Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Papers

  1. M. Butorac, S. Kožić, A. Meurman, M. Primc, Lepowsky's and Wakimoto's product formulas for the affine Lie algebras Cl(1), Journal of Algebra 660 (2024), 147-189; preprint.
  2. L. Bagnoli, S. Kožić, Double Yangian and reflection algebras of the Lie superalgebra glm|n, Communications in Contemporary Mathematics (2024), https://doi.org/10.1142/S021919972450007X; preprint.
  3. L. Bagnoli, S. Kožić, Yangian deformations of S-commutative quantum vertex algebras and Bethe subalgebras, Transformation Groups (2024), https://doi.org/10.1007/s00031-023-09837-w; preprint.
  4. L. Bagnoli, Homology of the complexes of finite Verma modules over CK6, Journal of Algebra 641 (2024), 307-352; preprint.
  5. M. Butorac, N. Jing, S. Kožić, F. Yang, Semi-infinite construction for the double Yangian of type A1(1), Journal of Algebra 638 (2024), 465-487; preprint.
  6. S. Kožić, M. Sertić, A note on constructing quasi modules for quantum vertex algebras from twisted Yangians, Algebras and Representation Theory 27 (2024), 363-380; preprint.
  7. M. Butorac, S. Kožić, Combinatorial bases of standard modules of twisted affine Lie algebras in types A2l-1(2) and Dl+1(2): rectangular highest weights, Communications in Algebra 51 (2023), 4012-4032; preprint.
  8. S. Kožić, On the h-adic quantum vertex algebras associated with Hecke symmetries, Communications in Mathematical Physics 397 (2023), 607-634; preprint.
  9. M. Butorac, S. Kožić, Principal subspaces for the affine Lie algebras in types D, E and F, Journal of Algebraic Combinatorics 56 (2022), 1063-1096; preprint.
  10. M. Butorac, S. Kožić, On the Heisenberg algebra associated with the rational R-matrix, Journal of Mathematical Physics 63 (2022) 011701 (23pp); preprint.
  11. M. Butorac, S. Kožić, Principal subspaces for the quantum affine vertex algebra in type A1(1), Journal of Pure and Applied Algebra 226 (2022) 106973 (14pp); preprint.
  12. S. Kožić, h-adic quantum vertex algebras in types B, C, D and their phi-coordinated modules, Journal of Physics A: Mathematical and Theoretical 54 (2021) 485202 (27pp); preprint.
  13. S. Kožić, On the quantum affine vertex algebra associated with trigonometric R-matrix, Selecta Mathematica, New Series 27 (2021) 45 (49 pages); preprint.
  14. M. Butorac, S. Kožić, M. Primc, Parafermionic bases of standard modules for affine Lie algebras, Mathematische Zeitschrift 298 (2021), 1003-1032; preprint.
  15. M. Butorac, A note on principal subspaces of the affine Lie algebras in types Bl(1), Cl(1), F4(1) and G2(1), Communications in Algebra 48 (2020), 5343-5359; preprint.

Preprints submitted for publication

  1. L. Bagnoli, S. Kožić, Associating deformed phi-coordinated modules for the quantum affine vertex algebra with orthogonal twisted h-Yangians, arXiv:2407.00515 [math.QA].
  2. L. Bagnoli, S. Kožić, Deformed quantum vertex algebra modules associated with braidings, arXiv:2405.04137 [math.QA].
  3. L. Bagnoli, S. Kožić, A note on the quantum Berezinian for the double Yangian of the Lie superalgebra glm|n, arXiv:2402.00487 [math.RT].