Francisco R. Ruiz del Portal*
Universidad Complutense de Madrid, Madrid, Spain
On the growth of the sequence of indices of the iterates of $\R^3$-homeomorphisms
Given a homeomorphism $f:\R^3\to\R^3$ such
that $Fix(f)=Per(f)=\{ 0\}$, we will discuss in geometric
dynamical terms the behavior of the sequence $\{i(f^m,0)\}_{m \in
\N}$ of the fixed point indices of its iterates at 0.
We shall comment, from this point of view, some of the most
important known results in this topic.
REFERENCES
[1]
I. K. Babenko, S. A. Bogatyi. The behavior of the index of
periodic points under iterations of a mapping, Math. USSR
Izvestiya, 38 (1992) 1–26.
[2]
C. Bonatti, J. Villadelprat. The index of stable critical
points. Topology Appl. 126 (2002), 1–2, 263–271.
[3]
S. N. Chow, J. Mallet-Paret, J. A. Yorke. A periodic orbit
index which is a bifurcation invariant, Geometric Dynamics (Rio
de Janeiro, 1981). Springer Lect. Notes in Mathematics, 1007.
Berlin 1983, 109–131.
[4]
E. N. Dancer, R. Ortega. The index or Lyapunov stable fixed
points, Journal Dynamics and Diff. Equations, 6 (1994) 631–637.
[5]
A. Dold. Fixed point indices of iterated maps, Invent.
Math. 74, (1983), 419–435.
[6]
E. Erle. Stable equilibria and vector field index, Topology
Appl. 49 (1993) 231–235.
[7]
J. Franks, D. Richeson. Shift equivalence and the Conley
index, Trans. Amer. Math. Soc. 352, 7 (2000) 3305–3322.
[8]
G. Graff, P. Nowak-Przygodzki. Fixed point indices of iterations
of $C^1$-maps in $\R^3$, Discrete and Continuous
Dynamical Systems, 4 (2006) 843–856.
[9]
P. Le Calvez, J. C.Yoccoz. Un théoréme d'indice pour les
homéomorphismes du plan au voisinage d'un poin fixe, Annals of
Math. 146 (1997) 241–293.
[10]
P. Le Calvez. Dynamique des homéomorphismes du plan au
voisinage d'un point fixe, Ann. Sci. Ecole Norm. Sup. (4) 36
(2003), no. 1, 139–171.
[11]
F. R. Ruiz del Portal. Planar isolated and stable fixed points have
index =1, Journal of Diff. Equations, 199 (2004), 179–188.
[12]
F. R. Ruiz del Portal, J. M. Salazar. Fixed point index of
iterations of local homeomorphisms of the plane: a Conley-index
approach, Topology, 41 (2002) 1199–1212.
[13]
F. R. Ruiz del Portal, J. M. Salazar. Fixed point indices of
the iterates of $\R^3$-homeomorphisms at Lyapunov stable
fixed points, Journal of Diff. Equations (to appear).
[14]
F. R. Ruiz del Portal, J. M. Salazar. Fixed point indices of
the iterations of $\R^3$-homeomorphisms, preprint.
[15]
M. Shub and D. Sullivan. A remark on the Lefschetz fixed
point formula for differentiable maps, Topology, 13 (1974),
189–191.
[16]
J. Vaughan Ed. Open problems collected from the Spring
Topology and Dynamical Systems Conference 2006.
http://www.uncg.edu/mat/stdc
[17]
F. W. Wilson. On the minimal sets of non-singular vector
fields, Annals of Math. 84 (1966) 529–536.
* This is a joint work with José Manuel Salazar.