|
Publications
- A. Mimica. Harnack inequalities for some Lévy processes.   
Potential Anal. 32 (2010), 275 - 303
[pdf]
-
A. Mimica. Heat kernel estimates for jump processes with small jumps of high intensity.
Potential Anal. 36 (2012), 203 - 222
[pdf]
-
A. Mimica. Harnack inequality and Hölder regularity estimates for a Lévy process with small jumps of high intensity.
J. Theor. Probab. 26 (2013), 329 - 348
[pdf]
-
P. Kim and A. Mimica. Harnack inequalities for subordinate Brownian motions.
Electron. J. Probab. 17 (2012), no. 37, 1 - 23
[pdf]
-
A. Mimica. On harmonic functions of symmetric Lévy processes.
Ann. Inst. H. Poincaré Probab. Statist. 50 (2014), 214 - 235
[pdf]
-
M. Kassmann and A. Mimica. Analysis of jump processes with nondegenerate jumping kernels.
Stoch. Process. Appl. 123 (2013), 629 - 650
[pdf]
-
P. Kim and A. Mimica. Green function estimates for subordinate Brownian motions: stable and beyond.
Trans. Amer. Math. Soc. 366(8) (2014), 4383--4422
[pdf]
-
A. Mimica and Z. Vondraček. Unavoidable collections of balls for isotropic Lévy processes.
Stoch. Process. Appl. 124 (2014), 1303 - 1334
[pdf]
-
A. Mimica and Z. Vondraček. Unavoidable collections of balls for censored stable processes.
J. Math. Anal. Appl. 419 (2014), 938 - 958
[pdf]
-
M. Kassmann and A. Mimica. Intrinsic scaling properties for nonlocal operators.
J. Eur. Math. Soc. (JEMS) 19 (2017), 983 - 1011
-
A. Mimica. Exponential decay of measures and Tauberian theorems.
J. Math. Anal. Appl. 440 (2016), 266 - 285
[pdf]
-
A. Mimica. On subordinate random walks.
Forum Mathematicum 29 (2017), 653 - 664
[arXiv]
-
A. Mimica. Heat kernel estimates for subordinate Brownian motions.
Proc. London Math. Soc. 113(5) (2016), 627 - 648
[pdf] [arXiv]
-
P. Kim and A. Mimica. Asymptotical properties of distributions of isotropic Levy processes.
Stoch. Process. Appl. 128(8) (2018), 2688-2709
[arXiv]
-
A. Mimica, N. Sandrić, R. Schilling. Markov chain approximation of pure jump processes.
Acta Applicandae Mathematicae 158(1) (2018), 167-206
[arXiv]
-
A. Mimica, S. Šebek. Harnack inequality for subordinate random walks.
J. Theor. Probab. 32(2) (2019), 737-764
[link]
-
P. Kim and A. Mimica. Estimates of Dirichlet heat kernels for subordinate Brownian motions.
Electr. J. Probab. 23 #64 (2018), 1-45
|
|