B. Sc.: September 4, 1994, Department of Mathematics, University of Zagreb.
Master Class: Jun 26, 1995, Mathematical Research Institute, The Netherlands.
M. Sc.: March 31, 1999, Department of Mathematics, Universoty of Zagreb, thesis: One-dimensional models in theory of elasticity.
PhD: September 15, 2000, Department of Mathematics, University of Zagreb, thesis: Evolution model of curved rods.
Papers
M. Jurak, J. Tambaca, Z. Tutek:
Derivation of a curved rod model by Kirchhoff assumptions,
ZAMM 79 (1999) 7, 455-463.
M. Jurak, J. Tambaca:
Derivation and justification of a curved rod model,
Mathematical Models and Methods in Applied Sciences Vol. 9,
No. 7 (1999) 991--1014.
J. Tambaca, Z. Tutek:
Dynamic Curved Rod Model,
Proceedings of the Conference on Applied Mathematics and
Computation, Dubrovnik 1999, eds. V. Hari et al., 2000.
J. Tambaca, Z. Tutek:
Evolution model of curved rods,
Proceedings of the Fifth International Conference on
Mathematical and Numerical Aspects of Wave Propagation,
Waves 2000 (Santiago de Compostela), SIAM, 2000, 197-201.
J. Tambaca: Estimates of the Sobolev norm of a product of two
functions, Journal of Mathematical
Analysis and Applications, Vol 255, Num 1, 2001, 137-146.
I. Aganovic, J. Tambaca:
On the stability of rotating rods and plates,
ZAMM 81, 2001, 11, 733--742.
M. Jurak, J. Tambaca:
Linear curved rod model. General curve,
Mathematical Models and Methods in Applied Sciences, Vol. 11, No. 7, 2001, 1237--1252.
J. Tambaca:
Injectivity of the parametrization of thin curved rods,
a short note, 2000,
dvi,
J. Tambaca:
One-dimensional approximations of the eigenvalue problem of curved rods,
Mathematical Methods in the Applied Science, Vol 24, No. 12, 2001, 927--948.
J. Tambaca:
Derivation of the elastic force of springs from the curved rod model,
Comptes Rendus de l'Academie des Sciences - Serie IIB - Mechanics, Vol. 329, No. 10, 2001, 761-765.
J. Tambaca:
Justification of the dynamic model of curved rods,
Asymptotic Analysis, Vol. 31, No. 1, 2002, 43-68.
J. Tambaca:
A model of irregular curved rods, in Proceedings of the Conference on Applied Mathematics and Scientific Computing (Dubrovnik, 2001),
eds. Z. Drmac, V. Hari, L. Sopta, Z. Tutek, K. Veselic,
Kluwer, 2003, 289-299.
M. Jurak, J. Tambaca, Z. Tutek:
Modelling of curved rods, in Proceedings of the Conference on Applied Mathematics and Scientific Computing (Dubrovnik, 2001),
eds. Z. Drmac, V. Hari, L. Sopta, Z. Tutek, K. Veselic,
Kluwer, 2003, 91-121.
J. Tambaca:
Derivation of a model of leaf springs, in Proceedings of the Conference on Applied Mathematics and Scientific Computing (Brijuni, 2003),
eds. M. Marusic, Z. Drmac, Z. Tutek,
Kluwer, 2004, 305-316.
I. Aganovic, J. Tambaca, Z. Tutek:
On the asymptotic analysis of elastic rods,
preprint (pdf).
S. Canic, A. Mikelic, D.
Lamponi and J. Tambaca. Self-Consistent Effective Equations Modeling Blood Flow in
Medium-to-Large Compliant Arteries. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 3 (3) (2005), 559 - 596. (pdf)
S. Canic, J. Tambaca, A. Mikelic, C.J. Hartley, D. Mirkovic and D. Rosenstrauch. Blood flow through axially symmetric sections of compliant vessels: new effective closed models, Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004. (pdf)
S. Canic, A. Mikelic and J. Tambaca. A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation, Comptes Rendus Mechanique 333, 12 (2005), 867-883. (pdf)
J. Tambaca, S. Canic, A. Mikelic. Effective Model of the Fluid Flow through Elastic Tube with Variable Radius, Grazer Math. Ber. 348 (2005), 91-112
(pdf).
J. Tambaca, A numerical method for solving the curved rod model, ZAMM 86 (2006), 210-221.
J. Tambaca, A note on the "flexural" shell model for shells with little regularity, Advances in Mathematical Sciences and Applications 16, (2006) 45-55.
I. Aganovic, J. Tambaca, Z. Tutek, A note on reduction of dimension for linear elliptic equations, Glasnik Matematicki 41 (2006), 77-88.
I. Aganovic, J. Tambaca, Z. Tutek, Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity, Journal of Elasticity 84 (2006), 131-152.
S. Canic, C.J. Hartley, D. Rosenstrauch, J. Tambaca, G. Guidoboni, A. Mikelic,
Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics and Experimental Validation,
Annals of Biomedical Engineering 34 (2006), 575-592. (pdf)
S. Canic, J. Tambaca, G. Guidoboni, A. Mikelic, C.J. Hartley, D. Rosenstrauch. Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM Journal on Applied Mathematics 67 (2006), 164-193.
I. Aganovic, J. Tambaca, Z.Tutek, Derivation and
justification of the model of micropolar elasticshells from
three-dimensional linearized micropolar elasticity, Asymptotic Analysis 51(3,4) (2007), 335-361.
I. Aganovic, J. Tambaca, Z.Tutek,
Derivation of the model of elastic curved rods from three-dimensional micropolar elasticity,
Annali dell'Universita'di Ferrara 53 (2007), 109-133.
J. Tambaca, I. Velcic,
Evolution model of linear micropolar plate,
Annali dell'Universita'di Ferrara 53 (2007), 417-435.
J. Tambaca, I. Velcic,
Existence theorem for nonllinear micropolar elasticity,
ESAIM: Control, Optimisation and Calculus of Variations 16 (2010), 92-110.
J. Tambaca, I. Velcic,
Derivation of a model of nonlinear micropolar plate, Annali dell'Universita'di Ferrara 54 (2008), 2, 319-333.
J. Tambaca, I. Velcic,
Semicontinuity theorem in the micropolar elasticity,
ESAIM: Control, Optimisation and Calculus of Variations 16 (2010), 337-355.
J. Tambaca, I. Velcic, Evolution model for linearized micropolar plates by the Fourier method, Journal of Elasticity 96 (2009), 129-154.
J. Tambaca, I. Velcic, Relaxation theorem and lower dimensional models in micropolar elasticity, Mathematics and Mechanics of Solids 15 (2010), 8, 812-853.
E. Fabijanic, J. Tambaca, Numerical comparison of the beam model and 2D linearized elasticity, Structural Engineering and Mechanics 33 (2009), 5, 621-633.
J. Tambaca, M. Kosor, S. Canic, D. Paniagua, Mathematical Modeling of Vascular Stents, SIAM Journal on Applied Mathematics 70 (2010), 6, 1922-1952.
J. Tambaca, S. Canic and D. Paniagua, A novel approach to modeling coronary stents using slender curved rod model: a comparasion between fractured Xience-like and Palmaz-like stents, in Applied and Numerical Partial Differential Equations (eds. W. Fitzgibbon, Yu. Kuznetsov, P. Neittaanmaki, J. Periaux and O. Pironneau), Springer, 2010, 41-58.
Josip Tambaca, Suncica Canic, Mate Kosor, R. David Fish, David Paniagua,
Mechanical Behavior of Fully Expanded Commercially Available Endovascular Coronary Stents, Texas Heart Institute Journal 38 (2011), 491-501.
J. Tambaca, I. Velcic, Derivation of the nonlinear bending-torsion model for a junction of elastic rods, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics 142 (2012), 633-664.
S. Canic, J. Tambaca, Cardiovascular Stents as PDE Nets: 1D vs. 3D, IMA Journal of Applied Mathematics 77 (2012), 6, 748-779. journal
M. Marohnic, J. Tambaca, Derivation of the linear elastic string model from three-dimensional elasticity, Journal of Elasticity 111 (2013), 41-65, DOI: 10.1007/s10659-012-9394-1
M. Bukac, S. Canic, R. Glowinski, J. Tambaca, A. Quaini, Fluid.structure interaction in blood flow capturing non-zero longitudinal structure displacement,
J. Comput. Phys. 235 (2013), 515-541. DOI: 10.1016/j.jcp.2012.08.033
M. Marohnic, J. Tambaca, Derivation of a linear elastic rod model from three-dimensional elasticity, Mathematics and Mechanics of Solids 20 (2015), 1215-1233. doi:10.1177/1081286513517706.
J. Tambaca, A New Linear Shell Model for Shells with Little Regularity, Journal of Elasticity 117 (2014), 2, 163-188, journal.
M. Marohnic, J. Tambaca, On a model of a flexural prestressed shell, M2AS 38 (2015), 5231-5241. DOI: 10.1002/mma.3451.
J. Tambaca, B. Zugec, One-dimensional quasistatic model of biodegradable elastic curved rods, ZAMP 66 (2015), Issue 5, pp 2759-2785, journal.
M. Kosor, J. Tambaca, Nonlinear bending-torsion model for curved rods with little regularity, Mathematics and Mechanics of Solids 22 (2017), 4; 708-717. DOI: 10.1177/1081286515608910.
P. Zunino, J. Tambaca, E. Cutri, S. Canic, L. Formaggia, F. Migliavacca, Integrated Stent Models Based on Dimension Reduction: Review and Future Perspectives, Annals of Biomedical Engineering 44 (2016), 604-617. journal.
A. Mikelic, J. Tambaca, Derivation of a poroelastic shell model, Multiscale modeling & simulation 14 (2016), 1, 364-397, journal, arxiv.
J. Tambaca, Z. Tutek, A new linear Naghdi type shell model for shells with little regularity, Applied Mathematical Modelling 40 (2016), 23-24, 10549-10562. journal, free download.
M. Ljulj, J. Tambaca, Iterative methods for solving a poroelastic shell model of Naghdi's type, M2AS 40 (2017), 12; 4425-4435.
S. Canic, M.L. Delle Monache , B. Piccoli , J.-M. Qiu*, J. Tambaca,
Numerical Methods for Hyperbolic Nets and Networks, in Handbook of Numerical Analysis 18, 2017, 435-463.
S. Canic, M. Galovic, M. Ljulj, J. Tambaca,
A dimension-reduction based coupled model of mesh-reinforced shells, SIAM Journal of Applied Mathematics 77 (2017) 2, 744-769.
L. Grubisic, J. Tambaca, Quasi-semidefinite eigenvalue problem and applications, Nanosystems: physics, chemistry, mathematics 8 (2017) 2, 180-187.
free download
L. Grubisic, J. Ivekovic, J. Tambaca and B. Zugec, Mixed formulation of the one-dimensional equilibrium model for elastic stents, Rad HAZU 21 (2017), 219-240.link
A. Mikelic and J. Tambaca, Derivation of a poroelastic elliptic membrane shell model, Applicable Analysis 98 (2019), 1-2, 136-161. link
J. Tambaca, B. Zugec, A biodegradable elastic stent model, Mathematics and Mechanics of Solids 24 (2019), 8, 2591-2618, journal.
L. Grubisic, J. Tambaca, Direct solution method for the equilibrium problem for elastic stents, Numerical Linear Algebra with Applications 26 (2019) 3, e2231, link.
S. Canic, M. Galic, M. Ljulj, B. Muha, J. Tambaca, Y. Wang,
Analysis of a linear 3D fluid-mesh-shell interaction problem, Zeitschrift fur angewandte mathematik und physik 70 (2019), 2; 44, 38pp, link.
M. Bukac, S. Canic, J. Tambaca, Y. Wang,
Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: a four stent
computational study, Computer Methods in Applied Mechanics and Engineering 350 (2019), 679-700.
M. Ljulj, J. Tambaca,
3D structure - 2D plate interaction problem, Mathematics and Mechanics of Solids 24 (2019), 3354-3377. link
M. Ljulj, J. Tambaca, A Naghdi type nonlinear model for shells with little regularity, Journal of Elasticity 142 (2020), 447-494. link
L. Grubisic, M. Ljulj, V. Mehrmann, J. Tambaca, Modeling and discretization methods for the numerical simulation of elastic stents, Electronic Transactions on Numerical Analysis (ETNA) 54 (2021), 1-30. link
M. Ljulj, J. Tambaca, Numerical investigation of the 2d-1d structure interaction model, Mathematics and Mechanics of Solids 26 (2021), 1876-1895.
M. Ljulj, E. Marusic-Paloka, I. Pazanin, J. Tambaca, Mathematical model of heat transfer through a conductive pipe, M2AN 55 (2021) 2, 627-658. link
A. Seboldt, O. Oyekole, J. Tambaca, M. Bukac, Numerical modeling of the fluid-porohyperelastic structure interaction, SIAM Journal on Scientific Computing 43 (2021), 4, A2923-A2948.
link
L. Grubisic, D. Lacmanovic, J. Tambaca, Preconditioning the quad dominant mesh generator for ship structural analysis, Algorithms 15 (2022), 1, no 2.
link
L. Grubisic, D. Lacmanovic, M. Palaversa, Pero
Prebeg, J. Tambaca,
An open-source processing pipeline for quad-dominant mesh generation
for class-compliant ship structural analysis, Journal of Marine Science and Engineering 2022, 10(2), 209.
link
S. Canic, L. Grubisic, D. Lacmanovic, M. Ljulj, J. Tambaca, Optimal design of vascular stents using a network of 1D slender curved rods, Computer Methods in Applied Mechanics and Engineering 394 (2022) 114853.
link
M. Ljulj, K. Schmidt, A. Semin, J. Tambaca, Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures, Applicable Analysis 101 (2022) 12, 4046-4075.
M. Ljulj, J. Tambaca, 3D structure - 2D plate - 1D rod interaction problem, M2AS 46 (2023), 9053-9078, link.
S. Canic, L. Grubisic, M. Ljulj, M. Maretic, J. Tambaca, Geometric optimization of vascular stents modeled as networks of 1D rods, Journal of Computational Physics 494 (2023), paper 112497.
S. Canic, L. Grubisic, M. Ljulj, M. Maretic, J. Tambaca, Geometric optimization problem for vascular stents, to appear in Mathematical models for interacting dynamics on networks (mat-dyn-net), Trends in Mathematics (Series ID: 4961), Springer Nature Switzerland AG, 2025.