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Abstract

In this paper we prove Harnack inequality for nonnegative functions which are har-
monic with respect to random walks in R

d. We give several examples when the scale
invariant Harnack inequality does not hold. For any α ∈ (0, 2) we also prove the
Harnack inequality for nonnegative harmonic functions with respect to a symmetric
Lévy process in R

d with a Lévy density given by c|x|−d−α1{|x|≤1} + j(|x|)1{|x|>1}, where

0 ≤ j(r) ≤ cr−d−α, ∀r > 1, for some constant c. Finally, we establish the Harnack
inequality for nonnegative harmonic functions with respect to a subordinate Brownian
motion with subordinator with Laplace exponent φ(λ) = λα/2ℓ(λ), λ > 0, where ℓ is a
slowly varying function at infinity and α ∈ (0, 2).

AMS Subject Classification: Primary 60J45, Secondary 60G50, 60G51, 60J25, 60J27
Keywords and phrases: Harnack inequality, random walk, Green function, Poisson
kernel, stable process, harmonic function, subordinator, subordinate Brownian motion

1 Introduction

Lévy processes became very important class of processes in theory as well as in appli-
cations. Recently they have been studied very intensively. There are many important
results concerning these processes and among them is also the Harnack inequality for
nonnegative harmonic functions (see [1],[3],[6],[7],[8] and [22]). Harnack inequality is
very important in the study of harmonic functions, in particular for proving regularity
of solutions of some boundary value problems.
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Let X = (Xt, Px) be a Lévy process on R
d. A nonnegative function h : R

d → [0,∞)
is harmonic in an open subset D ⊂ R

d with respect to X if for any open subset B of D
such that B ⊂ B ⊂ D,

h(x) = Ex[h(XτB
)1{τB<∞}], for all x ∈ B,

where τB = inf{t > 0: Xt 6∈ B} is the first exit time from B of the process X. Let
B(a, r) := {x ∈ R

d : |x − a| < r} be an open ball with radius r > 0 and center a ∈ R
d.

We say that the Harnack inequality holds for X if there is r0 > 0 with the property that
for all r ≤ r0 there exists a constant C > 0, which depends only on r, such that for any
a ∈ Rd and any nonnegative function h which is harmonic in B(a, r) with respect to X,

h(x) ≤ C h(y), for all x, y ∈ B(a, r/2). (1.1)

Then, by the standard chain argument, one can easily show that for any open subset
D ⊂ R

d and any compact subset K ⊂ D there exists a constant C > 0, depending only
on D and K, such that

sup
x∈K

h(x) ≤ C inf
y∈K

h(y),

for any nonnegative function h which is harmonic in D with respect to X.
Generally, the constant C in (1.1) depends on r > 0. One would like to investigate

when C does not depend on r > 0 if we take r small enough. To be more precise, we say
that the scale invariant Harnack inequality holds if there exist r0 > 0 and a constant
C = C(r0) > 0 such that for any r ≤ r0, any a ∈ R

d and any nonnegative function h on
R

d which is harmonic in B(a, r) with respect to X,

h(x) ≤ Ch(y), for all x, y ∈ B(a, r/2).

When C depends on r one says that the weak Harnack inequality holds.
In [22] Harnack inequality was proved for some classes of Lévy processes on R

d,
but compound Poisson case was not considered. Harmonic functions of a compound
Poison process are the same as of the corresponding random walk. Harnack inequality
for random walks on R

d with steps that are continuous random variables has not yet
been considered. It was proved for some random walks on Z

d (see [2], [20]) and on more
general graphs (see [13], [15]).

In Section 2 we investigate Harnack inequality for a random walk X = (Xn : n ≥ 0)
with steps that are continuous random variables with density function given by p(x) =
j(|x|), for a decreasing function j : (0,∞) → [0,∞). We prove that the weak Harnack
inequality always holds, but that the scale invariant one may fail.

For example, when d = 1, it turns out that the scale invariant Harnack inequality
holds for a random walk with the steps that are exponentially distributed. On the other
side, when the steps of a random walk are normally distributed, only the weak Harnack
inequality holds. More generally, if

j(r) = Ae−rγ
, r > 0, (1.2)

where γ > 0 and A > 0 is a normalizing constant, we prove that the scale invariant
Harnack inequality holds for γ ≤ 1, while for γ > 1 only the weak Harnack inequality
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holds. In the latter case we give a counterexample which shows that the constant in
Harnack inequality depends on r > 0.

Suppose that for some constant L > 0 the following is true:

j(r) ≤ L j(2r), for 0 < r ≤ 1, (1.3)

j(r) ≤ L j(r + 1), for r ≥ 1

2
. (1.4)

In this case, we prove that the scale invariant Harnack inequality holds. One can check
that for j as in (1.2) the condition (1.4) is satisfied for γ ≤ 1, but it is not satisfied for
γ > 1. In particular, the condition (1.4) is satisfied for random walks with exponentially
distributed steps, and it is not satisfied for random walks with normally distributed
steps. We give example of j not satisfying condition (1.3) such that the scale invariant
Harnack inequality does not hold. Therefore, if j does not satisfy (1.3) or (1.4), the
scale invariant Harnack inequality need not hold.

In Section 3 we consider a Lévy process on R
d with the Lévy density given by

c |x|−d−α 1{|x|≤1} + j(|x|) 1{|x|>1}, (1.5)

where c > 0 is a constant, α ∈ (0, 2) and j : (1,∞) → [0,∞) is a nonnegative decreasing
function such that

j(r) ≤ cr−d−α, for all r > 1. (1.6)

The Lévy density (1.5) for small |x| coincides with the Lévy density of the rotationally
invariant α-stable process. When j ≡ 0 we get a truncated α-stable process, which was
considered in [18]. In that paper the (scale invariant) Harnack inequality was proved.
We can use similar techique to compare Green functions for small balls for the process
with Lévy density (1.5) and the rotationally invariant α-stable process (cf. Proposition
3.1). Apart from the condition (1.6) we suppose only that j is a decreasing function.
This case was not covered in [1],[3], [7] and [22]. In [11] the authors remark that using
the Meyer’s construction method heat kernel estimates can be obtained, which allow
them to prove the parabolic Harnack inequality. Our technique is much simpler and
does not involve heat kernel estimates.

We would like to point out the difference between the random walk case (i.e. the
case of the finite Lévy measure) and the case of the infinite Lévy measure. In the latter
case we obtain the scale invariant Harnack inequality regardless of the condition (1.4).

In Section 4 we consider Harnack inequality for nonnegative harmonic functions
of subordinate Brownian motion, where the Laplace exponent φ of the corresponding
subordinator is given by

φ(λ) = λα/2ℓ(λ), λ > 0. (1.7)

Here α ∈ (0, 2) and ℓ is a continuous and slowly varying function at infinity, that is,

lim
x→∞

ℓ(λx)

ℓ(x)
= 1, for all λ > 0.

The Lévy density of the subordinate Brownian motion will be of the form j(|x|), for
some decreasing function j. We prove the Harnack inequality under some conditions on
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ℓ. In [23] Harnack inequality was proved in the case of ℓ ≡ b, for some constant b > 0,
but with an additional condition on behavior of j(r) for large r. Harnack inequality for
φ given in (1.7) was proved in [19] under assumption on the behavior of the tail of the
corresponding Lévy measure. In our case we do not need such conditions.

We introduce notation we shall often use in the sequel. If f and g are functions, we
write f ∼ g if the quotient f/g converges to 1. For D ⊂ R

d we define the diameter of
D by diam D = sup{|x − y| : x, y ∈ D}. If A,B ⊂ R

d, the set A − B is defined by

A − B = {a − b : a ∈ A, b ∈ B}.

The volume of the unit ball in R
d is denoted by νd and the area of the unit sphere in

R
d is denoted by σd. The Gamma function is defined by

Γ(x) :=

∫ ∞

0
tx−1 e−t dt, for x > 0.

In every section we denote constants that we use troughout the section by C1, C2, . . .
and R0, R1, . . .. Sometimes we use constants c1, c2, . . . in the proofs and each of these
lower case constants is relevant only for the proof containing it. For a, b ∈ R we define
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2 Random Walks

Let X = (Xn, Px) be a Markov chain on R
d with transition kernel P (x, dy). Assume

that P (x, dy) is absolutely continuous with respect to the Lebesgue measure, that is,

P (x, dy) = p(y − x) dy,

where p is a nonnegative function on R
d such that

∫

Rd p(x) dx = 1. For an open set
A ⊂ R

d the first exit time of X from A is defined by

τA = inf{n ≥ 0: Xn 6∈ A}.

Proposition 2.1 There exists R0 > 0 such that for any open subset D ⊂ R
d with

diam D ≤ R0:

(i) Px(τD < ∞) = 1;

(ii) for every x ∈ D and every Borel subset F ⊂ Dc

Px(XτD
∈ F ) =

∫

F
KD(x, z) dz, (2.1)

where

KD(x, z) = p(z − x) +

∞
∑

n=1

Φn(x, z) (2.2)

and

Φn(x, z) =

∫

D
. . .

∫

D

∫

D
p(x1−x) . . . p(xn−xn−1)p(z−xn) dxn dxn−1 . . . dx1, n ≥ 1.
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Proof. Take R0 > 0 such that P0(X1 ∈ B(0, 2R0)) < 1. Let D ⊂ R
d be an open subset

with diam D ≤ R0. Since D − D ⊂ B(0, 2R0), it follows that θ := P0(X1 ∈ D − D) < 1
and thus

Px(τD > n) = Px(X1 ∈ D, . . . ,Xn ∈ D)

=

∫

D
. . .

∫

D
p(x1 − x)p(x2 − x1) . . . p(xn − xn−1) dxn . . . dx1 ≤ θn,

for any n ∈ N and any x ∈ D. Therefore,

Px(τD < ∞) = 1, for all x ∈ D.

Let F ⊂ Dc be a Borel subset and x ∈ D. Then we have

Px(XτD
∈ F ) =

∞
∑

n=0

Px(XτD
∈ F, τD = n + 1)

= Px(X1 ∈ F ) +

∞
∑

n=1

Px(X1 ∈ D, . . . ,Xn ∈ D,Xn+1 ∈ F )

=

∫

F
p(z − x)dz +

∞
∑

n=1

∫

F

∫

D
· · ·
∫

D
p(x1 − x) · · · p(xn − xn−1)p(z − xn) dxn . . . dx1 dz.

�

The function KD(·, ·) in Proposition 2.1 is called the Poisson kernel for D with
respect to X.

Remark 2.2 Let D ⊂ R
d be an open subset such that diamD ≤ R0 and let h : Dc →

[0,∞) be a Borel function. Using Proposition 2.1 we see that the following is true:

Ex[h(XτD
)] =

∫

Dc

KD(x, z)h(z) dz, for all x ∈ D.

Definition 2.3 Let D ⊂ R
d be an open subset. A nonnegative Borel function h : R

d →
[0,∞) is harmonic in D with respect to X if for any bounded open subset B ⊂ B ⊂ D,

h(x) = Ex[h(XτB
)1{τB<∞}], for all x ∈ B.

A Borel function h : R
d → R is regular harmonic in D with respect to X if

h(x) = Ex[h(XτD
)1{τD<∞}], for all x ∈ D. (2.3)

Remark 2.4 (i) Using the strong Markov property we can check that a regular har-
monic function in D is harmonic in D.

(ii) When diam D ≤ R0, it follows from Proposition 2.1 (i) that we do not need terms
1{τB<∞} and 1{τD<∞} in Definition 2.3.

Using Remark 2.2 we can easily check that the following proposition holds.
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Proposition 2.5 Let D ⊂ R
d be an open set with diam D ≤ R0. If h is a nonnegative

function on R
d which is regular harmonic in D with respect to X, then

h(x) =

∫

Dc

KD(x, z)h(z) dz, for all x ∈ D.

�

In this section we suppose that p is of the form

p(x) = j(|x|), x ∈ R
d, x 6= 0,

where j : (0,∞) → [0,∞) is a decreasing function.

Remark 2.6 In the rest of this section, the same proofs will work for a function
j : (0,∞) → [0,∞) such that

j(t) ≤ Mj(s), for all 0 < s < t,

for some constant M > 0.

The following lemma will be useful in many places.

Lemma 2.7 Let g : (0,∞) → [0,∞) be a decreasing function. For any a ∈ R
d and

r > 0 the following inequality holds

g(|z−x|) ≤ 32dν−1
d r−d

∫

B(a,r)
g(|z−u|) du, for all x ∈ B(a, 3r/4), z ∈ B(a, 2r)c. (2.4)

Proof. Let x ∈ B(a, 3r/4). For every z ∈ B(a, 2r)c there exists xz ∈ B(a, r) such that

B(xz, r/32) ⊆ {u ∈ B(a, r) : |z − u| ≤ |z − x|}.

Since g is decreasing, it follows that

∫

B(a,r)
g(|z − u|)du ≥

∫

B(xz ,r/32)
g(|z − u|)du

≥ |B(xz, r/32)| g(|z − x|) = νd (r/32)d g(|z − x|).

�

Proposition 2.8 There exist R1 ∈ (0, R0] and a constant C1 = C1(d) > 0 such that
for any a ∈ R

d and any r ≤ R1,

KB(a,r)(x, z) ≤ j(|z − x|) + C1 r−d, for all x ∈ B(a, r/2), z ∈ B(a, 3r) \ B(a, r). (2.5)

Proof. Let a ∈ R
d. Take R1 ∈ (0, R0] such that

∫

B(0,4R1)
j(|u|) du ≤ 1/2
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and j(4R1) > 0. Let r ≤ R1, w ∈ B(a, r/2), z ∈ B(a, 3r) \ B(a, r) and n ≥ 1. By the
triangle inequality we have

Φn(w, z) =

∫

B(a,r)×...×B(a,r)
j(|x1 − w|) . . . j(|z − xn|) dx1 . . . dxn

≤
∫

B(a,r)×...×B(a,r)∩{|x1−w|≥ |z−w|
n+1

}
j(|x1 − w|) . . . j(|z − xn|) dx1 . . . dxn

+

n
∑

k=2

∫

B(a,r)×...×B(a,r)∩{|xk−xk−1|≥
|z−w|
n+1

}
j(|x1 − w|) . . . j(|z − xn|) dx1 . . . dxn

+

∫

B(a,r)×...×B(a,r)∩{|z−xn|≥
|z−w|
n+1

}
j(|x1 − w|) . . . j(|z − xn|) dx1 . . . dxn

≤(n + 1)j

( |z − w|
n + 1

)

(

∫

B(0,4r)
j(|u|) du

)n

≤ (n + 1)2−nj

(

r

2(n + 1)

)

.

Therefore,

Φn(w, z) ≤ (n + 1)2−nj

(

r

2(n + 1)

)

for n ≥ 1, w ∈ B(a, r), z ∈ B(a, 3r) \ B(a, r).

(2.6)
On the other hand, using monotonicity of j, we have

1 ≥
∫

B(0,r/4)
j(|u|) du = σd

∫ r
4

0
j(s)sd−1 ds = σd

∞
∑

n=1

∫ r
2(n+1)

r
2(n+2)

j(s)sd−1 ds

≥ σd 2−d rd
∞
∑

n=1

j
(

r
2(n+1)

)

(n + 2)d+1
≥ σd 2−d rd

∞
∑

n=1

(n + 1)2−nj

(

r

2(n + 1)

)

2n

(n + 2)d+2

≥ c1σd 2−d rd
∞
∑

n=1

(n + 1)2−nj

(

r

2(n + 1)

)

,

where c1 = c1(d) > 0 is a constant such that 2n

(n+2)d+1 ≥ c1 for all n ≥ 1. Hence, by the

last display and (2.6) we get

∞
∑

n=1

Φn(w, z) ≤ c−1
1 σ−1

d 2dr−d. (2.7)

Using Proposition 2.1 and (2.7) it follows that for x ∈ B(a, r/2), z ∈ B(a, 3r)\B(a, r/2),

KBr(x, z) ≤ j(|z − x|) + c−1
1 σ−1

d 2dr−d.

Therefore, we may take C1 = c−1
1 σ−1

d 2d. �

Proposition 2.9 There exists a constant C2 = C2(d) > 0 such that for any a ∈ R
d and

any r ≤ R1,

KB(a,r)(x, z) ≤ j(|z − x|) + C2r
−d

∫

B(a,3r/2)
j(|z − u|) du, (2.8)
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for all x ∈ B(a, r/2), z ∈ B(a, 3r)c and

KB(a,r)(x, z) ≥ j(|z − x|) + j(3r/2)

∫

B(a,r)
j(|z − u|) du, (2.9)

for all x ∈ B(a, r/2), z ∈ B(a, r)c.

Proof. It follows from the choice of R1 in the proof of the Proposition 2.8 that
∫

B(0,2R1)
j(|u|) du ≤ 1/2. (2.10)

Let a ∈ R
d, r ≤ R1, x ∈ B(a, r/2) and z ∈ B(a, 3r)c. Using Lemma 2.7 and (2.10) we

have

Φn(x, z) =

∫

B(a,r)
. . .

∫

B(a,r)

∫

B(a,r)
j(|x1 − x|) . . . j(|xn − xn−1|) j(|z − xn|) dxn dxn−1 . . . dx1

≤ 32d ν−1
d (3r/2)−d

(

∫

B(0,2r)
j(|w|) dw

)n
∫

B(a,3r/2)
j(|z − u|) du

≤ (64/3)d ν−1
d r−d2−n

∫

B(a,3r/2)
j(|z − u|) du.

It follows from Proposition 2.1 and the last display that

KB(a,r)(x, z) ≤ j(|z − x|) + (64/3)d ν−1
d r−d

∫

B(a,3r/2)
j(|z − u|) du.

Hence, we may take C2 = (64/3)d ν−1
d . It follows from Proposition 2.1 that for x ∈

B(a, r/2) and z ∈ B(a, r)c,

KB(a,r)(x, z) ≥ j(|z − x|) + Φ1(x, z) ≥ j(|z − x|) + j(3r/2)

∫

Br

j(|z − x1|) dx1.

�

Now we can prove the weak Harnack inequality.

Proposition 2.10 There exists a constant C3 = C3(d) > 0 such that for any a ∈ R
d

and any r ≤ R1,

h(x) ≤ 2
j(r/2) + C3r

−d

j(7r/2)
h(y), for all x, y ∈ B(a, r/2),

for any nonnegative function h on R
d which is harmonic in B(a, 2r) with respect to X.

Proof. Let a ∈ R
d, r ≤ R1, x, y ∈ B(a, r/2), z1 ∈ B(a, 3r) \ B(a, r) and z2 ∈ B(a, 3r)c.

Using Proposition 2.8 and monotonicity of j it follows that

KB(a,r)(x, z1) ≤ j(r/2) + C1r
−d ≤ j(r/2) + C1 r−d

j(7r/2)
j(|z1 − y|)

≤ j(r/2) + C1r
−d

j(7r/2)
KB(a,r)(y, z1).
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On the other hand, it follows from Proposition 2.9 and Lemma 2.7 that

KB(a,r)(x, z2) ≤ (32dν−1
d + C2)r

−d

∫

B(a,3r/2)
j(|z2 − u|) du

≤ (32dν−1
d + C2)r

−d

j(9r/4)
KB(a,3r/2)(y, z2).

Set C3 = C1 ∨ (32dν−1
d + C2). Using monotonicity of j and the last two displays we get

KB(a,r)(x, z) ≤ j(r/2) + C3r
−d

j(7r/2)
KB(a,r)(y, z), for all z ∈ B(a, 3r) \ B(a, r), (2.11)

KB(a,r)(x, z) ≤ j(r/2) + C3r
−d

j(7r/2)
KB(a,3r/2)(y, z), for all z ∈ B(a, 3r)c. (2.12)

Let h : R
d → R be a nonnegative function which is harmonic in B(a, 2r) with respect to

X. Since h is regular harmonic in B(a, r) and in B(a, 3r/2), it follows from Proposition
2.5, (2.11) and (2.12) that

h(x) =

∫

B(a,r)c

KB(a,r)(x, z)h(z) dz

=

∫

B(a,3r)\B(a,r)
KB(a,r)(x, z)h(z) dz +

∫

B(a,3r)c

KB(a,r)(x, z)h(z) dz

≤ j(r/2) + C3r
−d

j(7r/2)

(

∫

B(a,3r)\B(a,r)
KB(a,r)(y, z)h(z) dz +

∫

B(a,3r)c

KB(a,3r/2)(y, z)h(z) dz

)

≤ j(r/2) + C3r
−d

j(7r/2)

(

∫

B(a,r)c

KB(a,r)(y, z)h(z) dz +

∫

B(a,3r/2)c

KB(a,3r/2)(y, z)h(z) dz

)

= 2
j(r/2) + C3r

−d

j(7r/2)
h(y).

�

Remark 2.11 If j is bounded by K, one can moreover prove an estimate for the Poisson
kernel. More precisely, there exists R2 ∈ (0, R0] and a constant C4 = C4(d,K,R2) > 0
such that for any a ∈ R

d and any r ≤ R2

j(|z−x|)+C−1
4

∫

B(a,r)
j(|z−u|) du ≤ KB(a,r)(x, z) ≤ j(|z−x|)+C4

∫

B(a,r)
j(|z−u|) du,

(2.13)
for all x ∈ B(a, r/2), z ∈ B(a, r)c. Using estimate (2.13) it follows that there exists a
constant C5 = C5(d,K,R2) > 0 such that for any a ∈ R

d and any r ≤ R2,

KB(a,r)(x, z) ≤ C5 r−d KB(a,r)(y, z), for all x, y ∈ B(a, r/2), z ∈ B(a, r)c, (2.14)

which, by Proposition 2.5, implies that

h(x) ≤ C5 r−d h(y), for all x, y ∈ B(a, r/2), (2.15)
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for any nonnegative function h which is harmonic in B(a, 2r) with respect to X. In this
case one can also get (2.15) from Proposition 2.10. This remark shows that, in the case
of bounded j, it is possible to get the inequality (2.14) between the Poisson kernels,
which is not possible in the general case.

So far we have showed that the weak Harnack inequality holds. Next we would like
to see when the scale invariant Harnack inequality holds.

Theorem 2.12 Suppose that (1.3) and (1.4) hold. There exist R3 ∈ (0, R1] and a
constant C6 = C6(d, L) > 0 such that for any a ∈ R

d and r ≤ R3,

KB(a,r)(x, z) ≤ C6 KB(a,r)(y, z), for all x, y ∈ B(a, r/2), z ∈ B(a, r)c.

In particular, the scale invariant Harnack inequality holds, that is, for any a ∈ R
d, any

r ≤ R3 and any nonnegative function h which is harmonic in B(a, 2r),

h(x) ≤ C6 h(y), for all x, y ∈ B(a, r/2).

Remark 2.13 The condition (1.3) is automatically satisfied for bounded j such that
j(2) > 0. Indeed, if K > 0 is a constant such that j(s) ≤ K, for all s > 0, then

j(s) ≤ K ≤ K

j(2)
j(2s), for all s ≤ 1.

Proof. Let a ∈ R
d. Take R3 ≤ R1 ∧ 1

4 such that

2L

∫

B(0,4R3)
j(|v|) dv ≤ 1/2. (2.16)

Let r ≤ R3 and x, y ∈ B(a, r/2). If z ∈ B(x, 1/2) ∩ B(a, r)c, then

|z − y| ≤ |z − x| + r ≤ 3|z − x|.

Hence, by monotonicity of j and (1.3) we have

j(|z − y|) ≥ j(3|z − x|) ≥ L−2j(|z − x|). (2.17)

On the other hand, if z ∈ B(x, 1/2)c, it follows from (1.4) that

j(|z − y|) ≥ j(|z − x| + 1) ≥ L−1j(|z − x|), (2.18)

since
|z − y| ≤ |z − x| + 1.

Therefore, it follows from (2.17) and (2.18) that

j(|z − x|) ≤ L2j(|z − y|), for all x, y ∈ B(a, r/2), z ∈ B(a, r)c, (2.19)

since L ≥ 1.
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Let z ∈ B(a, 3r) \ B(a, r) and u ∈ B(a, r). By the triangle inequality it follows that

∫

B(a,r)
j(|v − u|) j(|z − v|) dv ≤

≤
∫

B(a,r)∩{|v−u|≥
|z−u|

2
}
j(|v − u|)j(|z − v|) dv +

∫

B(a,r)∩{|z−v|≥
|z−u|

2
}
j(|v − u|)j(|z − v|) dv

≤
∫

B(a,r)∩{|v−u|≥
|z−u|

2
}
j

( |z − u|
2

)

j(|z − v|) dv +

∫

B(a,r)∩{|z−v|≥
|z−u|

2
}
j(|v − u|)j

( |z − u|
2

)

dv

≤L j(|z − u|)
(

∫

B(a,r)∩{|v−u|≥ |z−u|
2

}
j(|z − v|) dv +

∫

B(a,r)∩{|z−v|≥ |z−u|
2

}
j(|v − u|) dv

)

≤2L j(|z − u|)
∫

B(0,4r)
j(|v|) dv,

where we have used monotonicity of j in the third and (1.3) in the fourth line. From
the last display and (2.16) we have

∫

Br

j(|v − u|) j(|z − v|) dv ≤ j(|z − u|)
2

, for all u ∈ B(a, r), z ∈ B(a, 3r) \ B(a, r)

and hence by iteration

Φn(x, z) =

∫

Br

. . .

∫

Br

∫

Br

j(|x1 − x|) . . . j(|xn − xn−1|)j(|z − xn|) dxn dxn−1 . . . dx1

≤ 2−nj(|z − x|), for all n ≥ 1, x ∈ B(a, r/2), z ∈ B(a, 3r) \ B(a, r).

It follows from Proposition 2.1 that

j(|z − x|) ≤ KB(a,r)(x, z) ≤ 3

2
j(|z − x|), ∀x ∈ B(a, r/2), z ∈ B(a, 3r) \ B(a, r)

and thus by (1.3) we have

KB(a,r)(x, z)

KB(a,r)(y, z)
≤ 3

2

j(r/2)

j(7r/2)
≤ 3

2
L3, for all x, y ∈ B(a, r/2), z ∈ B(a, 3r) \ B(a, r).

Let x, y ∈ B(a, r/2) and z ∈ B(a, 3r)c. Proposition 2.9 and (2.19) imply

KB(a,r)(x, z) ≤ j(|z − x|) + C2r
−d

∫

B(a,3r/2)
j(|z − u|) du ≤ L2(1 + C2 (3/2)d νd)j(|z − y|)

≤ L2(1 + C2 (3/2)d νd)KBr (y, z).

Finally, we can take C6 = 3
2L3 ∨ L2(1 + C2 (3/2)d νd). �

Now we consider a few examples which show that the scale invariant Harnack in-
equality does not always hold.

Example 2.14 Suppose that j satisfies the following conditions:

11



(i) There exists K > 0 such that j(s) ≤ K, for all s > 0;

(ii) There exists s0 > 0 such that j(s0) > 0 and j(s) = 0, for all s > s0.

We will show that the scale invariant Harnack inequality does not hold in this case.

Take xr = (r/4, 0 . . . , 0), y = (0, . . . , 0), pr = (s0 + r/8, 0 . . . , 0) and define functions
hr(x) = Ex[1B(pr ,r/8)(XτB(0,r)

)], where 0 < r ≤ R2. Each function hr is regular harmonic
in B(0, r) with respect to X. It follows from Proposition 2.5 and (2.13) that

hr(xr)

hr(y)
=

∫

B(pr ,r/8) KB(0,r)(xr, z) dz
∫

B(pr ,r/8) KB(0,r)(y, z) dz
≥

∫

B(pr ,r/8) j(|z − xr|) dz
∫

B(pr ,r/8)(j(|z|) + C4

∫

B(0,r) j(|z − u|) du) dz

≥ j(s0)

C4 K νd rd
→ ∞, as r → 0.

△
It is easy to see that non-degenerate j satisfying the assumptions of the Proposition

2.12 have support (0,∞), that is, j(s) > 0, for all s > 0. Example 2.14 shows that if j
has a bounded support, then the scale invariant Harnack inequality need not hold. In
other words, the full support is necessary but not sufficient.

Remark 2.15 It can be showed by using (2.13) that for d = 1 and

j(s) = A(1 − sα)1(0,1)(s), s > 0,

where α > 0 and A > 0 is the constant such that
∫∞
0 j(s) ds = 1, the scale invariant

Harnack inequality does not hold. This case was not covered by Example 2.14.

Example 2.16 Let

j(s) =

{

j1(s), 0 < s < 1
e−sγ

, s ≥ 1
, (2.20)

where γ > 1 and j1 : (0, 1) → [0,∞) is a decreasing function such that j1(1) ≥ e−1 and
∫

Rd

j(|u|) du = 1.

Set Br := B(0, r) for r > 0. Let r ≤ R1 and z ∈ Bc
1+r. Define

Ψ(z; r) :=

∞
∑

n=1

∫

Br

∫

Br

. . .

∫

Br

j(|x1|)j(|x2 − x1|) . . . j(|xn − xn−1|)e|z|
γ−|z−xn|γdxn . . . dx2 dx1

= e|z|
γ

∞
∑

n=1

Φn(0, z).

It follows from Proposition 2.1 that

KBr(x, z)

KBr(0, z)
≥ j(|z − x|)

j(|z|) +
∑∞

n=1 Φn(0, z)
=

e|z|
γ−|z−x|γ

1 + Ψ(z; r)
, (2.21)

where x ∈ Br/2.
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First we need to show that Ψ(·; r) : Bc
1+r → R is continuous for r ≤ R1. Recall that

∫

B3R1

j(|u|) du ≤ 1/2.

Let r ≤ R1, R > 1+r and ε > 0. Then there exists n0 ∈ N such that for all z ∈ BR\B1+r,

|Ψ(z; r) − e|z|
γ

n0
∑

n=1

Φn(0, z)| ≤ eRγ
∞
∑

n=n0+1

(
∫

B2r

j(|u|) du

)n

≤ eRγ
∞
∑

n=n0+1

2−n < ε.

(2.22)

Let z ∈ BR \B1+r. By the dominated convergence theorem there exists δ > 0 such that
for w ∈ BR \ B1+r, |z − w| < δ and 1 ≤ n ≤ n0 we have

|e|z|γΦn(0, z) − e|w|γΦn(0, w)| <
ε

n0
. (2.23)

Therefore, by (2.22) and (2.23) we have

|Ψ(z; r) − Ψ(w; r)| < 3ε for w ∈ BR \ B1+r, |z − w| < δ.

Since R > 1 + r was arbitrary, it follows that Ψ(·; r) : Bc
1+r → R is continuous.

Let r ≤ R2 ∧ 1 and a = r/(2
√

d). Then [0, a]d ⊂ Br. The mean value theorem
implies that for u = (u1, . . . , ud) ∈ Br with u1, . . . , ud ≥ 0 and z = (s, . . . , s) ∈ Bc

1+r

with s ≥ 1 + r, we have

|z|γ − |z − u|γ =

d
∑

i=1

γ(s − ϑui)|z − ϑu|γ−2ui ≥ γ21−γsγ−1
d
∑

i=1

ui, (2.24)

where ϑ ∈ (0, 1). Therefore, for zn = (1 + n, . . . , 1 + n), we obtain

Ψ(zn; r) ≥
∫

Br

e|zn|γ−|zn−u|γ du ≥
∫ a

0
. . .

∫ a

0
exp {γ 21−γnγ−1

d
∑

i=1

ui} du1 . . . dun

=

(
∫ a

0
exp {γ 21−γnγ−1t} dt

)d

=

(

exp {γ2−γd−1/2rnγ−1} − 1

γ 21−γnγ−1

)d

→ ∞,

as n → ∞. On the other hand,

Ψ((1 + r, . . . , 1 + r); r) ≤ edγ/2(1+r)γ
∞
∑

n=1

2−n = edγ/2(1+r)γ ≤ edγ/2(1+R1)γ
.

Therefore, by continuity of Ψ(·; r), there exists zr = (sr, . . . , sr) ∈ Bc
1+r such that

Ψ(zr; r) = 2edγ/2(1+R1)γ
. We claim that there exists a sequence (rn) such that lim

n
rn = 0

and lim
n

|zrn |γ−1rn = ∞. Otherwise, there would exist a constant c1 > 0 such that

|zr|γ−1r ≤ c1 for all r small enough. By the mean value theorem we would have

Ψ(zr; r) ≤ exp {γ d2γ−1|zr|γ−1r}
∞
∑

n=1

(
∫

B2r

j(|u|) du

)n

≤ 2eγ d2γ−1c1

∫

B2r

j(|u|) du < 2edγ/2(1+R1)γ
,
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for r small enough which is in contradiction with the choice of zr. Hence, for xr =
(r/4, . . . , r/4), using (2.21) and (2.24) as before, we obtain

KBrn
(xrn , zrn)

KBr(0, zrn)
≥ exp {γ d 2−1−γ |zrn |γ−1rn}

1 + 2edγ/2(1+R1)γ
→ ∞ as n → ∞.

Therefore, the scale invariant Harnack inequality does not hold. △

Remark 2.17 Let
j(s) = Ae−sγ

, s > 0,

where γ > 0 and A > 0 is a constant such that
∫

Rd j(|u|) du = 1. It follows from
Example 2.16 that the scale invariant Harnack inequality does not hold for γ > 1. We
remark that the condition (1.4) in Theorem 2.12 is not satisfied. On the other hand,
if γ ≤ 1, it is easy to check that the conditions (1.3) and (1.4) in Theorem 2.12 are
satisfied and therefore the scale invariant Harnack inequality holds.

Example 2.18 Let

j(s) = A(e−s1[1,∞)(s) +

∞
∑

n=1

an1[3−n,3−(n−1))(s)), for s > 0,

where A > 0 is a constant and (an) is a sequence defined by

a1 = 1

an+1 =

{

nan, n = 3k − 1, for some k ∈ N

an, otherwise.

Set Br = B(0, r) for r > 0. First we show that j(| · |) ∈ Lp(Rd), for any p ≥ 1:

∫

Rd

j(|x|)p dx = Ae−1 + Aσd

∫ 1

0
j(s)p sd−1 ds = Ae−1 + Aσd

∞
∑

n=1

ap
n

∫ 3−(n−1)

3−n

sd−1 ds

≤ Ae−1 + 3dAσdd
−1

∞
∑

n=1

ap
n 3−nd = Ae−1 + 3dAσdd

−1
∞
∑

k=1

3k−1
∑

n=3k−1

ap
n3−nd

≤ Ae−1 + 3dAσdd
−1(1 − 3−d)−1

∞
∑

k=1

ap
3k−13

−3k−1 d =: Ap < ∞,

by the ratio test. Therefore, we can choose A > 0 such that
∫

Rd j(|u|) du = 1. Let
x ∈ Br and z ∈ Bc

r . It follows from the Cauchy-Schwarz inequality that for u, v ∈ Br

∫

Br

j(|w − u|) j(|v − w|) dw ≤
[
∫

Br

j(|w − u|)2 dw

]1/2 [∫

Br

j(|v − w|)2 dw

]1/2

≤ A2

and hence, by Proposition 2.1, we get

KBr(0, z) ≤ j(|z − x|) + A2+

+ A2

∞
∑

n=2

∫

Br

. . .

∫

Br

j(|x1 − x|) . . . j(|xn−1 − xn−2|) dxn−1 . . . dx1.
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If r ≤ R1, it follows

KBr(x, z) ≤ j(|z − x|) + A2 + A2

∞
∑

n=1

(
∫

B2r

j(|u|) du

)n

≤ .j(|z − x|) + 2A2 (2.25)

Define xn = (3−3n
, 0, . . . , 0), yn = (−3−3n

, 0, . . . , 0), An = B((3−3n+1, 0, . . . , 0), 3−3n−1)
and rn = 2 · 3−3n

for n ≥ 1. Then for w ∈ An we have

|w − xn| ≤
7

3
3−3n

|w − yn| ≥
11

9
3−3n+1

and so

Pxn(XτBrn
∈ An)

Pyn(XτBrn
∈ An)

=

∫

An
KBr(xn, z) dz

∫

An
KBr(yn, z) dz

≥ j(7
3 3−3n

)

j(11
9 3−3n+1) + 2A2

=
a3n

a3n−1 + 2A2
=

a3n−1

a3n−1 + 2A2
(3n − 1) → ∞

as n → ∞. Thus, the scale invariant Harnack inequality does not hold. △

Remark 2.19 It is easy to see that the conditions (1.3) and (1.4) are not satisfied in
Examples 2.16 and 2.18, respectively. Therefore, if j does not satisfy (1.3) or (1.4) the
scale invariant Harnack inequality need not hold.

3 Lévy processes

Let Y = (Yt, Px) be a pure jump Lévy process, that is, Y is a Lévy process such that

Ex[eiξ·(Yt−Y0)] = e−tΨ(ξ), ξ ∈ R
d, t ≥ 0,

where the characteristic exponent Ψ of Y is given by

Ψ(ξ) =

∫

Rd

(1 − eiξ·y + iξ · y1{|y|≤1})ν(dy).

Here ν is a measure on R
d satisfying ν({0}) = 0,

∫

Rd(1 ∧ |y|2)ν(dy) < ∞. Suppose that
ν is of the form ν(dy) = JY (y) dy with

JY (y) = A(d, α)|y|−d−α1{|y|≤1} + j(|y|)1{|y|>1}, y ∈ R
d, y 6= 0, (3.1)

where α ∈ (0, 2), A(d, α) =
α2α−1Γ(d+α

2
)

πd/2Γ(1−α
2
)

and j : (1,∞) → R is a function satisfying

0 ≤ j(s) ≤ A(d, α)s−d−α, for all s > 1. (3.2)

We call JY the Lévy density of Y . Using symmetry we can check that

Ψ(ξ) = A(d, α)

∫

{|y|<1}

1 − cos (ξ · y)

|y|d+α
dy +

∫

{|y|≥1}
(1 − cos (ξ · y))j(|y|) dy.
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Since
∫

{|y|<1}

1 − cos (ξ · y)

|y|d+α
dy = |ξ|α

∫

{|y|<|ξ|}

1 − cos ( ξ·y
|ξ| )

|y|d+α
dy,

we see that there exist constants M1,M2 > 0 such that

M−1
1 |ξ|2 ≤ Ψ(ξ) ≤ M1(|ξ|2 + 1), for ξ ∈ R

d, |ξ| ≤ 1/2 (3.3)

and
M−1

2 |ξ|α ≤ Ψ(ξ) ≤ M2|ξ|α, for ξ ∈ R
d, |ξ| ≥ 1/2. (3.4)

It follows from (3.4) and [21, Propositon 28.1] that Yt has smooth density pY (t, x, y).
In the rest of this section we assume that d ≥ 3. Using Chung-Fuchs type criterion [21,
Corollary 37.6] and (3.3) we conclude that Y is transient, so we can define the Green
function of Y by

GY (x, y) =

∫ ∞

0
pY (t, x, y) dt, x, y ∈ R

d, x 6= y.

For an open set D ⊂ R
d we define the first exit time from D of the process Y by

τY
D = inf{t > 0: Yt 6∈ D}.

Denote by Y D the process obtained by killing process Y upon leaving D, that is,

Y D
t =

{

Yt, t < τY
D

∂, otherwise,

where ∂ is an extra point adjoined to D. Following the beginning of the proof of [12,
Theorem 2.4] we see that Y D

t has density pY
D(t, x, y) given by

pY
D(t, x, y) = pY (t, x, y) − Ex[pY (t − τY

D , YτY
D

, y); τY
D < t], x, y ∈ D.

It follows that the Green function GY
D of Y D is given by

GY
D(x, y) =

∫ ∞

0
pY

D(t, x, y) dt, x, y ∈ D.

Let X = (Xt, Px) be a rotationally invariant α-stable process in R
d, that is, X is a Lévy

process such that
Ex[eiξ·(Xt−X0)] = e−t|ξ|α , ξ ∈ R

d, t ≥ 0.

It is known that the Lévy density of X is

JX(y) = A(d, α)|y|−d−α, y ∈ R
d, y 6= 0.

Therefore, X is a special case of the process Y considered at the beginning of this
section.
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It follows from [14, Example 1.4.1] that the Dirichlet form (EY ,FY ) corresponding to
the process Y is given by

EY (u, v) =
1

2

∫

Rd

∫

Rd

(u(x) − u(y))(v(x) − v(y))JY (x − y) dx dy

FY = {u ∈ L2(Rd) : EY (u, u) < ∞}.

We can rewrite (EY ,FY ) as

EY (u, v) =

∫

Rd

û(ξ)¯̂v(ξ)Ψ(ξ) dξ (3.5)

FY = {u ∈ L2(Rd) :

∫

Rd

|û(ξ)|2Ψ(ξ) dξ < ∞}, (3.6)

where û(ξ) = (2π)−d/2
∫

Rd eiξ·yu(y) dy is the Fourier transform of u. Define

EY
1 (u, v) = EY (u, v) + (u, v)L2(Rd), u, v ∈ FY .

In particular, the Dirichlet form of the rotationally invariant α-stable process X is

EX(u, v) =
1

2
A(d, α)

∫

Rd

∫

Rd

(u(x) − u(y))(v(x) − v(y))

|x − y|d+α
dx dy

FX = {u ∈ L2(Rd) : EX(u, u) < ∞}.

Alternatively, one has

EX(u, v) =

∫

Rd

û(ξ)¯̂v(ξ)|ξ|α dξ (3.7)

FX = {u ∈ L2(Rd) :

∫

Rd

|û(ξ)|2|ξ|α dξ < ∞}, (3.8)

Using (3.3) and (3.4) we can check that FX = FY . In the sequel we shall denote FX

and FY by F . It follows from (3.3), (3.4), (3.5) and (3.7) that there exists a constant
M3 > 0 such that

M−1
3 EX

1 (u, u) ≤ EY
1 (u, u) ≤ M3EX

1 (u, u), for all u ∈ F .

Using this estimate we see that a set has zero capacity with respect to (EX ,F) if and
only if it has zero capacity with respect to (EY ,F) (see [14, Chapter 2]). We say that a
statement holds quasi-everywhere (q.e.) on a subset A of R

d if there exists a subset N
of zero capacity such that the statement is true on A \ N . Therefore a statement holds
q.e. with respect to X if and only if it holds q.e. with respect to Y .

It follows from [14, Theorem 4.4.2] that the Dirichlet form corresponding to the killed
process Y D is (EY ,FD), where

FD = {u ∈ F : u = 0 q.e. on Dc}.

If u, v ∈ FD, then we can rewrite EY (u, v) as

EY (u, v) =
1

2

∫

D

∫

D
(u(x) − u(y))(v(x) − v(y))JY (x − y) dxdy +

∫

D
u(x)v(x)κY

D(x) dx,
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where

κY
D(x) =

∫

Dc

JY (x − y) dy.

The Dirichlet form corresponding to the killed rotationally invariant α-stable process
XD is (EX ,FD). For u, v ∈ FD we have

EX(u, v) =
1

2
A(d, α)

∫

D

∫

D
(u(x)−u(y))(v(x)− v(y))

dxdy

|x − y|d+α
+

∫

D
u(x)v(x)κX

D (x) dx,

where

κX
D(x) = A(d, α)

∫

Dc

dy

|x − y|d+α
.

Let D ⊂ R
d be an open subset such that diamD ≤ 1

2 . Consider the following
semigroup

PD
t f(x) = Ex[e

R t
0 qD(XD

s ) dsf(XD
t )],

where qD(x) = κX
D(x) − κY

D(x). It follows from (3.2) that qD ≥ 0. The Dirichlet form
corresponding to the semigroup {PD

t } is

EX(u, v) −
∫

D
u(x)v(x)qD(x) dx = EY (u, v),

since JY (y) = JX(y) for |y| ≤ 1 (see [14, Lemma 4.6.7]). Therefore, {PD
t } is the

semigroup of the process Y D.
In order to prove the scale invariant Harnack inequality, we compare Green functions
for small balls with respect to the processes X and Y .

Proposition 3.1 There exists R0 ∈ (0, 1/4] such that for any a ∈ R
d and r ≤ R0,

GX
B(a,r)(x, y) ≤ GY

B(a,r)(x, y) ≤ 2GX
B(a,r)(x, y), for all x, y ∈ B(a, r). (3.9)

�

This was done in [18, Proposition 3.2]. Since qD ≥ 0, the proof is almost the same
and thus we omit it here.

Let a ∈ R
d and r > 0. It is proved in [24] that Px(YτB(a,r)

∈ ∂B(a, r)) = 0, for
all x ∈ B(a, r) and hence it follows from [16, Theorem 1] that for a nonnegative Borel
function f on R

d the following formula holds

Ex[f(YτY
B(a,r)

)] =

∫

B(a,r)
c

∫

B(a,r)
GY

B(a,r)(x, u)JY (z − u)f(z) du dz, x ∈ B(a, r).

If we define

KY
B(a,r)(x, z) =

∫

B(a,r)
GY

B(a,r)(x, u)JY (z − u) dy, x ∈ D, z ∈ B(a, r)
c
, (3.10)

then

Ex[f(YτB(a,r)
)] =

∫

B(a,r)
c
KY

B(a,r)(x, z)f(z) dz, x ∈ B(a, r). (3.11)

KY
B(a,r)(x, z) is called the Poisson kernel of B(a, r) with respect to Y .
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Proposition 3.2 There exists a constant C1 = C1(d, α) > 0 such that for any a ∈ R
d

and r ≤ R0

KY
B(a,r)(x, z) ≤ C1K

Y
B(a,r)(y, z), for all x, y ∈ B(a, r/2), z ∈ B(a, 2r) \ B(a, r). (3.12)

Proof. Let a ∈ R
d, r ≤ R0, x, y ∈ B(a, r/2) and z ∈ B(a, 2r) \ B(a, r). Since R0 ≤ 1

4 ,
it follows that

|z − u| ≤ 3r ≤ 3/4, for u ∈ B(a, r),

and hence

KY
B(a,r)(x, z) = A(d, α)

∫

B(a,r)

GY
B(a,r)(x, u)

|z − u|d+α
du. (3.13)

Using Proposition 3.1 and (3.13) we get

KX
B(a,r)(x, z) ≤ KY

Br
(x, z) ≤ 2KX

B(a,r)(x, z). (3.14)

The explicit formula for the Poisson kernel of the ball B(a, r) with respect to the rota-
tionally invariant α-stable process X is

KX
B(a,r)(x, z) = c1

(r2 − |x − a|2)α/2

(|z − a|2 − r2)α/2

1

|x − z|d , x ∈ B(a, r), z ∈ B(a, r)c,

for some constant c1 = c1(d, α) > 0. It follows from this formula that there exists a
constant c2 = c2(d, α) > 0 such that

KX
Br

(x, z) ≤ c2K
X
Br

(y, z) (3.15)

Using (3.14) and (3.15) we get (3.12). �

Proposition 3.3 There exists a constant C2 = C2(d, α) > 0 such that for any a ∈ R
d

and r ≤ R0
2 ,

KY
B(a,r)(x, z) ≤ C2 KY

B(a,2r)(y, z), for all x, y ∈ B(a, r/2), z ∈ B(a, 2r)c. (3.16)

Proof. Let a ∈ R
d, r ≤ R0

2 , x, y ∈ B(a, r/2) and z ∈ B(a, 2r)c. It follows from
Proposition 3.1 that

∫

B(a,r)
GX

B(a,r)(x, u)JY (z − u) du ≤ KY
B(a,r)(x, z) ≤ 2

∫

B(a,r)
GX

B(a,r)(x, u)JY (z − u) du.

(3.17)
Using [10, Corollary 1.3] we see that there exists a constant c1 = c1(d, α) > 0 such that

GX
B(a,r)(x, u) ≤ c1|x − u|α−d, for all u ∈ B(a, r). (3.18)

By Lemma 2.7 we have

JY (z − u) ≤ 32d ν−1
d r−d

∫

B(a,r)
JY (z − v) dv, for all u ∈ B(a, 3r/4). (3.19)
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Using (3.17), (3.18) and (3.19) we get

KY
B(a,r)(x, z) ≤2

∫

B(a,r)
GX

B(a,r)(x, u)JY (z − u) du

=2

∫

B(a,r)\B(a,3r/4)
GX

B(a,r)(x, u)JY (z − u) du+

+ 2

∫

B(a,3r/4)
GX

B(a,r)(x, u)JY (z − u) du

≤2c1

∫

B(a,r)\B(a,3r/4)
|u − x|α−dJY (z − u) du+

+ 2 c1 32d ν−1
d r−d

∫

B(a,3r/4)
|u − x|α−d du

∫

B(a,r)
JY (z − v) dv

≤21+2(d−α) c1r
α−d

∫

Br\B(a,3r/4)
JY (z − u) du+

+ 21+5d+α c1 ν−1
d r−d

∫

B(0,2r)
|u|α−d du

∫

B(a,r)
JY (z − v) dv

≤(21+2(d−α) c1 + 21+5d+α c1 ν−1
d α−1σd)r

α−d

∫

B(a,r)
JY (z − v) dv.

Therefore, for c3 = c1(2
1+2(d−α) + 21+5d+α ν−1

d α−1σd) we have

KY
B(a,r)(x, z) ≤ c3

∫

B(a,r)
JY (z − u) du. (3.20)

By [10, Corollary 1.3] again, there exists a constant c4 = c4(d, α) > 0 such that

GX
B(a,2r)(x, u) ≥ c4|x − u|α−d for all u ∈ B(a, r).

Hence, by (3.17) we have

KY
B(a,2r)(y, z) ≥

∫

B(a,2r)
GX

B(a,2r)(y, u)JY (z − u) du ≥
∫

B(a,r)
GX

B(a,2r)(y, u)JY (z − u) du

≥ c4

∫

B(a,r)
|u − y|α−dJY (z − u) du ≥ (3/2)α−d c4r

α−d

∫

B(a,r)
JY (z − u) du.

Using the last display and (3.20) we get

KY
B(a,r)(x, z) ≤ c3c

−1
4 (3/2)d−α KY

B(a,2r)(y, z)

and thus we may set C2 = c3c
−1
4 (3/2)d−α. �

Theorem 3.4 (Harnack inequality) There exists a constant C3 = C3(d, α) > 0 such
that for any a ∈ R

d, r ≤ R0
2 and any positive function h on R

d which is harmonic in
B(a, 4r) with respect to Y it follows that

h(x) ≤ C3h(y), for all x, y ∈ B(a, r/2).
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Proof. Let a ∈ R
d and x, y ∈ B(a, r/2). Using (3.11), Proposition 3.2, Proposition 3.3

and fact that Py(YτB(a,2r)
∈ ∂B(a, 2r)) = 0 we see that

h(x) = Ex[h(Yτ
B(a,r)Y

)] =

∫

B(a,r)
c
KY

B(a,r)(x, z)h(z) dz =

=

∫

B(a,2r)\B(a,r)
KY

B(a,r)(x, z)h(z) dz +

∫

B(a,2r)c

KY
B(a,r)(x, z)h(z) dz

≤ C1

∫

B(a,2r)\B(a,r)
KY

B(a,r)(y, z)h(z) dz + C2

∫

B(a,2r)c

KY
B(a,2r)(y, z)h(z) dz

≤ C1

∫

B(a,r)
c
KY

B(a,r)(y, z)h(z) dz + C2

∫

B(a,2r)
c
KY

B(a,2r)(y, z)h(z) dz

= C1h(y) + C2Ey[h(YτY
B(a,2r)

)] = (C1 + C2)h(y),

where the last equality follows from the harmonicity of h in B(a, 4r). �

4 Subordinate Brownian motion

A Lévy process S = (St : t ≥ 0) is called a subordinator if it has a.s. increasing paths
which take values in [0,∞) and S0 = 0. It is convenient to use the Laplace transform
of the law of St, which is

E[e−λSt ] = e−tφ(λ), λ > 0,

where

φ(λ) = dλ +

∫ ∞

0
(1 − e−λt)µ(dt). (4.1)

(see [4, p. 72]). Here d ≥ 0 and µ is σ-finite measure on (0,∞) such that
∫∞
0 (t∧1)µ(dt) <

∞. We call φ : (0,∞) → (0,∞) the Laplace exponent, µ the Lévy measure and d the
drift of the subordinator S.

The potential measure of the subordinator S is given by

U(A) = E

∫ ∞

0
1{St∈A}dt, A ∈ B([0,∞))

and its Laplace transform is

LU(λ) =

∫ ∞

0
e−λtU(dt) = E

∫ ∞

0
e−λSt dt =

∫ ∞

0
e−tφ(λ) dt =

1

φ(λ)
.

A function φ : (0,∞) → (0,∞) is called Bernstein function if φ ∈ C∞((0,∞)) and

(−1)nφ(n) ≤ 0, for all n ∈ N.

Here φ(n) denotes the n-th derivative of φ. It is well known (see [17, Theorem 3.9.4])
that φ is a Bernstein function such that lim

λ→0+
φ(λ) = 0 if and only if it is of the form

given by (4.1).

21



A function φ : (0,∞) → (0,∞) is a complete Bernstein function if there exists a
Bernstein function η such that

φ(λ) = λ2Lη(λ), for all λ > 0.

A subordinator whose Laplace exponent φ is a complete Bernstein function such that
lim

λ→0+
φ(λ) = 0 is called a complete subordinator.

Let X = (Xt, Px) be a d-dimensional Brownian motion independent of the subor-
dinator S. It follows from [21, Theorem 30.1] that Yt := XSt defines a Lévy process
Y = (Yt : t ≥ 0) with the characteristic exponent

Φ(ξ) = φ(|ξ|2), ξ ∈ R
d.

We call Y a subordinate Brownian motion. The Lévy measure of Y has density J(x) =
j(|x|), x ∈ R

d \ {0}, where

j(r) = (4π)−d/2

∫ ∞

0
t−d/2e−

r2

4t µ(dt), r > 0. (4.2)

It is easy to see that j is a decreasing function.
Suppose that S = (St : t ≥ 0) is a complete subordinator with Lévy measure satisfy-

ing µ(0,∞) = ∞. It follows from [23, Theorem 2.1] that the potential measure of S has
a density u : (0,∞) → (0,∞) which is a decreasing function such that

∫ 1
0 u(t) dt < ∞.

Furthermore, suppose that the Laplace exponent of S satisfies

φ(λ) = λα/2ℓ(λ), λ > 0,

where α ∈ (0, 2) and ℓ : (0,∞) → (0,∞) is a continuous slowly varying function, that
is, ℓ is a continuous function satisfying

lim
λ→∞

ℓ(tλ)

ℓ(λ)
= 1, for all t > 0.

Using Karamata’s Tauberian Theorem and Karamata’s Monotone Density Theorem (see
[5, Theorem 1.7.1, Theorem 1.7.2]) we conclude that

u(t) ∼ 1

Γ(α/2)

tα/2−1

ℓ(1/t)
, t → 0 + . (4.3)

Let Y be the corresponding subordinate process. In the sequel we will assume that Y
is transient. This will be the case if

∫ a

0

λd/2−1

φ(λ)
dλ < ∞, for some a > 0

(see (3.1) in [23]), which is satisfied for d ≥ 3. In this case there exists a Green function
G(x, y) which is given by G(x, y) = g(|x − y|), x, y ∈ R

d, x 6= y, where

g(r) = (4π)−d/2

∫ ∞

0
t−d/2e−

r2

4t u(t) dt, r > 0. (4.4)

It is easy to see that g is a decreasing function. In order to get estimates for the
jumping kernel J and the Green function G of the process Y we need some assumptions
on the slowly varying function ℓ. Hence in the rest of this section we assume the following
conditions:
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A1. There exist functions h1, h2 : (0,∞) → (0,∞) and a constant D > 0 such that

∫ ∞

0
t(d+α)/2−1e−th1(t) dt < ∞, (4.5)

∫ ∞

0
t(d−α)/2−1e−th2(t) dt < ∞ (4.6)

and
1

h2(t)
≤ ℓ(1/y)

ℓ(4t/y)
≤ h1(t), for all t, y > 0, t > D y. (4.7)

A2. If d = 1 or d = 2, there exist constants c0 > 0 and γ > 0 such that

u(t) ∼ c0t
γ−1, t → ∞.

In comparison with conditions in [19], we do not need additional condition on behavior
of the Lévy density µ(t) for large t (see condition A4 in [19, p. 12]).

Lemma 4.1 There exist constants C1 = C1(d, α) > 0 and C2 = C2(d, α) > 0 such that

j(r) ∼ C1 r−d−αℓ(1/r2), r → 0+ (4.8)

and

g(r) ∼ C2
rα−d

ℓ(1/r2)
, r → 0 + . (4.9)

Proof. Since

φ(λ) =

∫ ∞

0
(1 − e−λt)µ(t) dt = λ

∫ ∞

0
e−λtµ(t,∞) dt

we get
∫ ∞

0
e−λtµ(t,∞) dt ∼ λα/2−1ℓ(λ), λ → ∞

and then, using Karamata’s Tauberian Theorem (see [5, Theorem 1.7.1]),

V (t) ∼ t1−α/2ℓ(1/t)

Γ(2 − α/2)
, t → 0+,

where V (t) =
∫ t
0 µ(s,∞) ds. Using Karamata’s Monotone Density Theorem twice (see

[5, Theorem 1.7.2]) we conclude

µ(t,∞) ∼ (1 − α/2)t−α/2ℓ(1/t)

Γ(2 − α/2)
, t → 0+

and finally

µ(t) ∼ (1 − α/2)α t−1−α/2ℓ(1/t)

2Γ(2 − α/2)
, t → 0 + . (4.10)

Using [23, Lemma 3.3], (4.5) and (4.10) we get

j(r) ∼ 2α−1π−d/2α Γ((d + α)/2)Γ(1 − α/2)−1 r−d−αl(1/r2), r → 0 + .
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Using [23, Lemma 3.3], (4.6) and (4.3) we have

g(r) ∼ 2−απ−d/2Γ((d − α)/2)Γ(α/2)−1 rα−d

ℓ(1/r2)
, r → 0 + .

�

Proposition 4.2 There exist R0 > 0 and a constant C3 = C3(d, α, ℓ) > 0 such that for
any a ∈ R

d and r ≤ R0

GB(a,3r)(x, y) ≥ C3
1

rd−αℓ(1/r2)
, for all x ∈ B(a, r/2), y ∈ B(a, r). (4.11)

Proof. Choose 0 < c1 < 1 < c2 such that

c2
1

(

2

3

)d−α

− c2
2

(

1

2

)d−α

> 0.

Let a ∈ R
d. Using Lemma 4.1 choose R0 > 0 such that for r ≤ 2R0 we have

c1C2

rd−αℓ( 1
r2 )

≤ g(r) ≤ c2C2

rd−αℓ( 1
r2 )

, c1 ≤
ℓ(4

9
1
r2 )

ℓ( 1
r2 )

≤ c2, c1 ≤
ℓ(1

4
1
r2 )

ℓ( 1
r2 )

≤ c2. (4.12)

Let r ≤ R0, x ∈ B(a, r/2) and y ∈ B(a, r). By (4.12) and monotonicity of g we get

GB(a,3r)(x, y) = G(x, y) − Ex[G(YτB(a,3r)
, y)] = g(|x − y|) − Ex[g(|YτB(a,3r)

− y|)]

≥ g(3r/2) − g(2r) ≥ C2(
c1

(

3r
2

)d−α
ℓ(4

9
1
r2 )

− c2

(2r)d−α ℓ(1
4

1
r2 )

)

=
C2

rd−α
(

c1

(

2
3

)d−α

ℓ( 4
9

1
r2 )

ℓ( 1
r2 )

ℓ( 1
r2 )

− c2

(

1
2

)d−α

ℓ( 1
4

1
r2 )

ℓ( 1
r2 )

ℓ( 1
r2 )

)

≥ C2
c2
1

(

2
3

)d−α − c2
2

(

1
2

)d−α

c1 c2

1

rd−αℓ(1/r2)
.

Hence we may take

C3 = C2
c2
1

(

2
3

)d−α − c2
2

(

1
2

)d−α

c1 c2
> 0.

�

Proposition 4.3 There exist R1 ∈ (0, R0] and a constant C4 = C4(d, α, ℓ) > 0 such
that for any a ∈ R

d and r ≤ R1

GB(a,r)(x, y) ≤ C4
1

|x − y|d−αℓ(1/|x − y|2) , for all x, y ∈ B(a, r) (4.13)

and

GB(a,r)(x, y) ≤ C4
1

rd−αℓ(1/r2)
, for all x ∈ B(a, r/2), y ∈ B(a, r) \ B(a, 3r/4). (4.14)
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Proof. Let a ∈ R
d. Using Lemma 4.1 we can choose R1 ∈ (0, R0] such that for r ≤ R1

GB(a,r)(x, y) ≤ g(|x − y|) ≤ 2C2
1

|x − y|d−αℓ(1/|x − y|2) , for all x, y ∈ B(a, r).

It follows that for x ∈ B(a, r/2) and y ∈ Br \ B(a, 3r/4) we get

GB(a,r)(x, y) ≤ g(|x − y|) ≤ g(r/4) ≤ 2C2
4d−α

rd−αℓ(16/r2)
≤ 2C2 c1 4d−α

rd−αℓ(1/r2)
,

where c1 > 0 is a constant such that

ℓ(1/s2)

ℓ(16/s2)
≤ c1, for all s ≤ r0.

�

Let a ∈ R
d and r > 0. It is proved in [24] that Px(YτB(a,r)

∈ ∂B(a, r)) = 0 and so it

follows from [16, Theorem 1] that for a nonnegative Borel function f on R
d the following

formula holds

Ex[f(YτY
B(a,r)

)] =

∫

B(a,r)

∫

B(a,r)
c
GY

B(a,r)(x, u)JY (z − u)f(z) dz du, x ∈ B(a, r).

If we define the Poisson kernel for the B(a, r) with respect to Y by

KB(a,r)(x, z) =

∫

Br

GBr(x, u)J(z − u) du, for x ∈ B(a, r), z ∈ B(a, r)
c
,

then for any nonnegative Borel function f on R
d we have

Ex[f(YτY
B(a,r)

)] =

∫

B(a,r)
c
KB(a,r)(x, z)f(z) dz, for all x ∈ B(a, r).

Proposition 4.4 There exist R2 ∈ (0, R1] and a constant C5 = C5(d, α, ℓ) > 0 such
that for any a ∈ R

d and r ≤ R2,

KB(a,r)(x, z) ≤ C5 KB(a,3r)(y, z) for all x, y ∈ B(a, r/2), z ∈ B(a, 3r)c. (4.15)

Proof. Let a ∈ R
d. Take r ≤ R0, x, y ∈ B(a, r/2) and z ∈ B(a, 3r)c. Using Proposition

4.2 we get

KB(a,3r)(y, z) =

∫

B(a,3r)
GB(a,3r)(y, u) j(|z − u|) du ≥

∫

B(a,r)
GB(a,3r)(y, u) j(|z − u|) du

≥ C3

rd−αℓ(1/r2)

∫

B(a,r)
j(|z − u|) du. (4.16)
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On the other side, using Proposition 4.3 and Lemma 2.7 it follows that

KB(a,r)(x, z) =

∫

B(a,3r/4)
GB(a,r)(x, v)j(|z − v|) dv +

∫

B(a,r)\B(a,3r/4)
GB(a,r)(x, v)j(|z − v|) dv

≤C4 32dν−1
d r−d

∫

B(a,r)
j(|z − u|) du

∫

B(a,3r/4)

dv

|x − v|d−αℓ(1/|x − v|2) +

+
C4

rd−αℓ(1/r2)

∫

B(a,r)\B(a,3r/4)
j(|z − u|) du

≤C4 32d ν−1
d σd r−d

∫

B(a,r)
j(|z − u|) du

∫ 2r

0

sα−1 ds

ℓ(1/s2)
+

+
C4

rd−αℓ(1/r2)

∫

B(a,r)
j(|z − u|) du

Using [5, Proposition 1.5.10] we have

∫ 2r

0

sα−1 ds

ℓ(1/s2)
∼ 1

α

(2r)α

ℓ(1/(2r)2)
, r → 0+

and hence we see that there exist r2 ∈ (0, R1] such that for any r ≤ R2 we have

∫ 2r

0

sα−1 ds

ℓ(1/s2)
≤ 2

2α

α

rα

ℓ(1/r2)
,

since ℓ is slowly varying. Using the last display we can continue estimating KB(a,r)(x, z)
by

KB(a,r)(x, z) ≤ C4(2
α+1α−1 32d ν−1

d σd + 1)

rd−αj(1/r2)

∫

Br

j(|z − u|) du. (4.17)

Finally, by (4.16) and (4.17)

KBr(x, z) ≤ C4C
−1
3 (2α+1α−1 32d ν−1

d σd + 1)KB3r (y, z).

�

To prove the Harnack inequality we need Krylov-Safonov-type estimates. Define

η(r) = r−2

∫ r

0
sd+1j(s) ds +

∫ ∞

r
sd−1j(s) ds, r > 0. (4.18)

Lemma 4.5 There exists R3 ∈ (0, R2] and a constant C6 = C6(d, α) > 0 such that

η(r) ≤ C6 r−αℓ(1/r2), for all r ≤ R3.

Proof. For r > 0 define η1(r) = r−2
∫ r
0 sd+1j(s) ds and η2(r) =

∫∞
r sd−1j(s) ds. It

follows from Lemma 4.1, [5, Proposition 1.5.10] and [5, Proposition 1.5.8] that there
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exists r0 ∈ (0, R2] such that for r ≤ r0 we have c1 =
∫∞
r0

sd−1j(s) ds < ∞ and

η1(r) ≤ 2C1r
−2

∫ r

0
s1−αℓ(1/s2) ds ≤ 4C1(2 − α)−1r−αℓ(1/r2),

η2(r) =

∫ r0

r
sd−1j(s) ds +

∫ ∞

r0

sd−1j(s) ds ≤ 2C1

∫ r0

r
s−1−αℓ(1/s2) ds + c1

≤ 4C1α
−1r−αℓ(1/r2) + c1.

Therefore,
η(r) ≤ (4C1(2 − α)−1 + 4C1α

−1)r−αℓ(1/r2) + c1

and for
c2 = (4C1(2 − α)−1 + 4C1α

−1) ∨ c1

we get
η(r) ≤ c1(r

−αℓ(1/r2) + 1).

Since r−αℓ(1/r2) is dominant term, there exist R3 ∈ (0, r0] and C6 ≥ c1 such that

η(r) ≤ C6r
−αℓ(1/r2), for all r ≤ R3.

�

It follows from [22, Lemma 3.4] that there exists a constant C7 = C7(d, α) > 0 such
that for every a ∈ R

d, r ∈ (0, 1), A ⊆ B(a, r) and x ∈ B(a, 2r)

Px(TA < τB(a,3r)) ≥ C7
rdj(4r)

η(r)

|A|
|B(a, r)| , (4.19)

where the first hitting time of the set A by the process X is defined by

TA = inf{t > 0: Xt ∈ A}.

Now we can prove Krylov-Safonov estimate.

Proposition 4.6 There exist R4 ∈ (0, R3] and a constant C8 = C8(d, α) > 0 such that
for every a ∈ R

d, r ≤ r3, A ⊆ B(a, r) and x ∈ B(a, 2r)

Px(TA < τB(a,3r)) ≥ C8
|A|

|B(a, r)| . (4.20)

Proof. It follows from [5, Theorem 1.5.4], Lemma 4.1 and Lemma 4.5 that there exists
a constant c1 > 0 and R4 ∈ (0, R3] such that for any r ≤ R4

rdj(4r)

η(r)
≥ 2−1C−1

1 C−1
6 .

Therefore, by (4.19) it follows

Px(TA < τB(a,3r)) ≥ 2−1C−1
1 C−1

6 C7
|A|

|B(a, r)| ,

for any r ≤ R4. �

Using Proposition 4.4 and Proposition 4.6 we see that for any a ∈ R
d and r ≤ R4:

27



(i) Ex H(XτB(a,r)
) ≤ C5Ey H(XτB(a,3r)

), for all x, y ∈ B(a, r/2) and any nonnegative

Borel function H on R
d with support in B(a, 3r)c;

(ii) Px(TA < τB(a,3r)) ≥ C8
|A|

|B(a,r)| , for all A ⊆ B(a, r) and x ∈ B(a, 2r).

Thus, we can slightly modify the proof of the [22, Theorem 2.2] (see also [3, Theorem
3.6]) and get the Harnack inequality.

Theorem 4.7 (Harnack inequality) There exists a constant C9 = C9(d, α, ℓ) > 0
such that for any a ∈ R

d and r ≤ R4 ∧ 1
4 and any function h which is nonnegative,

bounded on R
d and harmonic in B(a, 16r) with respect to X, we have

h(x) ≤ C9h(y) for all x, y ∈ B(a, r).
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Sci. Math. 50 (2002), 361–372.

[7] K. Bogdan, P. Sztonyk. Estimates of the potential kernel and Harnack’s inequality
for the anisotropic fractional Laplacian Studia Math. 181 (2007), 101–123.

[8] K. Bogdan, P. Sztonyk. Harnack’s inequality for stable Lévy processes. Potential
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estimates for finite range jump processes. Math. Ann. 342 (2008), 833–883.

28



[12] K. L. Chung, Z. Zhao. From Brownian motion to Schrödinger’s equation. Springer,
Berlin, 2001.

[13] T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on
graphs. Rev. Mat. Iberoamericana 15 (1999), 181–232.

[14] M. Fukushima, Y. Oshima, M. Takeda. Dirichlet forms and symmetric Markov
processes. Walter De Gruyter, Berlin, 1994.

[15] A. Grigor’yan, A. Telcs. Harnack inequalities and sub-Gaussian estimates for ran-
dom walks. Math. Ann. 324 (2002) 521–556.

[16] N. Ikeda, S. Watanabe. On some relations between the harmonic measure and the
Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 (1962),
79–95

[17] N. Jacob. Pseudo differential operators and Markov processes, Vol. 1. Imperial
College Press, London, 2001.

[18] P. Kim, R. Song. Potential theory of truncated stable processes. Math. Z. 256

(2007), 139–173.
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