Home > Publications
 
 
 

Publications


Journal publications:
  1. E. Marušić-Paloka,  I. Pažanin,   Effective flow of a viscous liquid through a helical pipeComptes Rendus Mecanique 332 (12) (2004), 973-978.

  2. E. Marušić-Paloka,   I. Pažanin,   Fluid flow through a helical pipeZeitschrift fur Angewandte Mathematik und Physik 58 (1) (2007), 81-99.

  3. S. Marušić, E. Marušić-Paloka, I. Pažanin, Effects of strong convection on the cooling process for a long or thin pipe, Comptes Rendus Mecanique 336 (6) (2008), 493-499.

  4. E. Marušić-Paloka, I. Pažanin, Non-isothermal fluid flow through a thin pipe with cooling, Applicable Analysis 88 (4) (2009), 495-515.

  5. E. Marušić-Paloka, I. Pažanin,  On the effects of curved geometry on heat conduction through a distorted pipeNonlinear Analysis: Real World Applications 11 (6) (2010), 4554-4564.

  6. I. Pažanin, On the solvability of a problem of stationary fluid flow in a helical pipe, Mathematical Problems in Engineering, Volume 2009 (2009), Article ID 957061, 10 pages.

  7. E. Marušić-Paloka,  I. Pažanin, Modelling of heat transfer in a laminar flow through a helical pipe, Mathematical and Computer Modelling 50 (11-12) (2009), 1571-1582.

  8. E. Marušić-Paloka,  I. Pažanin,  On reactive solute transport through a curved pipe, Applied Mathematics Letters 24 (6) (2011), 878-882.

  9. I. Pažanin,  Effective flow of micropolar fluid through a thin or long pipeMathematical Problems in Engineering, Volume 2011 (2011), Article ID 127070, 18 pages.

  10. I. Pažanin, Asymptotic behavior of micropolar fluid flow through a curved pipe, Acta Applicandae Mathematicae 116 (1) (2011), 1-25.

  11. I. Pažanin, On the micropolar flow in a circular pipe: the effects of the viscosity coefficients, Theoretical & Applied Mechanics Letters 1 (6) (2011), 062004, 5 pages.

  12. I. Pažanin, Modeling of solute dispersion in a circular pipe filled with micropolar fluid, Mathematical and Computer Modelling 57  (9-10) (2013), 2366-2373.

  13. E. Marušić-Paloka, I. Pažanin, S. Marušić, Comparison between Darcy and Brinkman laws in a fractureApplied Mathematics and Computation 218 (14) (2012), 7538-7545.

  14. E. Marušić-Paloka, I. Pažanin, S. Marušić, Second order model in fluid film lubrication Comptes Rendus Mecanique 340 (8) (2012), 596-601.

  15. I. Pažanin, Investigation of micropolar fluid flow in a helical pipe via asymptotic analysis, Communications in Nonlinear Science and Numerical Simulation 18 (3) (2013), 528-540.
  16. E. Marušić-Paloka, I. Pažanin, A note on the pipe flow with a pressure-dependent viscosityJournal of Non-Newtonian Fluid Mechanics 197 (2013), 5-10.

  17. I. Pažanin, F.J. Suarez-Grau, Effects of rough boundary on the heat transfer in a thin film flow, Comptes Rendus Mecanique 341 (8) (2013), 646-652.
  18. E. Marušić-Paloka, I. Pažanin, S. Marušić, An effective model for the lubrication with micropolar fluid, Mechanics Research Communications 52 (2013), 69-73.

  19. E. Marušić-Paloka, I. Pažanin, Asymptotic modeling of the thin film flow with a pressure-dependent viscosity, Journal of Applied Mathematics Volume 2014 (2014), Article ID 217174, 8 pages.

  20. I. Pažanin, F.J. Suarez-Grau, Analysis of the thin film flow in a rough domain filled with micropolar fluid, Computers & Mathematics with Applications 68 (12) (2014), 1915-1932.

  21. I. Pažanin, On the helical pipe flow with a pressure-dependent viscosity, Theoretical & Applied Mechanics Letters 4 (6) (2014), 062006, 8 pages.

  22. M. Beneš, I. Pažanin, F.J. Suarez-Grau, Heat flow through a thin cooled pipe filled with a micropolar fluid, Journal of Theoretical and Applied Mechanics 53 (3) (2015), 569-579.

  23. I. Pažanin, Asymptotic analysis of the curved-pipe flow with a pressure-dependent viscosity satisfying Barus law, Mathematical Problems in Engineering Volume 2015 (2015), Article ID 905406, 8 pages.

  24. E. Marušić-Paloka, I. Pažanin, A note on Kirchhoff's junction rule for power-law fluidsZeitschrift fur Naturforschung A 70 (9) (2015), 695-702.

  25. M. Beneš, I. Pažanin, Effective flow of incompressible micropolar fluid through a system of thin pipes, Acta Applicandae Mathematicae 143 (1) (2016), 29-43.

  26. E. Marušić-Paloka, I. Pažanin, M. Radulović, Flow of a micropolar fluid through a channel with small boundary perturbationZeitschrift fur Naturforschung A 71 (7) (2016), 607-619.

  27. E. Marušić-Paloka, I. Pažanin, Asymptotic analysis of the fluid flow with a pressure-dependent viscosity in a system of thin pipes, Computational and Applied Mathematics 37 (1) (2018), 297-305.

  28. I. Pažanin, M.C. Pereira, F.J. Suarez-Grau, Asymptotic approach to the generalized Brinkman's equation with pressure-dependent viscosity and drag coefficientJournal of Applied Fluid Mechanics  9 (6) (2016), 3101-3107.

  29. M. Beneš, I. Pažanin, Homogenization of degenerate coupled fluid flows and heat transport through porous media, Journal of Mathematical Analysis and Applications 446 (1) (2017), 165-192.

  30. M. Beneš, I. Pažanin, On existence, regularity and uniqueness of thermally coupled incompressible flows in a system of three-dimensional pipesNonlinear Analysis 149 (2017), 56-80.

  31. I. Pažanin, P.G. Siddheshwar, Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium, Zeitschrift fur Naturforschung A 72 (3) (2017), 253-259.

  32. E. Marušić-Paloka, I. Pažanin, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transport in Porous Media 117 (1) (2017), 27-44. 

  33. E. Marušić-Paloka, I. Pažanin, M. Prša, Heat conduction problem in a dilated pipe: existence and uniqueness resultMediterranean Journal of Mathematics (2017) 14 (2); 97, 9 pages.

  34. I. Pažanin, A note on the solute dispersion in a porous medium, Bulletin of the Malaysian Mathematical Sciences Society 42 (2) (2019), 729-741.

  35. U.S. Mahabaleshwar, I. Pažanin, M. Radulović, F.J. Suarez-Grau, Effects of small boundary perturbation on the MHD duct flowTheoretical and Applied Mechanics 44 (1) (2017), 83-101.

  36. P.G. Siddheshwar, N. Meenakshi, I. Pažanin, Flow and heat transfer in a Newtonian nanoliquid due to a curved stretching sheet, Zeitschrift fur Naturforschung A 72 (9) (2017), 833-842.

  37. I. Pažanin, M.C. Pereira, On the nonlinear convection-diffusion-reaction problem in a thin domain with weak boundary absorptionCommunications on Pure and Applied Analysis 17 (2) (2018), 579-592.

  38. M. Beneš, I. Pažanin, Rigorous derivation of the effective model describing a non-isothermal fluid flow through a vertical pipe filled with porous medium, Continuum Mechanics and Thermodynamics 30 (2) (2018), 301-317.

  39. M. Beneš, I. Pažanin, On degenerate coupled transport processes in porous media with memory phenomena,   Zeitschrift fur Angewandte Mathematik und Mechanik 98 (6) (2018), 919-944.

  40. I. Pažanin, M. Radulović, Asymptotic approximation of the nonsteady micropolar fluid flow through a circular pipe  Mathematical Problems in Engineering, Volume 2018 (2018), Article ID 6759876, 16 pages.

  41. E. Marušić-Paloka, I. Pažanin, Higher-order effective model describing a non-isothermal thin film flow, International Journal for Multiscale Computational Engineering 16 (2) (2018), 121-130.

  42. E. Marušić-Paloka, I. Pažanin, On the viscous flow through a long pipe with non-constant pressure boundary conditionZeitschrift fur Naturforschung A 73 (7) (2018), 639-644.

  43. I. Pažanin, F.J. Suarez-Grau, Homogenization of the Darcy-Lapwood-Brinkman flow through a thin domain with highly oscillating boundaries, Bulletin of the Malaysian Mathematical Sciences Society 42 (6) (2019), pp. 3073-3109.

  44. I. Pažanin, Asymptotic solution for the Darcy-Brinkman-Boussinesq flow in a pipe with helicoidal shape, Theoretical and Applied Mechanics 45 (2) (2018), 189-203.

  45. M. Beneš, I. Pažanin, M. Radulović, Existence and uniqueness of the generalized Poiseuille solution for nonstationary micropolar flow in an infinite cylinder, Electronic Journal of Differential Equations Vol. 2018 (2018), No. 148, pp. 1-26.

  46. M. Bonnivard, I.Pažanin, F.J. Suarez-Grau, Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid, European Journal of Mechanics - B/Fluids 72 (2018), 501-518.

  47. M. Beneš, I. Pažanin, M. Radulović, Rigorous derivation of the asymptotic model describing a nonsteady micropolar fluid flow through a thin pipe, Computers & Mathematics with Applications 76 (2018), 2035-2060.

  48. E. Marušić-Paloka, I. Pažanin, Reaction of the fluid flow on time-dependent boundary perturbation, Communications on Pure and Applied Analysis 18 (3) (2019), 1227-1246.

  49. G. Castineira, E. Marušić-Paloka, I.Pažanin, J.M. Rodriguez, Rigorous justification of the asymptotic model describing a curved-pipe flow in a time-dependent domain,  Zeitschrift fur Angewandte Mathematik und Mechanik 99 (1) (2019), pp. 1-39.

  50. I. Pažanin, M. Radulović, Asymptotic analysis of the nonsteady micropolar fluid flow through a curved pipe, Applicable Analysis 99 (12) (2020), 2045-2092.

  51. E. Marušić-Paloka, I. Pažanin, M. Prša, Asymptotic analysis of the heat conduction problem in a dilated pipe, Applied Mathematics and Computation 355 (2019), 135-150.

  52. M. Beneš, I.Pažanin, Homogenization of degenerate coupled transport processes in porous media with memory termsMathematical Methods in the Applied Sciences 42 (18) (2019), 6227-6258.

  53. J.C. Nakasato, I. Pažanin, M.C. Pereira, Roughness-induced effects on the convection-diffusion-reaction problem in a thin domain, Applicable Analysis 100 (5) (2021), 1107-1120.

  54. E. Marušić-Paloka, I. Pažanin, M. Radulović, On the Darcy-Brinkman-Boussinesq flow in a thin channel with irregularitiesTransport in Porous Media 131 (2020), 633-660.

  55. M. Beneš, I. Pažanin, M. Radulović, Leray's problem for the nonstationary micropolar fluid flow, Mediterranean Journal of Mathematics 17, 50 (2020), pp. 1-32.

  56. E. Marušić-Paloka, I. Pažanin, M. Radulović, Justification of the higher-order effective model describing the lubrication of the rotation shaft with micropolar fluid, Symmetry 2020, 12 (3), 334, in Special Issue: Recent Advances in Micropolar Fluids, G. Lukaszewicz, P.Kalita (Eds.), pp. 1-21.

  57. I. Pažanin, M. Radulović, On the heat flow through a porous tube filled with incompressible viscous fluid, Zeitschrift fur Naturforschung A 75 (4) (2020), 333-342.

  58. E. Marušić-Paloka, I. Pažanin, Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe and the formula for the Darcy-Weisbach friction coefficient, International Journal of Engineering Science 152 (2020), 103293, pp. 1-13.

  59. I. Pažanin, M. Radulović, Effects of the viscous dissipation on the Darcy-Brinkman flow: rigorous derivation of the higher-order asymptotic model, Applied Mathematics and Computation 386 (2020), 125479, pp. 1-12. 

  60. E. Marušić-Paloka, I. Pažanin, Inertia and roughness-induced effects on the porous medium flow through a corrugated channel, Transport in Porous Media 134 (2020), 621-633.

  61. E. Marušić-Paloka, I. Pažanin, Homogenization and singular perturbation in porous media, Communications on Pure and Applied Analysis 20 (2) (2021), 533-545.

  62. G. Lukaszewicz, I. Pažanin, M. Radulović, Asymptotic analysis of the thermomicropolar fluid flow through a thin channel with cooling, Applicable Analysis  101 (9) (2022), 3141-3169. 

  63. J.C. Nakasato, I. Pažanin, M.C. Pereira, Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness, Zeitschrift fur Angewandte Mathematik und Physik 72, 5 (2021), pp. 1-17.

  64. M. Ljulj, E. Marušić-Paloka, I. Pažanin, J.Tambača, Mathematical model of heat transfer through a conductive pipeESAIM: Mathematical Modelling and Numerical Analysis 55 (2) (2021), 627-658.

  65. E. Marušić-Paloka, I.Pažanin, Rigorous justification of the effective boundary condition on a porous wall via homogenizationZeitschrift fur Angewandte Mathematik und Physik 72, 146 (2021), pp. 1-22.

  66. M. Beneš, I. Pažanin, M. Radulović, On viscous incompressible flows of nonsymmetric fluids with mixed boundary conditionsNonlinear Analysis: Real World Applications 64 (2022), 103424, pp. 1-21.

  67. E. Marušić-Paloka, I. Pažanin, Homogenization of a mixed boundary condition,  Applicable Analysis 101 (12) (2022), 4113-4125.

  68. E. Marušić-Paloka, I. Pažanin, The effective boundary condition on a porous wall, International Journal of Engineering Science 173 (2022), 103638, pp. 1-12.

  69. E. Marušić-Paloka, I. Pažanin, A note on the MHD flow in a porous channel, Theoretical and Applied Mechanics 49 (1) (2022), 49-60.

  70. M. Beneš, I. Pažanin, M. Radulović, B. Rukavina, Nonzero boundary conditions for the unsteady micropolar pipe flow: Well-posedness and asymptoticsApplied Mathematics and Computation 427 (2022), 127184, pp. 1-22.

  71. M. Bonnivard, I. Pažanin, F.J.Suarez-Grau, A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis 56 (2022), 1255-1305.

  72. E. Marušić-Paloka, I. Pažanin, M. Radulović, MHD flow through a perturbed channel filled with a porous mediumBulletin of the Malaysian Mathematical Sciences Society 45 (2022), 2441-2471.

  73. I. Pažanin, M.Radulović, B. Rukavina, Rigorous derivation of the asymptotic model describing a steady thermomicropolar fluid flow through a curvilinear channel, Zeitschrift fur Angewandte Mathematik und Physik 73, 195 (2022), pp. 1-25.

  74. J.C. Nakasato, I. Pažanin, M.C. Pereira, On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary, Journal of Mathematical Analysis and Applications 524 (2023) 127062, pp. 1-21.

  75. E. Marušić-Paloka, I. Pažanin, The effect of roughness on the boundary condition on porous wall, Zeitschrift fur Angewandte Mathematik und Physik 74, 129 (2023), pp. 1-11.

  76. E. Marušić-Paloka, I. Pažanin, Modelling of the porous medium flow with pressure-dependent viscosity and drag coefficient, Zeitschrift fur Naturforschung A 78 (9) (2023), 823-832.

  77. I. Pažanin, F.J. Suarez-Grau, Roughness-induced effects on the thermomicropolar fluid flow through a thin domainStudies in Applied Mathematics 151 (2) (2023), 716-751.

  78. I. Pažanin, On the filtration of micropolar fluid through a thin pipe, Bulletin of the Malaysian Mathematical Sciences Society 46, 186 (2023), pp. 1-13.

  79. J.C. Nakasato, I. Pažanin, Homogenization of the non-isothermal, non-Newtonian fluid flow in a thin domain with oscillating boundary, Zeitschrift fur Angewandte Mathematik und Physik 74, 211 (2023), pp. 1-32.

  80. I. Pažanin, M. Radulović, On the Forchheimer-extended Darcy-Brinkman flow through a thin fracture, Zeitschrift fur Angewandte Mathematik und Mechanik 104 (3) (2024), pp. 1-16.

  81. I. Pažanin, M.C. Pereira, The effects of boundary roughness on the MHD duct flow with slip hydrodynamic condition, Quarterly of Applied Mathematics 83 (2025), 1-17.

  82. E. Marušić-Paloka, I. Pažanin, M. Radulović, Analytical solution for the magnetohydrodynamic duct flow with slip condition on the perturbed boundary, Chinese Journal of Physics 88 (2024), 425-438.

  83. E. Marušić-Paloka, I. Pažanin, The Robin boundary condition for modeling heat transfer,  Proccedings of the Royal Society A  480, 20230850 (2024), pp. 1-16.

  84. E. Marušić-Paloka, I. Pažanin, Modelling of the fluid flow in a thin domain with injection through permeable boundary, European Journal of Applied Mathematics 35 (6) (2024), 776-796.

  85. I. Pažanin, M. Radulović, B. Rukavina, Asymptotic analysis of the nonsteady micropolar fluid flow through a system of thin pipes, Mathematical Methods in the Applied Sciences 47 (15) (2024), 12285-12320.

  86. E. Marušić-Paloka, I. Pažanin, On the thermal flow through a porous annular region, Journal of Engineering Mathematics 147, 9 (2024), pp. 1-19.

  87. I. Pažanin, B. Rukavina, A remark on the non-steady micropolar pipe flow with a dynamic boundary condition for the microrotationQuarterly of Applied Mathematics (2024), pp. 1-20.

  88. J.C. Nakasato, I. Pažanin, Asymptotic modelling of the current flow system described by the p(x)-Laplacian, Zeitschrift fur Angewandte Mathematik und Mechanik, e202400253 (2024), pp. 1-19.

  89. T. Dorešić, I. Pažanin, Curved-pipe flow with boundary conditions involving Bernoulli pressure, Electronic Journal of Differential Equations Vol. 2024 (2024), No. 63, pp. 1-17.




Proceedings papers:
  1. S. Marušić, E. Marušić-Paloka, I. Pažanin, Asymptotic expansion for thermal flow through a pipe, Proceedings of the World Congress on Engineering 2010 / S.I.Aao, L.Gelman, David WL Huskins, A.Hunter, A.M.Korsunsky (Eds.) Vol III (2010), 1851-1854.

  2. S. Marušić, E. Marušić-Paloka, I. Pažanin, Second order models in fluid film lubricationProceedings of the 12th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2012 / J.Vigo-Aguiar et al.(Eds.) Vol II (2012), 807-811.

  3. I. Pažanin, E. Marušić-Paloka, S. Marušić, New asymptotic models for fluid film lubrication, Proceedings of the Conference Topical Problems of Fluid Mechanics 2014, Prague / D.Šimurda, T.Bodnar (Eds.) (2014), pp. 85-88.

  4. I. Pažanin, E. Marušić-Paloka, Effects of viscous dissipation on the fluid flow through a thin domain, Proceedings of the Conference Topical Problems of Fluid Mechanics 2018, Prague / D.Šimurda, T.Bodnar (Eds.) (2018), pp. 217-222.

  5. E. Marušić-Paloka, I. Pažanin, M. Radulović, On the lubrication of a rotating shaft with incompressible micropolar fluid, Proceedings of the Conference Topical Problems of Fluid Mechanics 2020, Prague / D.Šimurda, T.Bodnar (Eds.) (2020), pp. 160-167.

         
    Sitemap | Print Version

    Powered By CMSimple.dk | Design By DCWD