q(t, x, y) = E[pD(St, x, y)] =

∫ ∞

0
pD(s, x, y)P(St ∈ ds). (3.3)

Our goal is to find two-sided estimates of q(t, x, y) under certain assumptions on the underlying heat
kernel pD(t, x, y) and the subordinator S. On the subordinator we will impose the assumption (Poly-R1).
Now we explain the assumptions we impose on pD(t, x, y). These assumptions are motivated by various
examples from the literature.

We first introduce two functions Φ,Ψ : [0,∞) → [0,∞), both strictly increasing and satisfying Ψ(r) ≥
Φ(r) for all r ≥ 0. Moreover, we always assume that both satisfy global scaling conditions: There exist
constants α1, α2, α3, α4 > 0 and c1, c2, c3, c4 > 0 such that for all R ≥ r > 0,

c1

(R
r

)α1

≤
Φ(R)

Φ(r)
≤ c2

(R
r

)α2

and c3

(R
r

)α3

≤
Ψ(R)

Ψ(r)
≤ c4

(R
r

)α4

. (3.4)

As an easy consequence we see that, for every a ≥ 1, there exist two constants c1(a) > 0 and c2(a) > 0
such that, for all r,R > 0 satisfying 0 < r ≤ aR, it holds that

c1(a)
(R
r

)α1

≤
Φ(R)

Φ(r)
≤ c2(a)

(R
r

)α2

. (3.5)

The following lemma shows that, without loss of generality, we may replace Φ by a nicer function.

Lemma 3.1. There exists a strictly increasing differentiable functions Φ̃ satisfying the following two
properties:

(P1) Φ(r) ≃ Φ̃(r) for all r > 0 and Φ̃ satisfies (3.5);

(P2) Φ̃′(r) ≃ r−1Φ̃(r) and (Φ̃−1)′(t) ≃ t−1Φ̃−1(t) for r, t > 0.

Proof. According to [8, Lemmas 3.1 and 3.2], for any α > α2, there exists a complete Bernstein function
ϕ such that

Φ(r) ≃ ϕ(r−α)−1 and ϕ′(r) ≃ r−1ϕ(r) for all r > 0,

and that ϕ satisfies the weak scaling conditions with exponents α1/α and α2/α. Let Φ̃(r) := ϕ(r−α)−1,

r > 0. It is straightforward to check that Φ̃ satisfies (3.5) and also that Φ̃′(r) ≃ r−1Φ̃(r). Moreover, by
the inverse function theorem, the second comparability in (P2) is also valid. ✷

Lemma 3.2. Let f : (0,∞) → (0,∞) be a given function. Assume that there exist constants c1, p > 0
such that spf(s) ≤ c1t

pf(t) for all 0 < s ≤ t. Then there exists a constant c2 = c2(c1, p) > 0 such that
for all r, κ > 0, ∫ r

0
f(s) exp

(
−

κ2

Φ−1(s)2

)
ds ≤

c2r
p+1f(r)

Φ(κ)p
. (3.6)
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Proof. Let c3 := supu>0 u
pα2/2e−u. Then by the scaling of Φ, we have that

∫ r

0
f(s) exp

(
−

κ2

Φ−1(s)2

)
ds ≤ c3

∫ r∧Φ(κ)

0
f(s)

(Φ−1(s)

κ

)pα2

ds+

∫ r

r∧Φ(κ)
f(s)ds

≤ c4

∫ r∧Φ(κ)

0
f(s)

( s

Φ(κ)

)p
ds +

∫ r

r∧Φ(κ)
s−pspf(s)ds

≤
c1c4r

pf(r)

Φ(κ)p

∫ r

0
ds+

c1r
pf(r)

(r ∧ Φ(κ))p

∫ r

r∧Φ(κ)
ds ≤

c1(c4 + 1)rp+1f(r)

Φ(κ)p
.

✷

Definition 3.3. We say that a function h : (0,∞) ×D ×D → [0, 1] is a boundary function if it satisfies
the following two properties:
(H1) For all fixed x, y ∈ D, the map s 7→ h(s, x, y) is non-increasing.
(H2) There exist constants c1 > 0, γ ≥ 0 such that

sγh(s, x, y) ≤ c1t
γh(t, x, y), 0 < s ≤ t < 4Φ(diam(D)) + 1, x, y ∈ D,

with 4Φ(diam(D)) + 1 interpreted as ∞ when D is unbounded.
A boundary function h is said to be regular if there exists c2 > 0 such that

h(t, x, y) ≥ c2, 0 < t < 4Φ(diam(D)) + 1, x, y ∈ D with δ∧(x, y) ≥ Φ−1(t).

A regular boundary function h is said to be of Harnack-type if there exists c3 > 0 such that for all
x, y, z ∈ D satisfying ρ(x, z) ≤ (ρ(x, y) ∧ δD(x))/2,

h(t, x, y) ≤ c3h(t, z, y), 0 < t < Φ(ρ(x, y)). (3.7)

From now on, h(t, x, y) always denotes a boundary function.

Remark 3.4. Suppose that h is a regular boundary function. Then for every ǫ ∈ (0, 1), there exists
c1 = c1(ǫ) > 0 such that

h(t, x, y) ≥ c1, 0 < t < 4Φ(diam(D)) + 1, x, y ∈ D with δ∧(x, y) ≥ ǫΦ−1(t).

Indeed, by (3.4) and (H2), we see that for all x, y ∈ D with δ∧(x, y) ≥ ǫΦ−1(t),

h(t, x, y) ≥ c2h(Φ(ǫΦ
−1(t)), x, y) ≥ c3.

Example 3.5. (a) Let p, q ≥ 0. For t > 0 and x, y ∈ D, define

hp,q(t, x, y) :=
(
1 ∧

Φ(δD(x))

t

)p(
1 ∧

Φ(δD(y))

t

)q
, hp(t, x, y) := hp,p(t, x, y). (3.8)

Then hp,q(t, x, y) is a typical example of a regular boundary function which is also of Harnack-type.
Indeed, (H1) and the regularity is clear, while (H2) holds with c1 = 1 and γ = p + q since for all
0 < s < t,

tp+qhp,q(t, x, y) =
(
t ∧ Φ(δD(x))

)p(
t ∧ Φ(δD(y))

)q
≥ sp+qhp,q(s, x, y).

Moreover, we see from (3.4) that for all x, y, z ∈ D satisfying ρ(x, z) ≤ (ρ(x, y)∧ δD(x))/2, since δD(z) ≥
δD(x)− ρ(x, z) ≥ δD(x)/2,

(
1 ∧

Φ(δD(x))

t

)p
≤
(
1 ∧

Φ(2δD(z))

t

)p
≤ c1

(
1 ∧

Φ(δD(z))

t

)p
.

Thus we conclude that hp,q(t, x, y) is of Harnack-type. The boundary function hp(t, x, y) is very typical

when D is a bounded smooth open subset of Rd.
(b) Let hp(t, x, y) be the function defined in (3.8). Then hp(t∧1, x, y) is also a regular boundary function
of Harnack-type. This is a typical boundary function for smooth exterior open sets.
(c) A quite general example of a boundary function is obtained as follows. Suppose that Y D admits a

dual process Ŷ D. Let ζ and ζ̂ be the lifetimes of Y D and Ŷ D respectively. Assume that the survival

probabilities P
x(ζ > t) and P

y(ζ̂ > t) satisfy the following doubling property: P
x(ζ > t/2) ≃ P

x(ζ > t)

and P
y(ζ̂ > t/2) ≃ P

y(ζ̂ > t) for all 0 < t < 4Φ(diam(D)) + 1 and x, y ∈ D. Then h(t, x, y) := P
x(ζ >

t)Py(ζ̂ > t) is a boundary function. Indeed, (H1) is clear, while (H2) follows from the doubling property
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of survival probabilities assumed above. The survival probabilities usually satisfy the doubling property,
see for instance, [25, Lemma 2.21] and its proof. In fact, by [25, Lemma 2.21] and its proof, one can see
that the boundary function h above is often regular.

Moreover, the above h(t, x, y) is of Harnack-type if, in addition, (1) it is regular; (2) Y D satisfies the
(interior elliptic) Harnack inequality and (3) there is c1 > 0 such that for all x ∈ D and Φ(δD(x)) < t <
Φ(diam(D)),

P
x(ζ > t) ≃ P

x(ζ > τU(x,t)) = P
x(Y D

τU(x,t)
,∈ D), (3.9)

where U(x, t) := B(x, c1Φ
−1(t)) ∩D and τV = inf{t > 0 : Y D

t /∈ V }.
To see this, we fix x, z ∈ D satisfying ρ(x, z) ≤ δD(x)/2. If δD(x) ∨ δD(z) ≥ (c1 ∧ 2−1)Φ−1(t), then

we have δD(x) ∧ δD(z) ≥ δD(x) ∨ δD(z) − 2−1δD(x) ≥ 2−1(c1 ∧ 2−1)Φ−1(t). By Remark 3.4, it follows
that 1 ≥ P

x(ζ > t) ∧ P
z(ζ > t) ≥ h(t, x, x) ∧ h(t, z, z) ≥ c2. Hence, we obtain h(t, x, y)/h(t, z, y) =

P
x(ζ > t)/Pz(ζ > t) ≤ 1/c2. If δD(x) ∨ δD(z) < (c1 ∧ 2−1)Φ−1(t), then B(x, δD(x)) ⊂ U(x, t) so that
v 7→ P

v(Y D
τU(x,t)

∈ D) is harmonic in B(x, δD(x)) with respect to Y D. Using (3.9) twice, we see from the

Harnack inequality, (3.4) and (H2) that

P
x(ζ > t) ≤ c3P

z(Y D
τU(x,t)

∈ D) ≤ c3P
z(Y D

τU(z,Φ(Φ−1(t)/2))
∈ D) ≤ c4P

z(ζ > Φ(Φ−1(t)/2)) ≤ c5P
z(ζ > t).

The second inequality above is valid since U(z,Φ(Φ−1(t)/2)) ⊂ U(x, t). Therefore, we obtain (3.7).
Under the setting and assumptions in [25, Section 2] (Assumptions A and U in [25]), for the Hunt

process Y defined right below [25, (2.27)] on a κ-fat open set D with a critical killing potential µ ∈ K1(D),

by [25, Lemma 2.21], we know that the boundary function h(t, x, y) = Px(ζ > t)Py(ζ̂ > t) is of Harnack-
type. (See [25, Definition 2.19] and [25, Definition 2.12] for the definitions of a κ-fat open set and the
class K1(D), respectively.) See [2, 4, 14] for related work.

For later use, we record the following simple consequence of (H1) and (H2): Let k > 1 and s, t > 0
satisfy k−1s ≤ t ≤ ks ≤ 4Φ(diam(D)). Then for all x, y ∈ D,

c−1
1 k−γh(s, x, y) ≤ h(t, x, y) ≤ c1k

γh(s, x, y), (3.10)

where c1 is the constant from (H2).

Definition 3.6. Let h(t, x, y) be a boundary function.
(a) We say that HKh

B
holds, if D is bounded and the following estimates hold: (i) there exist C0 ∈ {0, 1}

and c1, c2, c3, c4 > 0 such that for all (t, x, y) ∈ (0, 1] ×D ×D,

c1h(t, x, y)

[
1

V (x,Φ−1(t))
∧

(
C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
−
c2ρ(x, y)

2

Φ−1(t)2

))]

≤ pD(t, x, y)

≤ c3h(t, x, y)

[
1

V (x,Φ−1(t))
∧

(
C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
−
c4ρ(x, y)

2

Φ−1(t)2

))]
, (3.11)

and (ii) there exists a constant λD > 0 such that for all (t, x, y) ∈ [1,∞) ×D ×D,

pD(t, x, y) ≃ e−λDth(1, x, y). (3.12)

(b) We say that HKh

U
holds, if the constant RE in (3.1) is infinity and (3.11) holds for all (t, x, y) ∈

(0,∞) ×D ×D.

By using the function (1∧ R1
10Φ(diam(D)))Φ(r) instead of Φ(r), we may and do assume that Φ(diam(D)) <

R1/8 whenever (Poly-R1) and HKh

B
hold.

Remark 3.7. One can easily see that if HKh

B
holds, then for every T > 0, there exist constants

c1, c2, c3, c4 > 0 such that (3.11) holds for all (t, x, y) ∈ (0, T ]×D ×D, and (3.12) holds for all (t, x, y) ∈
[T,∞)×D ×D.

Remark 3.8. Note that a ∧ (b+ c) ≤ (a ∧ b) + (a ∧ c) ≤ 2(a ∧ (b+ c)) for all a, b, c > 0. Hence (3.11) is
equivalent to the statement that for all (t, x, y) ∈ (0, 1] ×D ×D,

pD(t, x, y) ≍ h(t, x, y)

[(
1

V (x,Φ−1(t))
∧

C0t

V (x, ρ(x, y))Ψ(ρ(x, y))

)
+

1

V (x,Φ−1(t))
exp

(
−
cρ(x, y)2

Φ−1(t)2

)]
.

(3.13)
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Example 3.9. Here are several examples of processes satisfying HKh

B
or HKh

U
. We will not try to give

the most general examples but the reader will see from examples below that our setup is general enough
to cover almost all known cases. In all examples below, the boundary functions are of Harnack type.

(a) Suppose that D is a bounded C1,1 open subset of Rd.
(1) If D is connected and Y D is the killed Brownian motion in D, then HKh

B
is satisfied with C0 = 0,

Φ(r) = r2 and boundary function h1/2. See [24] for a more general example.

(2) If α ∈ (0, 2) and Y D is a killed isotropic α-stable process in D, then HKh

B
is satisfied with

Φ(r) = Ψ(r) = rα and boundary function h1/2, cf. [9]. More generally, suppose χ is a complete Bernstein
function satisfying global weak scaling conditions with indices β1, β2 ∈ (0, 1), Y is a subordinate Brownian
motion in R

d via an independent subordinator with Laplace exponent χ, Y D is the part process of Y
in D. Then HKh

B
is satisfied with Φ(r) = Ψ(r) = 1/χ(r−2) and boundary function h1/2, cf. [14]. See

[3, 31, 36] for more general examples.
(3) If D is connected and Y is the independent sum of isotropic α-stable process and Brownian motion,

then its part process Y D in D satisfies HKh

B
with Φ(r) = r2 ∧ rα, Ψ(r) = rα and boundary function

h1/2, cf. [11]. More generally, suppose χ is a complete Bernstein function satisfying the conditions in
the paragraph above and Y is the independent sum of Brownian motion and a subordinate Brownian
motion via a subordinator with Laplace exponent χ, then its part process Y D in D satisfies HKh

B
with

Φ(r) = Φχ(r) := r2 ∧ (1/χ(r−2)), Ψ(r) = 1/χ(r−2) and boundary function h1/2, cf. [15]. Note that
since limλ→∞ χ(λ)/λ = 0 (see (2.1)), for every a > 0, there are comparability constants depending on a
such that Φχ(r) ≃ r2 for r ∈ (0, a). We remark here that the estimates in [11, (1.4)] and [15, (1.14)] are
comparable to (3.13) since t ≤ 1.

(4) Suppose that χ is a complete Bernstein function such that the function λ 7→ χ(λ)−λχ′(λ) satisfies
weak scaling conditions for λ ≥ a > 0 with upper index δ < 2 and lower index γ > 2−11{δ≥1}, Suppose

that Y is a subordinate Brownian motion in R
d via an independent subordinator with Laplace exponent

χ, Y D is the part process of Y in D. Then HKh

B
is satisfied with Φ(r) = 1/χ(r−2), Ψ(r) = 1/(χ(r−2)−

r−2χ′(r−2)) and boundary function h1/2, cf. [38].

(5) Let α ∈ (1, 2) and Y D be a censored α-stable process in D. Then it follows from [10] that HKh

B
is

satisfied with Φ(r) = Ψ(r) = rα and boundary function h(α−1)/α.

(6) Let α ∈ (0, 2) and ZD be the part process, in D, of a reflected isotropic α-stable process in D. For
any q ∈ [α− 1, α) ∩ (0, α), let Y D be the process on D corresponding to the Feynman-Kac semigroup of

ZD via the multiplicative functional exp(−
∫ t
0 C(d, α, q) dist(ZDs , ∂D)−αds), where the positive constant

C(d, α, q) is defined on [25, p. 233]. It follows from [25, Theorem 3.2] that the small time estimates (3.11)
holds with Φ(r) = Ψ(r) = rα and hq/α. Using the small time estimates and the argument in [20, Section

4], one can easily show that the semigroup of Y D is intrinsically ultracontractive. With this, one can
easily check that the large time estimates in Definition 3.6(a)(ii) holds. Thus HKh

B
holds.

(7) Suppose that D is connected, d ≥ 3 and κ ≥ −1
4 . Let Y D be the process corresponding to

∆|D − κδD(x)
−2, the Dirichlet Laplacian in D with critical potential κδD(x)

−2. It follows from [28, (6)]
and [29, Corollary 1.8] that the heat kernel of Y D satisfies HKh

B
with C0 = 0, Φ(r) = r2 and boundary

function hp, where p =
1
2 (

1
2 +

√
1
4 + κ).

(8) Suppose that α ∈ (1, 2) and d ≥ 2. Let b : Rd → R
d such that |b| is in the Kato class Kd,α−1 (see

[12, Definition 1.1] for definition). Let Y be an α-stable process with drift b in R
d, that is, a process with

generator −(−∆)α/2 + b · ∇, and let Y D be the part process of Y in D. By [12, Theorem 1.3], HKh

B

holds with Φ(r) = Ψ(r) = rα and h1/2. See also [39].

(9) For general setups in which HKh

B
is satisfied, see [25, Section 2] and [30].

(b) Suppose that D is an unbounded C1,1 open subset of Rd.
(1) If D is the domain above the graph of a bounded Lipschitz function in R

d−1, then the killed
Brownian motion in D satisfies HKh

U
with C0 = 0, Φ(r) = r2 and a boundary function defined in terms

of survival probabilities like in Example 3.5(b), which is of Harnack type (cf. [51]).
(2) Suppose that D is a half-space-like C1,1 open set in R

d and α ∈ (0, 2). Let Y D be the part process
in D of an isotropic α-stable process. Then by [21, Theorem 1.2], HKh

U
is satisfied with Φ(r) = Ψ(r) = rα

and boundary function h1/2. More generally, let Y D be the part process in D of the independent sum of

Brownian motion and an isotropic α-stable process. By [13, Theorem 1.4 and Remark 1.5(ii)], HKh

U
is
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satisfied with Φ(r) = r2 ∧ rα, Ψ(r) = rα and boundary function h1/2. When D is an exterior C1,1 open

set in R
d with d > α and Y D is part process in D of an isotropic α-stable process, it follows from [21,

Theorem 1.2] that HKh

U
is satisfied with Φ(r) = Ψ(r) = rα and boundary function h1/2(t ∧ 1, x, y). See

[35] for a more general example.
(3) Suppose D is the upper half space in R

d. Let χ be a complete Bernstein function satisfying global
weak scaling conditions with indices α1, α2 ∈ (0, 1), Y be a subordinate Brownian motion in R

d via an
independent subordinator with Laplace exponent χ, Y D be the part process of Y in D. It follows from
[40, Theorem 5.10] that HKh

U
is satisfied with Φ(r) = Ψ(r) = 1/χ(r−2) and boundary function h1/2. See

[7] for a more general example.
(4) Suppose that D is the upper half space in R

d and α ∈ (0, 2). Let ZD be the part process,
in D, of a reflected isotropic α-stable process in D. For any q ∈ [α − 1, α) ∩ (0, α), let Y D be the
process on D corresponding to the Feynman-Kac semigroup of ZD via the multiplicative functional

exp(−
∫ t
0 C(d, α, q)δD(Z

D
s )−αds), where C(d, α, q) is defined on [25, p. 233]. It follows from [25, Theorem

3.2] that HKh

U
is satisfied with Φ(r) = Ψ(r) = rα and boundary function hq/α.

(5) Suppose that D = R
d \ {0} and α ∈ (0, 2). Let Z be an isotropic α-stable process in R

d. For
any q ∈ (0, α), let Y D be the process on D corresponding to the Feynman-Kac semigroup of ZD via

the multiplicative functional exp(−
∫ t
0 C̃(d, α, q)|ZDs |−αds), where C̃(d, α, q) is defined on [25, p. 250]. It

follows from [25, Theorem 3.9] and [33, Theorem 1.1] that HKh

U
is satisfied with Φ(r) = Ψ(r) = rα and

boundary function hq/α.

(6) Suppose that D = R
d \ {0}, d ≥ 2 or D = (0,∞). Let Y D be a process with generator ∆ + (a −

1)|x|−2
∑d

i,j=1 xixj∂ij + κ|x|−2 · ∇ − b|x|−2 for some a > 0, κ, b ∈ R such that

Λ :=
1

2

√
b

a
+
(d− 1 + κ− a

2a

)2
≥

1

4a

(
(d− 1 + κ− a) ∨ ((2a− 1)d+ 1− κ− 3a)

)
.

Note that when a = 1 and κ, b ≥ 0, the above inequality is always true. It follows from [46, Proposition
4.14, Theorem 6.2, Corollary 6.4] that HKh

U
is satisfied with C0 = 0, Φ(r) = r2 and boundary function

hp,q where p = Λ− (d− 1 + κ− a)/(4a) and q = Λ− ((2a − 1)d+ 1− κ− 3a)/(4a).

(7) Suppose that α ∈ (1, 2) and D = R
d\{0}, d ≥ 3. Let Y D be a process with generator −(−∆)−α/2+

κ|x|−αx · ∇ for some κ ∈ (0,∞). It follows from [45, Theorems 4 and 5] that HKh

U
is satisfied with

Φ(r) = Ψ(r) = rα and boundary function h = h0,β/α for β ∈ (0, α) determined by the equation at the
beginning of [45, Section 3.2].

We now briefly discuss the term

I(t, x, y, C0) :=
1

V (x,Φ−1(t))
∧

(
C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
−
c1ρ(x, y)

2

Φ−1(t)2

))

appearing in (3.11). If C0 = 0, then clearly

I(t, x, y, 0) =
1

V (x,Φ−1(t))
exp

(
−
c1ρ(x, y)

2

Φ−1(t)2

)
. (3.14)

Suppose now that C0 = 1.

Lemma 3.10. For any a ≥ 1, there are comparability constants depending on a such that

I(t, x, y, 1) ≍





1

V (x,Φ−1(t))
, t ≥ a−1Φ(ρ(x, y)),

t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
−
cρ(x, y)2

Φ−1(t)2

)
, t < aΦ(ρ(x, y)).

(3.15)

In particular, if Ψ(r) ≃ Φ(r) for r ∈ (0, R1), then

I(t, x, y, 1) ≃
1

V (x,Φ−1(t))
∧

t

V (x, ρ(x, y))Φ(ρ(x, y))
, t > 0, x, y ∈ D, ρ(x, y) < R1. (3.16)

Proof. If t ≥ a−1Φ(ρ(x, y)), then by (3.5),

1

V (x,Φ−1(t))
≥ I(t, x, y, 1) ≥

1

V (x,Φ−1(t))
exp

(
−
c1ρ(x, y)

2

Φ−1(t)2

)
≥

c2(a, c1)

V (x,Φ−1(t))
.
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Assume that t < aΦ(ρ(x, y)). Set

g(t, x, y) :=
t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
−
c1ρ(x, y)

2

Φ−1(t)2

)
.

Clearly, I(t, x, y, 1) ≤ g(t, x, y). Further, by using that Ψ ≥ Φ and (3.5), we have

g(t, x, y) ≤
a

V (x,Φ−1(t/a))
+

1

V (x,Φ−1(t))
≤

c3(a) + 1

V (x,Φ−1(t))
.

Hence, I(t, x, y, 1) = V (x,Φ−1(t))−1 ∧ g(t, x, y) ≥ (c3(a) + 1)−1g(t, x, y). Thus, (3.15) holds.
Now, we assume that Ψ(r) ≃ Φ(r) for r ∈ (0, R1). Using (3.1), (3.5) and the fact that e−u ≤ kku−k

for all u, k > 0, we get that for all t > 0 and x, y ∈ D satisfying t < Φ(ρ(x, y)) and ρ(x, y) < R1,

1

V (x,Φ−1(t))
exp

(
−
c1ρ(x, y)

2

Φ−1(t)2

)
≤

c4
V (x,Φ−1(t))

( Φ−1(t)2

c1ρ(x, y)2

)(d2+α1)/2

≤
c5t

V (x, ρ(x, y))Φ(ρ(x, y))
≤

c6t

V (x, ρ(x, y))Ψ(ρ(x, y))
.

Thus, we can deduce (3.16) from (3.15). ✷

4. Jump kernel and heat kernel estimates

For a given boundary function h, we define for (t, x, y) ∈ [0,∞) ×D ×D,

B∗
h(x, y) :=

∫ Φ(ρ(x,y))

0
h(s, x, y)w(s)ds (4.1)

and if φ−1(1/t)−1 ≤ Φ(ρ(x, y)),

Bh(t, x, y) :=

∫ 4Φ(ρ(x,y))

2φ−1(1/t)−1

h(s, x, y)w(s)ds. (4.2)

Since
∫ r
0 w(s)ds < ∞ for all r > 0 (see (2.1)) and h ≤ 1, the integral in (4.1) converges. Note that, by

(H1), B∗
h(x, y) ≃ Bh(0, x, y) for all (x, y) ∈ D ×D.

4.1. Jump kernel estimates. The jump kernel of the subordinate process X is given by

J(x, y) =

∫ ∞

0
pD(s, x, y)ν(ds) , x, y ∈ D. (4.3)

See [6, p.74] and also [48].

Theorem 4.1. Suppose that either (1) (Poly-R1) and HKh

B
hold, or (2) (Poly-∞) and HKh

U
hold.

Then, for (x, y) ∈ D ×D with x 6= y,

J(x, y) ≃
C0B

∗
h(x, y)

V (x, ρ(x, y))Ψ(ρ(x, y))
+ h(Φ(ρ(x, y)), x, y)

w
(
Φ(ρ(x, y))

)

V (x, ρ(x, y))
. (4.4)

Proof. Since the proofs are similar, we only give the proof of the case (1), which is more complicated.
Fix x, y ∈ D with x 6= y and let r := ρ(x, y) > 0. By Remark 3.7, (3.11) and (3.12) hold with
T := Φ(2diam(D)). Then by (4.3) and (3.15),

J(x, y) ≍
C0

V (x, r)Ψ(r)

∫ Φ(r)

0
sh(s, x, y)ν(ds) +

∫ Φ(r)

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
−

cr2

Φ−1(s)2

)
ν(ds)

+

∫ T

Φ(r)

h(s, x, y)

V (x,Φ−1(s))
ν(ds) + h(1, x, y)

∫ ∞

T
e−λDsν(ds) =: C0J1 + J2 + J3 + J4.

Since (Poly-R1) holds, there exists a constant a > 1 such that w(s/a) ≥ 2w(s) for all s < R1.
Therefore, by (3.10), since we assumed Φ(diam(D)) < R1/8,

V (x, r)Ψ(r)J1 =
∑

i∈N

∫ a−i+1Φ(r)

a−iΦ(r)
sh(s, x, y)ν(ds)
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≃
∑

i∈N

a−iΦ(r)h(a−iΦ(r), x, y)
(
w(a−iΦ(r))−w(a−i+1Φ(r))

)

≃
∑

i∈N

a−iΦ(r)h(a−iΦ(r), x, y)w(a−iΦ(r)) ≃
∑

i∈N

∫ a−i+1Φ(r)

a−iΦ(r)
h(s, x, y)w(s)ds = B∗

h(x, y).

Next, by (H1), the scaling and monotonicity of Φ, we get that

J2 ≥
h(Φ(r), x, y)

V (x, r)

∫ Φ(r)

Φ(r)/a
exp

(
−

c1r
2

Φ−1(s)2

)
ν(ds) ≥

c2h(Φ(r), x, y)

V (x, r)

∫ Φ(r)

Φ(r)/a
ν(ds)

=
c2h(Φ(r), x, y)

V (x, r)

(
w(Φ(r)/a) − w(Φ(r))

)
≥
c2h(Φ(r), x, y)w(Φ(r))

V (x, r)
.

Hence, we obtain the lower bound in (4.4).

Now, we prove the upper bound in (4.4). Let Φ̃ be the function in Lemma 3.1. Since s 7→ V (x, Φ̃−1(s))−1

and s 7→ h(s, x, y) are non-increasing, using the Leibniz rule for product, integration by parts and the

property (P2) of Φ̃−1 in Lemma 3.1, we obtain

J2 ≤ c

∫ Φ(r)

0

h(s, x, y)

V (x, Φ̃−1(s))
exp

(
−

c3r
2

Φ̃−1(s)2

)(
−

d

ds
w(s)

)

≤ c

∫ Φ(r)

0

h(s, x, y)w(s)

V (x, Φ̃−1(s))

(
d

ds
exp

(
−

c3r
2

Φ̃−1(s)2

))
ds

≤ c

∫ Φ(r)

0

h(s, x, y)w(s)

V (x, Φ̃−1(s))

r2

sΦ̃−1(s)2
exp

(
−

c3r
2

Φ̃−1(s)2

)
ds. (4.5)

In the second inequality above, we used the following: Since h ≤ 1, e−x ≤ kkx−k for all x, k > 0 and

lims→0 sw(s) = 0 (because w is the tail of the Lévy mesure ν), by using (3.1) and the scaling of Φ̃−1, we
have that

lim
s→0

h(s, x, y)w(s)

V (x, Φ̃−1(s))
exp

(
−

c3r
2

Φ̃−1(s)2

)
≤ c lim

s→0

w(s)

V (x, Φ̃−1(s))

(
Φ̃−1(s)2

r2

)(d2+α2)/2

≤
c

rd2+α2V (x, Φ̃−1(1))
lim
s→0

w(s)Φ̃−1(s)α2 ≤
c Φ̃−1(1)α2

rd2+α2V (x, Φ̃−1(1))
lim
s→0

sw(s) = 0.

By (Poly-R1), (H2), (3.1), (3.5) and the fact that Φ ≃ Φ̃, we can use Lemma 3.2 with f(s) =

h(s, x, y)w(s) V (x, Φ̃−1(s))−1s−1Φ̃−1(s))−2 and p = γ + β2 + 1 + (d2 + 2)/α1 to deduce from (4.5) that

J2 ≤ c
Φ(r)γ+β2+1+(d2+2)/α1+1

Φ(r)γ+β2+1+(d2+2)/α1

h(Φ(r), x, y)w(Φ(r))r2

V (x, r)Φ(r)r2
=
ch(Φ(r), x, y)w(Φ(r))

V (x, r)
. (4.6)

For J3 and J4, since s 7→ V (x,Φ−1(s))−1, s 7→ h(s, x, y) and s 7→ w(s) are non-increasing, we have by
the boundedness of D that

J3 + J4 ≤
h(Φ(r), x, y)w(Φ(r))

V (x, r)
+ h(1, x, y)w(T ) ≤

ch(Φ(r), x, y)w(Φ(r))

V (x, r)
.

This completes the proof. ✷

Suppose that Ψ ≃ Φ and C0 = 1. Then the first term in (4.4) dominates the second. Indeed, by (H1),

B∗
h(x, y) =

∫ Φ(ρ(x,y))

0
h(s, x, y)w(s) ds ≥ h(Φ(ρ(x, y)), x, y)

∫ Φ(ρ(x,y))

0
w(s) ds

≥ h(Φ(ρ(x, y)), x, y)w(Φ(ρ(x, y)))Φ(ρ(x, y)).

Moreover, if β2 < 1, then according to [47, Lemma 2.6, Proposition 2.9] and (2.2), we get that w(s) ≃
φ(1/s) for all 0 < s < R1/2. Therefore, it holds that

J(x, y) ≃
1

V (x, ρ(x, y))Φ(ρ(x, y))

∫ Φ(ρ(x,y))

0
h(s, x, y)φ(1/s) ds.
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In case the boundary function is equal to h1/2, the integral above can be estimated in the same way as
in [42, Lemma 8.1], cf. [42, (8.4)].

Suppose that C0 = 0. Then

J(x, y) ≃ h(Φ(ρ(x, y))
w(h(Φ(ρ(x, y)), x, y)

V (x, ρ(x, y))
. (4.7)

In particular, in the context of Example 3.9(b-1), and assuming β2 < 1, the above formula reduces to
[41, Theorem 4.4.(1)]. Similarly, if D is an exterior C1,1 domain in R

d, the boundary function is equal to
h1/2(t ∧ 1, x, y) and β2 < 1, then (4.7) reduces to [41, Theorem 4.4.(2)].

4.2. Heat kernel estimates. Let

ψ(r) :=
1

φ(1/Φ(r))
, r > 0. (4.8)

Since φ and Φ are strictly increasing, ψ is also strictly increasing. Moreover, it follows from (2.2), (2.3)
and (3.4) that, for every R0 > 0, there exist c1, c2 > 0 such that

c1

(R
r

)α1β1
≤
ψ(R)

ψ(r)
≤ c2

(R
r

)α2(β2∧1)
, 0 < r < R < R0. (4.9)

In case when (Poly-∞) holds, (4.9) is valid with R0 = ∞. We note that

ψ−1(t) = Φ−1
(
φ−1(1/t)−1

)
, t > 0. (4.10)

Recall the definition of the function Bh(t, x, y) from (4.2).

Theorem 4.2. Suppose that (Poly-R1) and HKh

B
hold. Then for every T > 0, the following estimates

are valid for all (t, x, y) ∈ (0, T ] ×D ×D:
(i) If ψ(ρ(x, y)) ≤ t, then

q(t, x, y) ≃
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
. (4.11)

(ii) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) ≍
C0

V (x, ρ(x, y))Ψ(ρ(x, y))

(
tBh(t, x, y) +

h(φ−1(1/t)−1, x, y)

φ−1(1/t)

)

+
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−
c ρ(x, y)2

ψ−1(t)2

)
+ h(Φ(ρ(x, y)), x, y)

tw
(
Φ(ρ(x, y))

)

V (x, ρ(x, y))
. (4.12)

Proof. Take x, y ∈ D and let r := ρ(x, y). We start by establishing some relations valid for all t ∈ (0, T ].
By Proposition 2.7, there exist constants δ, ǫ ∈ (0, 1) such that

q(t, x, y) ≥ δ inf
s∈[ǫφ−1(1/t)−1 ,φ−1(1/t)−1]

pD(s, x, y), t ∈ (0, T ]. (4.13)

On the other hand, by Remark 3.7 (with T = Φ(diam(D))), (3.14), (3.15), (3.12) and the fact that
exp(−cr2/Φ−1(s)2) ≃ 1 when s > Φ(r), we see that

q(t, x, y)

≍

∫ Φ(r)

0
h(s, x, y)

(
C0s

V (x, r)Ψ(r)
+

1

V (x,Φ−1(s))
exp

(
−

cr2

Φ−1(s)2

))
P(St ∈ ds)

+

∫ Φ(diam(D))

Φ(r)

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) + h(1, x, y)

∫ ∞

Φ(diam(D))
e−λDs P(St ∈ ds)

≍ C0

∫ Φ(r)

0

sh(s, x, y)

V (x, r)Ψ(r)
P(St ∈ ds) +

∫ Φ(diam(D))

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
−

cr2

Φ−1(s)2

)
P(St ∈ ds)

+ h(1, x, y)

∫ ∞

Φ(diam(D))
e−λDsP(St ∈ ds) =: C0I1 + I2 + I3. (4.14)
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(i) Assume that ψ(r) ≤ t. By Remark 3.7, (3.15), (H1), (3.1), the scaling of Φ−1 and (4.10), there
exists a constant c1 > 0 such that

inf
s∈[ǫφ−1(1/t)−1,φ−1(1/t)−1 ]

pD(s, x, y) ≥ c1
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
, t ∈ (0, T ].

Hence, the lower bound in (4.11) follows from (4.13).
Now, we prove the upper bound in (4.11). First, using Lemma 2.6 in the first inequality below, the

assumption Ψ ≥ Φ and Lemma 2.5 with N = γ+d2/α1 in the second, (H2), (4.10) and (3.4) in the third,
and (3.1) in the last, we get that

I1 ≤
Φ(r)h(Φ(r), x, y)

V (x, r)Ψ(r)
exp

(
−
t

2
(H ◦ σ)

(
t,Φ(r)

))

≤ c2
h(Φ(r), x, y)

V (x, r)

(
Φ(r)φ−1(1/t)

)γ(
Φ(r)φ−1(1/t)

)d2/α1

≤ c3
h(φ−1(1/t)−1, x, y)

V (x, r)

( r

ψ−1(t)

)d2
≤ c4

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Next, we observe that

I2 ≤

∫ φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) +

∫ ∞

φ−1(1/t)−1

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) =: I2,1 + I2,2.

By (H2), (3.1) and (3.4), we can apply Lemma 2.6 with f(s) = h(s, x, y)V (x,Φ−1(s))−1 and p = γ+d2/α1

to get that

I2,1 ≤ c5
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−
t

2
(H ◦ σ)(t, φ−1(1/t)−1)

)
≤ c5

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Moreover, we see from (H1), (4.10) and the monotonicity of ψ−1 that

I2,2 ≤
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
P(St ≥ φ−1(1/t)−1) ≤

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Lastly, by using (H1) and (H2), since φ and ψ are increasing and t ≤ T , we have that

I3 ≤ h(1, x, y) ≤ c6
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Hence, we obtain the upper bound in (4.11) from (4.14).

(ii) Assume that ψ(r) ≥ t. First we establish the lower bound. From (4.13), Remark 3.7, (3.15), (4.10),
(H1), and the scaling and monotonicity of ψ−1, we get that

q(t, x, y) ≥ c7h(φ
−1(1/t)−1, x, y)

[
C0φ

−1(1/t)−1

V (x, r)Ψ(r)
+

1

V (x, ψ−1(t))
exp

(
−

c8r
2

ψ−1(t)2

)]
. (4.15)

We also see from Remark 3.7 that

q(t, x, y) ≥

∫ 4Φ(r)

2φ−1(1/t)−1

pD(s, x, y)P(St ∈ ds) ≥
c9C0

V (x, r)Ψ(r)

∫ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds), (4.16)

where in the second inequality we used (3.15) and neglected the second term. Let M > 1 be the constant
in Proposition 2.9. If Φ(r) > Mφ−1(1/t)−1, then by (H1), (H2) and Proposition 2.9, since we assumed
Φ(diam(D)) < R1/8,

∫ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds) ≥
∑

i∈N
M i≤2Φ(r)φ−1(1/t)

∫ 2M iφ−1(1/t)−1

2M i−1φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds)

≥ c10M
−1t

∑

i∈N
M i≤2Φ(r)φ−1(1/t)

2M iφ−1(1/t)−1h(2M i−1φ−1(1/t)−1, x, y)w
(
2M i−1φ−1(1/t)−1

)

≥ c10M
−1t

∑

i∈N
M i≤2Φ(r)φ−1(1/t)

∫ 2M iφ−1(1/t)−1

2M i−1φ−1(1/t)−1

h(s, x, y)w(s)ds
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≥ c10M
−1t

∫ 4Φ(r)/M

2φ−1(1/t)−1

h(s, x, y)w(s)ds ≥ c10M
−1t

∫ 4Φ(r)/M

2Φ(r)/M
h(s, x, y)w(s)ds

≥ 2c10M
−2tΦ(r)h(4Φ(r)/M, x, y)w(4Φ(r)/M) ≥ c102

−1M−2t

∫ 4Φ(r)

4Φ(r)/M
h(s, x, y)w(s)ds.

By the fourth and the last inequalities above, we deduce from (4.16) that

q(t, x, y) ≥
c9C0

2V (x, r)Ψ(r)
2

∫ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds) ≥
c9c10
2M2

C0tBh(t, x, y)

V (x, r)Ψ(r)
.

In case when Φ(r) ≤Mφ−1(1/t)−1, we see from (H1), (2.10) and (4.15) that

C0tBh(t, x, y)

V (x, r)Ψ(r)
≤

C0t

V (x, r)Ψ(r)

∫ 4Mφ−1(1/t)−1

2φ−1(1/t)−1

h(s, x, y)w(s)ds

≤
4eMC0

e− 2

tφ−1(1/t)−1

V (x, r)Ψ(r)
h(φ−1(1/t)−1, x, y)φ

(
φ−1(1/t)

)
≤ c11 q(t, x, y).

Hence, it remains to prove that there exists a constant c12 > 0 such that

q(t, x, y) ≥ c12h(Φ(r), x, y)
tw(Φ(r))

V (x, r)
.

Recall that M > 1 is the constant in Proposition 2.9. By using Proposition 2.9, (3.15), (H1), (3.1) and
the scaling of Φ, we get that, if 4Φ(r)/M > 2φ−1(1/t)−1, then

q(t, x, y) ≥ c13

∫ 4Φ(r)

4Φ(r)/M

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) ≥ c14h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

If 4Φ(r)/M ≤ 2φ−1(1/t)−1, then by (4.10), the scaling of Φ and the assumption that ψ(r) ≥ t, we get
ψ−1(t) ≤ r ≤ c15ψ

−1(t) for some c15 > 1. By (4.10) and (2.10), since w is non-increasing,

tw(Φ(r)) ≤ tw(φ−1(1/t)−1) ≤ e(e− 2)−1tφ
(
φ−1(1/t)

)
= e(e − 2)−1. (4.17)

Therefore, by (H1), (4.15) (neglecting the first term) and (3.4), we obtain

q(t, x, y) ≥ c16
h(Φ(r), x, y)

V (x, r)
exp

(
−
c8c15ψ

−1(t)2

ψ−1(t)2

)
≥ c17h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

This completes the proof of the lower bound.

Now we prove the upper bound. Recall (4.14). Observe that

V (x, r)Ψ(r)I1 ≤

∫ φ−1(1/t)−1

0
sh(s, x, y)P(St ∈ ds) +

∫ 2φ−1(1/t)−1

φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds)

+

∫ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds) =: K1 +K2 +K3.

We get from Lemma 2.6 that K1 ≤ c18φ
−1(1/t)−1h(φ−1(1/t)−1, x, y). Next, by (H1), we have K2 ≤

2φ−1(1/t)−1 h(φ−1(1/t)−1, x, y). To bound K3, we use integration by parts and Proposition 2.9 to obtain

K3 =

∫ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)
d

ds

(
− P(St ≥ s)

)

≤ 2φ−1(1/t)−1h(φ−1(1/t)−1, x, y) +

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)P(St ≥ s)ds

+

∫ 4Φ(r)

2φ−1(1/t)−1

sP(St ≥ s)
dh(s, x, y)

ds
≤ c19

(
φ−1(1/t)−1h(φ−1(1/t)−1, x, y) + tBh(t, x, y)

)
.

In the second inequality above, we used the fact that s 7→ h(s, x, y) is non-increasing (so that s 7→
d
dsh(s, x, y) ≤ 0 a.e.).
Now, we estimate I2. We have

I2 ≤

∫ 2φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
−

cr2

Φ−1(s)2

)
P(St ∈ ds)



HEAT KERNEL ESTIMATES FOR SUBORDINATE MARKOV PROCESSES 19

+

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x,Φ−1(s))
exp

(
−

cr2

Φ−1(s)2

)
P(St ∈ ds) +

∫ ∞

4Φ(r)

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds)

=: L1 + L2 + L3.

By applying Lemma 2.6, we get from (H1), (H2), (3.1), the scaling of Φ and (4.10) that

L1 ≤ exp
(
−

cr2

Φ−1(2φ−1(1/t)−1)2

)∫ 2φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds)

≤ c20
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−

c21r
2

ψ−1(t)2

)
.

Let Φ̃ be the function in Lemma 3.1. By using integration by parts and similar calculations to (4.5), we
get that

L2 ≤ c22

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x, Φ̃−1(s))
exp

(
−

c23r
2

Φ̃−1(s)2

) d
ds

(
− P(St ≥ s)

)

≤ c24

[
h(2φ−1(1/t)−1, x, y)

V (x, Φ̃−1(2φ−1(1/t)−1))
exp

(
−

c23r
2

Φ̃−1(2φ−1(1/t)−1)2

)
P
(
St ≥ 2φ−1(1/t)−1

)

+

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x, Φ̃−1(s))
P(St ≥ s)

r2

sΦ̃−1(s)2
exp

(
−

c23r
2

Φ̃−1(s)2

)
ds

]
=: c25 (L2,1 + L2,2).

By (H1), (3.1), the scaling of Φ and (4.10), since Φ ≃ Φ̃, we see that

L2,1 ≤ c26h(φ
−1(1/t)−1, x, y)V (x, ψ−1(t))−1 exp

(
− c27r

2/ψ−1(t)2
)
.

Also, by using Proposition 2.9 and repeating the calculation in (4.6), we get that

L2,2 ≤ c28t

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)w(s)

V (x, Φ̃−1(s))

r2

sΦ̃−1(s)2
exp

(
−

c23r
2

Φ̃−1(s)2

)
ds ≤

c29th(Φ(r), x, y)w(Φ(r))

V (x, r)
.

By (H1) and Proposition 2.9, we obtain

L3 ≤ h(Φ(r), x, y)V (x, r)−1
P(St ≥ 4Φ(r)) ≤ c30th(Φ(r), x, y)V (x, r)−1w(Φ(r)).

Finally, we estimate I3. By Proposition 2.9, since D is bounded, we get from (H1) and (H2) that

I3 ≤ c31th(1, x, y)w
(
Φ(diam(D))

)
≤ c32th(Φ(r), x, y)V (x, r)−1w(Φ(r)).

This completes the proof. ✷

If one assumes HKh

U
, instead of HKh

B
, together with (Poly-∞), the results of Theorem 4.2(i) and

(ii) are valid for all time. The proof is analogous to the proof of Theorem 4.2 and hence omitted.

Theorem 4.3. Suppose that (Poly-∞) and HKh

U
hold. Then the assertions in Theorem 4.2(i)–(ii) hold

for all (t, x, y) ∈ (0,∞)×D ×D.

When the upper scaling index β2 in (Poly-R1) is strictly less than 1, we can obtain the following
simpler form of off-diagonal estimate.

Corollary 4.4. Suppose that (Poly-R1) holds with β2 < 1 and Φ(r) ≃ Ψ(r) for r ∈ (0, R1).
(i) If HKh

B
holds, then for every T > 0, the following estimates hold for all (t, x, y) ∈ (0, T ] ×D ×D:

(1) If ψ(ρ(x, y)) ≤ t, then (4.11) holds.
(2) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) ≃
t

V (x, ρ(x, y))
×





h(Φ(ρ(x, y)), x, y)

ψ(ρ(x, y))
when C0 = 0,

Bh(t, x, y)

Φ(ρ(x, y))
when C0 = 1.

(4.18)

(ii) If R1 = ∞ and HKh

U
holds, then (1) and (2) above hold for all (t, x, y) ∈ (0,∞) ×D ×D.
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Proof. According to [47, Lemma 2.6, Proposition 2.9] and (2.2), since β2 < 1, we get that w(s) ≃ φ(1/s)
for all 0 < s < R1/2.

(i) We only need to deal with the case (2), i.e., the case ψ(ρ(x, y)) ≥ t. We first assume that C0 = 0.
Using w(s) ≃ φ(1/s), we get that w(Φ(ρ(x, y))) ≃ 1/ψ(ρ(x, y)). Thus by Theorem 4.2, it remains to
show that for any given c1 > 0, there exists c2 > 0 such that for all (t, x, y) ∈ (0, T ] ×D ×D satisfying
ψ(ρ(x, y)) ≥ t,

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−
c1ρ(x, y)

2

ψ−1(t)2

)
≤ c2

th(Φ(ρ(x, y)), x, y)

V (x, ρ(x, y))ψ(ρ(x, y))
. (4.19)

Let c3 := supu>0 u
(d2+α2γ+α2β2)/2e−u. By (3.1), (3.4), (4.9), (4.10) and (H2), we obtain that

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−
c1ρ(x, y)

2

ψ−1(t)2

)
≤ c3

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))

( ψ−1(t)2

c1ρ(x, y)2

)(d2+α2γ+α2β2)/2

≤ c4
h(φ−1(1/t)−1, x, y)

V (x, ρ(x, y))

(Φ(ψ−1(t))

Φ(ρ(x, y))

)γ t

ψ(ρ(x, y))
≤ c5

th(Φ(ρ(x, y)), x, y)

V (x, ρ(x, y))ψ(ρ(x, y))
.

Now, let C0 = 1. Since Φ(r) ≃ Ψ(r) for r ∈ (0, R1), the first term on the right hand side of (4.12) is
comparable with

tBh(t, x, y)

V (x, ρ(x, y))Φ(ρ(x, y))
+

h(φ−1(1/t)−1, x, y)

V (x, ρ(x, y))Φ(ρ(x, y))φ−1(1/t)
.

By (H2) and (Poly-R1), it holds that for all (t, x, y) ∈ (0, T ]×D ×D satisfying ψ(ρ(x, y)) ≥ t,

tBh(t, x, y) ≥ t

∫ 4Φ(ρ(x,y))

2Φ(ρ(x,y))
h(s, x, y)w(s)ds ≥ c6th(Φ(ρ(x, y)), x, y)w

(
Φ(ρ(x, y))

)
Φ(ρ(x, y)).

Combining this with (4.19), using w(s) ≃ φ(1/s), one can see that the first term on the right hand
side of (4.12) dominates the other two terms. Further, by (H2), (2.10) and (2.2), we see that for all
(t, x, y) ∈ (0, T ] ×D ×D satisfying ψ(ρ(x, y)) ≥ t,

tBh(t, x, y) ≥ t

∫ 4φ−1(1/t)−1

2φ−1(1/t)−1

h(s, x, y)w(s)ds ≥ c7t

∫ 4φ−1(1/t)−1

2φ−1(1/t)−1

h(s, x, y)φ(1/s)ds

≥ c8φ
−1(1/t)−1h(φ−1(1/t)−1, x, y).

This yields the desired conclusion.
(ii) This can be proved by the same argument as that of (i). We omit the details here. ✷

In the case when D is a bounded C1,1 domain, Y D is a killed Brownian motion in D and S is an (α/2)-
stable subordinator, part (i) of the corollary above is equivalent to [49, Theorem 4.7]. In the case when D
is an exterior C1,1 domain, Y D is a killed Brownian motion in D and S is an (α/2)-stable subordinator,
part (ii) of the corollary above corrects [49, Theorem 4.6].

For future use, we note the following rough upper estimates on q(t, x, y).

Proposition 4.5. (i) Suppose that (Poly-R1) and HKh

B
hold. Then for every T > 0, there exists a

constant C > 0 such that for all (t, x, y) ∈ (0, T ] ×D ×D,

q(t, x, y) ≤ Ch(φ−1(1/t)−1, x, y)

(
1

V (x, ψ−1(t))
∧

t

V (x, ρ(x, y))ψ(ρ(x, y))

)
. (4.20)

(ii) Suppose that (Poly-∞) and HKh

U
hold. Then, there exists a constant C > 0 such that (4.20) holds

for all (t, x, y) ∈ (0,∞)×D ×D.

Proof. (i) Take x, y ∈ D and let r := ρ(x, y). If ψ(r) ≤ t, then (4.20) follows from Theorem 4.2(i).
Hence, we assume that ψ(r) ≥ t and estimate each term in Theorem 4.2(ii) separately.

First, by using (H1), the fact that Ψ ≥ Φ and (2.1), we get

t

V (x, r)Ψ(r)

∫ 4Φ(r)

2/φ−1(1/t)
h(s, x, y)w(s)ds ≤

th(1/φ−1(1/t)−1, x, y)

V (x, r)Φ(r)

∫ 4Φ(r)

0
w(s)ds

≤ 4e
th(1/φ−1(1/t)−1, x, y)

V (x, r)
φ
(
1/(4Φ(r))

)
≤ 4e

th(φ−1(1/t)−1, x, y)

V (x, r)ψ(r)
.
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Next, we note that, since φ is a Bernstein function, the map u 7→ φ(u)/u is decreasing so that
Φ(r)φ(1/Φ(r)) ≥ φ−1(1/t)−1φ(φ−1(1/t)). Hence, since Ψ ≥ Φ, it holds that

h(φ−1(1/t)−1, x, y)

V (x, r)Ψ(r)φ−1(1/t)
≤

h(φ−1(1/t)−1, x, y)

V (x, r)ψ(r)φ(φ−1(1/t))
=
th(φ−1(1/t)−1, x, y)

V (x, r)ψ(r)
.

Thirdly, by (3.1) and (4.9), we see that for c2 := supu>0 u
(d2+α2(β2∧1))/2e−u,

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−

c1r
2

ψ−1(t)2

)
≤ c2

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))

(ψ−1(t)2

c1r2

)(d2+α2(β2∧1))/2

≤ c3
th(φ−1(1/t)−1, x, y)

V (x, r)ψ(r)
.

Lastly, by (H1) and (2.10),

th(Φ(r), x, y)w(Φ(r))

V (x, r)
≤

e

e− 2

th(φ−1(1/t)−1, x, y)

V (x, r)ψ(r)
.

(ii) By using Theorem 4.3 instead of Theorem 4.2, we obtain the result by repeating the proof of (i).
✷

As a corollary to Theorems 4.2 and 4.3, we obtain the following interior estimates on q(t, x, y) in case
of a regular boundary function.

Corollary 4.6. Suppose that h(t, x, y) is a regular boundary function.
(i) If (Poly-R1) and HKh

B
hold, then for every T > 0, the following estimates hold for all (t, x, y) ∈

(0, T ]×D ×D satisfying δ∧(x, y) ≥ ρ(x, y) ∨ ψ−1(t).

(1) If ψ(ρ(x, y)) ≤ t, then q(t, x, y) ≃
1

V (x, ψ−1(t))
.

(2) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) ≍
C0

V (x, ρ(x, y))Ψ(ρ(x, y))

(
t

∫ 4Φ(ρ(x,y))

2φ−1(1/t)−1

w(s)ds +
1

φ−1(1/t)

)

+
1

V (x, ψ−1(t))
exp

(
−
c ρ(x, y)2

ψ−1(t)2

)
+
tw
(
Φ(ρ(x, y))

)

V (x, ρ(x, y))
.

(ii) If (Poly-∞) and HKh

U
hold, then (1) and (2) above hold for all (t, x, y) ∈ (0,∞)×D×D satisfying

δ∧(x, y) ≥ ρ(x, y) ∨ ψ−1(t).

Now we give the large time estimates for q(t, x, y) under HKh

B
.

Theorem 4.7. Suppose that (Poly-R1) and HKh

B
hold. Then for every T > 0,

q(t, x, y) ≃ e−tφ(λD)h(1, x, y), (t, x, y) ∈ [T,∞)×D ×D. (4.21)

Proof. Fix x, y ∈ D and s0 ∈ (0, 1) such that (H ◦σ)(T, s0) ≥ 2φ(λD)+1/T . Since lims→0(H ◦σ)(T, s) =
∞, such an s0 always exists. Then, since H is non-decreasing and φ′ is non-increasing, we see that

(H ◦ σ)(t, s0) ≥ 2φ(λD) + 1/T, t ≥ T. (4.22)

By (H2), (3.1) and (3.4), we can apply Lemma 2.6 with f(s) = h(s, x, y)V (x,Φ−1(s))−1. Using Remark
3.7 (with T = s0), Lemma 2.6 and (4.22), since φ is the Laplace exponent of S, we get that, for all t ≥ T ,

q(t, x, y) ≤ c1

∫ s0

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) + c1h(1, x, y)

∫ ∞

s0

e−λDsP(St ∈ ds)

≤ c2
h(s0, x, y)

V (x,Φ−1(s0))
exp

(
−
t

2
(H ◦ σ)(t, s0)

)
+ c1h(1, x, y)E[e

−λDSt ] ≤ c3h(1, x, y)e
−tφ(λD ).

On the other hand, we also see from Remark 3.7 that

q(t, x, y) ≥ c4h(1, x, y)

∫ ∞

s0

e−λDsP(St ∈ ds) = c4h(1, x, y)
(
e−tφ(λD) −

∫ s0

0
e−λDsP(St ∈ ds)

)
.
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According to Proposition 2.3 and (4.22), it holds that for all t ≥ T ,
∫ s0

0
e−λDsP(St ∈ ds) ≤ P(St ≤ s0) ≤ exp

(
− 2tφ(λD)

)
.

Therefore, we conclude that for all t ≥ T , q(t, x, y) ≥ c4(1− e−Tφ(λD))h(1, x, y)e−tφ(λD ). ✷

5. Green function estimates

In this section, we always assume that either (1) (Poly-R1) and HKh

B
hold, or (2) (Poly-∞) and

HKh

U
hold. The Green function GD of X is given by GD(x, y) :=

∫∞
0 q(t, x, y)dt.

As an application of the heat kernel estimates obtained in the previous section, we can obtain two-sided
estimates on the Green function. To this end, we prove a simple lemma first.

Lemma 5.1. Let f : I → [0,∞) be a function defined on an interval I ⊂ [0,∞). Assume that there exist
constants c1, c2 > 0, p1, p2 ∈ R such that

c1

(r2
r1

)p1
≤
f(r2)

f(r1)
≤ c2

(r2
r1

)p2
for all r1, r2 ∈ I, 0 < r1 ≤ r2. (5.1)

For any a > 1, there exists a constant c3 > 0 such that for all r,R ∈ I, ar ≤ R,
∫ R

r
s−1f(s)ds ≥ c3

(
f(r) + f(R)

)
. (5.2)

(i) If we assume p1 > 0, then, for any a > 1,
∫ R
r s−1f(s)ds ≃ f(R) for all r,R ∈ I, ar ≤ R, with

comparison constants depending on a.

(ii) If we assume p2 < 0, then, for any a > 1,
∫ R
r s−1f(s)ds ≃ f(r) for all r,R ∈ I, 0 < ar ≤ R, with

comparison constants depending on a.

Proof. Suppose a > 1. For all r,R ∈ I, ar ≤ R, by (5.1),
∫ R

r
s−1f(s)ds ≥

∫ ar

r
s−1f(s)ds ∨

∫ R

R/a
s−1f(s)ds ≥ c

(
f(r) ∨ f(R)

)
.

Thus we only need to prove the upper bounds in (i) and (ii).
(i) By (5.1), since p1 > 0, we have that

∫ R

r
s−1f(s)ds = f(R)

∫ R

r

f(s)

sf(R)
ds ≤ c−1

1 f(R)

∫ R

r

sp1−1

Rp1
ds ≤ c−1

1 p−1
1 f(R).

(ii) Similarly, by (5.1), since p2 < 0, we have that
∫ R

r
s−1f(s)ds = f(r)

∫ R

r

f(s)

sf(r)
ds ≤ c2f(r)

∫ R

r

sp2−1

rp2
ds ≤ −c2p

−1
2 f(r).

✷

Recall the definition of ψ in (4.8). The next simple observation will be used in the proof of the next
proposition and also later.

Lemma 5.2. If D is bounded, then there exists c > 0 such that for any x, y ∈ D,
∫ 2Φ(diam(D))

Φ(ρ(x,y))

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds ≥ c

(
h(Φ(ρ(x, y)), x, y)ψ(ρ(x, y))

V (x, ρ(x, y))
+ h(1, x, y)

)
.

Proof. This follows easily from (5.2), (H1), (H2) and (3.2). ✷

The following proposition provides the first and most general estimate of the Green function.

Proposition 5.3. It holds that for x, y ∈ D,

GD(x, y) ≃
C0

V (x, ρ(x, y))Ψ(ρ(x, y))

∫ Φ(ρ(x,y))

0

h(s, x, y)

φ(1/s)
ds+

∫ 2Φ(diam(D))

Φ(ρ(x,y))

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds. (5.3)
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Proof. Since the proofs are similar, we only give the proof when HKh

B
holds, which is more complicated.

Take x, y ∈ D and let r := ρ(x, y). Set TD := 1/φ
(
1/(2Φ(diam(D)))

)
. By a change of variables and

Lemma 2.1, we have that
∫ ψ(r)

0

h(φ−1(1/t)−1, x, y)

φ−1(1/t)
dt =

∫ Φ(r)

0

h(s, x, y)φ′(1/s)

sφ(1/s)2
ds ≃

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds (5.4)

and
∫ TD

ψ(r)

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
dt =

∫ 2Φ(diam(D))

Φ(r)

h(s, x, y)

V (x,Φ−1(s))

φ′(1/s)

s2φ(1/s)2
ds

≃

∫ 2Φ(diam(D))

Φ(r)

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds. (5.5)

Combining with Theorem 4.2 (with T = TD), we arrive at the lower bound in (5.3).
By Theorems 4.2 and 4.7 (with T = TD), we have that

GD(x, y) ≤ c0

∫ ψ(r)

0

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
−

c1r
2

ψ−1(t)2

)
dt+ c0h(Φ(r), x, y)

w(Φ(r))

V (x, r)

∫ ψ(r)

0
tdt

+ c0
C0

V (x, r)Ψ(r)

∫ ψ(r)

0
tBh(t, x, y)dt+ c0

C0

V (x, r)Ψ(r)

∫ ψ(r)

0

h(φ−1(1/t)−1, x, y)

φ−1(1/t)
dt

+ c0

∫ TD

ψ(r)

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
dt+ c0h(1, x, y)

∫ ∞

TD

e−tφ(λD)dt

=: c0(G1 +G2 + C0G3 + C0G4 +G5 +G6).

First note that, following the proof of Lemma 3.2 and with help of (4.9), one can see that under the
assumptions of Lemma 3.2, there exists c1 > 0 such that for all r, κ ∈ (0, TD),

∫ r

0
f(s) exp

(
−

κ2

ψ−1(s)2

)
ds ≤

c1r
p+1f(r)

ψ(κ)p
.

Applying this inequality with f(t) = h(φ−1(1/t)−1, x, y)V (x, ψ−1(t))−1 and p := γ/β1 + d2/(α1β1), we
get from (H2), (2.4), (3.1) and (4.9) that

G1 ≤ c2
h(Φ(r), x, y)

V (x, r)

ψ(r)p+1

ψ(r)p
= c2h(Φ(r), x, y)

ψ(r)

V (x, r)
.

For G2, we see from (2.10) that

G2 ≤
e

2(e− 2)
h(Φ(r), x, y)

ψ(r)2

V (x, r)ψ(r)
=

e

2(e − 2)
h(Φ(r), x, y)

ψ(r)

V (x, r)
.

For G3, we use Fubini’s theorem to get that

V (x, r)Ψ(r)G3 =

∫ ψ(r)

0
t

∫ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)w(s)dsdt

=

∫ 2Φ(r)

0
h(s, x, y)w(s)

∫ φ(2/s)−1

0
tdtds+

∫ 4Φ(r)

2Φ(r)
h(s, x, y)w(s)

∫ ψ(r)

0
tdtds

=: G3,1 +G3,2. (5.6)

By (2.10), a change of variables and (H2), we get

G3,1 ≤ c3

∫ 2Φ(r)

0

h(s, x, y)φ(2/s)

φ(2/s)2
ds = 2c3

∫ Φ(r)

0

h(2s, x, y)

φ(1/s)
ds ≤ c4

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds.

On the other hand, we also get from (2.10), (H1) and (2.2) that

G3,2 ≤
e

2(e − 2)
h(Φ(r), x, y)φ(1/Φ(r))ψ(r)2

∫ 4Φ(r)

2Φ(r)
ds =

e

(e− 2)
h(Φ(r), x, y)ψ(r)Φ(r)

≤
2e

(e− 2)

ψ(r)

φ(2/Φ(r))−1

∫ Φ(r)

Φ(r)/2

h(s, x, y)

φ(1/s)
ds ≤ c5

∫ Φ(r)

Φ(r)/2

h(s, x, y)

φ(1/s)
ds ≤ c5

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds.
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Clearly, G6 ≤ φ(λD)
−1h(1, x, y).

Recall from (5.4) and (5.5) that

G4 +G5 ≃
C0

V (x, r)Ψ(r)

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds+

∫ 2Φ(diam(D))

Φ(r)

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds.

It follows from Lemma 5.2 and the upper bounds above on G1, G2, G6 that G5 dominates G1+G2+G6.
Since G4 dominates G3, the proof is complete. ✷

In the remainder of this section, under some additional assumptions on the boundary function, we will
obtain Green function estimates in simpler forms. Lemma 5.1 will be a useful tool in all simplifications.

We start with the following condition which is a counterpart of (H2).

(H2*) There exist constants c1, γ∗ > 0 such that for all x, y ∈ D and s, t ≥ 0 with Φ(δ∨(x, y)) ≤ s ≤ t <
2Φ(diam(D)),

sγ∗h(s, x, y) ≥ c1t
γ∗h(t, x, y).

Note that the γ∗ above is less than or equal to γ.

Remark 5.4. Suppose that a boundary function h(t, x, y) satisfies (H2*). Then for every ǫ ∈ (0, 1), there
exists c2 = c2(ǫ) > 0 such that for all x, y ∈ D and s, t ≥ 0 with ǫΦ(δ∨(x, y)) ≤ s ≤ t < 2Φ(diam(D)),

sγ∗h(s, x, y) ≥ c2t
γ∗h(t, x, y).

Indeed, let ǫΦ(δ∨(x, y)) ≤ s ≤ Φ(δ∨(x, y)) and s ≤ t < 2Φ(diam(D)). If t ≤ Φ(δ∨(x, y)), then ǫt ≤ s so
that by (H1),

sγ∗h(s, x, y) ≥ sγ∗h(t, x, y) ≥ ǫγ∗tγ∗h(t, x, y).

If t > Φ(δ∨(x, y)), then by using (H1) in the first inequality below, (H2*) in the second, and the condition
that s ≥ ǫΦ(δ∨(x, y)) in the last inequality, we see that

sγ∗h(s, x, y) ≥ sγ∗h(Φ(δ∨(x, y)), x, y) ≥ c1

( s

Φ(δ∨(x, y))

)γ∗
tγ∗h(t, x, y) ≥ c1ǫ

γ∗tγ∗h(t, x, y).

Example 5.5. Let p, q ≥ 0, p + q > 0. Recall that the boundary function hp,q(t, x, y) defined in (3.8)
satisfies (H2) with γ = p+ q. We claim that hp,q(t, x, y) also satisfies (H2*) with γ∗ = γ = p+ q. Indeed,
for all x, y ∈ D and Φ(δ∨(x, y)) < s < t,

sp+qhp,q(s, x, y) = Φ(δD(x))
pΦ(δD(y))

q = tp+qhp,q(t, x, y).

In the remainder of this section, we let d1, d2, γ, γ∗, β1, β2 and α1, α2 be the constants in (3.1), (H2),
(H2*), (Poly-R1) and the scaling indices of Φ in (3.4), respectively.

Let

G̃D(x, y) :=

∫ 2Φ(diam(D))

Φ(ρ(x,y))

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds (5.7)

denote the second term on the right-hand side of the estimate (5.3).

Lemma 5.6. The following estimates hold for all x, y ∈ D.
(i) If d1 > α2(β2 ∧ 1), then

G̃D(x, y) ≃ h
(
Φ(ρ(x, y)), x, y

) ψ(ρ(x, y))

V (x, ρ(x, y))
.

(ii) If d2 < α1(β1 − γ), then

G̃D(x, y) ≃

{
h(1, x, y), when HKh

B
holds,

∞, when HKh

U
holds.

Below, we also assume that h(t, x, y) is regular and (H2*) holds.

(iii) If α1β1 > d2 ≥ d1 > α2((β2 ∧ 1)− γ∗), then

G̃D(x, y) ≃ h
(
Φ(ρ(x, y)), x, y

) ψ(ρ(x, y) ∨ δ∨(x, y))

V (x, ρ(x, y) ∨ δ∨(x, y))
.
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(iv) If d1 = d2 = α1β1 = α2β2, then

G̃D(x, y) ≃ h
(
Φ(ρ(x, y)), x, y

)
log
(
e+

δ∨(x, y)

ρ(x, y)

)
.

(v) If α1 = α2, β1 = β2, γ = γ∗ and d1 = d2 = α1(β1 − γ), then

G̃D(x, y) ≃

{
h(1, x, y) log

(
e+ diam(D)(ρ(x, y) ∨ δ∨(x, y))

−1
)
, when HKh

B
holds,

∞, when HKh

U
holds.

Proof. Take x, y ∈ D. Let δ∧ := δ∧(x, y) and δ∨ := δ∨(x, y). Define

g(s) :=
h(s, x, y)

V (x,Φ−1(s))φ(1/s)
, s > 0.

Then

G̃D(x, y) =

∫ 2Φ(diam(D))

Φ(ρ(x,y))

g(s)

s
ds.

By (H1), (H2), (3.1), (3.4), (2.2) and (2.3), there exist c1, c2 > 0 such that

c1

(r
s

)−γ−d2/α1+β1
≤
g(r)

g(s)
≤ c2

(r
s

)−d1/α2+(β2∧1)
, 0 < s ≤ r < 2Φ(diam(D)). (5.8)

If h(t, x, y) is regular, then by Remark 3.4, for every a > 0, there exists c3 = c3(a) > 0 such that

c3

(r
s

)−d2/α1+β1
≤
g(r)

g(s)
≤ c2

(r
s

)−d1/α2+(β2∧1)
, 0 < s ≤ r < Φ(aδ∧) ∧ 2Φ(diam(D)); (5.9)

if furthermore (H2*) further holds, then by Remark 5.4, there exists c4 > 0 such that

c1

(r
s

)−γ−d2/α1+β1
≤
g(r)

g(s)
≤ c4

(r
s

)−γ∗−d1/α2+(β2∧1)
, Φ(δ∨/2) < s ≤ r < 2Φ(diam(D)). (5.10)

(i) By (5.8), since −d1/α2 + (β2 ∧ 1) < 0, the result follows from Lemma 5.1(ii).
(ii) If D is bounded, then by (5.8) and Lemma 5.1(i), since −γ − d2/α1 + β1 > 0, it holds that

G̃D(x, y) ≃ g(Φ(diam(D))). By (3.2), there exists a constant c5 > 1 such that c−1
5 ≤ V (z,diam(D)) ≤ c5

for all z ∈ D. Hence, by using (H1), (H2) and the definition of g, we get that GD(x, y) ≃ h(1, x, y). If D
is unbounded, then we see from (5.8) and Lemma 5.1(i) that

G̃D(x, y) ≃ lim
r→∞

∫ r

Φ(ρ(x,y))

g(s)

s
ds ≃ lim

r→∞
g(r) ≥ c1g(1) lim

r→∞
r−γ−d2/α1+β1 = ∞.

(iii) Suppose that δ∨ ≤ 2ρ(x, y). Since −γ∗ − d1/α2 + (β2 ∧ 1) < 0, by (5.10) and Lemma 5.1(ii),

G̃D(x, y) ≃ g(Φ(ρ(x, y))) =
h(Φ(ρ(x, y)), x, y)ψ(ρ(x, y))

V (x, ρ(x, y))
.

Hence the result follows from (3.1) and (4.9).
Suppose now that δ∨ > 2ρ(x, y). Then δ∧ ≥ δ∨ − ρ(x, y) > δ∨/2 > ρ(x, y). Since h is regular, we get

h(Φ(δ∨), x, y) ≃ h(Φ(ρ(x, y)), x, y) ≃ 1. Further, since −d2/α1 + β1 > 0 and −γ∗ − d1/α2 + (β2 ∧ 1) < 0,
by the scaling of Φ, (5.9), (5.10) and Lemma 5.1(i)-(ii), we get

G̃D(x, y) ≃

∫ 2Φ(δ∧)

Φ(ρ(x,y))

g(s)

s
ds +

∫ 2Φ(diam(D))

Φ(δ∨)

g(s)

s
ds ≃ g(Φ(δ∧)) + g(Φ(δ∨))

≃ g(Φ(δ∨)) =
h(Φ(δ∨), x, y)ψ(δ∨)

V (x, δ∨)
≃

ψ(δ∨)

V (x, δ∨)
≃
h(Φ(ρ(x, y)), x, y)ψ(δ∨)

V (x, δ∨)
.

This finishes the proof for (iii).
(iv) Since d1 = d2, by (3.1) and (3.2), we see that for every a > 0, there are comparability constants

depending on a such that for all w, z ∈ D and 0 < r < adiam(D),

V (w, r) ≃
( r

ρ(w, z)

)d1
V (w, ρ(w, z)) ≃

( r

ρ(w, z)

)d1
V (z, ρ(w, z)) ≃ V (z, r) ≃ rd1V (z, 1). (5.11)

Moreover, since β1 = β2 and α1 = α2, by (2.2), (2.3) and (3.4), we get that

φ(1/s)−1 ≃ sβ1 , 0 < s < 2Φ(diam(D)) and Φ−1(s) ≃ s1/α1 , s > 0, (5.12)
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so that g(s) ≃ h(s, x, y) for all 0 < s < 2Φ(diam(D)). In particular, since h is regular, we see from
Remark 3.4 that

g(s) ≃ 1, 0 < s < 2Φ(δ∧). (5.13)

If δ∨ ≤ 2ρ(x, y), then by (5.10) and Lemma 5.1(ii),

G̃D(x, y) ≃ g(Φ(ρ(x, y))) ≃ h(Φ(ρ(x, y)), x, y) ≃ h(Φ(ρ(x, y)), x, y) log
(
e+

δ∨
ρ(x, y)

)
.

If δ∨ > 2ρ(x, y), then we get δ∧ > δ∨/2 > ρ(x, y) as in (iii), and by (5.13), (5.10) and Lemma 5.1(ii),

G̃D(x, y) ≃

∫ 2Φ(δ∧)

Φ(ρ(x,y))

g(s)

s
ds +

∫ 2Φ(diam(D))

Φ(δ∨)

g(s)

s
ds ≃

∫ 2Φ(δ∧)

Φ(ρ(x,y))

ds

s
+ g(Φ(δ∨)).

Note that since Φ(s) ≃ sα1 for s > 0, we have
∫ 2Φ(δ∧)
Φ(ρ(x,y)) s

−1ds ≃ log
(
e+ δ∧

ρ(x,y)

)
so that

g(Φ(δ∨)) ≃ h(Φ(δ∨), x, y) ≤ 1 ≤ log
(
e+

δ∧
ρ(x, y)

)
≃

∫ 2Φ(δ∧)

Φ(ρ(x,y))

ds

s
.

Eventually, since δ∧ ≃ δ∨ and h(Φ(ρ(x, y)), x, y) ≃ 1 in this case, we obtain that

G̃D(x, y) ≃ log
(
e+

δ∧
ρ(x, y)

)
≃ h(Φ(ρ(x, y)), x, y) log

(
e+

δ∨
ρ(x, y)

)
.

(v) By (5.11), (5.12), the regularity of h, (H2), Remark 5.4 and (3.10), we have

g(s) ≃ sγ , 0 < s < Φ(δ∧) (5.14)

and

g(s) ≃ sγh(s, x, y) ≃ tγh(t, x, y), Φ(δ∨/2) < s ≤ t < 2Φ(diam(D)) + 1. (5.15)

If δ∨ ≤ 2ρ(x, y), then since Φ(s) ≃ sα1 for s > 0 in this case, we get from (5.15) that

G̃D(x, y) ≃ h(1, x, y)

∫ 2Φ(diam(D))

Φ(ρ(x,y))

ds

s
≃ h(1, x, y) log

(
e+

diam(D)

ρ(x, y)

)
.

If δ∨ > 2ρ(x, y), then δ∧ > δ∨/2 > ρ(x, y) as in (iii) and hence by (5.14) and (5.15),

G̃D(x, y) ≃

∫ 2Φ(δ∧)

Φ(ρ(x,y))
sγ−1ds+ h(1, x, y)

∫ 2Φ(diam(D))

Φ(δ∨)

ds

s
.

Since Φ(s) ≃ sα1 for s > 0, δ∧ ≤ δ∨ ≤ 2δ∧ and h is regular, by (5.15),

h(1, x, y)

∫ 2Φ(diam(D))

Φ(δ∨)

ds

s
≃ h(1, x, y) log

(
e+

diam(D)

δ∨

)

≥ h(1, x, y) ≃ Φ(δ∧)
γh(Φ(δ∧), x, y) ≃ Φ(δ∧)

γ ≥ γ−1

∫ 2Φ(δ∧)

Φ(ρ(x,y))
sγ−1ds.

This completes the proof. ✷

In the next lemma we show that under the additional assumption that γ < β1 + 1, the first term on

the right-hand side of (5.3) is dominated by G̃D(x, y).

Lemma 5.7. If either C0 = 0 or γ < β1 + 1, then GD(x, y) ≃ G̃D(x, y) on D ×D.

Proof. When C0 = 0, the assertion follows from Proposition 5.3. So we now assume γ < β1 + 1.
According to (2.3) and (H2), we have

h(t, x, y)φ(1/t)−1

h(s, x, y)φ(1/s)−1
≥ c
( t
s

)β1−γ
for all 0 < s ≤ t < Φ(diam(D)).

Thus, since Ψ ≥ Φ, by Lemma 5.1(i), (H1) and (2.2), we get

C0

V (x, r)Ψ(r)

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds ≤ c

h(Φ(r), x, y)ψ(r)Φ(r)

V (x, r)Ψ(r)
≤ c

h(Φ(r), x, y)ψ(r)

V (x, r)
.

Combining the above with Lemma 5.2 and Proposition 5.3, we get the assertion. ✷
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Define

g0(x, y) =





ψ(ρ(x, y))

V (x, ρ(x, y))
, if d1 > α2(β2 ∧ 1),

log
(
e+

δ∨(x, y)

ρ(x, y)

)
, if d1 = d2 = α1β1 = α2β2,

ψ(ρ(x, y) ∨ δ∨(x, y))

V (x, ρ(x, y) ∨ δ∨(x, y))
, if d2 < α1β1.

(5.16)

By combining Proposition 5.3, Lemma 5.6 and Lemma 5.7 we arrive at the following result.

Theorem 5.8. Suppose that C0 = 0 or γ < β1 + 1, h(t, x, y) is regular and (H2*) holds.

(a) Suppose also that one of the following holds: (1) d1 > α2(β2 ∧ 1) or (2) d1 = d2 = α1β1 = α2β2
or (3) d2 < α1β1. Then it holds that

GD(x, y) ≃ h(Φ(ρ(x, y)), x, y)g0(x, y). (5.17)

(b) If d2 < α1(β1 − γ), then

GD(x, y) ≃

{
h(1, x, y), when HKh

B
holds,

∞, when HKh

U
holds.

(c) If α1 = α2, β1 = β2, γ = γ∗ and d1 = d2 = α1(β1 − γ), then

GD(x, y) ≃

{
h(1, x, y) log

(
e+ diam(D)(ρ(x, y) ∨ δ∨(x, y))

−1
)
, when HKh

B
holds,

∞, when HKh

U
holds.

When C0 = 1, Theorem 5.8 only deals with the case γ < β1 +1. To cover the case when γ is large, we
assume the following condition.

(H2**) There exist constants c1 > 0, γ∗∗ ∈ (0, 1 + β1) such that for all x, y ∈ D and s, t ≥ 0 with
Φ(δ∧(x, y)) ≤ s ≤ t < Φ(δ∨(x, y)),

sγ∗∗h(s, x, y) ≤ c1t
γ∗∗h(t, x, y).

Example 5.9. For p, q ≥ 0, let hp,q(t, x, y) be the boundary function defined in (3.8). If p∨q < 1+β1, then
hp,q(t, x, y) satisfies (H2**). Indeed, we see that for all x, y ∈ D and Φ(δ∧(x, y)) ≤ s ≤ t < Φ(δ∨(x, y)),

sp∨qhp,q(s, x, y) =

{
Φ(δD(x))

psp∨q−p, if δD(x) < δD(y)

Φ(δD(y))
qsp∨q−q, if δD(x) > δD(y)

≤ tp∨qhp,q(t, x, y).

For a given boundary function h, we define for x, y ∈ D,

[h](x, y) := h
(
Φ(ρ(x, y) ∧ δ∨(x, y)), x, y

) (
1 ∧

Φ(δ∨(x, y))ψ(δ∨(x, y))

Φ(ρ(x, y))ψ(ρ(x, y))

)
.

One can see that for all p, q ≥ 0,

[hp,q](x, y) ≃
(
1 ∧

Φ(δD(x))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δD(y))

Φ(ρ(x, y))

)q(
1 ∧

Φ(δ∨(x, y))

Φ(ρ(x, y))

)1−p−q(
1 ∧

ψ(δ∨(x, y))

ψ(ρ(x, y))

)
. (5.18)

Indeed, for x, y ∈ D, if δ∧(x, y) ≥ ρ(x, y), then [hp,q](x, y) = 1 and the right-hand side of (5.18) is also
equal to 1. If δ∧(x, y) < ρ(x, y), then δ∨(x, y) < ρ(x, y)+ δ∧(x, y) ≤ ρ(x, y)+ρ(x, y) ≤ 2ρ(x, y) and hence
by (3.10) and the scaling properties of Φ and ψ,

Φ(ρ(x, y))1−p−qψ(ρ(x, y))

Φ(δ∨(x, y))1−p−qψ(δ∨(x, y))
[hp,q](x, y) ≃

Φ(δ∨(x, y))
p+q

Φ(ρ(x, y))p+q
hp,q(Φ(δ∨(x, y), x, y) =

Φ(δD(x))
pΦ(δD(y))

q

Φ(ρ(x, y))p+q

≃
(
1 ∧

Φ(δD(x))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δD(y))

Φ(ρ(x, y))

)q
.

Recall that g0(x, y) is defined in (5.16).
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Theorem 5.10. Suppose that C0 = 1, h(t, x, y) is regular, (H2*) holds with γ∗ > (β2∧1)+1 and (H2**)
holds. Suppose also that one of the following holds: (1) d1 > α2(β2 ∧ 1) or (2) d1 = d2 = α1β1 = α2β2 or
(3) d2 < α1β1. Then it holds that

GD(x, y) ≃ [h](x, y)
Φ(ρ(x, y))

Ψ(ρ(x, y))

ψ(ρ(x, y))

V (x, ρ(x, y))
+ h(Φ(ρ(x, y)), x, y)g0(x, y). (5.19)

In particular, if Ψ ≃ Φ, then

GD(x, y) ≃ [h](x, y)g0(x, y). (5.20)

Proof. Take x, y ∈ D and let r := ρ(x, y) and δ∨ := δ∨(x, y). Observe that by (2.2), (2.3), (H1), (H2**)
and the regularity of h,

c1

( t
s

)β1−γ∗∗
≤
h(t, x, y)/φ(1/t)

h(s, x, y)/φ(1/s)
≤ c2

( t
s

)β2∧1
, 0 < s ≤ t < Φ(δ∨). (5.21)

Note also that by (2.2), (2.3), (H2), (H2*) and Remark 5.4,

c3

( t
s

)β1−γ
≤
h(t, x, y)/φ(1/t)

h(s, x, y)/φ(1/s)
≤ c4

( t
s

)β2∧1−γ∗
, Φ(δ∨)/2 ≤ s ≤ t < Φ(diam(D)). (5.22)

If δ∨ > 2r, then by Lemma 5.1(i) and (5.21),
∫ Φ(r)
0 h(s, x, y)φ(1/s)−1ds ≃ h(Φ(r), x, y)Φ(r)ψ(r).

If δ∨ ≤ 2r, then by Lemma 5.1(i)-(ii), (5.21), (5.22) and the scaling property of φ, since β1 − γ∗∗ > −1
and β2 ∧ 1− γ∗ < −1, we get that

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds =

∫ Φ(δ∨)/2

0

h(s, x, y)

φ(1/s)
ds+

∫ Φ(r)

Φ(δ∨)/2

h(s, x, y)

φ(1/s)
ds ≃ h(Φ(δ∨), x, y)Φ(δ∨)ψ(δ∨).

Therefore, in either case, it holds that

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds ≃ h(Φ(r ∧ δ∨), x, y)

(
1 ∧

Φ(δ∨)ψ(δ∨)

Φ(r)ψ(r)

)
Φ(r)ψ(r) = [h](x, y)Φ(r)ψ(r). (5.23)

Combining this with Proposition 5.3 and Lemma 5.6, we get (5.19).
Now we also assume that Ψ ≃ Φ. If δ∨ > r, then [h](x, y) = h(Φ(r), x, y). Hence, we see from Lemma

5.2 that in (5.19), the second term dominates the first one so that (5.20) holds. If δ∨ ≤ r, then using
Lemma 5.1(ii), (5.22) and the condition that β2 ∧ 1− γ∗ < −1 in the second inequality below, the scaling
property of φ and (3.10) in the third, and (5.23) in the fourth, we get

∫ 2Φ(diam(D))

Φ(r)

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds ≤

1

V (x, r)Φ(r)

∫ 2Φ(diam(D))

Φ(r)

h(s, x, y)

φ(1/s)
ds

≤ c5
h(Φ(r), x, y)ψ(r)

V (x, r)
≤

c6
V (x, r)Φ(r)

∫ Φ(r)

Φ(r)/2

h(s, x, y)

φ(1/s)
ds ≤ c7[h](x, y)

ψ(r)

V (x, r)
.

Note that g0(x, y) ≃ ψ(r)/V (x, r) when δ∨ ≤ r. Thus by Proposition 5.3 and (5.23), we get GD(x, y) ≃
[h](x, y)ψ(r)/V (x, r) ≃ [h](x, y)g0(x, y) when δ∨ ≤ r. This completes the proof for (5.20). ✷

For completeness, we record the Green function estimates when C0 = 1, β1 = β2 and γ∗ = γ = β1 + 1.

Theorem 5.11. Suppose that C0 = 1, β1 = β2, h(t, x, y) is regular and (H2*) holds with γ∗ = γ = β1+1
and (H2**) holds. Suppose also that one of the following holds: (1) d1 > α2(β2 ∧ 1) or (2) d1 = d2 =
α1β1 = α2β2 or (3) d2 < α1β1. Then it holds that

GD(x, y) ≃ h(Φ(ρ(x, y)), x, y)

[
Φ(ρ(x, y))

Ψ(ρ(x, y)

Φ(ρ(x, y))γ−1

V (x, ρ(x, y))
log
(
e+

Φ(ρ(x, y))

Φ(δ∨(x, y))

)
+ g0(x, y)

]
(5.24)

In particular, if Ψ ≃ Φ, then

GD(x, y) ≃ h(Φ(ρ(x, y)), x, y)g0(x, y) log
(
e+

Φ(ρ(x, y))

Φ(δ∨(x, y))

)
. (5.25)
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Proof. Take x, y ∈ D and let r := ρ(x, y) and δ∨ = δ∨(x, y). Using Lemma 5.1(i) (which is applicable
due to (5.21)), (5.12), the second comparability in (5.15), (3.10) and the scaling property of Φ, we get
that, if δ∨ > 2r, then

∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds ≃

∫ Φ(r)

0
sβ1h(s, x, y)ds ≃ Φ(r)γh(Φ(r), x, y)

and if δ∨ ≤ 2r, then
∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds =

∫ 2−1Φ(2−1(δ∨))

0

h(s, x, y)

φ(1/s)
ds+

∫ Φ(r)

2−1Φ(2−1(δ∨))

h(s, x, y)

φ(1/s)
ds

≃

∫ 2−1Φ(2−1(δ∨))

0
sβ1h(s, x, y)ds +Φ(r)γh(Φ(r), x, y)

∫ Φ(r)

2−1Φ(2−1(δ∨))
sβ1−γds

≃ Φ(δ∨)
γh(Φ(δ∨), x, y) + Φ(r)γh(Φ(r), x, y) log

(
e+

Φ(r)

Φ(δ∨)

)

≃ Φ(r)γh(Φ(r), x, y) log
(
e+

Φ(r)

Φ(δ∨)

)
.

The last comparability above is valid by the second comparability in (5.15). Therefore, in either case, it
holds that ∫ Φ(r)

0

h(s, x, y)

φ(1/s)
ds ≃ Φ(r)γh(Φ(r), x, y) log

(
e+

Φ(r)

Φ(δ∨)

)
.

Combining this with Proposition 5.3 and Theorem 5.8, we get (5.24).
Now we also assume that Ψ ≃ Φ. Then as in the proof of Theorem 5.10, one can check that in (5.24),

if δ∨ > r, then the second term dominates the first one, and if δ∨ ≤ r, then the first term dominates the
second one. Combining with the facts that ψ(r) ≃ Φ(r)γ−1 for 0 < r < diam(D) since β1 = β2 and that
g0(x, y) ≃ ψ(r)/V (x, r) when δ∨ ≤ r, we obtain (5.25). ✷

6. Parabolic Harnack inequality and Hölder regularity

Throughout this section, we assume that h(t, x, y) is a regular boundary function and that either (1)
(Poly-R1) and HKh

B
hold, or (2) (Poly-∞) and HKh

U
hold.

For x0 ∈ D and r > 0, let τB(x0,r) := inf{s > 0 : Xs /∈ B(x0, r)} and XB(x0,r) be the part process of X

in B(x0, r). Denote by qB(x0,r)(t, x, y) the heat kernel of XB(x0,r). By the strong Markov property,

qB(x0,r)(t, x, y) = q(t, x, y)− Ex

[
q(t− τB(x0,r),XτB(x0,r)

, y); τB(x0,r) < t
]
. (6.1)

Recall the definition of ψ in (4.8).

Lemma 6.1. There exist constants C > 0 and ǫ ∈ (0, 1/4) such that for all x0 ∈ D and r ∈ (0, δD(x0)),

qB(x0,r)(t, x, y) ≥
C

V (x0, ψ−1(t))
for all t ∈ (0, ψ(ǫr)] and x, y ∈ B

(
x0, ǫψ

−1(t)
)
.

Proof. Since the proofs are similar, we only give the proof in case (1).
Fix x0 ∈ D and r ∈ (0, δD(x0)). Let ǫ ∈ (0, 1/4) to be chosen later. Let 0 < t ≤ ψ(ǫr) and

x, y ∈ B(x0, ǫψ
−1(t)). Clearly, x, y ∈ B(x0, ǫ

2r). Further, δ∧(x, y) > δD(x0) − ǫ2r > r − r/4 > ψ−1(t) >
2ǫψ−1(t) > ρ(x, y). Therefore, we have δ∧(x, y) > ψ−1(t) = ρ(x, y) ∨ ψ−1(t). From Corollary 4.6(i) (with
T = ψ(diam(D))) and (3.2), it follows that there exist constants c1, c2 > 0 (independent of t, x0, x, y)
such that

q(t, x, y) ≥
c1

V (x, ψ−1(t))
≥

c2
V (x0, ψ−1(t))

. (6.2)

Let z ∈ D \B(x0, r). Then since t ≤ ψ(ǫr) and ǫ < 1/4,

ρ(z, y) ≥ ρ(z, x0)− ρ(y, x0) ≥ (1− ǫ2)ρ(z, x0) ≥ (1− ǫ2)r ≥ (2ǫ)−1ψ−1(t).

Then according to Proposition 4.5(i), (3.1) and (3.2), since h ≤ 1, there exist constants c3, c4, c5 > 0
(independent of t, x0, z, y) such that for every 0 < s < t,

q(s, z, y) ≤
c3s

V (z, ρ(z, y))ψ(ρ(z, y))
≤

c3
V (z, ρ(z, y))

≤
c4

V (x0, ρ(z, y))
≤

c5ǫ
d1

V (x0, ψ−1(t))
. (6.3)
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Combining (6.1) with (6.2) and (6.3), we get that

qB(x0,r)(t, x, y) ≥
c2 − c5ǫ

d1

V (x0, ψ−1(t))
.

Now we finish the proof by choosing ǫ = (c2/(2c5))
1/d1 so that c2 − c5ǫ

d1 = c2/2. ✷

Remark 6.2. By using (4.9) we may replace ψ(ǫr) and ǫψ−1(r) in the statement of Lemma 6.1 with
ǫψ(r) and ψ−1(ǫr) respectively, cf. [19, p.3758].

Lemma 6.3. There exists a constant C > 1 such that for all x ∈ D and r ∈ (0, δD(x)),

C−1ψ(r) ≤ E
x[τB(x,r)] ≤ Cψ(r). (6.4)

Proof. Fix x ∈ D and r ∈ (0, δD(x)). Let ǫ ∈ (0, 1/4) be as in the statement of Lemma 6.1. Then by
Lemma 6.1, we have that

qB(x,r)(ψ(ǫr), x, y) ≥
c1

V (x, ǫr)
, y ∈ B(x, ǫ2r).

By (3.1), this implies that

P
x(τB(x,r) > ψ(ǫr)) ≥

∫

B(x,ǫ2r)
qB(x,r)(ψ(ǫr), x, y) dy ≥

c1V (x, ǫ2r)

V (x, ǫr)
≥ c2.

Hence, by Markov’s inequality and (4.9), we get that

E
x[τB(x,r)] ≥ ψ(ǫr)Px(τB(x,r) > ψ(ǫr)) ≥ c2ψ(ǫr) ≥ c3ψ(r).

To obtain the upper bound in (6.4), we first assume that HKh

B
holds. We claim that there exists a

constant A > 1 such that

sup
z∈B(x,r)

P
z(τB(x,r) > ψ(Ar)) ≤

1

2
. (6.5)

Indeed, according to Proposition 4.5(i) and Theorem 4.7, since h ≤ 1, there exists c4 > 1 such that

q(t, z, y) ≤ c4

(
V (z, ψ−1(t))−11{t≤1} + e−φ(λD)t1{t>1}

)
, z, y ∈ B(x, r). (6.6)

Further, by (3.1), there is c5 > 1 such that for all z ∈ B(x, r),

V (z, c5r) ≥ V (x, (c5 − 1)r) ≥ 2c4V (x, r). (6.7)

Let A > c5 be a constant such that

exp
(
φ(λD)ψ(Ac

−1
5 ψ−1(1))

)
≥ 2m(D). (6.8)

In case when r ≤ c−1
5 ψ−1(1), we see from (6.6) and (6.7) that for all z ∈ B(x, r),

P
z(τB(x,r) > ψ(Ar)) ≤ P

z(τB(x,r) > ψ(c5r)) ≤

∫

B(x,r)
q(ψ(c5r), z, y)dy ≤

c4V (x, r)

V (z, c5r)
≤

1

2
.

On the other hand, if r > c−1
5 ψ−1(1), then since B(x, r) ⊂ B(x, δD(x)) ⊂ D, we get from (6.6) and (6.8)

that for all z ∈ B(x, r),

P
z(τB(x,r) > ψ(Ar)) ≤ P

z
(
τB(x,r) > ψ(Ac−1

5 ψ−1(1))
)
≤ V (x, r) exp

(
− φ(λD)ψ(Ac

−1
5 ψ−1(1))

)

≤ m(D) exp
(
− φ(λD)ψ(Ac

−1
5 ψ−1(1))

)
≤

1

2
.

Hence, (6.5) holds.
Now, by (6.5) and Markov’s property, we see that for all n ≥ 2,

sup
z∈B(x,r)

P
z(τB(x,r) > nψ(Ar)) = sup

z∈B(x,r)
P
z
(
τB(x,r) > nψ(Ar), τB(x,r) > ψ(Ar)

)

≤ sup
z∈B(x,r)

P
z
(
P
Xψ(Ar)(τB(x,r) > (n− 1)ψ(Ar)), τB(x,r) > ψ(Ar)

)

≤ sup
z∈B(x,r)

P
z(τB(x,r) > (n− 1)ψ(Ar)) sup

z∈B(x,r)
P
z(τB(x,r) > ψ(Ar))
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≤ · · · ≤
(

sup
z∈B(x,r)

P
z(τB(x,r) > ψ(Ar))

)n
≤ 2−n.

Therefore, we get from (4.9) that

E
x[τB(x,r)] ≤

∞∑

n=1

nψ(Ar)Px
(
τB(x,r) ∈ ((n − 1)ψ(Ar), nψ(Ar)]

)

≤ c6A
α2(β2∧1)ψ(r)

∞∑

n=1

n2−(n−1) = 4c6A
α2(β2∧1)ψ(r).

Similarly, by using Proposition 4.5(ii), we can obtain the upper bound in (6.4) when (Poly-∞) and
HKh

U
hold. ✷

Recall that the jump kernel J(x, y) is given in (4.3).

Lemma 6.4. There exists a constant C > 1 such that for all x ∈ D and r ∈ (0, δD(x)),∫

D\B(x,r)
J(x, y)dy ≤

C

ψ(r)
. (6.9)

Proof. By Theorem 4.1 and the fact that h ≤ 1, we have that
∫

D\B(x,r)
J(x, y)dy ≤ c1

(∫

D\B(x,r)

∫ Φ(ρ(x,y))
0 w(s)ds

V (x, ρ(x, y))Ψ(ρ(x, y))
dy +

∫

D\B(x,r)

w
(
Φ(ρ(x, y))

)

V (x, ρ(x, y))
dy

)

=: c1(I1 + I2).

By the first inequality in (2.1), since Ψ ≥ Φ, we see that

I1 ≤

∫

D\B(x,r)

eΦ(ρ(x, y))φ(1/Φ(ρ(x, y)))

V (x, ρ(x, y))Ψ(ρ(x, y))
dy ≤

∫

D\B(x,r)

e dy

V (x, ρ(x, y))ψ(ρ(x, y))
.

It follows from (2.10) that I2 ≤ e
e−2

∫
D\B(x,r) V (x, ρ(x, y))−1ψ(ρ(x, y))−1dy. Hence, by (3.1), (4.9) and

the proof of [18, Lemma 2.1], we conclude that I1 + I2 ≤ c2/ψ(r). ✷

Let Z := (Vs,Xs)s≥0 be the time-space process corresponding to X, where Vs = V0−s. The augmented

filtration of Z will be denoted by (F̃s)s≥0. The law of the time-space process s 7→ Zs starting from (t, x)

will be denoted by P
(t,x). For every open subset B of [0,∞) ×D, define τB = inf{s > 0 : Zs /∈ B} and

σB = τBc .
Recall that a Borel measurable function u : [0,∞)×D → R is parabolic (or caloric) on (a, b)×B(x0, r)

with respect to the process X if for every relatively compact open set U ⊂ (a, b)×B(x0, r) it holds that

u(t, x) = E
(t,x)u(ZτU ) for all (t, x) ∈ U .

We denote by dt⊗m the product of the Lebesgue measure on [0,∞) and m on E.

Lemma 6.5. Let ǫ ∈ (0, 1/4) be the constant from Lemma 6.1. For every δ ∈ (0, ǫ], there exists a
constant C1 > 0 such that for all x ∈ D, r ∈ (0, δD(x)), t ≥ δψ(r), and any compact set A ⊂ [t −
δψ(r), t − δψ(r)/2] ×B(x, ψ−1(ǫδψ(r)/2)),

P
(t,x)(σA < τ[t−δψ(r),t]×B(x,r)) ≥ C1

dt⊗m(A)

V (x, r)ψ(r)
. (6.10)

Proof. Let τr = τ[t−δψ(r),t]×B(x,r) and As = {y ∈ D : (s, y) ∈ A}. For any t, r > 0 and x ∈ D such that
B(x, r) ⊂ D,

δψ(r)P(t,x)(σA < τr) ≥

∫ δψ(r)

0
P
(t,x)

(∫ τr

0
1A(t− s,Xs)ds > 0

)
du

≥

∫ δψ(r)

0
P
(t,x)

(∫ τr

0
1A(t− s,Xs)ds > u

)
du = E

(t,x)

[∫ τr

0
1A(t− s,Xs)ds

]
. (6.11)

For any t ≥ δψ(r),

E
(t,x)

[∫ τr

0
1A(t− s,Xs)ds

]
≥

∫ δψ(r)

δψ(r)/2
P
(t,x)

(
(t− s,XB(x,r)

s ) ∈ A
)
ds
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=

∫ δψ(r)

δψ(r)/2
P
x(XB(x,r)

s ∈ At−s)ds =

∫ δψ(r)

δψ(r)/2
ds

∫

At−s

qB(x,r)(s, x, y) dy.

Let s ∈ [δψ(r)/2, δψ(r)] and y ∈ B(x, ψ−1(ǫδψ(r)/2)). Then s ≤ ǫψ(r) and ψ−1(ǫδψ(r)/2) ≤ ψ−1(ǫs) so
that y ∈ B(x, ψ−1(ǫs)). Hence, by (3.1), (4.9), Lemma 6.1 and Remark 6.2,

qB(x,r)(s, x, y) ≥ c1V (x, ψ−1(s))−1 ≥ c2V (x, r)−1.

Therefore

E
(t,x)

[∫ τr

0
1A(t− s,Xs)ds

]
≥

c2
V (x, r)

∫ δψ(r)

δψ(r)/2
ds

∫

At−s

dy = c2
dt⊗m(A)

V (x, r)
.

Combining with (6.11), we arrive at (6.10). ✷

Theorem 6.6. There exists a constant η ∈ (0, 1] such that for all δ ∈ (0, 1), there exists a constant
C = C(δ) > 0 so that for every x0 ∈ D, r ∈ (0, δD(x0)), t0 ≥ 0, and any function u on (0,∞)×D which
is parabolic in (t0, t0 + ψ(r))×B(x0, r) and bounded in (t0, t0 + ψ(r))×D, we have

|u(s, x)− u(t, y)| ≤ C
(ψ−1(|s− t|) + ρ(x, y)

r

)η
ess sup

[t0,t0+ψ(r)]×D
|u|, (6.12)

for every s, t ∈ (t0 + ψ(r)− ψ(δr), t0 + ψ(r)) and x, y ∈ B(x0, δr).

Proof. Using (3.1), (4.9) and Lemmas 6.3, 6.4 and 6.5, the result can be proved using the same argument
as in the proof of [17, Theorem 4.14] (see also the proof of [19, Proposition 3.8]). We omit details here.
✷

Lemma 6.7. Let ǫ ∈ (0, 1/4) be the constant from Lemma 6.1 and let δ ∈ (0, ǫ/4) be such that
4δψ(2r) ≤ ǫψ(r) for all r > 0. Then there exists a constant C2 > 0 such that for all x0 ∈ D,
R ∈ (0, δD(x0)), r ∈ (0, ψ−1(ǫδψ(R)/2)/2], δψ(R)/2 ≤ t − s ≤ 4δψ(2R), x ∈ B(x0, ψ

−1(ǫδψ(R)/2)/2),
and z ∈ B(x0, ψ

−1(ǫδψ(R)/2)),

P
(t,z)(σ{s}×B(x,r) ≤ τ[s,t]×B(x0,R)) ≥ C2

V (x, r)

V (x,R)
. (6.13)

Proof. The left-hand side of (6.13) is equal to

P
z(X

B(x0,R)
t−s ∈ B(x, r)) =

∫

B(x,r)
qB(x0,R)(t− s, z, y) dy. (6.14)

Note that t − s ≤ 4δψ(2R) ≤ ǫψ(R) by the choice of δ. Next, if z ∈ B(x, r), then ρ(z, x0) ≤ ρ(z, x) +
ρ(x, x0) ≤ r + ρ(x, x0) ≤ ψ−1(ǫδψ(R)/2) ≤ ψ−1(ǫ(t − s)), implying that z ∈ B(x0, ψ

−1(ǫ(t − s))) (with
the same conclusion for y ∈ B(x, r)). Thus it follows from Lemma 6.1, Remark 6.2 and (3.2) that
qB(x0,R)(t− s, z, y) ≥ c1V (x0, R)

−1 ≥ c2V (x,R)−1. By inserting in (6.14) we obtain (6.13). ✷

In the remainder of this section, we further assume that h is of Harnack-type.
Suppose that x, y, z ∈ D are such that ρ(x, z) ≤ ρ(x, y)/2. Then

2

3
ρ(x, y) ≤ ρ(z, y) ≤

3

2
ρ(x, y). (6.15)

As a consequence, by the scalings of Φ and Ψ, there exists a > 1 such that

a−1Φ(ρ(x, y)) ≤ Φ(ρ(z, y)) ≤ aΦ(ρ(x, y)), a−1Ψ(ρ(x, y)) ≤ Ψ(ρ(z, y)) ≤ aΨ(ρ(x, y)). (6.16)

Proposition 6.8. Suppose that h is of Harnack-type. Then there exists a constant C > 0 such that for
all x, y, z ∈ D satisfying ρ(x, z) ≤ (ρ(x, y) ∧ δD(x))/2, it holds that

J(x, y) ≤ CJ(z, y).

Proof. This follows from Theorem 4.1, (3.7), the scaling property of w, (3.10) and (6.16). ✷
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Corollary 6.9. Suppose that h is of Harnack-type. Then there exists a constant C > 0 such that for all
x, y ∈ D and 0 < r ≤ (ρ(x, y) ∧ δD(x))/2, it holds that

J(x, y) ≤
C

V (x, r)

∫

B(x,r)
J(z, y)dz.

Proof. Let x, y ∈ D and r > 0 be as in the statement. If z ∈ B(x, r), then ρ(x, z) < r ≤ ρ(x, y)/2.
Therefore, by Proposition 6.8, J(x, y) ≤ c1J(z, y), whence the claim immediately follows. ✷

Lemma 6.10. Suppose that h is of Harnack-type. Let ǫ ∈ (0, 1/4) be the constant from Lemma 6.1, and
θ ≥ 1/2. Further, let 0 < δ0 < ǫ, and 0 < δ1 < δ2 < δ3 < δ4 be such that (δ3 − δ2)ψ(r) ≥ ψ(δ0r) and
δ4ψ(r) ≤ ψ(ǫr) for all r ∈ (0,diam(D)). For x0 ∈ D, t0 ≥ 0 and r ∈ (0, δD(x)), define

Q1 = (t0, t0 + δ4ψ(r)) ×B(x0, δ
2
0r), Q2 = (t0, t0 + δ4ψ(r))×B(x0, r),

Q3 = [t0 + δ1ψ(r), t0 + δ2ψ(r)]×B(x0, δ
2
0r/2), Q4 = [t0 + δ3ψ(r), t0 + δ4ψ(r)]×B(x0, δ

2
0r/2).

Let f : (t0,∞) × D → [0,∞) be bounded and supported in (t0,∞) × (D \ B(x0, (1 + θ)r)). Then there
exists a constant C2 > 0 such that

E
(t1,y1)f(ZτQ1

) ≤ C2E
(t2,y2)f(ZτQ2

) for all (t1, y1) ∈ Q3, (t2, y2) ∈ Q4.

Proof. Without loss of generality we may assume that t0 = 0. Fix x0 ∈ D. For s > 0, we set
Bs = B(x0, s). Let (t1, y1) ∈ Q3 and (t2, y2) ∈ Q4. By the Lévy system formula for the time-space
process Z we have

E
(t2,y2)f(ZτQ2

) = E
(t2,y2)f(t2 − (τBr ∧ t2),XτBr∧t2)

= E
(t2,y2)

[∫ t2

0
1t≤τBr dt

∫

D\B(x0,(1+θ)r)
f(t2 − t, v)J(Xt, v) dv

]

=

∫ t2

0
dt

∫

D\B(x0,(1+θ)r)
f(t2 − t, v)E(t2,y2)

[
1t≤τBr J(Xt, v)

]
dv

=

∫ t2

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)E(t2,y2)

[
1t2−s≤τBrJ(Xt2−s, v)

]
dv

=

∫ t2

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)dv

∫

Br

qBr(t2 − s, y2, z)J(z, v)dz (6.17)

≥

∫ t1

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)dv

∫

B
δ20r

qBr(t2 − s, y2, z)J(z, v)dz.

For s ∈ [0, t1] it holds that ψ(δ0r) ≤ (δ3 − δ2)ψ(r) ≤ t2 − t1 ≤ t2 − s ≤ δ4ψ(r) ≤ ψ(ǫr), hence
δ20r ≤ ǫδ0r ≤ ǫψ−1(t2 − s). Therefore, for any z ∈ Bδ20r, by Lemma 6.1 and (3.2), qBr(t2 − s, y2, z) ≥

c1V (x0, ψ
−1(t2 − s))−1 ≥ c1V (x0, ǫr)

−1. We conclude that

E
(t2,y2)f(ZτQ2

) ≥
c1

V (x0, ǫr)

∫ t1

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)dv

∫

B
δ2
0
r

J(z, v)dz. (6.18)

Now, by using the Lévy system formula again, similar to (6.17) we obtain that

E
(t1,y1)f(ZτQ1

) =

∫ t1

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)dv

∫

B
δ20r

qB
δ2
0
r
(t1 − s, y1, z)J(z, v)dz

=

∫ t1

0
ds

∫

B
δ20r

qB
δ2
0
r
(t1 − s, y1, z)dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv

=

∫ t1

0
ds



∫

B
δ20r

\B
3δ20r/4

qB
δ2
0
r
(t1 − s, y1, z)dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv
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+

∫

B
3δ20r/4

qB
δ2
0
r
(t1 − s, y1, z)dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv


 =:

∫ t1

0
ds(I1 + I2).

Let z ∈ Bδ20r \ B3δ20r/4
. Since y1 ∈ Bδ20r/2, we have that 2ρ(x0, y1) ≤ δ20r/4 ≤ ρ(y1, z) ≤ 3δ20r/2, which

implies by (4.9) that ψ(ρ(y1, z)) ≥ c2ψ(r) ≥ c2δ
−1
2 t1. Hence by Proposition 4.5, (3.1) and (3.2), we get

that for any s > 0,

qB
δ2
0
r
(t1 − s, y1, z) ≤ q(t1 − s, y1, z) ≤

c3t1
V (y1, ρ(y1, z))ψ(ρ(y1, z))

≤
c−1
2 c3δ2

V (y1, ρ(y1, z))

≤
c4

V (x0, ρ(y1, z))
≤

c4
V (x0, δ20r/4)

≤
c5

V (x0, ǫr)
.

Therefore,

I1 ≤
c5

V (x0, ǫr)

∫

B
δ20r

\B
3δ20r/4

dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv.

Let z ∈ B3δ20r/4
. Then by (3.2), we have

V (z, δ20r/4) ≥ c6V (x0, ǫr). (6.19)

We also have that δD(z) ≥ r − 3δ20r/4 ≥ (1− δ20)r, and for v ∈ D \B(x0, (1 + θ)r),

ρ(z, v) ≥ ρ(x0, v)− ρ(x0, z) ≥ (1 + θ)r −
3δ20r

4
≥

3r

2
−

3δ20r

4
≥ (1− δ20)r.

Thus, for any w ∈ B(z, δ20r/4), since δ
2
0 < 2/5,

1

2
(ρ(z, v) ∧ δD(z)) ≥

1

2
(1− δ20)r ≥

δ20r

4
≥ ρ(z, w).

From Proposition 6.8, we get that J(z, v) ≤ c7J(w, v). Therefore, by (6.19),

I2 =

∫

B
3δ20r/4

qB
δ2
0
r
(t1 − s, y1, z)dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv

≤

∫

B
3δ2

0
r/4

qB
δ2
0
r
(t1 − s, y1, z)dz

(
c7

V (z, δ20r/4)

∫

B(z,δ20r/4)
J(w, v)dw

∫

D\B(x0,(1+θ)r)
f(s, v)dv

)

≤
c−1
6 c7

V (x0, ǫr)

∫

B(z,δ20r/4)
dw

∫

D\B(x0,(1+θ)r)
f(s, v)J(w, v)dv.

It follows that

E
(t1,y1)f(ZτQ1

) =

∫ t1

0
ds(I1 + I2) ≤

c8
V (x0, ǫr)

∫ t1

0
ds

∫

B
δ20r

dz

∫

D\B(x0,(1+θ)r)
f(s, v)J(z, v)dv

=
c8

V (x0, ǫr)

∫ t1

0
ds

∫

D\B(x0,(1+θ)r)
f(s, v)dv

∫

B
δ20r

J(z, v)dz
(6.18)

≤ c9E
(t2,y2)f(ZτQ2

).

✷

Theorem 6.11. Suppose that h is of Harnack-type. Then there exist constants δ > 0, C > 1 and K ≥ 1
such that for all t0 ≥ 0, x0 ∈ D and R ∈ (0, R1) with B(x0, CR) ⊂ D, and any non-negative function u
on (0,∞) ×D which is parabolic on Q := (t0, t0 + 4δψ(CR)) ×B(x0, CR), we have

sup
(t1,y1)∈Q−

u(t1, y1) ≤ K inf
(t2,y2)∈Q+

u(t2, y2), (6.20)

where Q− = [t0+ δψ(CR), t0+2δψ(CR)]×B(x0, R) and Q− = [t0+3δψ(CR), t0+4δψ(CR)]×B(x0, R).

Proof. Using (3.1), (4.9), Lemmas 6.1, 6.3, 6.5, 6.7, 6.10 and Corollary 6.9 the result can be proved
using the same argument as in the proof of [16, Lemma 5.3] (see also the proof of [19, Lemma 4.1]). We
omit details here. ✷
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7. Examples

Recall the definition of Bh(t, x, y) from (4.2). For p, q ≥ 0, we let Bp,q(t, x, y) := Bhp,q(t, x, y) where
hp,q(t, x, y) is the boundary function defined in (3.8). We remind the reader that this is the typical
and most important boundary function. Recall that ψ(r) = 1/φ(1/Φ(r)), δ∨(x, y) = δD(x) ∨ δD(y) and
δ∧(x, y) = δD(x) ∧ δD(y). Define mt

x,y(r) =
(
ψ−1(t) ∨ r

)
∧ ρ(x, y). For simplicity, we will use δ(x) and

δ(y) instead of δD(x) and δD(y), respectively.
The following lemma provides the list of estimates of Bp,q(t, x, y) depending on the relationship between

the parameters p, q, β1, β2. The list is not exhaustive, but it suffices for our purpose. The proof of the
lemma is rather technical and consists of carefully estimating the integral defining Bp,q(t, x, y).

Lemma 7.1. Let q ≥ p ≥ 0, p + q > 0. Suppose that (Poly-R1) holds with β1, β2 ∈ (0, 1). Then, the
following estimates hold for all x, y ∈ D, 0 < t ≤ ψ(ρ(x, y)) such that Φ(ρ(x, y)) < R1/8.

(i) If β2 < 1− p− q, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δ(y))

Φ(ρ(x, y))

)qΦ(ρ(x, y))
ψ(ρ(x, y))

.

(ii) If 1− p− q < β1 ≤ β2 < 1− q, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δ(y))

Φ(ρ(x, y))

)qΦ(ρ(x, y))p+qΦ(mt
x,y(δ∨(x, y)))

1−p−q

ψ(mt
x,y(δ∨(x, y)))

. (7.1)

(iii) If 1− q < β1 ≤ β2 < 1− p, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(mt
x,y(δ(y)))

)p(
1 ∧

Φ(δ(y))

φ−1(1/t)−1

)qΦ(mt
x,y(δ(y)))

ψ(mt
x,y(δ(y)))

. (7.2)

(iv) If 1− p < β1 ≤ β2 < 1, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

φ−1(1/t)−1

)p(
1 ∧

Φ(δ(y))

φ−1(1/t)−1

)qΦ(mt
x,y(δ∧(x, y)))

ψ(mt
x,y(δ∧(x, y)))

. (7.3)

(v) If β1 = β2 = 1− p− q and p > 0, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δ(y))

Φ(ρ(x, y))

)q
Φ(ρ(x, y))p+q log

(
e+

Φ(ρ(x, y))

Φ(mt
x,y(δ∨(x, y)))

)
. (7.4)

(vi) If β1 = β2 = 1− q and p = 0, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(y))

Φ(ρ(x, y))

)q
Φ(ρ(x, y))q log

(
e+

Φ(ρ(x, y))

Φ(mt
x,y(δ(y)))

)
. (7.5)

(vii) If β1 = β2 = 1− q and q = p, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ∧(x, y))

Φ(ρ(x, y))

)p(
1 ∧

Φ(δ∨(x, y))

φ−1(1/t)−1

)p
Φ(ρ(x, y))p log

(
e+

Φ(mt
x,y(δ∨(x, y)))

Φ(mt
x,y(δ∧(x, y)))

)
. (7.6)

(viii) If β1 = β2 = 1− q and q > p > 0, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(mt
x,y(δ(y)))

)p(
1 ∧

Φ(δ(y))

Φ(ρ(x, y))

)q
Φ(ρ(x, y))q log

(
e+

Φ(mt
x,y(δ(x)))

Φ(mt
x,y(δ(y)))

)
. (7.7)

(ix) If β1 = β2 = 1− p and q > p > 0, then

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

Φ(mt
x,y(δ(y)))

)p(
1 ∧

Φ(δ(y))

φ−1(1/t)−1

)q
Φ(mt

x,y(δ(y)))
p log

(
e+

Φ(mt
x,y(δ(y)))

Φ(mt
x,y(δ(x)))

)
. (7.8)

Proof. Fix x, y ∈ D such that r := ρ(x, y) < Φ−1(R1/8), and t ∈ (0, ψ(r)]. Let δ∧ := δ∧(x, y) and
δ∨ := δ∨(x, y), and note that δ∨ ≤ r+δ∧. We also note that since β2 < 1, by [47, Lemma 2.6, Proposition
2.9] and (2.2),

w(s) ≃ φ(1/s), s ∈ (0, R1/2), (7.9)

which is equivalent to that w(Φ(s)) ≃ ψ(s)−1 for s ∈ (0,Φ−1(R1/2).
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If δ∧ ≥ r, then by Lemma 5.1(i), (Poly-R1) and (7.9), we have

Bp,q(t, x, y) ≃

∫ 4Φ(r)

2φ−1(1/t)−1

w(s)ds ≃
Φ(r)

ψ(r)
. (7.10)

(i) This follows immediately from Lemma 5.1(i) and (Poly-R1).
(ii) First assume Φ(δ∨) > φ−1(1/t)−1, which is equivalent to δ∨ > ψ−1(t). If δ∧ > r, then mt

x,y(δ∨) = r

so that (7.1) follows from (7.10). If δ∧ = δ(x) ≤ r, then δ(y) ≤ 2r so that mt
x,y(δ∨) ≃ δ(y) and by Lemma

5.1(i)-(ii) and (Poly-R1),

Bp,q(t, x, y) ≃

∫ 3Φ(δ(y))

2φ−1(1/t)−1

(
1 ∧

Φ(δ(x))

s

)p
w(s)ds +Φ(δ(x))pΦ(δ(y))q

∫ 4Φ(r)

3Φ(δ(y))

w(s)

sp+q
ds

≃ Φ(δ(x))pΦ(δ(y))1−pψ(δ(y))−1. (7.11)

Similarly, if δ∧ = δ(y) ≤ r, then mt
x,y(δ∨) ≃ δ(x) and

Bp,q(t, x, y) ≃

∫ 3Φ(δ(x))

2φ−1(1/t)−1

(
1 ∧

Φ(δ(y))

s

)q
w(s)ds +Φ(δ(x))pΦ(δ(y))q

∫ 4Φ(r)

3Φ(δ(x))

w(s)

sp+q
ds

≃ Φ(δ(x))1−qΦ(δ(y))qψ(δ(x))−1. (7.12)

Thus in the case Φ(δ∨) > φ−1(1/t)−1, Bp,q(t, x, y) is comparable with the right hand side of (7.1).
If Φ(δ∨) ≤ φ−1(1/t)−1, then by Lemma 5.1(ii), (Poly-R1) and (7.9), we obtain

Bp,q(t, x, y) ≃ Φ(δ(x))pΦ(δ(y))q
∫ 4Φ(r)

2φ−1(1/t)−1

s−p−qw(s)ds ≃ Φ(δ(x))pΦ(δ(y))q
φ−1(1/t)−(1−p−q)

t
.

Since mt
x,y(δ∨) = ψ−1(t) in this case, we conclude (7.1).

(iii) First assume Φ(δ(y)) > φ−1(1/t)−1. If δ∧ > r, then mt
x,y(δ(y)) = r so that (7.2) follows from (7.10).

If δ∧ = δ(x) ≤ r, then (7.11) holds by Lemma 5.1(i)-(ii) and (Poly-R1). If δ∧ = δ(y) ≤ r, then

Bp,q(t, x, y) ≃

∫ 3Φ(δ(y))

2φ−1(1/t)−1

w(s)ds +Φ(δ(y))q
∫ 4Φ(r)

3Φ(δ(y))

(
1 ∧

Φ(δ(x))

s

)pw(s)
sq

ds ≃
Φ(δ(y))

ψ(δ(y))
.

Thus when Φ(δ(y)) > φ−1(1/t)−1, since mt
x,y(δ(y)) ≃ δ(y), Bp,q(t, x, y) is comparable with the right hand

side of (7.2).
If Φ(δ(y)) ≤ φ−1(1/t)−1, then by Lemma 5.1(ii), (Poly-R1) and (7.9), we get

Bp,q(t, x, y) ≃ Φ(δ(y))q
∫ 4Φ(r)

2φ−1(1/t)−1

(
1 ∧

Φ(δ(x))

s

)p
s−qw(s)ds

≃
(
1 ∧

Φ(δ(x))

φ−1(1/t)−1

)p( Φ(δ(y))

φ−1(1/t)−1

)q φ−1(1/t)−1

t
.

Since mt
x,y(δ(y)) = ψ−1(t) in this case, we conclude (7.2).

(iv) If Φ(δ∧) > Φ(r), then (7.3) follows from (7.10). If Φ(r) ≥ Φ(δ∧) > φ−1(1/t)−1 and δ∧ = δ(x), then
by Lemma 5.1(i)–(ii) and (Poly-R1), we have

Bp,q(t, x, y) ≃

∫ 3Φ(δ∧)

2φ−1(1/t)−1

w(s)ds +Φ(δ∧)
p

∫ 4Φ(r)

3Φ(δ∧)

(
1 ∧

Φ(δ(y))

s

)q
s−pw(s)ds ≃

Φ(δ∧)

ψ(δ∧)
.

Similarly, if Φ(r) ≥ Φ(δ∧) > φ−1(1/t)−1 and δ∧ = δ(y), then

Bp,q(t, x, y) ≃

∫ 3Φ(δ∧)

2φ−1(1/t)−1

w(s)ds +Φ(δ∧)
q

∫ 4Φ(r)

3Φ(δ∧)

(
1 ∧

Φ(δ(x))

s

)p
s−qw(s)ds ≃

Φ(δ∧)

ψ(δ∧)
.

If Φ(δ∧) ≤ φ−1(1/t)−1, then by considering the cases δ∧ = δ(x) and δ∧ = δ(y) separately, we see from
Lemma 5.1(ii) and (Poly-R1) that

Bp,q(t, x, y) ≃
(
1 ∧

Φ(δ(x))

φ−1(1/t)−1

)p(
1 ∧

Φ(δ(y))

φ−1(1/t)−1

)qΦ(ψ−1(t))

t
.



HEAT KERNEL ESTIMATES FOR SUBORDINATE MARKOV PROCESSES 37

(v) Note that w(s) ≃ sp+q−1 for s ∈ (0, R1) in this case. If Φ(δ∨) > φ−1(1/t)−1, then by Lemma 5.1(i),
we get in the case δ∨ = δ(x),

Bp,q(t, x, y) ≃

∫ 4Φ(r∧δ(x))

2φ−1(1/t)−1

(s ∧ Φ(δ(y)))qs−1+pds+Φ(δ(x))pΦ(δ(y))q
∫ 4Φ(r)

4Φ(r∧δ∨)
s−1ds

≃ Φ(r ∧ δ(x))pΦ(r ∧ δ(y))q +Φ(δ(x))pΦ(δ(y))q log
Φ(r)

Φ(mt
x,y(δ∨))

.

Similarly, when δ∨ = δ(y), we also get the same conclusion. One can check that the last line in the
above is comparable with the right hand side of (7.4). If Φ(δ∨) ≤ φ−1(1/t)−1, then Bp,q(t, x, y) ≃
Φ(δ(x))pΦ(δ(y))q log

(
2Φ(r)φ−1(1/t)

)
and Φ(mt

x,y(δ∨)) = φ−1(1/t)−1. Hence, (7.4) is valid.

(vi) Note that w(s) ≃ sq−1 for s ∈ (0, R1/2) and that ψ(s) ≃ Φ(s)1−q for s ∈ (0, R1/2) in this case. If
δ(y) > r, then (7.5) follows from (7.10). If r ≥ δ(y) = mt

x,y(δ(y)) > φ−1(1/t)−1, then

Bp,q(t, x, y) ≃

∫ 3Φ(δ(y))

2φ−1(1/t)−1

sq−1ds+Φ(δ(y))q
∫ 4Φ(r)

3Φ(δ(y))
s−1ds ≃ Φ(δ(y))q log

(
e+

Φ(r)

Φ(δ(y))

)
.

If δ(y) ≤ φ−1(1/t)−1, then Φ(mt
x,y(δ(y))) = φ−1(1/t)−1 and

Bp,q(t, x, y) ≃ Φ(δ(y))q
∫ 4Φ(r)

2φ−1(1/t)−1

s−1ds ≃ Φ(δ(y))q log
(
e+Φ(r)φ−1(1/t)

)
.

(vii) Let F1(t, x, y) be the function given in the right hand side of (7.6). Then, we have

F1(t, x, y) ≃





Φ(δ∧)
pΦ(δ∨)

pφ−1(1/t)p, if Φ(δ∨) ≤ φ−1(1/t)−1,

Φ(δ∧)
p log

(
e+Φ(δ∨)φ

−1(1/t)
)
, if Φ(δ∧) ≤ φ−1(1/t)−1 < Φ(δ∨),

Φ(δ∧)
p log

(
e+Φ(δ∨)/Φ(δ∧)

)
, if Φ(δ∧) > φ−1(1/t)−1, δ∨ ≤ 2r,

Φ(r)p, if Φ(δ∧) > φ−1(1/t)−1, δ∨ > 2r.

(7.13)

The last comparison in (7.13) above holds since Φ(δ∧) ≥ Φ(δ∨ − r) ≥ Φ(r) in such case.
Note that w(s) ≃ sp−1 for s ∈ (0, R1) in this case. If Φ(δ∨) ≤ φ−1(1/t)−1, then

Bp,p(t, x, y) ≃ Φ(δ∧)
pΦ(δ∨)

p

∫ 4Φ(r)

2φ−1(1/t)−1

s−p−1ds ≃ Φ(δ∧)
pΦ(δ∨)

pφ−1(1/t)p.

If Φ(δ∨) > φ−1(1/t)−1 ≥ Φ(δ∧), then by (3.4), Φ(δ∨) ≤ Φ(δ∧ + r) ≤ Φ(2r) ≤ cΦ(r) so that

Bp,p(t, x, y) ≃ Φ(δ∧)
p

∫ 4Φ(r∧δ∨)

2φ−1(1/t)−1

s−1ds+Φ(δ∧)
pΦ(δ∨)

p

∫ 4Φ(r)

4Φ(r∧δ∨)
s−p−1ds

≃ Φ(δ∧)
p

[
log
(
2Φ(r ∧ δ∨)φ

−1(1/t)
)
+

Φ(δ∨)
p

Φ(r ∧ δ∨)p

]
≃ Φ(δ∧)

p log
(
e+Φ(δ∨)φ

−1(1/t)
)
.

If Φ(δ∧) > φ−1(1/t)−1, then

Bp,p(t, x, y) ≃

∫ 4Φ(r∧δ∧)

2φ−1(1/t)−1

sp−1ds+Φ(δ∧)
p

∫ 4Φ(r∧δ∨)

4Φ(r∧δ∧)
s−1ds+Φ(δ∧)

pΦ(δ∨)
p

∫ 4Φ(r)

4Φ(r∧δ∨)
s−p−1ds

≃ Φ(r ∧ δ∧)
p +Φ(δ∧)

p log
Φ(r ∧ δ∨)

Φ(r ∧ δ∧)
+ Φ(δ∧)

p Φ(δ∨)
p

Φ(r ∧ δ∨)p
.

Now, by considering each case separately, (7.6) follows from (7.13).
(viii) If δ(y) ≥ 2r (so that δ(x) ≥ r), then (7.7) follows from (7.10). If 2r > δ(y) ≥ ψ−1(t) and δ(y) ≥ δ(x),
then by the scaling property of Φ and Lemma 5.1(i),

Bp,q(t, x, y) ≃

∫ 4Φ(r∧δ(y))

2φ−1(1/t)−1

(s ∧ Φ(δ(x)))psq−p−1ds+Φ(δ(x))pΦ(δ(y))q
∫ 4Φ(r)

4Φ(r∧δ(y))
s−p−1ds

≃ Φ(r ∧ δ(x) ∧ δ(y))pΦ(r ∧ δ(y))q−p +Φ(δ(x))pΦ(δ(y))qΦ(r ∧ δ(y))−p

≃ Φ(δ(x))pΦ(δ(y))q−p ≃ Φ(δ(x))pΦ(mt
x,y(δ(y)))

−pΦ(δ(y))q .
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If 2r > δ(y) ≥ ψ−1(t) and δ(y) < δ(x), then δ(x) ≥ mt
x,y(δ(y)) and δ(x) ≤ δ(y) + r < 3r so that by the

scaling property of Φ, we get

Bp,q(t, x, y)

≃

∫ 4Φ(r∧δ(y))

2φ−1(1/t)−1

sq−1ds+Φ(δ(y))q
∫ 4Φ(r∧δ(x))

4Φ(r∧δ(y))
s−1ds+Φ(δ(x))pΦ(δ(y))q

∫ 4Φ(r)

4Φ(r∧δ(x))
s−p−1ds

≃ Φ(δ(y))q +Φ(δ(y))q log
Φ(mt

x,y(δ(x)))

Φ(mt
x,y(δ(y)))

+ Φ(δ(y))q

≃
(
1 ∧

Φ(δ(x))

Φ(mt
x,y(δ(y)))

)p
Φ(δ(y))q log

(
e+

Φ(mt
x,y(δ(x)))

Φ(mt
x,y(δ(y)))

)
.

If δ(y) < ψ−1(t), then δ(x) < δ(y) + r < 2r so that mt
x,y(δ(x)) ≃ ψ−1(t) ∨ δ(x) and hence

Bp,q(t, x, y) ≃ Φ(δ(y))q
∫ 2Φ(ψ−1(t)∨δ(x))

2φ−1(1/t)−1

s−1ds+Φ(δ(x))pΦ(δ(y))q
∫ 4Φ(r)

2Φ(ψ−1(t)∨δ(x))
s−p−1ds

≃ Φ(δ(y))q log
Φ(mt

x,y(δ(x)))

Φ(mt
x,y(δ(y)))

+ Φ(δ(x))pΦ(δ(y))qΦ(mt
x,y(δ(x)))

−p.

By considering the cases δ(x) ≥ ψ−1(t) and δ(x) < ψ−1(t) separately, we conclude (7.7).
(ix) Let F2(t, x, y) be the function given in the right hand side of (7.6). Then, we have

F2(t, x, y) ≃





Φ(r)p, if δ(x) ≥ 2r,

Φ(δ(y))p if 2r > δ(x) ≥ δ(y) ≥ ψ−1(t),

Φ(δ(y))qφ−1(1/t)q−p if 2r > δ(x) ≥ ψ−1(t) ≥ δ(y),

Φ(δ(x))p log
(
e+Φ(δ(y))/Φ(δ(x))

)
, if 2r > δ(x) ≥ ψ−1(t), δ(x) ≤ δ(y),

Φ(δ(x))p log
(
e+Φ(δ(y))φ−1(1/t)

)
, if δ(x) < ψ−1(t) ≤ δ(y),

Φ(δ(x))pΦ(δ(y))qφ−1(1/t)q , if δ(x) ∨ δ(y) < ψ−1(t).

Now by considering each case separately, using similar arguments to the ones given in the proof of (viii),
we conclude (7.8). ✷

Example 7.2. Let d, α > 0, β ∈ (0, 1) and p1, p2 ≥ 0 such that p1 + p2 > 0. Suppose that for every
r0 ≥ 1, there are comparability constants such that

V (x, r) ≃ rd, x ∈ D, 0 < r < r0. (7.14)

Let Y D be a Hunt process in D and S = (St)t≥0 be an independent driftless subordinator with Laplace
exponent φ. Suppose that the tail w of the Lévy measure of S satisfies

w(r) ≃ r−β, 0 < r < r1, (7.15)

for some r1 > 0. Suppose that the heat kernel pD(t, x, y) of Y D satisfies either HK
hp1,p2

B
or HK

hp1,p2

U

with Φ(r) = Ψ(r) = rα where the boundary function hp1,p2 is defined as (3.8). When HK
hp1,p2

U
is

satisfied, we also assume that (7.14) and (7.15) hold for all r > 0. See Example 3.9 for concrete examples
of Y D. By switching the roles of x and y if needed, without loss of generality, we assume that p2 ≥ p1.

Let q(t, x, y), J(x, y) and GD(x, y) be the heat kernel, the jump kernel and the Green function of the
subordinate process Xt := Y D

St
respectively. Using our theorems in Sections 4 and 5, and Lemma 7.1, we

get explicit estimates on q(t, x, y), J(x, y) and GD(x, y). We list them in terms of the range of p1 + p2,
similar to the format of the Green function estimates for Dirichlet forms degenerate at the boundary in
[44].

In particular, by putting p1 = p2 = 1/2, we get Theorem 1.1.
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We first give the Green function estimates. Define

g(x, y) :=
(
1 ∧

δ(x)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)αp2
×





1

ρ(x, y)d−αβ
, d > αβ,

log
(
e+

δ∨(x, y)

ρ(x, y)

)
, d = αβ,

[ρ(x, y) ∨ δ∨(x, y)]
αβ−d, d < αβ.

When C0 = 0, by Theorem 5.8 and Example 5.5, for all x, y ∈ D, if d > α(β − p1 − p2), then

GD(x, y) ≃ g(x, y) (7.16)

and if d ≤ α(β − p1 − p2), then

GD(x, y) ≃





δ(x)αp1δ(y)αp2 log
(
e+ diam(D)

ρ(x,y)∨δ∨(x,y)

)
, d = α(β − p1 − p2) and HK

hp1,p2

B
holds,

δ(x)αp1δ(y)αp2 , d < α(β − p1 − p2) and HK
hp1,p2

B
holds,

∞, d ≤ α(β − p1 − p2) and HK
hp1,p2

U
holds.

(7.17)

Now assume that C0 = 1. If p1+ p2 < β+1, then using Theorem 5.8 and Example 5.5 again, we see that
(7.16) and (7.17) also hold. If p1 + p2 = β + 1 and p2 < β + 1 (so that (H2**) holds, cf. Example 5.9),
then by Theorem 5.11, for all x, y ∈ D,

GD(x, y) ≃ g(x, y) log
(
e+

ρ(x, y)

δ∨(x, y)

)
. (7.18)

If p1 + p2 > β + 1 and p2 < β + 1 (so, again, (H2**) holds), then by Theorem 5.10 and (5.18), for all
x, y ∈ D,

GD(x, y) ≃
(
1 ∧

δ∨(x, y)

ρ(x, y)

)−α(p1+p2−β−1)
g(x, y). (7.19)

The unusual form of the estimates in (7.18)-(7.19) should be compared with similar estimates of the Green
function obtained in a different context in [44, Theorem 1.1 (2),(3)]. Such estimates lead to anomalous
boundary behavior of the corresponding Green potential, cf. [1].

Next, we obtain estimates on J(x, y) from Theorem 4.1. When C0 = 0, using the fact that

(
1 ∧

δ(x)

s

)(
1 ∧

δ(y)

s

)
=
(
1 ∧

δ∧(x, y)

s

)(
1 ∧

δ∨(x, y)

s

)
, s > 0, x, y ∈ D, (7.20)

we see that for all x, y ∈ D,

J(x, y) ≃
(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)α(p2−p1) 1

ρ(x, y)d+αβ
.

Now assume that C0 = 1. Using Lemma 7.1, the fact that B∗
h(x, y) ≃ Bh(0, x, y) and (7.20) several times,

we see that for all x, y ∈ D, if p1 + p2 < 1− β, then

J(x, y) ≃
(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)α(p2−p1) 1

ρ(x, y)d+αβ
,

if p1 + p2 = 1− β, then

J(x, y)

≃
1

ρ(x, y)d+αβ





(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)α(p2−p1)
log

(
e+

ρ(x, y)

δ∨(x, y)

)
, p1 > 0,

(
1 ∧

δ(y)

ρ(x, y)

)α(1−β)
log
(
e+

ρ(x, y)

δ(y)

)
, p1 = 0,

and if p1 + p2 > 1− β, then

J(x, y) ≃
1

ρ(x, y)d+αβ
×
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×





(
1 ∧

δ∧(x, y)

ρ(x, y)

)α(1−β)
, p2 ≥ p1 > 1− β,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)α(1−β)
log
(
e+

δ(y) ∧ ρ(x, y)

δ(x)

)
, p2 > p1 = 1− β,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)α(1−p1−β)
, p2 > 1− β > p1,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)α(1−β)
log
(
e+

δ∨(x, y) ∧ ρ(x, y)

δ∧(x, y)

)
, p2 = p1 = 1− β,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ(y)

ρ(x, y)

)α(1−p1−β)
log
(
e+

δ(x) ∧ ρ(x, y)

δ(y)

)
, p2 = 1− β > p1 > 0,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp1(
1 ∧

δ∨(x, y)

ρ(x, y)

)α(1−β−p2)(
1 ∧

δ(y)

ρ(x, y)

)α(p2−p1)
, p2 < 1− β.

Below, we also assume that p1 = p2 = p for simplicity, and obtain heat kernel estimates from Lemma
7.1, Corollary 4.4, Theorem 4.7 and (7.20).

(1) The following estimates hold for all (t, x, y) ∈ (0, 1] ×D ×D.
(i) The case of ρ(x, y)αβ ≤ t. For all p > 0,

q(t, x, y) ≃
(
1 ∧

δ∧(x, y)

t1/(αβ)

)αp(
1 ∧

δ∨(x, y)

t1/(αβ)

)αp
t−d/(αβ).

(ii) The case ρ(x, y)αβ > t. If C0 = 0, then

q(t, x, y) ≃
(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp t

ρ(x, y)d+αβ

and if C0 = 1, then

q(t, x, y) ≃
t

ρ(x, y)d+αβ
×

×





(
1 ∧

δ∧(x, y)

t1/(αβ)

)αp(
1 ∧

δ∨(x, y)

t1/(αβ)

)αp(
1 ∧

t1/(αβ) ∨ δ∧(x, y)

ρ(x, y)

)α(1−β)
, p > 1− β,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp(
1 ∧

δ∨(x, y)

t1/(αβ)

)αp
log

(
e+

(t1/(αβ) ∨ δ∨(x, y)) ∧ ρ(x, y)

t1/(αβ) ∨ δ∧(x, y)

)
, p = 1− β,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp(
1 ∧

t1/(αβ) ∨ δ∨(x, y)

ρ(x, y)

)−α(2p+β−1)

, p ∈ (
1− β

2
, 1− β),

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp
log

(
e+

ρ(x, y)

t1/(αβ) ∨ δ∨(x, y)

)
, p =

1− β

2
,

(
1 ∧

δ∧(x, y)

ρ(x, y)

)αp(
1 ∧

δ∨(x, y)

ρ(x, y)

)αp
, p ∈ (0,

1− β

2
).

(7.21)

(2) For all (t, x, y) ∈ [1,∞)×D ×D, if HK
hp

B
holds, then

q(t, x, y) ≃ e−tφ(λD)δ∧(x, y)
αpδ∨(x, y)

αp = e−tφ(λD)δ(x)αpδ(x)αp,

and if HK
hp

U
holds, then (i) and (ii) above hold for all (t, x, y) ∈ (0,∞) ×D ×D.

Example 7.3. Let D := {x ∈ R
d : xd > 0} be the upper half space in R

d and q ∈ [α− 1, α) ∩ (0, α). We
recall the process Y D from Example 3.9 (b-4), which corresponds to the Feynman-Kac semigroup of the
part process ZD, in D, of the reflected isotropic α-stable process in D via the multiplicative functional

exp(−
∫ t
0 C(d, α, q)(ZDs )−αd ds), where the positive constants C(d, α, q) is defined on [25, p. 233]. It is easy

to see that Y D satisfies the scaling property and horizontal translation invariance, more precisely, for any
λ > 0, the transition density pD of Y D satisfies

pD(λ
α, λx, λy) = pD(t, x, y)λ

−d, t > 0, x, y ∈ D

and

pD(t, x+ (z̃, 0), y + (z̃, 0)) = pD(t, x, y), t > 0, x, y ∈ D, z̃ ∈ R
d−1.
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Let S = (St)t≥0 be a β-stable subordinator independent of the process Y , β ∈ (0, 1). Then the process
Xt := Y D

St
falls into the framework of the present paper and thus we can get sharp two-sided estimates

on the jump kernel, heat kernel and Green functions of X. By using the scaling property and horizontal
translation invariance of pD above, we can show that the killing function κ(x) of X is given by

κ(x) = Cx−αβd , x ∈ D

for some constant C ∈ (0,∞). One can check, by following arguments at the end of [43, Section 2], that
the jump kernel of the subordinate process Xt := Y D

St
satisfies assumptions in [44, (A1)-(A4)] except in

the case q = α(1 − β)/2.
Moreover, by comparing the Green function estimates in [44, Theorem 1.1] with the Green function

function estimates in Example 7.2, one can see that the value of the constant in the critical killing
potential is indeed related to the power of the decay correctly. Thus, instead of computing the constant
C of the killing function κ(x), we see that the exponent p in [44] should be q (and the constant α in [44]
is equal to αβ in the present case) and we can use [44, Theorems 1.2 and 1.3] directly. Therefore, by
checking the range of p = q/α in the jump kernel estimates in Example 7.2 and [44, Theorems 1.2 and
1.3], from [44, Theorems 1.2 and 1.3] we obtain the following corollary. See [44, Theorem 1.2] for the
precise statement of the scale-invariant boundary Harnack principle.

Corollary 7.4. Suppose d > α and Y D is the process defined above. Let β1/2 := β ∨ 1/2. If q ∈

[α− 1, α) ∩ ((αβ − 1)+, αβ1/2) , then the scale-invariant boundary Harnack principle is valid for Y D. If

q ∈ [αβ1/2 ∨ (α− 1), α), then the non-scale-invariant boundary Harnack principle is not valid for Y D.

Note that constants (β1, β2) in [44] are (α−αβ, 0) for α(1−β) ≤ q < α, (q, α−q−αβ) for α(1−β)/2 <
q < α(1 − β) and (q, q) for 0 ≤ q < α(1 − β)/2. The case q = α(1 − β)/2 does not fit exactly in the
framework of [43, 44], but by a slight modification of the boundary term, one can cover this case as well.
We omit the details.

The next example illustrates that any of the four terms in (4.12) can not dominates all the other terms
in general.

Example 7.5. Let 0 < β1 < 1 < β2 and S be a subordinator with tail Lévy measure w satisfying

w(r) ≃ r−β1 ∧ r−β2, r > 0.

Let α2 ≥ α1 > 0. Suppose that the heat kernel pD(t, x, y) of Y
D enjoys the estimate HK

h1/2

U
with

Φ(r) = rα1 , Ψ(r) = rα1 ∨ rα2 , r > 0.

Examples of such Y D can be found in [38, Theorem 1.4] where Dirichlet heat kernel estimates for a
large class of subordinate Brownian motions are treated. Recall that ψ(r) := φ(1/Φ(r))−1. Note that
(Poly-∞) holds, and by (2.1),

φ(1/r) ≃

{
r−β1 , if r ≤ 1

r−1, if r > 1,
ψ(r) ≃

{
rα1β1 , if r ≤ 1

rα1 , if r > 1,

φ−1(1/r)−1 ≃

{
r1/β1 , if r ≤ 1

r, if r > 1,
ψ−1(r) ≃

{
r1/(α1β1), if r ≤ 1

r1/α1 , if r > 1.

Let q(t, x, y) be the heat kernel of the subordinate process Xt := Y D
St
. We obtain global estimates on

q(t, x, y) from Theorem 4.3 and Lemma 7.1. Write the terms on the right-hand side of (4.12) respectively
as

xA1 =
C0tBh(t, x, y)

V (x, ρ(x, y))Ψ(ρ(x, y))
, A2 =

C0φ
−1(1/t)−1h(φ−1(1/t)−1, x, y)

V (x, ρ(x, y))Ψ(ρ(x, y))
,

A3 =
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
− c

ρ(x, y)2

ψ−1(t)2

)
, A4 =

th(Φ(ρ(x, y)), x, y)w(Φ(ρ(x, y)))

V (x, ρ(x, y))
.

(1) The following estimates hold for all (t, x, y) ∈ (0, 1/φ(4)] ×D ×D.

(i) If ρ(x, y) < t1/(α1β1), then

q(t, x, y) ≃
(
1 ∧

δ(x)

t1/(α1β1)

)α1/2(
1 ∧

δ(y)

t1/(α1β1)

)α1/2 1

V (x, t1/(α1β1))
.
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(ii) Let C0 = 0 and ρ(x, y) ≥ t1/(α1β1). It is easy to see that A4 dominates A3. Hence, we have that

q(t, x, y) ≃
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2 t

V (x, ρ(x, y))[ρ(x, y)α1β1 ∨ ρ(x, y)α1β2 ]
.

(iii) Let C0 = 1 and t1/(α1β1) ≤ ρ(x, y) < 1. First observe that tw(φ−1(1/t)−1) ≃ 1. Thus it follows from
(5.2), (Poly-R1) and (3.10) that A1 dominates A2 and A4 (hence also A3). Further, note that for any
R1 > 0, w satisfies (Poly-R1) with both the upper and the lower index equal to β1 ∈ (0, 1). Therefore
we see that (7.21) holds with α = α1, β = β1 and p = 1/2, after multiplying ρ(x, y)dV (x, ρ(x, y))−1 in
each case.
(iv) Let C0 = 1 and ρ(x, y) ≥ 1. Then A1 dominates A2, and A4 dominates A3. Observe that

B1/2(t, x, y) ≃

∫ 1

2φ−1(1/t)−1

h1/2(s, x, y)s
−β1ds+

∫ 4ρ(x,y)α1

1
h1/2(s, x, y)s

−β2ds

and for all u > 0,
∫ ρ(x,y)α1

u
h1/2(s, x, y)s

−β2ds ≤ h1/2(u, x, y)

∫ ∞

u
s−β2ds ≤

u1−β2

β2 − 1
h1/2(u, x, y). (7.22)

Hence, if β1 > 1/2, then

q(t, x, y) ≃
t

V (x, ρ(x, y))ρ(x, y)α2
×

[(
1 ∧

δ(x)

t1/(α1β1)

)α1/2(
1 ∧

δ(y)

t1/(α1β1)

)α1/2
(1 ∧mt

x,y(δ∧))
α1(1−β1)

+
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2
ρ(x, y)α2−α1β2

]
,

else if β1 < 1/2, then

q(t, x, y) ≃
t

V (x, ρ(x, y))ρ(x, y)α2
×

[(
1 ∧ δ(x)

)α1/2(
1 ∧ δ(y)

)α1/2
(1 ∧mt

x,y(δ∨))
−α1β1

+
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2
ρ(x, y)α2−α1β2

]
,

otherwise if β1 = 1/2, then

q(t, x, y) ≃
t

V (x, ρ(x, y))ρ(x, y)α2
×

[(
1 ∧ δ∧(x, y)

)α1/2(
1 ∧

δ∨(x, y)

t1/(α1β1)

)α1/2
log
(
e+

mt
x,y(δ∨) ∧ 1

mt
x,y(δ∧) ∧ 1

)

+
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2
ρ(x, y)α2−α1β2

]
.

(2) The following estimates hold for all (t, x, y) ∈ [1/φ(4),∞) ×D ×D.

(i) If ρ(x, y) < t1/α1 , then

q(t, x, y) ≃
(
1 ∧

δ(x)

t1/α1

)α1/2(
1 ∧

δ(y)

t1/α1

)α1/2 1

V (x, t1/α1)
. (7.23)

(ii) Let ρ(x, y) ≥ t1/α1 . Then by (7.22), we see that A2 dominates A1 and

q(t, x, y) ≍
(
1 ∧

δ(x)

t1/α1

)α1/2(
1 ∧

δ(y)

t1/α1

)α1/2
[

C0t

V (x, ρ(x, y))d(x, y)α2
+

1

V (x, t1/α1)
exp

(
− c

ρ(x, y)2

t2/α1

)]

+
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2 t

V (x, ρ(x, y))ρ(x, y)α1β2

≍ pD(ct, x, y) +
(
1 ∧

δ(x)

ρ(x, y)

)α1/2(
1 ∧

δ(y)

ρ(x, y)

)α1/2 t

V (x, ρ(x, y))ρ(x, y)α1β2
. (7.24)

Note that, in case of C0 = 1 and β2 ≥ α2/α1, we see from (7.23) and (7.24) that

q(t, x, y) ≍ pD(ct, x, y), t ≥ 1/φ(4), x, y ∈ D.
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