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1 Introduction

The classical Cramér-Lundberg model in insurance assumes that the risk

process (R(t), t ≥ 0) is given by R(t) = ct − ∑N(t)
i=1 Yi, where c > 0 is the

premium rate, (Yi, i ∈ N) an i.i.d. sequence of nonnegative random variables

modelling individual claims, and (N(t), t ≥ 0) a homogeneous Poisson pro-

cess of rate λ > 0, independent of (Yi, i ∈ N). Hence the cumulative claim

process is modelled by the compound Poisson process
∑N(t)

i=1 Yi. Let F denote

the distribution function of Yi, and let µ = EYi. The central question for

the model is the computation of the ruin probability in infinite time, given

initial capital x > 0, defined by

ϑ(x) := P(R(t) + x < 0 for some t > 0) .

In case c ≤ λµ, this quantity is identically equal to one. Hence, one always

assumes the net profit condition c > λµ, and defines the parameter ρ :=

λµ/c < 1. Instead of studying the ruin probability, one can equivalently

consider the survival probability θ(x) := 1− ϑ(x), which is more convenient.

One of the few explicit results for the survival probability is the Pollaczek-

Hinchin formula:

θ(x) = (1− ρ)
∞∑

n=0

ρnF n∗
I (x) , (1.1)

where FI(x) = (1/µ)
∫ x

0
(1− F (t)) dt is the integrated tail distribution. For-

mula (1.1) is usually derived via renewal arguments. The resulting integro-

differential equation for ϑ is solved using Laplace transforms. The explana-

tion of the formula is given by considering the supremum of the dual process

R̂(t) := −R(t). By the net profit condition R̂(t) drifts to −∞, hence the

supremum is a.s. finite, and clearly, θ(x) = P(sup0≤t<∞ R̂(t) ≤ x). It is easy

to see that sup0≤t<∞ R̂(t) is a sum of geometrically many i.i.d. random vari-

ables. It is not, however, quite as easy to determine the distribution of these

variables. Usually fluctuation theory is used. We refer the reader to [Asm]

and [RSST] for details.
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In this paper we are interested in generalizations of the Cramér-Lundberg

model, which lead to the same type of the Pollaczek-Hinchin formula for the

survival probability, and which admit an explanation of the formula by de-

composition of the supremum of the dual process in the random sum of ladder

heights. Dufresne and Gerber [DG] considered the risk process (R(t), t ≥ 0)

perturbed by a multiple of standard Brownian motion (W (t), t ≥ 0), and

defined X(t) := R(t) + ςW (t), ς > 0. Adding a perturbation allows for an

additional uncertainty, either in the cumulative claims, or in the premium

income. Using renewal arguments, they derived the formula

θ(x) = (1− ρ)
∞∑

n=0

ρn(G(n+1)∗ ∗ F n∗
I )(x) . (1.2)

The parameter ρ and the distribution function FI are the same as in the

unperturbed model, while G is an exponential distribution function with

parameter 2c/ς2. They also gave the following interpretation of the formula

(1.2): Let σ1, σ2, . . . be the moments when a new supremum of the dual

process X̂(t) := −X(t) is reached by a jump of the claim process
∑N(t)

i=1 Yi.

Then the number of such moments has geometric distribution with parameter

ρ, G is the distribution function of the supremum of X̂(t) just before σ1,

and FI is the conditional distribution of the overshoot over the previous

supremum, given σ1 < ∞.

Furrer [Fur] considered the process X(t) = R(t) + Zα(t), where R is the

classical risk process, and Zα an α-stable Lévy process with no positive jumps,

1 < α < 2. He used the explicit formula for the Laplace exponent of the

infimum of X(t) due to Zolotarev [Zol] to obtain formula (1.2) for the survival

probability of X(t). The distribution function G is explicitly identified as the

Mittag-Leffler distribution given by 1−G(x) =
∑∞

n=0(−cxα−1)n/Γ(1 + (α−
1)n).

Schmidli [Sch] gives a nice interpretation of G as the distribution of the

supremum of the dual process X̂ just before the first time the process X̂

exceeds its previous supremum by a jump of the cumulative claim process.
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His setting is more general in the sense that the cumulative claim process is

generated by a stationary, ergodic, marked point process.

Another possible generalization of the classical risk process is to allow a

different cumulative claim process. Dufresne, Gerber and Shiu [DGS] con-

sidered the model in which the claim process was modelled by a Gamma

process. Such a process has infinitely many jumps in finite intervals. Yang

and Zhang [YZ] studied this model perturbed by a Brownian motion. Us-

ing the approach in [Fur], they derived a formula of the type (1.2) with FI

replaced by an exponential integral type distribution, and G is again the

exponential distribution.

In this paper we consider a general perturbed risk process X(t) = ct −
C(t)+Z(t) where (C(t), t ≥ 0) is a cumulative claim process, and (Z(t), t ≥
0) a perturbation. Note that the cumulative claim process has to be in-

creasing. Therefore, if one wants to stay in the realm of processes with sta-

tionary independent increments, the only choice for modelling (C(t), t ≥ 0)

are subordinators. Hence, we assume that (C(t), t ≥ 0) is a subordinator

(without drift) having finite expectation satisfying the net profit condition

c−EC(1) > 0. The perturbation is modelled by a Lévy process (Z(t), t ≥ 0)

with no positive jumps, having zero expectation. The assumption that the

expectation is zero is inconsequential, since EZ(1) can always be moved to

the premium rate. In the analysis of the risk process (X(t), t ≥ 0), we will

rely heavily on fluctuation theory for general Lévy processes, which is par-

ticularly explicit for processes with no positive jumps. For background on

these results, we refer the reader to the book by Bertoin [Ber].

Our first result is the formula for the survival probability for the process

X which is proved in Section 3:

θ(x) := P( inf
0≤t<∞

X(t) > −x) = (1− ρ)
∞∑

n=0

ρn(G(n+1)∗ ∗Hn∗)(x) . (1.3)

We essentially follow the approach from [Fur], and obtain explicitly the

parameter ρ and the distribution functions G and H appearing in the formula.
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It turns out that G can be identified as the distribution function of the

absolute supremum of the process (−ct − Z(t), t ≥ 0), while H is related

to the subordinator C(t) only, and can be thought of as the integrated tail

distribution of jumps. In Section 4 we give an interpretation of the formula

(1.3) by decomposing the supremum of the dual process X̂(t) := −X(t) into

the random sum of modified ladder heights. In order to do this, we first show

that the times when the new supremum of X̂(t) is reached by a jump of the

subordinator are discrete. Let 0 < σ1 < σ2 < . . . be those times, and let G̃ be

the distribution function of Ŝ(σ1−), where Ŝ(t) := sup0≤s≤t X̂(s). We show

that Ŝ(σ1−) and the overshoot Ŝ(σ1)−Ŝ(σ1−) are conditionally independent

given σ1 < ∞, and identify the conditional distribution of the overshoot with

H. Using the strong Markov property at times σi, we rederive the formula

(1.3) with G̃ instead of G (and the same ρ). This clearly implies that G̃ = G

yielding the required interpretation. Our results are more general and cover

the results obtained in [Fur], [YZ] and [Sch] (in Lévy case).

Another interpretation of the formula (1.3) is provided by looking at

the ladder height process of X̂. The ladder height process is obtained by

time-changing Ŝ(t) by the inverse local time at zero of the reflected process

Ŝ(t) − X̂(t). This process records only values where the new supremum

is reached, and consequently, contains all the relevant information on the

distribution of the supremum of X̂(t). In Section 5 the results of Section 4

are reinterpreted and improved in terms of the ladder height process.

We end this introduction by noting that in a very recent paper Klüppel-

berg, Kyprianou and Maller [KKM] study ruin probabilities for general Lévy

insurance risk process (not necessarily spectrally negative) drifting to −∞.

They are mostly concerned with the asymptotic results for the first passage

time and overshoot behavior at high levels.
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2 Setting and notation

Let (Ω,F ,P) be a probability space on which all random variables will be

defined. As explained in the introduction, we model the cumulative claim

process by a subordinator C = (C(t), t ≥ 0) without a drift. Let ν be

the Lévy measure of C, i.e., ν is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(x ∧ 1) ν(dx) < ∞. The Laplace exponent of C is defined by

ΦC(β) :=

∫

(0,∞)

(1− e−βx) ν(dx)

so that

E[exp{−βC(t)}] = exp{−tΦC(β)} .

Note that

EC(1) = Φ ′
C(0+) =

∫

(0,∞)

x ν(dx) =

∫ ∞

0

ν(x,∞) dx

where the last equality follows by integration by parts. As explained in

introduction, we assume throughout that EC(1) < ∞. Let

H(x) :=
1

EC(1)

∫ x

0

ν(y,∞) dy . (2.1)

Then H is an absolutely continuous distribution function with density h(x) =

ν(x,∞)/EC(1). We call H the integrated tail distribution. The Laplace

transform of H is given by

LH(β) :=

∫ ∞

0

e−βx H(dx) =

∫ ∞

0

e−βxh(x) dx =
1

EC(1)

ΦC(β)

β
. (2.2)

Let ∆C(t) = C(t) − C(t−). It is well known that (∆C(t), t ≥ 0) is a Pois-

son point process with characteristic measure ν and the state space (0,∞).

Moreover, C(t) =
∑

0<s≤t ∆C(s).

We model the risk process R = (R(t), t ≥ 0) as R(t) = ct − C(t) where

c > 0 is the premium rate. Then R is a Lévy process with no positive jumps
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(i.e., spectrally negative Lévy process). The Laplace exponent ψR of R is

defined by relation

E[exp{βR(t)}] = exp{tψR(β)} .

Clearly, ψR(β) = cβ−ΦC(β). It is important to note that R(t) stays positive

in a neighborhood of t = 0, implying that ruin (with zero initial capital) does

not occur immediately. This follows from the fact that limt→0 C(t)/t = 0

([Ber], p.84 or p.192). From now on we assume that the net profit condition

c > EC(1) holds, and let d := c−EC(1). It follows that ER(1) = ψ ′
R(0+) =

d > 0, which implies that R drifts to +∞. We also introduce the parameter

ρ := EC(1)/c ∈ (0, 1).

The perturbation Z = (Z(t), t ≥ 0) of the risk process R will be modelled

by a spectrally negative, mean zero, Lévy process. Its Lévy measure ΠZ is

an infinite σ-finite measure on (−∞, 0) satisfying the usual condition
∫

(−∞,0)

(x2 ∧ 1) ΠZ(dx) < ∞ , (2.3)

and the additional condition
∫

(−∞,−1)

|x|ΠZ(dx) < ∞ (2.4)

which ensures finite expectation of Z. The Laplace exponent of Z is given

by

ψZ(β) :=
ς2

2
β2 +

∫

(−∞,0)

(eβx − 1− βx) ΠZ(dx) (2.5)

where ς ≥ 0, and integrability of the integrand follows from condition (2.4).

Further, EZ(1) = ψ ′
Z(0+) = 0 (e.g., [Sat], p.163). Note that we allow Z to be

identically zero (both ΠZ = 0 and ς = 0). However, Z cannot be compound

Poisson because such processes cannot have EZ(t) = 0. Let us point out that

our setting includes the Brownian perturbation (ς > 0, ΠZ = 0), and also

the perturbation by α-stable spectrally negative Lévy process for α ∈ (1, 2)

(ς = 0, ΠZ(dx) = (a/|x|α+1)1(−∞,0)dx).
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Finally, we define the general perturbed risk process X = (X(t), t ≥ 0)

as

X(t) := R(t) + Z(t) = ct− C(t) + Z(t) ,

where C and Z are independent processes. The process X is a spectrally

negative Lévy process with finite positive expectation EX(1) = c−EC(1) =

d > 0. Therefore, limt→∞ X(t) = +∞ a.s., i.e., X drifts to infinity. Let

F0(t) := σ(C(s), Z(s), 0 ≤ s ≤ t), and let F = (F(t), t ≥ 0) be the fil-

tration obtained in the usual way by augmenting F0(t). Clearly, X(t) is

F(t)-measurable. The Laplace exponent ψ of X, defined by the relation

E[exp{βX(t)}] = exp{tψ(β)}

is, due to independence of C and Z, given by

ψ(β) = cβ − ΦC(β) + ψZ(β) , β ≥ 0 .

Since ψ is strictly convex and ψ ′(0+) = EX(1) > 0, ψ is strictly increasing

on [0,∞), and therefore has a strictly increasing inverse Φ : [0,∞) → [0,∞).

Since ψ(0) = 0, it follows that Φ(0) = 0.

In the sequel, we will be interested in the function θ : [0,∞) → [0, 1]

defined by

θ(x) := P(X(t) ≥ −x, for all t ≥ 0) . (2.6)

This function is the survival probability of the general perturbed risk process

X starting with the initial capital x ≥ 0. The initial behavior of X determines

θ at zero. If there is no perturbation, i.e., if X = R, then, as said before, X

remains positive (a.s.) for an initial period of time, and hence θ(0) > 0. On

the other hand, if Z 6= 0, then X is of unbounded variation, hence the point

0 is regular for (−∞, 0) ([Ber], p.192). Thus X hits the interval (−∞, 0)

immediately, implying θ(0) = 0.
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3 Laplace transform approach

In this section we derive the Pollaczek-Hinchin formula for the survival prob-

ability using the explicit form of the Laplace transform of the absolute in-

fimum of X. Let I(∞) := inf0≤s<∞ X(s) and I(t) := inf0≤s≤t X(s). The

fluctuation theory for Lévy processes provides the following formula for the

Laplace transform of the infimum evaluated at an independent exponential

time τ(q) with parameter q > 0 (see [Ber], p.192):

E[exp{βI(τ(q))}] =
q(Φ(q)− β)

Φ(q)(q − ψ(β))
, β > 0 .

Letting q ↓ 0, and using I(τ(q))
P→ I(∞), it follows that

E[exp{βI(∞)}] = ψ ′(0+)
β

ψ(β)
= d

β

ψ(β)
, β > 0 . (3.1)

Let us introduce for a moment the following notation: Y (t) = ct + Z(t) and

ψY (β) = cβ + ψZ(β). By the same argument as above it follows that

E[exp{−β(− inf
0≤t<∞

Y (t))}] = ψ ′
Y (0+)

β

ψY (β)
= c

β

ψY (β)
, β > 0 . (3.2)

Let G denote the distribution function of − inf0≤t<∞ Y (t) = sup0≤t<∞(−ct−
Z(t)). Then the last formula says that

LG(β) :=

∫ ∞

0

e−βx G(dx) = c
β

ψY (β)
, β > 0 . (3.3)

Recall formulae (2.1) and (2.2) from Section 2:

H(x) := (1/EC(1))

∫ x

0

ν(y,∞) dy and LH(β) = ΦC(β)/(EC(1)β) .
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Also recall that ρ = EC(1)/c, hence d/c = (c − EC(1))/c = 1 − ρ. Now we

compute dβ/ψ(β) in terms of ρ, LG and LH. This idea comes from [Fur];

d
β

ψ(β)
= d

1
ψY (β)

β
− ΦC(β)

β

= d
1

c
LG(β)

− EC(1)LH(β)

=
d

c

LG(β)

1− ρLG(β)LH(β)

= (1− ρ)LG(β)
∞∑

n=0

(ρLG(β)LH(β))n .

By inverting the Laplace transform, we obtain the following theorem.

Theorem 3.1 The survival probability of the general perturbed risk process

X is given by

θ(x) = P(I(∞) ≥ −x) = (1− ρ)
∞∑

n=0

ρn(G(n+1)∗ ∗Hn∗)(x) , x ≥ 0. (3.4)

We point out that H depends only on the subordinator C, while G de-

pends on the premium rate c and the perturbation Z. Brownian pertur-

bations were considered in [Fur] and α-stable ones in [DG] and [YZ]. In

both cases the distribution G is given explicitly. If there is no perturbation,

Z = 0, then LG(β) = 1, and consequently, the distribution function G can

be omitted from formula (3.4).

4 Decomposition of the supremum of X̂

Let X̂(t) := −X(t) = −ct + C(t)− Z(t) denote the dual process of X. Let

Ŝ(t) := sup0≤s≤t X̂(s) and Ŝ(∞) := sup0≤s<∞ X̂(s) .

Since X̂ drifts to −∞, Ŝ(∞) < ∞ a.s. Introduce the following notation:

Î(t) := inf0≤s≤t X̂(s) and S(t) := sup0≤s≤t X(s). Clearly, −Î(t) = S(t). By
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a time reversal argument, −Î(t)
d
= Ŝ(t)− X̂(t), and hence

Ŝ(t)− X̂(t)
d
= S(t) . (4.1)

In this section we give a decomposition of X̂ at certain stopping times which,

following Schmidli [Sch], we call modified ladder epochs.

Let P(F) be the predictable σ-algebra on R+ × Ω with respect to the

filtration F introduced in Section 2. Let B∂ be the Borel σ-algebra on (0,∞)∪
{∂}. IfH : R+×Ω×((0,∞)∪{∂}) → R+ is a nonnegative process measurable

with respect to P(F)⊗B∂, then the following compensation formula is valid

(e.g., [RY], p.439, or [Ber], p.9):

E

( ∑
0≤t<∞

H(t, ω, ∆C(t, ω))

)
= E

(∫ ∞

0

dt

∫

(0,∞)

ν(dε)H(t, ω, ε)

)
(4.2)

The first use of this formula will be to compute the expected number

of times the new supremum of X̂ is attained by a jump of a subordinator

C over the previous supremum. Note that this is the case if and only if

∆C(t) > Ŝ(t−)− X̂(t−).

Theorem 4.1 The following formula is valid:

E

( ∑
0≤t<∞

1{∆C(t)>bS(t−)− bX(t−)}

)
=

EC(1)

c− EC(1)
. (4.3)

Proof. TakeH(t, ω, ε) := 1(bS(t−,ω)− bX(t−,ω),∞)(ε) in the compensation formula.

The left hand side in (4.2) is then precisely the left hand side in (4.3). For

the right hand side in the compensation formula compute:

E
(∫ ∞

0

dt

∫

(0,∞)

ν(dε)1(bS(t−)− bX(t−),∞)(ε)

)
(4.4)

= E
(∫ ∞

0

dt ν(Ŝ(t−)− X̂(t−), ∞)

)

=

∫ ∞

0

E[ν(Ŝ(t)− X̂(t),∞)] dt

=

∫ ∞

0

dtE[ν(S(t),∞)]
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where the third line follows by continuity in probability of X̂, and the fourth

line by (4.1). Clearly, the last expression is equal to the monotone limit

lim
q→0

∫ ∞

0

e−qtdtE[ν(S(t),∞)] = lim
q→0

1

q

∫ ∞

0

qe−qtdtE[ν(S(t),∞)] (4.5)

Let τ(q) be an exponential time with parameter q independent of C and Z,

and let F denote the distribution function of S(τ(q)). Then F is exponential

with parameter Φ(q). It follows that

∫ ∞

0

qe−qtdtE[ν(S(t),∞)] = E[

∫ ∞

0

qe−qtdt ν(S(t),∞)] (4.6)

= E[ν(S(τ(q)),∞)]

=

∫ ∞

0

ν(x,∞) F (dx)

=

∫ ∞

0

(1− e−Φ(q)x) ν(dx)

where the last equation follows by integration by parts. Further,

lim
q→0

1− e−Φ(q)x

q
= lim

q→0

Φ(q)

q
x =

1

ψ′(0+)
x =

x

d
.

By monotone convergence theorem

lim
q→0

∫ ∞

0

e−qtdtE[ν(S(t),∞)] = lim
q→0

∫ ∞

0

1− e−Φ(q)x

q
ν(dx) (4.7)

=
1

d

∫ ∞

0

x ν(dx)

=
EC(1)

c− EC(1)
.

This proves formula (4.3). 2

Remark 4.2 We would like to emphasize a very important and somewhat

subtle point which is a consequence of Theorem 4.1. Namely, the epochs

when a new supremum of X̂ is reached by a jump of C are discrete, and,
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in particular, neither time 0 nor any other time is an accumulation point of

those epochs. More precisely, let us define

σ1 = σ := inf{t > 0 : ∆C(t) > Ŝ(t−)− X̂(t−)} , (4.8)

and inductively,

σn+1 := inf{t > σn : ∆C(t) > Ŝ(t−)− X̂(t−)} (4.9)

on {σn < ∞}. Theorem 4.1 implies that σ > 0 a.s. and σn < σn+1 a.s. on

{σn < ∞}. As a consequence, we can order the epochs when a new supremum

is reached by a jump of a subordinator as 0 < σ1 < σ2 < . . . a.s. The

decomposition of X̂ and the ensuing derivations will depend on this result in

a crucial way.

For y > 0, let τ̂y := inf{t > 0 : X̂(t) > y} be the entrance time of X̂ in

(y,∞), and, similarly, τy := inf{t > 0 : X(t) > y}. Note that Ŝ(t−) ≤ y if

and only if t ≤ τ̂y. We need the expected occupation time formula for the

reflected process Ŝ − X̂ before σ ∧ τ̂y.

Proposition 4.3 For x > 0 and y > 0 the following formula is valid:

E
∫ σ∧bτy

0

1(bS(t)− bX(t)≤x) dt = P(σ = ∞, τ̂y = ∞)
x

d
. (4.10)

Proof. We first compute the expected occupation time of Ŝ − X̂ below x:

E
∫ ∞

0

1(bS(t)− bX(t)≤x) dt =

∫ ∞

0

P(Ŝ(t)− X̂(t) ≤ x) dt (4.11)

=

∫ ∞

0

P(S(t) ≤ x) dt

= Eτx .

Since (τx, x > 0) is a subordinator with the Laplace exponent Φ, it follows

that Eτx = (Eτ1)x = Φ ′(0+)x = x/d.
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Now we compute the expected occupation time of Ŝ − X̂ below x after

time σ ∨ τ̂y:

E
∫ ∞

0

1(bS(t)− bX(t)≤x)1(t>σ)1(bS(t)>y) dt (4.12)

= E

[∫ ∞

σ∨bτy

1(bS(t)− bX(t)≤x) dt , σ ∨ τ̂y < ∞
]

= P(σ ∨ τ̂y < ∞)E

[∫ ∞

σ∨bτy

1(bS(t)− bX(t)≤x) dt |σ ∨ τ̂y < ∞
]

= P(σ ∨ τ̂y < ∞)E
∫ ∞

0

1(bS(t)− bX(t)≤x) dt

= P(σ < ∞, τ̂y < ∞)
x

d
.

To justify the passage from the third to the fourth line, note that σ ∨ τ̂y is a

stopping time at which X̂ reaches a new maximum, and hence by the strong

Markov property, the reflected process Ŝ − X̂ starts afresh from 0. Similarly

E
∫ ∞

0

1(bS(t)− bX(t)≤x)1(bS(t)>y) dt = P(τ̂y < ∞)
x

d
. (4.13)

Subtracting (4.12) from (4.13), it follows

E
∫ ∞

0

1(bS(t)− bX(t)≤x)1(t≤σ)1(bS(t)>y) dt = P(σ = ∞, τ̂y < ∞)
x

d
. (4.14)

One can prove similarly that

E
∫ ∞

0

1(bS(t)− bX(t)≤x)1(t≤σ) dt = P(σ = ∞)
x

d
. (4.15)

Finally, (4.10) follows by subtracting (4.14) from (4.15). 2

Note that the proposition says that the expected occupation time mea-

sure for Ŝ − X̂ before σ ∧ τ̂y is proportional to the Lebesgue measure on

[0,∞). Hence, formula (4.10) is by definition of the expected occupation

time measure equivalent to

E
∫ ∞

0

f(Ŝ(t)− X̂(t)) dt =
P(σ = ∞, τ̂y = ∞)

d

∫ ∞

0

f(u)du , (4.16)
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where f is a nonnegative Borel function on [0,∞).

Let J := (∆C(σ) − (Ŝ(σ−) − X̂(σ−)))1(σ<∞) be the overshoot at time

σ. In the next proposition we compute the preliminary version of the joint

distribution of the vector (Ŝ(σ−), J, Ŝ(σ−)− X̂(σ−)) on {σ < ∞}.
Proposition 4.4 For x, y, z > 0

P(Ŝ(σ−) ≤ y, J > x, Ŝ(σ−)− X̂(σ−) > z, σ < ∞) = (4.17)

=
P(σ = ∞, τ̂y = ∞)

d

∫ ∞

x+z

ν(u,∞) du .

Proof. We use the compensation formula with

H(t, ω, ε) := 1(bS(t−,ω)≤y)1(bS(t−,ω)− bX(t−,ω)>z)1(t≤σ(ω))1(x+bS(t−,ω)− bX(t−,ω),∞)(ε) .

Then

E
∑

0≤t<∞
H(t, ω, ∆C(t, ω)) =

= P(Ŝ(σ−) ≤ y, Ŝ(σ−)− X̂(σ−) > z, J > x, σ < ∞) .

On the other hand,

E
(∫ ∞

0

dt

∫

(0,∞)

ν(dε)H(t, ω, ε)

)

= E
(∫ σ

0

dt 1(bS(t−)≤y)1(bS(t−)− bX(t−)>z)

∫

(0,∞)

1(x+bS(t−)− bX(t−),∞)(ε)ν(dε)

)

= E
(∫ σ∧bτy

0

dt 1(bS(t)− bX(t)>z) ν(x + Ŝ(t)− X̂(t),∞)

)

=
P(σ = ∞, τ̂y = ∞)

d

∫ ∞

0

1(z,∞)(u) ν(x + u,∞) du

=
P(σ = ∞, τ̂y = ∞)

d

∫ ∞

x+z

ν(u,∞) du ,

where the fourth line follows from (4.16) with f(u) = 1(z,∞)(u)ν(x + u,∞).

2

From formula (4.17) we can easily derive several useful corollaries.

15



Corollary 4.5 The following formulae are valid:

P(σ < ∞) = ρ (4.18)

P(J > x |σ < ∞) =
1

EC(1)

∫ ∞

x

ν(u,∞) du = 1−H(x) (4.19)

Proof. Let x → 0, y →∞ and z → 0 in (4.17). It follows that

P(σ < ∞) =
P(σ = ∞)

d
EC(1) .

Solving for P(σ < ∞) we get (4.15). To obtain (4.16), let y →∞ and z → 0

in (4.17). It follows that

P(J > x, σ < ∞) =
P(σ = ∞)

d

∫ ∞

x

ν(u,∞) du .

By conditioning,

P(J > x |σ < ∞) =
1− ρ

ρd

∫ ∞

x

ν(u,∞) du

=
1

EC(1)

∫ ∞

x

ν(u,∞) du .

2

In the next corollary, we interpret Ŝ(σ−) as the absolute supremum Ŝ(∞)

in case σ = ∞.

Corollary 4.6 The event {σ < ∞} and the random variable Ŝ(σ−) are

independent. As a consequence, the conditional distribution of Ŝ(σ−) given

σ < ∞ is equal to the unconditional distribution of Ŝ(σ−).

Proof. Let x → 0 and z → 0 in (4.17). It follows that

P(Ŝ(σ−) ≤ y, σ < ∞) = P(σ = ∞, τ̂y = ∞)
EC(1)

d
(4.20)

= P(σ = ∞, Ŝ(∞) ≤ y)
EC(1)

d
.

16



Clearly,

P(Ŝ(σ−) ≤ y, σ = ∞) = P(Ŝ(∞) ≤ y, σ = ∞)

Adding up,

P(Ŝ(σ−) ≤ y) =

(
EC(1)

d
+ 1

)
P(Ŝ(∞) ≤ y, σ = ∞)

=
c

d
P(Ŝ(∞) ≤ y, σ = ∞) .

Therefore,

P(Ŝ(σ−) ≤ y)P(σ < ∞) =
c

d
P(Ŝ(∞) ≤ y, σ = ∞) · EC(1)

c

=
EC(1)

d
P(Ŝ(∞) ≤ y, σ = ∞)

= P(Ŝ(σ−) ≤ y, σ < ∞)

by (4.20). 2

It follows that

P(σ = ∞, τ̂y = ∞) = P(σ = ∞, Ŝ(∞) ≤ y) (4.21)

= P(σ = ∞, Ŝ(σ−) ≤ y)

= P(σ = ∞)P(Ŝ(σ−) ≤ y |σ = ∞)

= P(σ = ∞)P(Ŝ(σ−) ≤ y) .

Let G̃ denote the distribution function of Ŝ(σ−). Proposition 4.4 can be now

improved to

Theorem 4.7 The distribution of the vector (Ŝ(σ−), J, Ŝ(σ−)−X̂(σ−)) on

th set {σ < ∞} is given by

P(Ŝ(σ−) ≤ y, J > x, Ŝ(σ−)− X̂(σ−) > z, σ < ∞) (4.22)

= P(Ŝ(σ−) ≤ y)

(
1

EC(1)

∫ ∞

x+z

ν(u,∞) du

)
P(σ < ∞) .

Moreover, Ŝ(σ−) and J are conditionally independent given σ < ∞, and

P(Ŝ(σ−) ≤ y, J > x |σ < ∞) = G̃(y)(1−H(x)) . (4.23)

17



Remark 4.8 Formula (4.22) considerably extends the severity of ruin for-

mula (see, e.g., [RSST], p.168).

It is now possible to write the absolute maximum of X̂ as a random sum

of modified ladder heights. Recall that σ1 = σ and

σn+1 = inf{t > σn : ∆C(t) > Ŝ(t−)− X̂(t−)}

on {σn < ∞}. Let L0 := Ŝ(σ1−), J1 := Ŝ(σ1)− Ŝ(σ1−) and L1 := Ŝ(σ2−)−
Ŝ(σ1) on {σ1 < ∞}, etc. We call L0, J1, L1, . . . the modified ladder heights.

Let also N := max{n : σn < ∞}. By strong Markov property of X̂, N has

geometric distribution with parameter P(σ1 = ∞) = 1− ρ. Clearly,

Ŝ(∞) = L0 + J1 + L1 + · · ·+ JN + LN ; (4.24)

See Figure 1.

Note that P(L0 ≤ x,N = 0) = P(Ŝ(σ−) ≤ x, σ = ∞) = G̃(x)(1− ρ). For

every n ∈ N, by the strong Markov property at σn, and by equality (4.23)

we have

P(L0 + J1 + L1 + · · ·+ Jn + Ln ≤ x,N = n) = (1− ρ)ρn(G̃(n+1)∗ ∗Hn∗)(x) .

This leads to the Pollaczek-Hinchin formula for the distribution function of

Ŝ(∞).

Theorem 4.9 For x ≥ 0,

P(Ŝ(∞) ≤ x) = (1− ρ)
∞∑

n=0

ρn(G̃(n+1)∗ ∗Hn∗)(x) . (4.25)

Equating this formula for θ(x) = P(Ŝ(∞) ≤ x) and (3.4), one obtains

(1− ρ)
∞∑

n=0

ρn(G(n+1)∗ ∗Hn∗)(x) = (1− ρ)
∞∑

n=0

ρn(G̃(n+1)∗ ∗Hn∗)(x) .
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Figure 1: A trajectory of the dual process X̂(t) = −ct+C(t)+ ςW (t), where
C(t) is a compound Poisson process, W (t) a standard Brownian motion and
ς > 0.
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By computing Laplace transforms of both sides, we get that

(1− ρ)LG(β)

1− ρLG(β)LH(β)
=

(1− ρ)LG̃(β)

1− ρLG̃(β)LH(β)
, β > 0 , (4.26)

from which it immediately follows that G̃ = G. Thus we have proved the

following

Corollary 4.10 The random variables

sup
0≤t<∞

(−ct− Z(t)) and sup
0≤t<σ

(−ct + C(t)− Z(t))

have equal distributions.

5 Decomposition of the ladder height process

In the previous section we looked at the process X̂ at the modified ladder

epochs σ1 < σ2 < . . . , and essentially decomposed the X̂ at these epochs.

In this section we consider the ladder height process Ĥ of X̂ obtained by

time-changing the supremum process Ŝ by the inverse local time at zero of

the reflected process Ŝ − X̂. The excursion representation of the process

Ŝ − X̂ will be combined with fluctuation identities and results from Section

4 to give a detailed description of the ladder height process.

Let us first briefly recall that Ŝ − X̂ is a strong Markov process, and

hence it admits a local time process at 0, L̂ = (L̂(t), t ≥ 0). The process

L̂ is continuous and nondecreasing, and increases only when Ŝ − X̂ is at

zero, or in other words, when X̂ reaches a new supremum. More precisely,

the support of the measure L̂(dt, ω) is the zero set of Ŝ(t, ω) − X̂(t, ω). If

L̂−1(t) := inf{s > 0 : L̂(s) > t} is the inverse of L̂ and one defines

Ĥ(t) :=

{
Ŝ(L̂−1(t)) , L̂−1(t) < ∞
+∞ , otherwise,

(5.1)

it is well known that the process ((L̂−1(t), Ĥ(t)), t < L̂(∞)) is a two dimen-

sional subordinator killed at rate q := 1/EL̂(∞) ([Ber], p.156). In particular,
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Ĥ = (Ĥ(t), 0 ≤ t < L̂(∞)) is a subordinator killed at rate q = 1/EL̂(∞).

Clearly,

Ĥ(L̂(∞)−) = sup0≤t<bL(∞) Ĥ(t) = sup0≤t<∞ Ŝ(t) = Ŝ(∞) , (5.2)

and hence, the distribution function of Ŝ(∞) is equal to the distribution

function of Ĥ(L̂(∞)−). Fluctuation identities give a formula for the Laplace

exponent of Ĥ.

Lemma 5.1 The Laplace exponent κ̂ of Ĥ = (Ĥ(t), 0 ≤ t < L̂(∞)), with L̂

suitably normalized, is given by the following formula:

κ̂(β) =
ψ(β)

β
= d + EC(1)

∫

(0,∞)

(1− e−βx) H(dx) +
ψZ(β)

β
, (5.3)

where H is the finite measure defined in (2.1).

Proof. The bivariate Laplace exponent κ̂(α, β) of ((L̂−1(t), Ĥ(t)), t < L̂(∞))

is defined by

exp{−κ̂(α, β)} = E[exp−{αL̂−1(1) + βĤ(1)}] , α, β > 0 .

The explicit formula for κ̂ comes from fluctuation theory:

κ̂(α, β) = k
α− ψ(β)

Φ(α)− β
, (5.4)

where k is a constant depending on the normalization of the local time. We

take k = 1. By letting α = 0 in (5.4), we obtain the Laplace exponent of Ĥ:

κ̂(β) = κ̂(0, β) =
ψ(β)

β
= c− ΦC(β)

β
+

ψZ(β)

β
, β > 0 . (5.5)

Further, integrating by parts we get

c− ΦC(β)

β
= c +

∫ ∞

0

(1− e−βx) ν(x,∞) dx−
∫ ∞

0

ν(x,∞) dx

= c + EC(1)

∫ ∞

0

(1− e−βx) H(dx)− EC(1) .

Together with (5.5), this gives (5.3). 2
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Remark 5.2 Note that the same argument shows that the ladder height pro-

cess of (−Z(t), t ≥ 0) has the Laplace exponent equal to ψZ(β)/β.

Let L̂ be the local time of Ŝ−X̂ normalised by the choice k = 1 in formula

(5.4). The excursion process (es : s > 0) of the reflected process Ŝ − X̂ can

be viewed as the superposition of three independent Poisson point processes:

finite duration excursions that end with a jump of the subordinator, finite

duration excursions that do not end with a jump of the subordinator, and

excursions of infinite duration. Note that one can include the jump, if any,

that concludes an excursion as part of that excursion and retain a Poisson

point process. Also one needs to “carry along” the information about which

jumps come from C and which from Z but that is a question of choosing a

suitable filtration.

The excursion process and with it the ladder height process is killed at

the time of the arrival of the first excursion of infinite duration. From the

excursion picture we know that L̂(∞) is an exponential random variable

with parameter equal to the killing rate of the ladder height process. By

convention Ĥ(t) = ∞ after killing. It is easily shown that the killing rate

can be obtained from the Laplace exponent as ψ(0+). Since EZ(t) = 0 we

know that ψZ(β)/β → 0 as β → 0. The measure H is finite so by dominated

convergence ∫

(0,∞)

(1− e−βx) H(dx) → 0

as β → 0. Using the explicit formula (5.3) one finds that the killing rate

equals d = c− EC(1), or in other words, L̂(∞) ∼ exp(c− EC(1)).

Recall that σ is the first modified ladder epoch. On the local time scale

L̂(σ) corresponds to the time of the first arrival of an excursion that ends

with a jump of the subordinator C unless the excursion process is killed first.

The probability P(σ < ∞) is therefore equal to the probability that the first

excursion that ends with a jump of the subordinator arrives before the first

excursion of infinite duration. We are thus computing the probability that
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one of the two independent Poisson processes will “claim” the first arrival.

It is well known that we can compute

ρ = P(σ < ∞) = P(L̂(σ) < L̂(∞))

where L̂(σ) and L̂(∞) are two independent exponential random variables.

Since we know the rate of L̂(∞), a simple calculation shows that the rate of

arrival of excursions that end with a jump of C equals EC(1).

Let us turn to the ladder height process Ĥ. The jumps of Ĥ are a Poisson

point process. These jumps, however, can be seen as a mapping of the

“bigger” process e of excursions. By the mapping theorem, see [Kin], p. 17,

the jumps of Ĥ are a superposition of two independent Poisson processes

killed at an independent exponential time of rate d = c−EC(1). The mapping

theorem is applied in such a way that the image of es is ∂ if the excursion

ends without a jump. The jumps coming from excursions that end with

a jump of C contribute a pure jump process to Ĥ. The other excursions

contribute jumps and possibly a deterministic drift. But the jumps coming

from Z are an independent Poisson process. Hence the process Ĥ is a sum of

two independent subordinators η and ζ killed at an independent exponential

time τ := L̂(∞).

The subordinator η corresponds to increases of Ŝ due to jumps of C. As

the set of times when Ŝ increases by a jump of C is discrete, the process η

is compound Poisson with arrival rate equal to EC(1). Jumps of η have the

same distribution as the overshoot J which is given by the formula (4.19):

P(J ∈ dx |σ < ∞) = ν(x,∞) dx/EC(1). This means that η contributes

exactly

EC(1)

∫

(0,∞)

(1− e−βx) H(dx)

to the Laplace exponent of the ladder height process Ĥ given in (5.3).

The subordinator ζ arising from increases of Ĥ not due to jumps of C is

independent of η. This leaves us with the conclusion, given that the killing

rate is c − EC(1), that the Laplace exponent of ζ is ψZ(β)/β. This way
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the groundwork in Section 4 has been translated into a decomposition of the

ladder height process:

Theorem 5.3 Let X̂(t) = −ct + C(t)− Z(t) and let Ĥ be the ladder height

process of X̂. The following assertions are valid:

(i) Ĥ is killed at rate d = c− EC(1).

(ii) The ladder height process is the sum of two independent subordinators

(Ĥ(t) = η(t) + ζ(t) : 0 ≤ t < L̂(∞)). The subordinator η corresponds

to jumps of Ŝ due to the claim process C. It is compound Poisson with

Lévy measure EC(1) H. The subordinator ζ corresponds to increases

of Ŝ due to the perturbation Z. Its Laplace exponent is ψZ(β)/β.

The decomposition of Ĥ gives some insights into the structure of the

process Ĥ. From the form of the Laplace exponent of ζ we find that the

distribution of ζ does not depend in any way on the distribution of C which

is a remarkable conclusion given that C is a subordinator with a dense set

of times of jumps. Many other conclusions from Section 4 can be recast in

terms of the ladder height process.

As an example consider Corollary 4.6. Recall that τ = L̂(∞). Define

γ := L̂(σ) if σ < ∞ and ∞ else. The event {σ < ∞} is equal to {γ < τ}. It

is easily seen that

Ŝ(σ−) = ζ(γ ∧ τ) .

Note that Ŝ(σ−) = Ŝ(∞) on {σ = ∞}. Combining Corollary 4.6 and the

conclusion following (4.26) we know that the distribution function of Ŝ(σ−)

is G. The decomposition of Ĥ gives further information about G. Since

the random variables γ and τ are independent of ζ, and γ ∧ τ ∼ exp(c),

the distribution of Ŝ(σ−) is that of a subordinator taken at an independent

exponential time and hence infinitely divisible with Lévy measure Λ given by

Λ(dx) =

∫

(0,∞)

e−ct

t
P(ζt ∈ dx) dt . (5.6)
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See [Ber], p. 162. However, a direct computation using the Laplace exponent

of ζ yields

E
(
exp(−βζγ∧τ )

)
=

∫

(0,∞)

E
(
exp(−βζt)

)
ce−ct dt (5.7)

= c

∫

(0,∞)

exp(−t ψZ(β)/β) e−ct dt

=
cβ

cβ + ψZ(β)
.

(5.8)

Comparing this formula to (3.2) gives an independent proof of Corollary 4.10.
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