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1 Introduction and setup

This paper is a companion of [14] and here we continue our study of the Martin boundary of

Greenian open sets with respect to purely discontinuous Feller processes in metric measure

spaces. In [14], we have shown that (1) if D is a Greenian open set and z0 ∈ ∂D is accessible

from D, then the Martin kernel of D associated with z0 is a minimal harmonic function; (2)

if D is an unbounded Greenian open set and∞ is accessible from D, then the Martin kernel

of D associated with ∞ is a minimal harmonic function. The goal of this paper is to study

the Martin kernels of D associated with inaccessible boundary points of D, including ∞.

The background and recent progress on the Martin boundary is explained in the compan-

ion paper [14]. Martin kernels of bounded open sets D associated with both accessible and

inaccessible boundary points of D have been studied in the recent preprint [5]. In this paper,

we are mainly concerned with the Martin kernels of unbounded open sets associated with

∞ when ∞ is inaccessible from D. For completeness, we also spell out some of the details

of the argument for dealing with the Martin kernels of unbounded open sets associated with

inaccessible boundary points of D. To accomplish our task of studying the Martin kernels

of general open sets, we follow the ideas of [1, 7] and first study the oscillation reduction
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of ratios of positive harmonic functions. In the case of isotropic α-stable processes, the os-

cillation reduction at infinity and Martin kernel associated with ∞ follow easily from the

corresponding results at finite boundary points by using the sphere inversion and Kelvin

transform. For the general processes dealt with in this paper, the Kelvin transform method

does not apply.

Now we describe the setup of this paper which is the same as that of [14] and then give

the main results of this paper.

Let (X, d,m) be a metric measure space with a countable base such that all bounded

closed sets are compact and the measure m has full support. For x ∈ X and r > 0, let

B(x, r) denote the ball centered at x with radius r. Let R0 ∈ (0,∞] be the localization

radius such that X \B(x, 2r) 6= ∅ for all x ∈ X and all r < R0.

Let X = (Xt,Ft,Px) be a Hunt process on X. We will assume the following

Assumption A: X is a Hunt process admitting a strong dual process X̂ with respect to

the measure m and X̂ is also a Hunt process. The transition semigroups (Pt) and (P̂t) of X

and X̂ are both Feller and strong Feller. Every semi-polar set of X is polar.

In the sequel, all objects related to the dual process X̂ will be denoted by a hat. We first

recall that a set is polar (semi-polar, respectively) for X if and only if it is polar (semi-polar,

respectively) for X̂.

If D is an open subset of X and τD = inf{t > 0 : Xt /∈ D} the exit time from D, the killed

process XD is defined by XD
t = Xt if t < τD and XD

t = ∂ where ∂ is an extra point added

to X. Then, under assumption A, XD admits a unique (possibly infinite) Green function

(potential kernel) GD(x, y) such that for every non-negative Borel function f ,

GDf(x) := Ex
∫ τD

0

f(Xt)dt =

∫
D

GD(x.y)m(dy) ,

and GD(x, y) = ĜD(y, x), x, y ∈ D, with ĜD(y, x) the Green function of X̂D. It is assumed

throughout the paper that GD(x, y) = 0 for (x, y) ∈ (D ×D)c. We also note that the killed

process XD is strongly Feller, see e.g. the first part of the proof of Theorem on [3, pp. 68–69].

Let ∂D denote the boundary of the open set D in the topology of X. Recall that z ∈ ∂D
is said to be regular for X if Pz(τD = 0) = 1 and irregular otherwise. We will denote the set

of regular points of ∂D for X by Dreg (and the set of regular points of ∂D for X̂ by D̂reg).

It is well known that the set of irregular points is semipolar, hence polar under A.

Suppose that D is Greenian, that is, the Green function GD(x, y) is finite away from the

diagonal. Under this assumption, the killed process XD is transient (and strongly Feller).

In particular, for every bounded Borel function f on D, GDf is continuous.

The process X, being a Hunt process, admits a Lévy system (J,H) where J(x, dy) is a

kernel on X (called the Lévy kernel of X), and H = (Ht)t≥0 is a positive continuous additive

functional of X. We assume that Ht = t so that for every function f : X × X → [0,∞)
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vanishing on the diagonal and every stopping time T ,

Ex
∑

0<s≤T

f(Xs−, Xs) = Ex
∫ T

0

f(Xs, y)J(Xs, dy)ds .

Let D ⊂ X be a Greenian open set. By replacing T with τD in the displayed formula above

and taking f(x, y) = 1D(x)1A(y) with A ⊂ D
c
, we get that

Px(XτD ∈ A, τD < ζ) = Ex
∫ τD

0

J(Xs, A)ds =

∫
D

GD(x, y)J(y, A)m(dy) (1.1)

where ζ is the life time ofX. Similar formulae hold for X̂ and Ĵ(x, dy)m(dx) = J(y, dx)m(dy).

Assumption C: The Lévy kernels of X and X̂ have the form J(x, dy) = j(x, y)m(dy),

Ĵ(x, dy) = ĵ(x, y)m(dy), where j(x, y) = ĵ(y, x) > 0 for all x, y ∈ X, x 6= y.

We will always assume that Assumptions A and C hold true.

In the next assumption, z0 is a point in X and R ≤ R0.

Assumption C1(z0, R): For all 0 < r1 < r2 < R, there exists a constant c = c(z0, r2/r1) > 0

such that for all x ∈ B(z0, r1) and all y ∈ X \B(z0, r2),

c−1j(z0, y) ≤ j(x, y) ≤ cj(z0, y), c−1ĵ(z0, y) ≤ ĵ(x, y) ≤ cĵ(z0, y).

In the next assumption we require that the localization radius R0 = ∞ and that D is

unbounded. Again, z0 is a point in X.

Assumption C2(z0, R): For all R ≤ r1 < r2 <∞, there exists a constant c = c(z0, r2/r1) >

0 such that for all x ∈ B(z0, r1) and all y ∈ X \B(z0, r2),

c−1j(z0, y) ≤ j(x, y) ≤ cj(z0, y), c−1ĵ(z0, y) ≤ ĵ(x, y) ≤ cĵ(z0, y).

We define the Poisson kernel of X on an open set D ∈ X by

PD(x, z) =

∫
D

GD(x, y)j(y, z)m(dy), x ∈ D, z ∈ Dc.

By (1.1), we see that PD(x, ·) is the density of the exit distribution of X from D restricted

to D
c
:

Px(XτD ∈ A, τD < ζ) =

∫
A

PD(x, z)m(dz), A ⊂ D
c
.

Recall that f : X→ [0,∞) is regular harmonic in D with respect to X if

f(x) = Ex[f(XτD), τD < ζ] , for all x ∈ D ,

and it is harmonic in D with respect to X if for every relatively compact open U ⊂ U ⊂ D,

f(x) = Ex[f(XτU ), τD < ζ] , for all x ∈ U .
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Recall also that f : D → [0,∞) is harmonic in D with respect to XD if for every relatively

compact open U ⊂ U ⊂ D,

f(x) = Ex[f(XD
τU

), τU < ζ] , for all x ∈ U .

The next pair of assumptions is about an approximate factorization of positive harmonic

functions. This approximate factorization plays a crucial role in proving the oscillation

reduction. The first one is an approximate factorization of harmonic functions at a finite

boundary point.

Assumption F1(z0, R): Let z0 ∈ X and R ≤ R0. For any 1
2
< a < 1, there exists

C(a) = C(z0, R, a) ≥ 1 such that for every r ∈ (0, R), every open set D ⊂ B(z0, r), every

nonnegative function f on X which is regular harmonic in D with respect to X and vanishes

in B(z0, r) ∩ (D
c ∪Dreg), and all x ∈ D ∩B(z0, r/8) ,

C(a)−1Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy)

≤ f(x) ≤ C(a)Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy). (1.2)

In the second assumption we require that the localization radius R0 =∞ and that D is

unbounded.

Assumption F2(z0, R): Let z0 ∈ X and R > 0. For any 1 < a < 2, there exists C(a) =

C(z0, R, a) ≥ 1 such that for every r ≥ R, every open set D ⊂ B(z0, r)
c, every nonnegative

function f on X which is regular harmonic in D with respect to X and vanishes on B(z0, r)
c∩

(D
c ∪Dreg), and all x ∈ D ∩B(z0, 8r)

c,

C(a)−1 PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz)

≤ f(x) ≤ C(a)PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz). (1.3)

Let D ⊂ X be an open set. A point z ∈ ∂D is said to be accessible from D with respect

to X if

PD(x, z) =

∫
D

GD(x,w)j(w, z)m(dw) =∞ for all x ∈ D , (1.4)

and inaccessible otherwise.

In case D is unbounded we say that ∞ is accessible from D with respect to X if

ExτD =

∫
D

GD(x,w)m(dw) =∞ for all x ∈ D (1.5)

and inaccessible otherwise. The notion of accessible and inaccessible points was introduced

in [2].

In [14], we have discussed the oscillation reduction and Martin boundary points at ac-

cessible points, and showed that the Martin kernel associated with an accessible point is a
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minimal harmonic function. As in [14], the main tool in studying the Martin kernel associ-

ated with inaccessible points is the oscillation reduction at inaccessible points. To prove the

oscillation reduction at inaccessible points, we need to assume one of the following additional

conditions on the asymptotic behavior of the Lévy kernel:

Assumption E1(z0, R): For every r ∈ (0, R),

lim
d(z0,y)→0

sup
z:d(z0,z)>r

j(z, z0)

j(z, y)
= lim

d(y,z0)→0
inf

z:d(z0,z)>r

j(z, z0)

j(z, y)
= 1.

Assumption E2(z0, R): For every r > R,

lim
d(z0,z)→∞

sup
y:d(z0,y)<r

j(z, z0)

j(z, y)
= lim

d(z0,z)→∞
inf

y:d(z0,y)<r

j(z, z0)

j(z, y)
= 1.

Combining Theorems 2.4 and 2.8 below for inaccessible points with the results in [14] for

accessible ones, we have the following, which is the first main result of this paper.

Theorem 1.1 Let D ⊂ X be an open set. (a) Suppose that z0 ∈ ∂D. Assume that there

exists R ≤ R0 such that C1(z0, R) and E1(z0, R) hold, and that X̂ satisfies F1(z0, R). Let

r ≤ R and let f1 and f2 be nonnegative functions on X which are regular harmonic in

D ∩B(z0, r) with respect to X̂ and vanish on B(z0, r) ∩ (D
c ∪ D̂reg). Then the limit

lim
D3x→z0

f1(x)

f2(x)

exists and is finite.

(b) Suppose that R0 = ∞ and D is an unbounded subset of X. Assume that there is a

point z0 ∈ X such that C2(z0, R) and E2(z0, R) hold, and that X̂ satisfies F2(z0, R) for

some R > 0. Let r > R and let f1 and f2 be nonnegative functions on X which are regular

harmonic in D∩B(z0, r)
c with respect to X̂ and vanish on B(z0, r)

c ∩ (D
c ∪ D̂reg). Then the

limit

lim
D3x→∞

f1(x)

f2(x)

exists and is finite.

For D ⊂ X, let ∂MD denote the Martin boundary of D with respect to XD in the sense

of Kunita-Watanabe [15], see Section 3 for more details. A point w ∈ ∂MD is said to be

minimal if the Martin kernel MD(·, w) is a minimal harmonic function with respect to XD.

We will use ∂mD to denote the minimal Martin boundary of D with respect to XD. A point

w ∈ ∂MD is said to be a finite Martin boundary point if there exists a bounded (with respect

to the metric d) sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. A point

w ∈ ∂MD is said to be an infinite Martin boundary point if there exists an unbounded (with

respect to the metric d) sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. We

note that these two definitions do not rule out the possibility that a point w ∈ ∂MD is at
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the same time finite and infinite Martin boundary point. We will show in Corollary 1.5(a)

that under appropriate and natural assumptions this cannot happen. A point w ∈ ∂MD is

said to be associated with z0 ∈ ∂D if there is a sequence (yn)n≥1 ⊂ D converging to w in

the Martin topology and to z0 in the topology of X. The set of Martin boundary points

associated with z0 is denoted by ∂z0MD. A point w ∈ ∂MD is said to be associated with ∞ if

w is an infinite Martin boundary point. The set of Martin boundary points associated with

∞ is denoted by ∂∞MD. ∂fMD and ∂fmD will be used to denote the finite part of the Martin

boundary and minimal boundary respectively. Note that ∂∞MD is the set of infinite Martin

boundary points.

Recall that we denote the set of regular points of ∂D for X by Dreg. Here is our final

assumption.

Assumption G: limD3x→z GD(x, y) = 0 for every z ∈ Dreg and every y ∈ D.

From Theorem 1.1 and the results in [14], we have the following.

Theorem 1.2 Let D ⊂ X be an open set. (a) Suppose that z0 ∈ ∂D. Assume that there

exists R ≤ R0 such that C1(z0, R) and E1(z0, R) hold, and that X̂ satisfies F1(z0, R). Then

there is only one Martin boundary point associated with z0.

(b) Assume further that G holds, X satisfies F1(z0, R), and that for all r ∈ (0, R],

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) <∞, (1.6)

and in case of unbounded D, for r ∈ (0, r0],

lim
x→∞

GD(x, y) = 0 for all y ∈ D ∩B(z0, r) .

Then the Martin boundary point associated with z0 ∈ ∂D is minimal if and only if z0 is

accessible from D with respect to X.

Corollary 1.3 Suppose that the assumptions of Theorem 1.2(b) are satisfied for all z0 ∈
∂D (with c(r) in (1.6) independent of z0). Suppose further that, for any inaccessible point

z0 ∈ ∂D, limD3x→z0 j(x, z0) =∞.

(a) Then the finite part of the Martin boundary ∂MD can be identified with ∂D.

(b) If D is bounded, then ∂D and ∂MD are homeomorphic.

Theorem 1.4 (a) Suppose that R0 =∞ and D is an unbounded open subset of X. If there

is a point z0 ∈ X such that C2(z0, R) and E2(z0, R) hold, and X̂ satisfies F2(z0, R), then

there is only one Martin boundary point associated with ∞.

(b) Assume further that G holds, X satisfies F2(z0, R), and that for all r ≥ R,

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) <∞ (1.7)
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and

lim
x→∞

GD(x, y) = 0 for all y ∈ D. (1.8)

Then the Martin boundary point associated with ∞ is minimal if and only if ∞ is accessible

from D.

Corollary 1.5 Let R0 = ∞ and D ⊂ X be unbounded. Suppose that the assumptions of

Theorem 1.2(b) are satisfied for all z0 ∈ ∂D (with c(r) in (1.6) independent of z0) and that

the assumptions of Theorem 1.4(a) and (b) are satisfied. Then

(a) ∂fMD ∩ ∂∞MD = ∅.
(b) Suppose that, for any inaccessible point z0 ∈ ∂D, limD3x→z0 j(x, z0) = ∞. Then the

Martin boundary ∂MD is homeomorphic with the one-point compactification of ∂D.

In case when X is an isotropic stable process, Theorems 1.2 and 1.4 were proved in [1].

In Section 2 we provide the proof of Theorem 1.1 for inaccessible points. Section 3

contains the proofs of Theorems 1.2 and 1.4. In Section 4 we discuss some Lévy processes

in Rd satisfying our assumptions.

We will use the following conventions in this paper. c, c0, c1, c2, · · · stand for constants

whose values are unimportant and which may change from one appearance to another. All

constants are positive finite numbers. The labeling of the constants c0, c1, c2, · · · starts anew

in the statement of each result. We will use “:=” to denote a definition, which is read as

“is defined to be”. We denote a ∧ b := min{a, b}, a ∨ b := max{a, b}. Further, f(t) ∼ g(t),

t→ 0 (f(t) ∼ g(t), t→∞, respectively) means limt→0 f(t)/g(t) = 1 (limt→∞ f(t)/g(t) = 1,

respectively). Throughout the paper we will adopt the convention that Xζ = ∂ and u(∂) = 0

for every function u.

2 Oscillation reductions for inaccessible points

To handle the oscillation reductions at inaccessible points, in this section we will assume, in

addition to the corresponding assumptions in [14], that E1(z0, R) (E2(z0, R) respectively)

holds when we deal with finite boundary points (respectively infinity).

2.1 Infinity

Throughout this subsection we will assume that R0 =∞ and D ⊂ X is an unbounded open

set. We will deal with oscillation reduction at∞ when∞ is inaccessible from D with respect

X. We further assume that there exists a point z0 ∈ X such that E2(z0, R) and C2(z0, R)

hold, and that X̂ satisfies F2(z0, R) for some R > 0. We will fix z0 and R and use the

notation Br = B(z0, r). The next lemma is a direct consequence of assumption E2(z0, R).
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Lemma 2.1 For any q ≥ 2, r ≥ R and ε > 0, there exists p = p(ε, q, r) > 16q such that for

every z ∈ Bc

pr/8 and every y ∈ Bqr, it holds that

(1 + ε)−1 <
j(z, y)

j(z, z0)
< 1 + ε. (2.1)

In the remainder of this subsection, we assume that r ≥ R, and that D is an open set

such that D ⊂ B
c

r. For p > q > 0, let

Dp = D ∩Bc

p, Dp,q = Dq \Dp.

For p > q > 1 and a nonnegative function f on X define

fpr,qr(x) = Ex
[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ Dpr,qr

]
,

f̃pr,qr(x) = Ex
[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ (D \Dqr) ∪Br

]
. (2.2)

Lemma 2.2 Suppose that r ≥ R, D ⊂ B
c

r is an open set and f is a nonnegative function

on X which is regular harmonic in D with respect to X̂ and vanishes on B
c

r ∩ (D
c ∪ D̂reg).

Let q ≥ 2, ε > 0, and choose p = p(ε, q, r) as in Lemma 2.1. Then for every x ∈ Dpr/8,

(1 + ε)−1P̂Dpr/8(x, z0)

∫
Bqr

f(y)m(dy) ≤ f̃pr/8,qr(x) ≤ (1 + ε)P̂Dpr/8(x, z0)

∫
Bqr

f(y)m(dy).

(2.3)

Proof. Let x ∈ Dpr/8. Using Lemma 2.1 in the second inequality below, we get

f̃pr/8,qr(x) =

∫
D\Dqr

P̂Dpr/8(x, y)f(y)m(dy) +

∫
Br

P̂Dpr/8(x, y)f(y)m(dy)

=

∫
D\Dqr

∫
Dpr/8

ĜDpr/8(x, z)ĵ(z, y)m(dz)f(y)m(dy)

+

∫
Br

∫
Dpr/8

ĜDpr/8(x, z)ĵ(z, y)m(dz)f(y)m(dy)

≤ (1 + ε)

∫
D\Dqr

∫
Dpr/8

ĜDpr/8(x, z)ĵ(z, z0)m(dz)f(y)m(dy)

+(1 + ε)

∫
Br

∫
Dpr/8

ĜDpr/8(x, z)ĵ(z, z0)m(dz)f(y)m(dy)

= (1 + ε)

(∫
D\Dqr

P̂Dpr/8(x, z0)f(y)m(dy) +

∫
Br

P̂Dpr/8(x, z0)f(y)m(dy)

)
= (1 + ε)P̂Dpr/8(x, z0)

∫
Bqr

f(y)m(dy).

This proves the right-hand side inequality. The left-hand side inequality can be proved in

the same way. 2
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In the remainder of this subsection, we assume that r ≥ R, D ⊂ B
c

r an open set and f1
and f2 are nonnegative functions on X which are regular harmonic in D with respect X̂ and

vanish on B
c

r ∩ (D
c ∪ D̂reg). Note that fi = fpr,qri + f̃pr,qri .

Lemma 2.3 Let r ≥ R, q > 2, ε > 0, and choose p = p(ε, q, r) as in Lemma 2.1. If∫
D3pr/8,qr

fi(y)m(dy) ≤ ε

∫
Bqr

fi(y)m(dy), i = 1, 2, (2.4)

then, for all x ∈ Dpr.

(1 + ε)−1
∫
Bqr

f1(y)m(dy)

(Cε+ 1 + ε)
∫
Bqr

f2(y)m(dy)
≤ f1(x)

f2(x)
≤

(Cε+ 1 + ε)
∫
Bqr

f1(y)m(dy)

(1 + ε)−1
∫
Bqr

f2(y)m(dy)
. (2.5)

Proof. Assume that x ∈ Dpr. Since fi
pr/8,qr is regular harmonic in Dpr/8 with respect to X̂

and vanishes on B
c

pr/8 ∩ (D
c ∪ D̂reg), using F2(z0, R) (with a = 3/2), we have

f
pr/8,qr
i (x) ≤ CP̂Dpr/8(x, z0)

∫
B3pr/8

f
pr/8,qr
i (y)m(dy).

Since f
pr/8,qr
i (y) ≤ fi(y) and f

pr/8,qr
i (y) = 0 on (Dqr)c except possibly at irregular points of

D, by using that m does not charge polar sets and applying (2.4) we have

f
pr/8,qr
i (x) ≤ CP̂Dpr/8(x, z0)

∫
D3pr/8,qr

fi(y)m(dy) ≤ CεP̂Dpr/8(x, z0)

∫
Bqr

fi(y)m(dy).

By this and Lemma 2.2 we have

fi(x) = f
pr/8,qr
i (x) + f̃

pr/8,qr
i (x)

≤ CεP̂Dpr/8(x, z0)

∫
Bqr

fi(y)m(dy) + (1 + ε)P̂Dpr/8(x, z0)

∫
Bqr

fi(y)m(dy)

= (Cε+ 1 + ε)P̂Dpr/8(x, z0)

∫
Bqr

fi(y)m(dy)

and

fi(x) ≥ f̃
pr/8,qr
i (x) ≥ (1 + ε)−1P̂Dpr/8(x, z0)

∫
Bqr

fi(y)m(dy).

Therefore, (2.5) holds. 2

Suppose that ∞ is inaccessible from D with respect to X. Then there exists a point

x0 ∈ D such that ∫
D

GD(x0, y)m(dy) = Ex0τD <∞. (2.6)

In the next result we fix this point x0.
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Theorem 2.4 Suppose that∞ is inaccessible from D with respect to X. Let r > 2d(z0, x0)∨
R. For any two nonnegative functions f1, f2 on X which are regular harmonic in Dr with

respect to X̂ and vanish on B
c

r ∩ (D
c ∪ D̂reg) we have

lim
D3x→∞

f1(x)

f2(x)
=

∫
X
f1(y)m(dy)∫

X
f2(y)m(dy)

. (2.7)

Proof. First note that ∫
B3r

GD(x0, z)m(dz) ≥ Ex0 [D ∩B3r] > 0.

By using F2(z0, R) we see that
∫
B8r

fi(y)m(dy) <∞. The function v 7→ GD(x0, v) is regular

harmonic in Dr with respect to X̂ and vanishes on B
c

r \Dr (so vanishes on B
c

r∩ (D
c∪ D̂reg)).

By using F2(z0, R) for X̂, we have for i = 1, 2,∫
D8r

fi(y)m(dy) ≤ C

∫
B3r

fi(z)m(dz)

∫
D8r

P̂Dr(y, z0)m(dy)

= C

∫
B3r

GD(x0, z)m(dz)

∫
D8r

P̂Dr(y, z0)m(dy)

∫
B3r

fi(z)m(dz)∫
B3r

GD(x0, z)m(dz)

≤ C2

∫
D8r

GD(x0, y)m(dy)

∫
B3r

fi(z)m(dz)∫
B3r

GD(x0, z)m(dz)

≤ C2

∫
D

GD(x0, y)m(dy)

∫
B3r

fi(z)m(dz)

Ex0 [D ∩B3r]
<∞.

Hence
∫
X
fi(y)m(dy) < ∞, i = 1, 2. Let q0 = 2 and ε > 0. For j = 0, 1, . . . , inductively

define the sequence qj+1 = 3p(ε, qj, r)/8 > 6qi using Lemma 2.1. Then for i = 1, 2,

∞∑
j=0

∫
Dqj+1r,qjr

fi(y)m(dy) =

∫
Dq0r

fi(y)m(dy) <∞.

If
∫
Dqj+1r,qjr fi(y)m(dy) > ε

∫
Bqjr

fi(y)m(dy) for all j ≥ 0, then

∞∑
j=0

∫
Dqj+1r,qjr

fi(y)m(dy) ≥ ε

∞∑
j=0

∫
Bqjr

fi(y)m(dy) ≥ ε
∞∑
j=0

∫
Bq0r

fi(y)m(dy) =∞.

Hence, there exists k ≥ 0 such that
∫
Dqk+1r,qkr fi(y)m(dy) ≤ ε

∫
Bqkr

fi(y)m(dy). Moreover,

since limj→∞
∫
Dqj+1r,qjr fi(y)m(dy) = 0, there exists j0 ≥ 0 such that

∫
Dqj+1r,qjr fi(y)m(dy) ≤∫

Dqk+1r,qkr fi(y)m(dy) for all j ≥ j0. Hence for all j ≥ j0 ∨ k we have∫
Dqj+1r,qjr

fi(y)m(dy) ≤
∫
Dqk+1r,qkr

fi(y)m(dy) ≤ ε

∫
Bqkr

fi(y)m(dy) ≤ ε

∫
Bqjr

fi(y)m(dy).

10



Therefore, there exists j0 ∈ N such that for all j ≥ j0 ∨ k,∫
Dqj+1r,qjr

fi(y)m(dy) ≤ ε

∫
Bqjr

fi(y)m(dy) i = 1, 2,

and

(1 + ε)−1
∫
X

fi(y)m(dy) <

∫
Bqjr

fi(y)m(dy) < (1 + ε)

∫
X

fi(y)m(dy), i = 1, 2.

We see that the assumption of Lemma 2.3 are satisfied and conclude that (2.5) holds true:

for x ∈ D8qj+1r/3,

(1 + ε)−1
∫
Bqjr

f1(y)m(dy)

(Cε+ 1 + ε)
∫
Bqjr

f2(y)m(dy)
≤ f1(x)

f2(x)
≤

(Cε+ 1 + ε)
∫
Bqjr

f1(y)m(dy)

(1 + ε)−1
∫
Bqjr

f2(y)m(dy)
.

It follows that for x ∈ D8qj+1r/3,

(1 + ε)−2
∫
X
f1(y)m(dy)

(Cε+ 1 + ε)(1 + ε)
∫
X
f2(y)m(dy)

≤ f1(x)

f2(x)
≤

(Cε+ 1 + ε)(1 + ε)
∫
X
f1(y)m(dy)

(1 + ε)−2
∫
X
f2(y)m(dy)

.

Since ε > 0 was arbitrary, we conclude that (2.7) holds. 2

2.2 Finite boundary point

In this subsection, we deal with oscillation reduction at an inaccessible boundary point z0 ∈ X

of an open set D. Throughout the subsection, we assume that there exists R ≤ R0 such that

E1(z0, R) and C1(z0, R) hold, and that X̂ satisfies F1(z0, R). We will fix this z0. Again, for

simplicity, we use notation Br = B(z0, r), r > 0.

First, the next lemma is a direct consequence of assumption E1(z0, R).

Lemma 2.5 For any q ∈ (0, 1/2], r ∈ (0, R] and ε > 0, there exists p = p(ε, q, r) < q/16

such that for every z ∈ B8pr and every y ∈ Bc
qr,

(1 + ε)−1 <
j(z, y)

j(z0, y)
< 1 + ε. (2.8)

Let D ⊂ X be an open set. For 0 < p < q, let Dp = D ∩ Bp and Dp,q = Dq \Dp. For a

function f on X, and 0 < p < q, let

Λ̂p(f) :=

∫
B

c
p

ĵ(z0, y)f(y)m(dy), Λ̂p,q(f) =:

∫
Dp,q

ĵ(z0, y)f(y)m(dy). (2.9)

For 0 < p < q < 1 and r ∈ (0, R], define

fpr,qr(x) = Ex
[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ Dpr,qr

]
,

f̃pr,qr(x) = Ex
[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ (D \Dqr) ∪Bc

r

]
. (2.10)
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Lemma 2.6 Let q ∈ (0, 1/2], R ∈ (0, r], ε > 0, and choose p = p(ε, q, r) as in Lemma 2.5.

Then for every r ∈ (0, R], D ⊂ Br = B(z0, r), nonnegative function f on X which is regular

harmonic in D with respect to X̂ and vanishes on Br ∩ (D
c ∪ D̂reg), and every x ∈ D8pr,

(1 + ε)−1(Exτ̂D8pr)Λ̂qr(f) ≤ f̃8pr,qr(x) ≤ (1 + ε)(Exτ̂D8pr)Λ̂qr(f). (2.11)

Proof. Let x ∈ D8pr. Using Lemma 2.5 in the second inequality below, we get

f̃8pr,qr(x) =

∫
D\Dqr

P̂D8pr(x, y)f(y)m(dy) +

∫
Bc

R

P̂D8pr(x, y)f(y)m(dy)

=

∫
D\Dqr

∫
D8pr

ĜD8pr(x, z)ĵ(z, y)m(dz)f(y)m(dy)

+

∫
Bc

R

∫
D8pr

ĜD8pr(x, z)ĵ(z, y)m(dz)f(y)m(dy)

≤ (1 + ε)(Exτ̂D8pr)

(∫
D\Dqr

ĵ(z0, y)f(y)m(dy) +

∫
Bc

r

ĵ(z0, y)f(y)m(dy)

)
= (1 + ε)(Exτ̂D8pr)

∫
Bc

qr

ĵ(z0, y)f(y)m(dy)

= (1 + ε)(Exτ̂D8pr)Λ̂qr(f).

This proves the right-hand side inequality. The left-hand side inequality can be proved in

the same way. 2

In the remainder of this subsection, we assume r ∈ (0, R], D ⊂ Br is an open set and

z0 ∈ ∂D. We also assume that f1 and f2 are nonnegative functions on X which are regular

harmonic in D with respect to the process X̂, and vanish on Br ∩ (D
c ∪ D̂reg). Note that

fi = (fi)pr,qr + (f̃i)pr,qr.

Lemma 2.7 Let R ∈ (0, 1], q < 1/2, ε > 0, and let p = p(ε, q, r) be as in Lemma 2.5. If

Λ̂8pr/3,qr(fi) ≤ εΛ̂qr(fi), i = 1, 2, (2.12)

then for x ∈ Dpr

(1 + ε)−1Λ̂qr(f1)

(Cε+ 1 + ε)Λ̂qr(f2)
≤ f1(x)

f2(x)
≤ (Cε+ 1 + ε)Λ̂qr(f1)

(1 + ε)−1Λ̂qr(f2)
. (2.13)

Proof. Assume that x ∈ Dpr. Since (fi)8pr,qr is regular harmonic in D8pr with respect to X̂

and vanish on B8pr ∩ (D
c ∪ D̂reg), using F1(z0, R) (with a = 2/3), we have

(fi)8pr,qr(x) ≤ C(ExτD8pr)Λ̂8pr/3((fi)8pr,qr).
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Since (fi)8pr,qr(y) ≤ fi(y) and (fi)8pr,qr(y) = 0 on Dc
qr except possibly at irregular points of

D, applying (2.12) we have

(fi)8pr,qr(x) ≤ C(ExτD8pr)Λ̂8pr/3,qr(fi) ≤ Cε(ExτD8pr)Λ̂qr(fi).

By this and Lemma 2.6, we have that

fi(x) = (fi)8pr,qr(x) + (f̃i)8pr,qr(x)

≤ Cε(ExτD8pr)Λ̂qr(fi) + (1 + ε)(ExτD8pr)Λ̂qr(fi)

= (Cε+ 1 + ε)(ExτD8pr)Λ̂qr(fi)

and

fi(x) ≥ (f̃i)8pr,qr(x) ≥ (1 + ε)−1(ExτD8pr)Λ̂qr(fi).

Therefore, (2.13) holds. 2

Assume that z0 is inaccessible from D with respect to X. Then there exist a point x0 in

D such that

PD(x0, z0) =

∫
D

GD(x0, v)j(v, z0)m(dv) <∞.

In the next result we fix this point x0

Theorem 2.8 Suppose that z0 is inaccessible from D with respect to X. Let r < 2d(z0, x0)∧
R. For any two nonnegative functions f1, f2 on X which are regular harmonic in Dr with

respect to X̂ and vanish on Br ∩ (D
c ∪ D̂reg), we have

lim
D3x→z0

f1(x)

f2(x)
=

∫
X
ĵ(z0, y)f1(y)m(dy)∫

X
ĵ(z0, y)f2(y)m(dy)

. (2.14)

Proof. First note that∫
B

c
r/3

ĵ(z0, z)GD(x0, z)m(dz) ≥
∫
D∩Bc

r/3

j(z, z0)GD∩Bc
r/3

(x0, z)m(dz) = PD∩Bc
r/3

(x0, z0) > 0.

Since X̂ satisfies F1(z0, R), we have Λ̂r/8(fi) < ∞. The function v 7→ GD(x0, v) is regular

harmonic in Dr with respect to X̂ and vanishes on Br \Dr (so vanishes on Br∩ (D
c∪ D̂reg)).

By using F1(z0, R) for X̂ we have∫
Br/8

ĵ(z0, y)fi(y)m(dy) ≤ C

∫
B

c
r/3

ĵ(z0, z)fi(z)m(dz)

∫
Br/8

ĵ(z0, y)Ey[τ̂Dr ]m(dy)

= C

∫
B

c
r/3

ĵ(z0, z)GD(x0, z)m(dz)

∫
Br/8

ĵ(z0, y)Ey[τ̂Dr ]m(dy)

∫
B

c
r/3
ĵ(z0, z)fi(z)m(dz)∫

B
c
r/3
ĵ(z0, z)GD(x0, z)m(dz)

≤ C2

∫
Br/8

ĵ(z0, y)GD(x0, y)m(dz)

∫
B

c
r/3
ĵ(z0, z)fi(z)m(dz)∫

B
c
r/3
ĵ(z0, z)GD(x0, z)m(dz)
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≤ C2PD(x0, z0)
Λ̂r/3(fi)

PD∩Bc
r/3

(x0, z0)
<∞.

Therefore

Λ̂(fi) :=

∫
X

ĵ(z0, y)fi(y)m(dy) =

∫
Br/8

ĵ(z0, y)fi(y)m(dy) + Λ̂r/8(fi) <∞.

Let q0 = 1/2 and ε > 0. For j = 0, 1, . . . , inductively define the sequence qj+1 = p(ε, qj, r)

as in Lemma 2.5. Then

∞∑
j=0

Λ̂qj+1r,qjr(fi) =

∫
Dr/2

ĵ(z0, y)fi(y)m(dy) ≤
∫
X

ĵ(z0, y)fi(y)m(dy) <∞.

If Λ̂qj+1r,qjr(fi) > εΛ̂qjr(fi) for all j ≥ 0, then

∞∑
j=0

Λ̂qj+1r,qjr(fi) ≥ ε
∞∑
j=0

Λ̂qjr(fi) ≥ ε
∞∑
j=0

Λ̂q0r(fi) =∞.

Hence, there exists an integer k ≥ 0 such that Λ̂qk+1r,qkr(fi) ≤ εΛ̂qkr(fi). Moreover, since

limj→∞ Λ̂qj+1r,qjr(fi) = 0, there exists j0 ≥ 0 such that Λ̂qj+1r,qjr(fi) ≤ Λ̂qk+1r,qkr(fi) for all

j ≥ j0. Hence for all j ≥ j0 ∨ k we have

Λ̂qj+1r,qjr(fi) ≤ Λ̂qk+1r,qkr(fi) ≤ εΛ̂qkr(fi) ≤ εΛ̂qjr(fi).

Therefore for all j ≥ j0,

Λ̂qj+1r,qjr(fi) ≤ εΛ̂qjr(fi), i = 1, 2,

and

(1 + ε)−1Λ̂(fi) < Λ̂qjr(fi) < (1 + ε)Λ̂(fi), i = 1, 2.

Hence the assumption of Lemma 2.7 are satisfied and consequently (2.13) holds: for x ∈
Dqj+1r,

(1 + ε)−1Λ̂qjr(f1)

(Cε+ 1 + ε)Λ̂qjr(f2)
≤ f1(x)

f2(x)
≤

(Cε+ 1 + ε)Λ̂qjr(f1)

(1 + ε)−1Λ̂qjr(f2)
.

It follows that x ∈ Dqj+1r,

(1 + ε)−2Λ̂(f1)

(Cε+ 1 + ε)(1 + ε)Λ̂(f2)
≤ f1(x)

f2(x)
≤ (Cε+ 1 + ε)(1 + ε)Λ̂(f1)

(1 + ε)−2Λ̂(f2)
.

Since ε > 0 was arbitrary, we conclude that (2.14) holds. 2
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3 Proof of Theorems 1.2 and 1.4

Let D be a Greenian open subset of X. Fix x0 ∈ D and define

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈ D, y 6= x0.

Combining [14, Lemmas 3.2 and 3.4] and our Theorems 2.4 and 2.8 we have the following.

Theorem 3.1 (a) Suppose that E1(z0, R) holds and that X̂ satisfies F1(z0, R). Then

MD(x, z0) := lim
D3v→z0

GD(x, v)

GD(x0, v)
(3.1)

exists and is finite. In particular, if z0 is inaccessible from D with respect to X, then

MD(x, z0) =

∫
X
ĵ(z0, y)GD(x, y)m(dy)∫

X
ĵ(z0, y)GD(x0, y)m(dy)

=
PD(x, z0)

PD(x0, z0)
. (3.2)

(b) Suppose that E2(z0, R) holds and that X̂ satisfies F2(z0, R). Then for every x ∈ D the

limit

MD(x,∞) := lim
D3v→∞

GD(x, v)

GD(x0, v)
(3.3)

exists and is finite. In particular, if ∞ is inaccessible from D with respect to X, then

MD(x,∞) =
ExτD
Ex0τD

. (3.4)

Since both XD and X̂D are strongly Feller, the process XD satisfies Hypothesis (B) in

[15]. See [14, Section 4] for details. Therefore D has a Martin boundary ∂MD with respect

to XD satisfying the following properties:

(M1) D ∪ ∂MD is a compact metric space (with the metric denoted by dM);

(M2) D is open and dense in D∪ ∂MD, and its relative topology coincides with its original

topology;

(M3) MD(x, · ) can be uniquely extended to ∂MD in such a way that

(a) MD(x, y) converges to MD(x,w) as y → w ∈ ∂MD in the Martin topology;

(b) for each w ∈ D ∪ ∂MD the function x → MD(x,w) is excessive with respect to

XD;

(c) the function (x,w)→MD(x,w) is jointly continuous on D× ((D \ {x0}) ∪ ∂MD)

in the Martin topology and

(d) MD(·, w1) 6= MD(·, w2) if w1 6= w2 and w1, w2 ∈ ∂MD.
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Proof of Theorem 1.2: (a) Using Theorem 3.1(a), by the same argument as in the proof

of [14, Theorem 1.1(a)], we have that ∂z0MD consists of a single point.

(b) If z0 is accessible from D with respect to X, then by [14, Theorem 1.1 (b)] the Martin

kernel MD(·, z0) is minimal harmonic for XD.

Assume that z0 is inaccessible from D with respect to X. Since x 7→ PD(x, z0) is not

harmonic with respect to XD, we conclude from (3.3) that the Martin kernel MD(·, z0) is

not harmonic, and in particular, that z0 is not a minimal Martin boundary point. 2

Proof of Corollary 1.3: (a) Let Ξ : ∂D → ∂fMD so that Ξ(z) is the unique Martin boundary

point associated with z ∈ ∂D. Since every finite Martin boundary point is associated with

some z ∈ ∂D, we see that Ξ is onto. We show now that Ξ is 1-1. If not, there are z, z′ ∈ ∂D,

z 6= z′, such that Ξ(z) = Ξ(z′) = w. Then MD(·, z) = MD(·, w) = MD(·, z′). It follows from

the proof of [14, Corollary 1.2(a)] that z and z′ can not be both accessible. If one of them, say

z, is accessible and the other, z′, is inaccessible, then we can not have MD(·, z) = MD(·, z′)
since MD(·, z) is harmonic while MD(·, z′) is not. Now let’s assume that both z and z′ are

inaccessible. Then MD(·, z) = PD(·,z)
PD(x0,z)

and MD(·, z′) = PD(·,z′)
PD(x0,z′)

. From MD(·, z) = MD(·, z′)
we deduce that

PD(x, z)PD(x0, z
′) = PD(x, z′)PD(x0, z), for all x ∈ D.

By treating PD(x0, z
′) and PD(x0, z) as constants, the above equality can be written as∫

D

GD(x, y)j(y, z)m(dy) = c

∫
D

GD(x, y)j(y, z′)m(dy), for all x ∈ D.

By the uniqueness principle for potentials, this implies that the measures j(y, z)m(dy) and

cj(y, z′)m(dy) are equal. Hence j(y, z) = cj(y, z′) for m-a.e. y ∈ D. But this is impossi-

ble (for example, let y → z; then j(y, z) → ∞, while cj(y, z′) stays bounded because of

C1(z, R)). We conclude that z = z′.

(b) The proof of this part is exactly the same as that of [14, Corollary 1.2(b)]. 2

Proof of Theorem 1.4:

(a) Using Theorem 3.1(b), by the same argument as in the proof of [14, Theorem 1.3(a)], we

have that ∂∞MD is a single point which we will denote by ∞.

(b) If ∞ is inaccessible from D with respect to X, then by [14, Theorem 1.2 (b)] the Martin

kernel MD(·,∞) is minimal harmonic for XD.

Assume that∞ is inaccessible from D with respect to X. Since the function x 7→ ExτD =∫
D
GD(x, y)m(dy) is not harmonic with respect to XD, by (3.3) we conclude that the Martin

kernel MD(·,∞) is not harmonic, and in particular, ∞ is not a minimal Martin boundary

point. 2

Proof of Corollary 1.5: (a) In the same way as in the proof of [14, Corollary 1.4(a)] it

suffices to show that it cannot happen that MD(·,∞) = MD(·, z) for any z ∈ ∂D. If both
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∞ and z are accessible, this was shown in the proof of [14, Corollary 1.4(a)]. If one of

the two points is accessible and the other inaccessible, then clearly the two Martin kernels

are different since one is harmonic while the other is not. Assume that both ∞ and z are

inaccessible. Then MD(·,∞) = E·τD
Ex0τD

and MD(·, z) = PD(·,z)
PD(x0,z)

. Therefore,

PD(x0, z)ExτD = PD(x, z)Ex0τD, for all x ∈ D.

By treating Ex0τD and PD(x0, z) as constants, the above equality can be written as∫
D

GD(x, y)m(dy) = c

∫
D

GD(x, y)j(y, z)m(dy), for all x ∈ D.

By the uniqueness principle for potentials, this implies that the measuresm(dy) and cj(y, z)m(dy)

are equal. Hence 1 = cj(y, z) for m-a.e. y ∈ D which clearly contradicts C1(z,R).

(b) The proof of this part is exactly the same as that of [14, Corollary 1.4(b)].

4 Examples

In this section we discuss several classes of Lévy processes in Rd satisfying our assumptions.

4.1 Subordinate Brownian motions

In this subsection we discuss subordinate Brownian motions in Rd satisfying our assumptions.

We will list conditions on subordinate Brownian motions one by one under which our

assumptions hold true.

Let W = (Wt,Px) be a Brownian motion in Rd, S = (St) an independent driftless

subordinator with Laplace exponent φ and define the subordinate Brownian motion Y =

(Yt,Px) by Yt = WSt . Let jY denote the Lévy density of Y .

The Laplace exponent φ is a Bernstein function with φ(0+) = 0. Since φ has no drift

part, φ can be written in the form

φ(λ) =

∫ ∞
0

(1− e−λt)µ(dt) .

Here µ is a σ-finite measure on (0,∞) satisfying
∫∞
0

(t ∧ 1)µ(dt) < ∞. µ is called the Lévy

measure of the subordinator S. φ is called a complete Bernstein function if the Lévy measure

µ of St has a completely monotone density µ(t), i.e., (−1)nDnµ ≥ 0 for every non-negative

integer n. We will assume that φ is a complete Bernstein function.

When φ is unbounded and Y is transient, the mean occupation time measure of Y admits

a density G(x, y) = g(|x − y|) which is called the Green function of Y , and is given by the

formula

g(r) :=

∫ ∞
0

(4πt)−d/2e−r
2/(4t)u(t) dt . (4.1)

Here u is the potential density of the subordinator S.
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We first discuss conditions that ensure E1(z0, R).

By [8, Lemma A.1], for all t > 0, we have

µ(t) ≤ (1− 2e−1)−1t−2φ′(t−1) ≤ (1− 2e−1)−1t−1φ(t−1). (4.2)

Thus

µ(t) ≤ (1− 2e−1)−1φ′(M−1)t−2, t ∈ (0,M ]. (4.3)

In [10], we have shown that there exists c ∈ (0, 1) such that

µ(t+ 1) ≥ cµ(t), t ≥ 1. (4.4)

As a consequence of this, one can easily show that there exist c1, c2 > 0 such that

µ(t) ≥ c1e
−c2t, t ≥ 1. (4.5)

In fact, it follows from (4.4) that for any n ≥ 1, µ(n+ 1) ≥ cnµ(1). Thus, for any t ≥ 1,

µ(t) ≥ µ([t] + 1) ≥ c[t]µ(1) = µ(1)e[t] log c

= µ(1)e([t]−t) log cet log c ≥ c−1µ(1)et log c.

The following is a refinement of (4.4) and [7, Lemma 3.1].

Lemma 4.1 Suppose that the Laplace exponent φ of S is a complete Bernstein function.

Then, for any t0 > 0,

lim
δ→0

sup
t>t0

µ(t)

µ(t+ δ)
= 1 .

Proof. This is proof is similar to the proof of [7, Lemma 3.1], which in turn is a refinement

of the proof of [10, Lemma 13.2.1]. Let η > 0 be given. Since µ is a complete monotone

function, there exists a measure m on [0,∞) such that

µ(t) =

∫
[0,∞)

e−txm(dx), t > 0.

Choose r = r(η, t0) > 0 such that

η

∫
[0,r]

e−t0xm(dx) ≥
∫
(r,∞)

e−t0xm(dx).

Then for any t > t0, we have

η

∫
[0,r]

e−txm(dx) = η

∫
[0,r]

e−(t−t0)xe−t0xm(dx) ≥ ηe−(t−t0)r
∫
[0,r]

e−t0xm(dx)

≥ e−(t−t0)r
∫
(r,∞)

e−t0xm(dx) =

∫
(r,∞)

e−(t−t0)re−t0xm(dx) ≥
∫
(r,∞)

e−txm(dx).
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Thus for any t > t0 and δ > 0,

µ(t+ δ) ≥
∫
[0,r]

e−(t+δ)xm(dx) ≥ e−rδ
∫
[0,r]

e−txm(dx)

= e−rδ(1 + η)−1
(∫

[0,r]

e−txm(dx) + η

∫
[0,r]

e−txm(dx)

)
≥ e−rδ(1 + η)−1

(∫
[0,r]

e−txm(dx) +

∫
(r,∞)

e−txm(dx)

)
= e−rδ(1 + η)−1

∫
[0,∞)

e−txm(dx) = e−rδ(1 + η)−1µ(t).

Therefore

lim sup
δ→0

sup
t>t0

µ(t)

µ(t+ δ)
≤ 1 + η.

Since η is arbitrary and µ is decreasing, the assertion of the lemma is valid. 2

The Lévy measure of Y has a density with respect to the Lebesgue measure given by

jY (x) = j(|x|) with

j(r) =

∫ ∞
0

g(t, r)µ(t)dt, r 6= 0,

where

g(t, r) = (4πt)−d/2 exp(−r
2

4t
).

As a consequence of (4.4), one can easily get that there exists c ∈ (0, 1) such that

j(r + 1) ≥ cj(r), r ≥ 1. (4.6)

Using this, we can show that there exist c1, c2 > 0 such that

j(r) ≥ c1e
−c2r, r ≥ 1. (4.7)

Lemma 4.2 Suppose that the Laplace exponent φ of S is a complete Bernstein function.

For any r0 ∈ (0, 1),

lim
η→0

sup
r>r0

∫ η
0
g(t, r)µ(t)dt

j(r)
= 0 .

Proof. For any η ∈ (0, 1) and r ∈ (r0, 2], we have∫ η
0
g(t, r)µ(t)dt

j(r)
≤
∫ η
0
g(t, r0)µ(t)dt

j(2)
.

Thus

lim
η→0

sup
r∈(r0,2]

∫ η
0
g(t, r)µ(t)dt

j(r)
= 0.
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Thus we only need to show that

lim
η→0

sup
r>2

∫ η
0
g(t, r)µ(t)dt

j(r)
= 0.

It follows from (4.3) that∫ η

0

(4πt)−d/2 exp(−r
2

4t
)µ(t)dt ≤ c1

∫ η

0

t−(
d
2
+2) exp(−r

2

4t
)dt ≤ c3

∫ η

0

exp(−r
2

8t
)dt

= c3

∫ ∞
r2/(8η)

e−s
r2

8s2
ds ≤ c4r

2

∫ ∞
r2/(8η)

e−s/2ds = c5r
2 exp(− r2

16η
).

Now combining this with (4.7) we immediately arrive at the desired conclusion. 2

Lemma 4.3 Suppose that the Laplace exponent φ of S is a complete Bernstein function.

For any r0 ∈ (0, 1),

lim
δ→0

sup
r>r0

j(r)

j(r + δ)
= 1 . (4.8)

Proof. For any ε ∈ (0, 1), choose η ∈ (0, 1) such that

sup
r>r0

∫ η
0
g(t, r)µ(t)dt

j(r)
≤ ε.

Then for any r > r0,
∫∞
η
g(t, r)µ(t)dt ≥ (1 − ε)j(r). Fix this η. It follows from Lemma 4.1

that there exists δ0 ∈ (0, η/2) such that

µ(t)

µ(t+ δ)
≤ 1 + ε, t ≥ η, δ ∈ (0, δ0].

For t > η, 0 ≤ (r+ δ− t)2 = (r+ δ)2− 2tr+ t(t− δ)− δt and so t(t− δ) ≥ 2tr+ δt− (r+ δ)2.

Thus

(r + δ)2

4t
− r2

4(t− δ)
=

(r + δ)2(t− δ)− r2t
4t(t− δ)

=
δ(2tr + δt− (r + δ)2)

4t(t− δ)
≤ δ

4
.

Consequently, for r > r0 and δ ∈ (0, δ0),

j(r + δ) ≥
∫ ∞
η

(4πt)−d/2 exp(−(r + δ)2

4t
)µ(t)dt

≥ e−δ/4
∫ ∞
η

(4πt)−d/2 exp(− r2

4(t− δ)
)µ(t)dt

≥ e−δ/4
∫ ∞
η−δ

(4π(t+ δ))−d/2 exp(−r
2

4t
)µ(t+ δ)dt
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≥ e−δ/4
(

η

η + δ

)d/2
(1 + ε)−1

∫ ∞
η

g(t, r)µ(t)dt

≥ e−δ/4
(

η

η + δ

)d/2
(1 + ε)−1(1− ε)j(r).

Now choose δ∗ ∈ (0, δ0) such that

e−δ/4
(

η

η + δ

)d/2
≥ (1 + ε)−1, δ ∈ (0, δ∗].

Then for all r > r0 and δ ∈ (0, δ∗],

j(r + δ) ≥ (1 + ε)−2(1− ε)j(r),

which is equivalent to
j(r)

j(r + δ)
≤ (1 + ε)2

(1− ε)
,

which implies (4.8). 2

Lemma 4.4 If the Laplace exponent φ of S is a complete Bernstein function, then E1(z0, R)

holds for Y .

Proof. Fix r0, ε > 0 and use the notation Br = B(0, r). By Lemma (4.3) there exists

η = η(ε, r0) > 0 such that for all η ≤ η(ε, r0),

sup
r>r0

j(r)

j(r + η)
< 1 + ε.

Let δ := 2η
r0
∧ 1. For y ∈ Bδr0/2 and z ∈ Bc

2r0
we have

r0 <
|z|
2

= |z| − |z|
2
≤ |z| − |y| ≤ |z − y| ≤ |z|+ |y| ≤ |z|+ δr0

2
≤ |z|+ η,

r0 < |z| ≤ |z − y|+ |y| ≤ |z − y|+ η.

Hence,
j(|z − y|)
j(|z|)

≤ j(|z − y|)
j(|z − y|+ η)

≤ sup
r>r0

j(r)

j(r + η)
< 1 + ε

and
j(|z|)

j(|z − y|)
≤ j(|z|)
j(|z|+ η)

≤ sup
r>r0

j(r)

j(r + η)
< 1 + ε.

This finishes the proof of the lemma. 2

We now briefly discuss (1.8), C1(z0, R), (1.6), F1(z0, R), and G. First note that, if Y

is transient then (1.8) holds (see [12, Lemma 2.10]). For the remainder of this section, we
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will always assume that φ is a complete Bernstein function and the Lévy density µ of φ is

infinite, i.e. µ(0,∞) =∞. We consider the following further assumptions on φ:

H: there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λt)

φ′(λ)
≤ σ t−δ for all t ≥ 1 and λ ≥ λ0 . (4.9)

When d ≤ 2, we assume that d+ 2δ − 2 > 0 where δ is the constant in (4.9), and there are

σ′ > 0 and

δ′ ∈
(
1− d

2
, (1 + d

2
) ∧ (2δ + d−2

2
)
)

(4.10)

such that
φ′(λx)

φ′(λ)
≥ σ′ x−δ

′
for all x ≥ 1 and λ ≥ λ0 . (4.11)

Assumption H was introduced and used in [8] and [9]. It is easy to check that if φ is a

complete Bernstein function satisfying satisfying a weak lower scaling condition at infinity

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t) , λ ≥ 1, t ≥ 1 , (4.12)

for some a1, a2 > 0 and δ1, δ2 ∈ (0, 1), then H is automatically satisfied. One of the reasons

for adopting the more general setup above is to cover the case of geometric stable and iterated

geometric stable subordinators. Suppose that α ∈ (0, 2) for d ≥ 2 and that α ∈ (0, 2] for

d ≥ 3. A geometric (α/2)-stable subordinator is a subordinator with Laplace exponent

φ(λ) = log(1 + λα/2). Let φ1(λ) := log(1 + λα/2), and for n ≥ 2, φn(λ) := φ1(φn−1(λ)). A

subordinator with Laplace exponent φn is called an iterated geometric subordinator. It is

easy to check that the functions φ and φn satisfy H but they do not satisfy (4.12).

It follows from [9, Lemma 5.4] and [14, Section 4.2] that if Y is transient and H is true,

then there exists R > 0 such that the assumptions G, C1(z0, R), (1.6) and F1(z0, R) hold

for all z0 ∈ Rd. Thus using these facts and Lemma 4.4, we have the following as a special

case of Theorems 1.1(a) and 1.2(b).

Corollary 4.5 Suppose that Y = (Yt,Px : t ≥ 0, x ∈ Rd) is a transient subordinate Brown-

ian motion whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ Rd. Suppose φ is

a complete Bernstein function with the infinite Lévy measure µ and assume that H holds.

Let r ≤ 1 and let f1 and f2 be nonnegative functions on Rd which are regular harmonic in

D ∩ B(z0, r) with respect to the process Y , and vanish on B(z0, r) ∩ (D
c ∪Dreg). Then the

limit

lim
D3x→z0

f1(x)

f2(x)

exists and is finite. Moreover, the Martin boundary point associated with z ∈ ∂D is minimal

if and only if z is accessible from D.
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4.2 Unimodal Lévy process

Let Y be an isotropic unimodal Lévy process whose characteristic exponent is Ψ0(|ξ|), that

is,

Ψ0(|ξ|) =

∫
Rd

(1− cos(ξ · y))j0(|y|)dy (4.13)

where the function x 7→ j0(|x|) is the Lévy density of Y . If Y is transient, let x 7→ g0(|x|)
denote the Green function of Y .

Let 0 < α < 2. Suppose that Ψ0(λ) ∼ λα`(λ), λ→ 0, and ` is a slowly varying function

at 0. Then by [4, Theorems 5 and 6] we have the following asymptotics of j0 and g0.

Lemma 4.6 Suppose that Ψ0(λ) ∼ λα`(λ), λ→ 0, and ` is a slowly varying function at 0 ,

(a) It holds that

j0(r) ∼ r−dΨ0(r
−1) , r →∞. (4.14)

(b) If d ≥ 3, then Y is transient and

g0(r) ∼ r−dΨ0(r
−1)−1 , r →∞. (4.15)

We further assume that the Lévy measure of X is infinite. Then by [16, Lemma 2.5] the

density function x → pt(|x|) of X is continuous and, by the strong Markov property, so is

the density function of XD. Using the upper bound of pt(|x|) in [6, Theorem 2.2] (which

works for all t > 0) and the monotonicity of r → pt(r), we see that the Green function of

XD is continuous for all open set D. From this and (4.15), we have that if d ≥ 3, the Lévy

measure is infinite, and Ψ0(λ) ∼ λα`(λ), then G and (1.7) hold (see [13, Proposition 6.2]). It

is proved in [13] under some assumptions much weaker than the above that F2(z0, R) holds

for all z0 ∈ Rd. From (4.14) we have that E2(z0, R) and C2(z0, R) hold for all z0 ∈ Rd.

Using the above facts, we have the following as a special case of Theorems 1.1(b) and 1.4(b).

Corollary 4.7 Suppose that d ≥ 3 and that Y = (Yt,Px : t ≥ 0, x ∈ Rd) is an isotropic

unimodal Lévy process whose characteristic exponent is given by Ψ0(|ξ|). Suppose that 0 <

α < 2, that the Lévy measure of X is infinite, and that Ψ0(λ) ∼ λα`(λ), λ → 0, and ` is a

slowly varying function at 0. Let r > 1, D be an unbounded open set and let f1 and f2 be

nonnegative functions on Rd which are regular harmonic in D ∩B(z0, r)
c with respect to the

process Y , and vanish on B(z0, r)
c ∩ (D

c ∪Dreg). Then the limit

lim
D3x→∞

f1(x)

f2(x)

exists and is finite. Moreover, the Martin boundary point associated with ∞ is minimal if

and only if ∞ is accessible from D.
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Remark 4.8 Using [11, Lemma 3.3] instead of [4, Theorem 6], one can see that Corollary

4.7 holds for d > 2α when Y is a subordinate Brownian motion whose Laplace exponent φ is

a complete Bernstein function and that φ(λ) ∼ λα/2`(λ) where 0 < α < 2 and ` is a slowly

varying function at 0,

Remark 4.9 If Y is a Lévy process satisfying E1(z0, R), (E2(z0, R), respectively) then the

Lévy process Z with Levy density jZ(x) := k(x/|x|)jY (x) also satisfies E1(z0, R) (E2(z0, R),

respectively) when k is a continuous function on the unit sphere and bounded between two

positive constant. In fact, since∣∣∣∣ z − y|z − y|
− z

|z|

∣∣∣∣ ≤ ∣∣∣∣ z − y|z − y|
− z − y
|z|

∣∣∣∣+

∣∣∣∣z − y|z| − z

|z|

∣∣∣∣ ≤ ||z| − |z − y|||z|
+
|y|
|z|
≤ 2|y|
|z|

,

we have∣∣∣∣ z − y|z − y|
− z

|z|

∣∣∣∣ ≤ 2|y|
r

for all |z| > r and

∣∣∣∣ z − y|z − y|
− z

|z|

∣∣∣∣ ≤ 2r

|z|
for all |y| < r.

Moreover, since k is bounded below by a positive constant,∣∣∣∣ k(z/|z|)
k((z − y)/|z − y|)

− 1

∣∣∣∣ ≤ c|k(z/|z|)− k((z − y)/|z − y|)|.

Thus by uniform continuity of k on the unit sphere, we see that for all r > 0

lim
|y|→0

sup
z:|z|>r

k(z/|z|)
k((z − y)/|z − y|)

= lim
|y|→0

sup
z:|z|>r

k(z/|z|)
k((z − y)/|z − y|)

= 1,

and

lim
|z|→∞

sup
y:|y|<r

k(z/|z|)
k((z − y)/|z − y|)

= lim
|z|→∞

inf
y:|y|<r

k(z/|z|)
k((z − y)/|z − y|)

= 1.

When Y is a symmetric stable process, this includes not necessarily symmetric strictly stable

processes with Levy density ck(x/|x|)|x|−d−α where k is a continuous function on the unit

sphere bounded between two positive constant.
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[1] K. Bogdan, T. Kulczycki, M. Kwaśnicki: Estimates and structure of α-harmonic functions.
Probab. Theory Rel. Fields, 140 (2008) 345–381.
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[13] P. Kim, R. Song and Z. Vondraček: Scale invariant boundary Harnack principle at infinity for
Feller processes. arXiv:1510.04569. Preprint, 2015.
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