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Abstract

In this paper we obtain sharp bounds for the Green function and jumping function
of a subordinate killed Brownian motion in a bounded C1,1 domain, where the sub-
ordinating process is a subordinator whose Laplace exponent has certain asymptotic
behavior at infinity.
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1 Introduction

Let X = (Xt, Px) be a Brownian motion in Rd with generator ∆. Let D ⊂ Rd be a bounded

domain, and we use XD = (XD
t , Px) to denote the killed Brownian motion in D. Let

T = (Tt : t ≥ 0) be a subordinator independent of X, and define Y D
t := XD(Tt), t ≥ 0. The

process Y D = (Y D
t : t ≥ 0) is called a subordinate killed Brownian motion.
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in part by a joint US-Croatia grant INT 0302167.

1



The study of the process Y D was initiated in [4], where T is assumed to be an α/2-stable

subordinator, α ∈ (0, 2). Recently a lot of progress have been made in the study of the

potential theory of Y D. In [8], under the assumption that T is an α/2-stable subordinator,

upper and lower bounds on the Green function and jumping function of Y D were established

when D is a bounded C1,1 domain. However, the upper and lower bounds provided in [8]

were different near the boundary. In [7], new lower bounds for the Green function and

jumping function of Y D, that agree the upper bounds of [8] up to multiplicative constants,

were established. In this sense, sharp bounds of the Green function and jumping function of

Y D, in the case when T is an α/2-stable subordinator, were obtained.

The purpose of this paper is to obtain sharp bounds for the Green function and jumping

function of Y D for a much larger class of subordinating processes T .

The content of this paper is organized as follows. In Section 2 we recall some basic facts

about special subordinators and subordinate killed Brownian motion and in Section 3 we

establish our main results.

In this paper we write f ∼ g as x → ∞ (respectively, x → 0), if limx→∞ f(x)/g(x) = 1

(respectively, limx→0 f(x)/g(x) = 1).

2 Preliminaries

Let T = (Tt : t ≥ 0) be a subordinator, that is, an increasing Lévy process taking values in

[0,∞] with T0 = 0. The Laplace exponent of the subordinator T is a function φ : (0,∞) →
[0,∞) such that

E[exp(−λTt)] = exp(−tφ(λ)) , λ > 0. (2.1)

The function φ has a representation

φ(λ) = a + bλ +

∫ ∞

0

(1− e−λt) µ(dt) . (2.2)

Here a, b ≥ 0, and µ is a σ-finite measure on (0,∞) satisfying∫ ∞

0

(t ∧ 1) µ(dt) < ∞ .

The constant a is called the killing rate, b the drift, and µ the Lévy measure of the subordi-

nator T .

Recall that a C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤
0 for every n ∈ N. It is well known that a function φ : (0,∞) → R is a Bernstein function if

and only if it has the representation given by (2.2).

The potential measure of the subordinator T is defined by

U(A) = E
∫ ∞

0

1(Tt∈A) dt , (2.3)

2



and its Laplace transform is given by

LU(λ) =

∫ ∞

0

e−λt dU(t) = E
∫ ∞

0

exp(−λTt) dt =
1

φ(λ)
. (2.4)

It is well known that if the drift b is strictly positive, then the potential measure U is

absolutely continuous with a density u : (0,∞) → R that is continuous and positive, and

u(0+) = 1/b (e.g., [1], p.79). Moreover, for every t > 0, u(t) ≤ u(0+) (e.g., [9]). In order to

establish the main results of this paper we will need the existence of a decreasing potential

density for subordinators not necessarily having a strictly positive drift. A large class of such

subordinators, called special subordinators, was introduced and studied in [10]. We recall

the definition below.

Definition 2.1 A Bernstein function φ is called a special Bernstein function if the function

λ/φ(λ) is also a Bernstein function. A subordinator T is called a special subordinator if its

Laplace exponent φ is a special Bernstein function.

The family of special Bernstein functions is very large, and it contains in particular the

family of complete Bernstein functions. Recall that a function φ : (0,∞) → R is called a

complete Bernstein function if there exists a Bernstein function η such that

φ(λ) = λ2Lη(λ), λ > 0.

The family of complete Bernstein functions is also very large and it contains the following

well known Bernstein functions: (i) λα, α ∈ (0, 1]; (ii) (λ + 1)α − 1, λ ∈ (0, 1), and (iii)

ln(1 + λ). It is known (see [5], for instance) that every complete Bernstein function is a

special Bernstein function and that a Bernstein function φ of the form (2.2) is a complete

Bernstein function if and only if its integral part

φ1(λ) =

∫ ∞

0

(1− e−λt)µ(dt), λ > 0 (2.5)

is a complete Bernstein function.

One of the main results about special subordinators proved in [10] is the following: If T

is a special subordinator such that b > 0 or µ((0,∞)) = ∞, then the potential measure U

of T has a decreasing density u. For other results about special subordinators, as well as for

many examples, we refer the reader to [10].

Suppose that X = (Xt : t ≥ 0) is a Brownian motion in Rd with generator ∆. Suppose

that D is a bounded domain in Rd and that XD is the killed Brownian motion in D. Suppose

that T = (Tt : t ≥ 0) is a subordinator independent of X. The process Y D = (Y D
t : t ≥ 0)

defined by Y D
t = XD(Tt) is called a subordinate killed Brownian motion.
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Let pD(t, x, y), t ≥ 0, x, y ∈ D, denote the transition density of XD and (PD
t : t ≥ 0) the

transition semigroup of XD. It is well known that the potential operator of the subordinate

process Y D has a density UD given by the formula

UD(x, y) =

∫ ∞

0

pD(t, x, y) U(dt) . (2.6)

We call UD(x, y) the Green function of Y D. In case the potential measure U of the subor-

dinator T has a density u, we may write

UD(x, y) =

∫ ∞

0

pD(t, x, y)u(t) dt . (2.7)

Let (E ,F) be the Dirichlet form corresponding to Y D, then H1(D) ⊂ F . When the drift b

of T is positive, we have F = H1(D) and for u ∈ F ,

E(u, u) = b

∫
D

|∇u|2(x)dx +

∫
D×D

(u(x)− u(y))2JD(x, y)dxdy +

∫
D

u2(x)κD(x)dx,

where

JD(x, y) =
1

2

∫ ∞

0

pD(s, x, y)µ(ds),

and

κD(x) = a +

∫ ∞

0

(1− PD
s 1D(x))µ(ds).

When T has no drift,

F = {u ∈ L2(D) :

∫ ∞

0

(u− PD
s u, u)µ(ds) < ∞} (2.8)

and for any u ∈ F ,

E(u, u) =

∫
D×D

(u(x)− u(y))2JD(x, y)dxdy +

∫
D

u2(x)κD(x)dx,

with JD and κD given above. The functions JD and κD are called the jumping function and

killing functions of Y D respectively. For the above facts on the Dirichlet form of Y D, please

see [6].

We recall now the definition of a C1,1 domain. A bounded domain D ⊂ Rd, d ≥ 2, is called

a bounded C1,1 domain if there exist positive constants r0 and M with the following property:

for every z ∈ ∂D and every r ∈ (0, r0], there exist a function Γz : Rd−1 → R satisfying the

condition |∇Γz(ξ)−∇Γz(η)| ≤ M |ξ − η| for all ξ, η ∈ Rd−1, and an orthonormal coordinate

system CSz such that if y = (y1, . . . , yd) in CSz coordinates, then

B(z, r) ∩D = B(z, r) ∩ {y : yd > Γz(y1, . . . , yd−1} .

When we speak of a bounded C1,1 domain in R we mean a finite open interval.
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3 Main results

In this section we will always assume that D is a bounded C1,1 domain in Rd. For any x ∈ D,

we use ρ(x) to denote the distance between x and ∂D.

In this section we will establish sharp estimates on the Green function and jumping

function of Y D following the method of [7]. Our basic information is the Laplace exponent

φ of the subordinator T and our basic assumption will be the asymptotic behavior of the

Laplace exponent φ(λ) at infinity. We assume that φ has the representation (2.2).

For the Green function estimates, we will consider two cases: In the first case we will

consider special subordinators T with Laplace exponent φ satisfying φ(λ) ∼ γ−1λα/2 as

λ → ∞ for α ∈ (0, 2) and a positive constant γ. Note that in this case the drift of the

subordinator must be zero. In the second case, the drift b is strictly positive, but we do not

assume that the subordinator T is special. Note that the drift b is strictly positive if and

only if φ(λ) ∼ bλ as λ →∞. We put these two cases into the following assumption:

Assumption A: The Laplace exponent φ of T satisfies

φ(λ) ∼ γ−1λα/2, λ →∞, (3.1)

for some α ∈ (0, 2], and in the case α ∈ (0, 2) we always assume that φ is a special Bernstein

function.

Note that in the case α = 2, we have that γ−1 = b, the drift of the subordinator.

Assumption A implies that, in the case α ∈ (0, 2), the Lévy measure µ of T must satisfy

µ((0,∞)) = ∞. So under the Assumption A, the subordinator T has a potential density

u(t). In the case α ∈ (0, 2), it follows from (2.4) and Assumption A by use of the Tauberian

theorem and the monotone density theorem, that

u(t) ∼ γ

Γ(α/2)
tα/2−1, t → 0 + .

Therefore, for each A > 0, there exists a positive constant c1 = c1(A) such that

u(t)

tα/2−1
≥ c1 , 0 < t ≤ A . (3.2)

Moreover, there exists a positive constant c2 such that

u(t)

tα/2−1
≤
{

c2, t < 1
c2t

−α/2+1, t ≥ 1
(3.3)

Note also that both (3.2) and (3.3) are valid for the case of a strictly positive drift (i.e.,

α = 2).

For the jumping kernel estimates we will need the following assumption.
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Assumption B: The Laplace exponent φ of T is a complete Bernstein function and

satisfies one of the following two conditions: (i) The drift b is positive and the integral part

φ1 of φ has the following asymptotic behavior

φ1(λ) ∼ γ−1λβ/2, λ →∞, (3.4)

for some β ∈ (0, 2). (ii) b = 0 and φ has the following asymptotic behavior

φ(λ) ∼ γ−1λβ/2, λ →∞, (3.5)

for some β ∈ (0, 2).

It is known (see [5] for instance) that the Lévy measure of any complete Bernstein function

has a completely monotone density. The asymptotic relations (3.4) and (3.5) imply that the

Lévy measure µ of T must satisfy µ((0,∞)) = ∞. Corollary 2.4 of [10] implies that the

Lévy measure ν of the complete Bernstein function λ/φ1(λ) in case (i), and of the complete

Bernstein function λ/φ(λ) in case (ii), satisfies ν((0,∞)) = ∞. Hence the potential measure

of the subordinator with Laplace exponent λ/φ1(λ) in case (i), and with Laplace exponent

λ/φ(λ) in case (ii), has a decreasing density v. Again from Corollary 2.4 of [10] we know

that the Lévy measure µ of φ and the potential density v are related as follows

v(t) = ã + µ((t,∞)) , t > 0,

with ã = 0 in case (i) and ã = a in case (ii). It follows from (3.4), (3.5), the Tauberian

theorem and the monotone density theorem that

v(t) ∼ 1

γΓ(1− β/2)
t−β/2, t → 0+ ,

hence we have

µ((t,∞)) ∼ 1

γΓ(1− β/2)
t−β/2, t → 0 + .

Using the monotone density theorem again we get that

µ(t) ∼ β

2γΓ(1− β/2)
t−β/2−1, t → 0+ , (3.6)

where µ(t) denotes the density of the measure µ. Therefore, for each A > 0, there exists a

positive constant c3 = c3(A) such that

µ(t)

t−β/2−1
≥ c3 , 0 < t ≤ A . (3.7)

Moreover, there exists a positive constant c4 such that

µ(t)

t−β/2−1
≤
{

c4, t < 1
c4t

β/2+1, t ≥ 1
(3.8)

The sharp estimates on the Green function of Y D are included in the following result.
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Theorem 3.1 Suppose that D is a bounded C1,1 domain in Rd and that the subordinator

T = (Tt : t ≥ 0) satisfies Assumption A. If d > α, then there exist positive constants C1 ≤ C2

such that for all x, y ∈ D

C1

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d−α
≤ UD(x, y) ≤ C2

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d−α
.

Proof. Upper bound. It is known (see [2] and [8]) that there exists a positive constant c5

such that for all t > 0 and any x, y ∈ D,

pD(t, x, y) ≤ c5t
−d/2−1ρ(x)ρ(y) exp

(
−|x− y|2

6t

)
. (3.9)

Hence by the formula for UD,

UD(x, y) ≤ c5ρ(x)ρ(y)

∫ ∞

0

t−d/2−1e−|x−y|2/6tu(t) dt

= c6ρ(x)ρ(y)|x− y|−d

∫ ∞

0

sd/2−1e−su

(
|x− y|2

6s

)
ds

= c7ρ(x)ρ(y)|x− y|−d−2+α

∫ ∞

0

sd/2−α/2e−s u(|x− y|2/6s)
(|x− y|2/6s)α/2−1

ds .

For α = 2, the last integral is clearly bounded by a positive constant. For 0 < α < 2, we

estimate the integral by use of (3.3):∫ ∞

0

sd/2−α/2e−s u(|x− y|2/6s)
(|x− y|2/6s)α/2−1

ds =

∫ |x−y|2/6

0

+

∫ ∞

|x−y|2/6

≤ c2

∫ |x−y|2/6

0

sd/2−α/2e−s(|x− y|2/6s)−α/2+1 ds + c2

∫ ∞

|x−y|2/6

sd/2−α/2e−s ds

≤ c8

(
|x− y|−α+2

∫ |x−y|2/6

0

sd/2−1e−s ds +

∫ ∞

|x−y|2/6

sd/2−α/2e−s ds

)

≤ c9

(∫ ∞

0

sd/2−1e−s ds +

∫ ∞

0

sd/2−α/2e−s ds

)
= c10 .

Here we used that |x − y| ≤ diam (D). Hence we have shown that there exists a positive

constant c11 such that for all x, y ∈ D,

UD(x, y) ≤ c11
ρ(x)ρ(y)

|x− y|d+2−α
. (3.10)

Let p(t, x, y), t ≥ 0, x, y ∈ Rd, be the transition density of the Brownian motion X in

Rd. Then pD(t, x, y) ≤ p(t, x, y), implying

UD(x, y) ≤
∫ ∞

0

p(t, x, y)u(t) dt .
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A similar (but easier) argument to the one in the paragraph above shows that there is a

constant c12 > 0 such that∫ ∞

0

p(t, x, y)u(t) dt ≤ c12|x− y|α−d, x, y ∈ D.

Therefore,

UD(x, y) ≤ c12|x− y|α−d, x, y ∈ D. (3.11)

Combining (3.10) and (3.11) we get the upper bound of the theorem.

Lower bound. It was proved in [11] and [7] that for any A > 0, there exist positive

constants c13 and c14 such that for any t ∈ (0, A] and any x, y ∈ D,

pD(t, x, y) ≥ c13

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp

(
−c14|x− y|2

t

)
. (3.12)

Hence by the formula for UD,

UD(x, y) ≥ c13

∫ A

0

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp{−c14|x− y|2/t}u(t) dt .

Assume x 6= y. Let R be the diameter of D and assume that A has been chosen so that

A = R2. Then for any x, y ∈ D, ρ(x)ρ(y) < R2 = A. The lower bound is proved by

considering two separate cases:

(i)
|x− y|2

ρ(x)ρ(y)
<

2R2

A
. In this case we have:

UD(x, y) ≥ c13

∫ ρ(x)ρ(y)

0

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp{−c14|x− y|2/t}u(t) dt

≥ c15|x− y|−d+2

∫ ∞

c14|x−y|2
ρ(x)ρ(y)

sd/2−2e−su(c14|x− y|2/s) ds

≥ c15|x− y|−d+2

∫ ∞

2c14R2

A

sd/2−2e−su(c14|x− y|2/s) ds

= c16|x− y|−d+α

∫ ∞

2c14R2

A

sd/2−α/2−1e−s u(c14|x− y|2/s)
(c14|x− y|2/s)α/2−1

ds .

For s > 2c14R
2/A, we have that c14|x− y|2/s ≤ A/2, hence we can estimate the fraction in

the above integral by c1, see (3.2). Hence,

UD(x, y) ≥ c17|x− y|−d+α .
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(ii)
|x− y|2

ρ(x)ρ(y)
≥ 2R2

A
. In this case we have:

UD(x, y) ≥ c13ρ(x)ρ(y)

∫ A

ρ(x)ρ(y)

t−d/2−1 exp{−c14|x− y|2/t}u(t) dt

= c18ρ(x)ρ(y)|x− y|−d

∫ c14|x−y|2
ρ(x)ρ(y)

c14|x−y|2
A

sd/2−1e−su(c14|x− y|2/s) ds

= c19ρ(x)ρ(y)|x− y|−d+α−2

∫ c14|x−y|2
ρ(x)ρ(y)

c14|x−y|2
A

s−d/2−α/2e−s u(c14|x− y|2/s)
(c14|x− y|2/s)α/2−1

ds

≥ c19ρ(x)ρ(y)|x− y|−d+α−2

∫ 2c14R2

A

c14R2

A

s−d/2−α/2e−s u(c14|x− y|2/s)
(c14|x− y|2/s)α/2−1

ds .

Again, if s > c14R
2/A ≥ c14|x− y|2/A, then c14|x− y|2/A < s, and we use (3.2) to estimate

the fraction above by c1. Hence,

UD(x, y) ≥ c20
ρ(x)ρ(y)

|x− y|d−α+2
.

Combining the two cases above we arrive at the lower bound of the theorem. 2

Remark 3.2 Note that the theorem above implies that when b is positive, the Green function

UD of Y D is comparable to the Green function of XD.

The sharp estimates on the jumping function of Y D are included in the following result.

Theorem 3.3 Suppose that D is a bounded C1,1 domain in Rd and that the subordinator

T = (Tt : t ≥ 0) satisfies Assumption B. Then there exist positive constants C3 ≤ C4 such

that for all x, y ∈ D

C3

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+β
≤ JD(x, y) ≤ C4

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+β
.

Proof. The proof of this theorem is the same as that of Theorem 3.1, the only differences

are that we use Assumption B, the formula for J , (3.7) and (3.8) instead of Assumption A,

the formula for UD, (3.2) and (3.3). We omit the details. 2

Using arguments similar to that of Proposition 3.2 of [8], we can get the following esti-

mates on the killing function of Y D.
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Theorem 3.4 Suppose that D is a bounded C1,1 domain in Rd and that the subordinator

T = (Tt : t ≥ 0) satisfies Assumption B. Then there exist positive constants C5 ≤ C6 such

that

C5(ρ(x))−β ≤ κD(x) ≤ C6(ρ(x))−β, x ∈ D.

Proof. Let Z = (Zt : t ≥ 0) be the subordinate Brownian motion defined by Zt = X(Tt).

Clearly, the killing function κ(x) of Z is given by κ(x) = a. It follows from [6] that the

jumping function J(x, y) of this process is given by

J(x, y) =
1

2

∫ ∞

0

p(t, x, y)µ(t)dt, (3.13)

where p(t, x, y) is the transition density of X. Let ZD = (ZD
t , Px) be the process Z killed

upon exiting D. Then it is known (see [3], for instance) that the killing function κ̃D(x) of

ZD is given by

κ̃D(x) = a + 2

∫
Dc

J(x, y)dy, x ∈ D.

Now using (3.6), (3.13) and an argument similar to that of Theorem 3.1 of [9] we get that

J(x, y) ∼ c21|x− y|−d−β, |x− y| → 0

for some constant c21 > 0. From this we immediately get that there exist constants 0 <

c22 < c23 such that

c22(ρ(x))−β ≤ κ̃D(x) ≤ c23(ρ(x))−β, x ∈ D.

Repeating the argument of Proposition 3.2 of [8] we get that there exist constants 0 < c24 <

c25 such that

c24κ̃
D(x) ≤ κD(x) ≤ c25κ̃

D(x), x ∈ D.

The proof is now finished. 2
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[1] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996.

[2] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, Cambridge, 1989.

[3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes,
Walter De Gruyter, Berlin, 1994.

10
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