PRINCIPAL SUBSPACES FOR THE AFFINE LIE ALGEBRAS IN
TYPES D, £E AND F

MARIJANA BUTORAC! AND SLAVEN KOZIC?

ABSTRACT. We consider the principal subspaces of certain level k > 1 integrable highest
weight modules and generalized Verma modules for the untwisted affine Lie algebras in
types D, E and F. Generalizing the approach of G. Georgiev we construct their quasi-
particle bases. We use the bases to derive presentations of the principal subspaces,

calculate their character formulae and find some new combinatorial identities.

1. INTRODUCTION

Starting with J. Lepowsky and S. Milne [30], the fascinating connection between
Rogers—Ramanujan-type identities and affine Kac—Moody Lie algebras was extensively
studied; see, e.g., [31-33,35] and references therein. The principal subspaces of standard
modules, i.e. of integrable highest weight modules for the affine Lie algebras, introduced
by B. L. Feigin and A. V. Stoyanovsky [16], present a remarkable example of this inter-
play between combinatorics and algebra. In particular, their so-called quasi-particle bases
provide an interpretation of the sum sides of various Rogers—Ramanujan-type identities;
see [4-7,16,20,34]. Aside from quasi-particle bases, numerous research directions are fo-
cused on other aspects of principal subspaces and related structures such as certain gener-
alized principal subspaces [2], Feigin-Stoyanovsky’s type subspaces [3,22,38], realizations
of Jack symmetric functions [8], presentations of principal subspaces [9-12,36,37,39,40],
Rogers—Ramanujan-type recursions [13, 14], Koszul complexes [24], principal subspaces
for quantum affine algebras and double Yangians [26-28] etc. The key ingredient that all
the aforementioned studies have in common is the application of vertex-operator theoretic
methods.

Let Ag,...,A; be the fundamental weights of the untwisted affine Lie algebra g asso-
ciated with the simple Lie algebra g of rank [. In this paper, we consider the principal
subspaces Wi (xa,) of the generalized Verma modules N(kA) and the principal subspaces
Wikny) of the standard modules L(kAo) of highest weights kA, for g in types D, E and
F. The main result is a construction of the quasi-particle bases B y(a,) and B, of the
corresponding principal subspaces. It is presented in Theorem 3.1, which we formulate so
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that it includes the corresponding bases of the principal subspaces Wiy (xay) and Wra,)
for all untwisted affine Lie algebras g. The bases in the remaining types A, B, C and G

were given by several authors, as we explain below.

Theorem 3.1. For any positive integer k the set By forms a basis of the principal
subspace Wy of the g-module V= N (kAy), L(kA).

The bases By are expressed in terms of monomials of certain operators, called quasi-
particles, applied on the highest weight vector, whose charges and energies satisfy cer-
tain difference conditions. Theorem 3.1 for g of type A; goes back to Feigin and Stoy-
anovsky [16]. Next, G. Georgiev [20] constructed the quasi-particle bases of the principal
subspaces W), where g = A;, for all rectangular weights A, i.e. for all integral domi-
nant highest weights A = koA + k;A;. Finally, the bases By from Theorem 3.1, where
V = N(kAy), L(kAo) and g = By, C}, G, were obtained by the first author in [4-6]. The
quasi-particle bases of the principal subspaces Wi,y for g = A; and i = 0,1,...,[ can
be also recovered from the recent result of K. Kawasetsu [25]. Our proof of Theorem 3.1
in types D, E and F follows the approach in [20] and relies on [4,5,22]. In addition to
Theorem 3.1, in Theorem 3.2 we construct quasi-particle bases of the principal subspaces
Wi for all rectangular highest weights A in types D and E, thus generalizing [20].

Next, in Theorem 4.1, we derive presentations of the principal subspaces Wiy a,) for
all types of g, i.e. we give the vector space isomorphisms

Witeno) = Uy @ Clt, 7)) /i)

where n is the subalgebra of g spanned by all positive root vectors and Iy, is a certain
left ideal in U(n, @ C[t,t™']). Moreover, we provide explicit formulae for the generators of
I'1(kno)- The presentations of principal subspaces of standard g-modules L(A) for the level
k integral dominant highest weights A were established by Feigin and Stoyanovsky [16]
for g = A; and k = 1. Furthermore, the presentations were proved by C. Calinescu,
Lepowsky and A. Milas [9-11] for g = A; and k > 1 and for g = A, D, E and k = 1, and
by C. Sadowski [39] for g = Ay and k > 1. The proofs in [9-11,39] are sometimes referred
to as a priori proofs as they do not rely on the detailed underlying structure, such as bases
of the standard modules or of the principal subspaces. Finally, Sadowski [40] proved the
general case g = A, for all k£ > 1 using Georgiev’s quasi-particle bases [20]. In contrast
with [9-11,39], our proof employs the sets Ba,) from Theorem 3.1, thus solving a
simpler problem. In addition, using the quasi-particle bases from Theorem 3.2 we obtain
presentations of the principal subspaces Wy for all rectangular highest weights A in
types D and E; see Theorem 4.2. It is worth noting that, aside from the aforementioned
cases covered in [9-11,39], the a priori proof of these presentations is still lacking.

In the end, we use the bases from Theorems 3.1 and 3.2 to explicitly write the character
formulae for the principal subspaces. Moreover, let R, be the set of positive roots of g
and let p; = v;/vy, where the numbers v; and i’ are given by (3.3). By regarding two

different bases for Wi a,) we find
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Theorem 7.3. For any untwisted affine Lie algebra g we have
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where n; = Zt>1 rgt) fori=1,...,1 and the sum on the right hand side goes over all

descending infinite sequences of nonnegative integers with finite support.

The theorem produces three new families of combinatorial identities which correspond
to types D, E and F, while the remaining identities, for types A, B, C' and G, are already
well-known; see [4-6,20)].

2. PRELIMINARIES

Let g be a complex simple Lie algebra of rank [ equipped with a nondegenerate invariant
symmetric bilinear form (-, -) and let h be its Cartan subalgebra. As the restriction of the
form (-,-) on b is nondegenerate, it defines a symmetric bilinear form on the dual h*. Let
II = {ay,...,} C b* be the basis of the root system R of g with respect to h and let
To € g with @ € R be the root vectors. The simple roots aq,...,q; are labelled® as in
Figure 1. We denote by af, ..., @, the corresponding simple coroots. Let Ay,..., A\ € h*
be the fundamental weights, i.e. the weights such that <)\Z-, 04}/> = 0;;. Let Q = Zlizl Loy
and P = 22:1 Z); be the root lattice and the weight lattice of g respectively. We assume
that the form (-, -) is normalized so that (o, «) = 2 for every long root o € R. Hence, in
particular, we have (a;, ;) € {2/3,1,2} for all i = 1,...,l. Denote by R, and R_ the
sets of positive and negative roots. Let

g=n_®Hhdn,, where ng = @ n, and n, = Cz, for all a € R,

a€ER+

be the triangular decomposition of g; see [21] for more details on simple Lie algebras.

A oO—0o— -+ —0O0—O0 B 0—o0— -+ —0=0
ap Qg Q-1 Qg ap Qg a1 O
O o
C, O—O0O— -+ — 0«0 D 0o—o0— .+ —0—0
(87 7] Oy O ap Oy Qo 01

& In contrast with [21] and [23, Table Fin], we reverse the labels in the Dynkin diagram of type Cj in
Figure 1, so that the root lengths in the sequence asq, ..., a; decrease for all types of g, thus getting a

simpler formulation of Theorem 3.1.
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F1GURE 1. Finite Dynkin diagrams

The affine Kac-Moody Lie algebra g associated to g is defined by
g=9xC[t,t '@ Cca Cd,

where the elements z(m) = z ® t™ for © € g and m € Z are subject to relations

[e.al =0, [d,z(m)] = mx(m),
[z(m), y(n)] = [z,y] (m + 1) + (2,y) MOmino c. (2.1)
We denote by ag, o, ..., and ag, oy, ..., ) the simple roots and the simple coroots
of g. Let A; be the fundamental weights of g, i.e. the weights such that A;(d) = 0 and
Ai(aj) = 0y for all i, j = 0,..., . For more details on affine Lie algebras see [23].

Let ko, ...,k be nonnegative integers such that k = kg + ... + k; is positive and let
A = k1A +...+ k). Denote by U, the finite-dimensional irreducible g-module of highest
weight \. The generalized Verma g-module N(A) of highest weight A = koAg+ ... + kA

and of level k is defined as the induced g-module
N(A) = U(g) @uezo) Un,
where the action of the Lie algebra
' =Pet")eCeaCd
n>0

on U, is given by
gRt"-u=0foralln >0, c-u=ku and d-u=0 for all u € U,.

Denote by L(A) the standard g-module of highest weight A and of level k, i.e. the inte-
grable highest weight g-module which equals the unique simple quotient of the generalized
Verma module N(A). In particular, for A = 0 we obtain the generalized Verma g-module
N (kAg) of highest weight kA and level k = kg which possesses a vertex operator algebra

structure. Moreover, L(kAg) is a simple vertex operator algebra and the level k£ standard
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g-modules are L(kAg)-modules; see, e.g., [29,33]. Finally, recall that Poincaré-Birkhoff-
Witt theorem for the universal enveloping algebra implies the vector space isomorphism

N(kAo) 2 U(G™), where §=°=Paat").

n<0

For more details on the representation theory of affine Lie algebras see [23].

3. QUASI—PARTICLE BASES OF PRINCIPAL SUBSPACES

In this section, we state our main results, Theorems 3.1 and 3.2.

3.1. Quasi-particles. Introduce the following subalgebras of g:
n,=n,@Clt,t7"], n=n,®C[t] and nP=n, @t 'Ct"].

Let A be an arbitrary integral dominant weight of g. Denote by V' the generalized Verma
module N(A) or the standard module L(A) with a highest weight vector vy . Following
Feigin and Stoyanovsky [16], we define the principal subspace Wy, of V' by

WV =U (ﬁ+)’l)v.
Consider the vertex operators

To,(2) = Z To,(m)z"™ "t € Hom(V,V((2))) € (End V)[[zF]], i=1,...,L

mEZ

Note that (2.1) implies [z, (21), Ta,;(22)] = 0 so that

Tna;(2) = Z Tna,(M)z~" " = \maz(z) o waz(z)j = Tq,(2)" (3.1)

TV
mEZ n times

is a well-defined element of Hom(V,V((2))) for all n > 1. As in [20], define the quasi-
particle of color i, charge n and energy —m as the coefficient z,,,(m) € End V' of (3.1).

Consider the quasi-particle monomial

b= (:cn 1) e (mrlu) l) .. -xnl,zaz<m1,l)> . (xn W 1a1(mr§1> 1) .. .xm,lal(ml,l)) (m)
’V‘l . ’ 7‘1 N ’

in End V. Note that the quasi-particle colors in (m) are increasing from right to left and

that the integers 7’](-1) > 0 with 7 =1,...,1 denote the parts of the conjugate partition of

ng=mna +- - -+mnyj; see [4-6,20] for more details. It is convenient to write quasi-particle
j I

monomial (m) more briefly as

b="ba, -+ bayba,, where b, = Tn ) @ (mnm,i) Ty o (M) for i =1, 1 (3.2)
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3.2. Quasi-particle bases for A = kAy. Suppose that A = kA for some positive
integer k so that V' denotes the generalized Verma module N(kAo) or the standard
module L(kAg). We introduce certain difference conditions for energies and charges of
quasi-particles in (m). First, for the adjacent quasi-particles of the same color we require
that

forall ¢=1,...,] and pzl,...,’rgl)—l

Np41,i < Np.i and if Np+1,i = Npji then Mp+1i < Mpi — 2nm. (Cl)

Next, we turn to the difference conditions which describe the interaction of two quasi-
particles of adjacent colors. For all ¢ =1, ... [ define

(12 ifi=landg=D,

3, if i = and g = Eg, Er,
and i =4 BT and g S b (3.3)
(i, o) 5, if i = and g = E,

1 — 1, otherwise.

Introduce the following difference conditions:

forall i=1,...,] and p=1,-~-a7}(1)

e

1
) >
Mpi < —Np; + E :mln {V_Z,”q,i/a ”p,i} —2(p — 1)ny, (ca)
q=1

where we set r(()l) = 0 so that the sum in (¢y) is zero for ¢ = 1. In the end, we impose the
following restrictions on the quasi-particle charges:

npi: < kv, forall i=1,...,] and pzl,...,rz@). (¢3)

Let Bn(ka,) be the set of all monomials (m), regarded as elements of End N(kA,),
satisfying conditions (c;) and (c;). Moreover, let By a,) be the set of all monomials (m),
regarded as elements of End L(kA), satisfying (¢;), (c2) and (c3). Finally, let

By, = {bvv b e Bv} CcWy for V= N(k}AO), L(]CAO)

Theorem 3.1. For any positive integer k the set By forms a basis of the principal
subspace Wy of the g-module V- = N (kAy), L(kA).

Even though Theorem 3.1 is formulated for an arbitrary untwisted affine Lie algebra
g, we only give proof for g of type D, E and F’; see Sections 5 and 6. The proofs for the
remaining types can be found in [4-6, 20].

3.3. Quasi-particle bases for rectangular weights in types D and E. Suppose
that the affine Lie algebra g is of type Dl(l), Eél) or Eél). Let A be the rectangular weight,

i.e. the dominant integral weight of the form

A = kolg + kA, (3.4)
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where ko, k; are nonnegative integers and A; is the fundamental weight of level one;
cf. [20]. Recall that j = 1,1 — 1,1 for g = Dl(l), j =16 for g = Eél) and j = 1 for

g= E§1); see [23]. Denote by k = ko + k; the level of A. Define

0, if 1<¢t< ko,

. t <
=9 . (3.5)
7, if k’o<t<l{?0—|—l€]
Introduce the following difference condition:
forall ¢=1,...,] and pzl,...,rgl)
e .
i Np,i
Mp; < —Npi + Z min {ng;,nyi} —2(p — L)n,,; — Z ij, - (ch)

q:l t=1

Note that this condition differs from (c;) by a new term >, d;;,. For a given rectangular
weight A denote by B be the set of all monomials (m), regarded as elements of
End L(A), satisfying (1), (¢5) and (c3). Finally, let

%L(A) = {bUL(A) b e BL(A)} C WL(A)-

Theorem 3.2. Let g be the affine Lie algebra of type Dl(l), Eél) or Eél). For any rectan-
gular weight A the set B, forms a basis of the principal subspace Wy ).

The proof of Theorem 3.2 is given in Section 6.

4. PRESENTATIONS OF THE PRINCIPAL SUBSPACES Wp(xa,)

In this section, we give the presentations of the principal subspaces Wi s, for an
arbitrary untwisted affine Lie algebra g; see Theorem 4.1 below. Next, in Theorem 4.2,
we give the presentations of Wr ) for all rectangular weights A in types D and E. As
pointed out in Section 1, the presentations of the principal subspaces of certain standard
g-modules in types A, D and F were originally found and proved in [9-11,16,39,40] while
their general form was conjectured in [40].

Let A be an integral dominant highest weight. Consider the natural surjective map

froy : Umg) — Wi (4.1)

a > a-VULA)-
For any i = 1,...,[ and integer m > kv; + 1 define the elements R,,(—m) € U(n) by

Rai(_m) = Z Loy, (ml) s xai(mkvi-f-l)'

MLy Mgy 41— 1
mi+...+Mpy, 1=—m

Let 1ty be the left ideal in the universal enveloping algebra U(n..) defined by

Igag) = UGRDREY + > Y U@y Ray(—m). (4.2)

i=1 m>kv;+1

We have the following natural presentations of the principal subspaces:
7



Theorem 4.1. For all positive integers k we have
ker frieno) = IL(keno) or, equivalently, Witkao) = UMy)/Inka)-

In Section 5, we employ the sets By, a,) from Theorem 3.1 to prove Theorem 4.1 for
the affine Lie algebra g = F4(1). We omit the proof for other types of g since it goes
analogously, by using the corresponding quasi-particle bases.

Let g be the affine Lie algebra of type Dl(l), Eél) or Eél). As in [40], for a given
rectangular weight A = kgA¢ + k;A; define the left ideal in the universal enveloping
algebra U(n, ) by

Inny = Inosky)ne) + UMp)za, (—1)%" (4.3)

Theorem 4.2. Let g be the affine Lie algebra of type Dl(l), Eél) or Eél). For a given
rectangular weight A we have

ker fray = Irw) or, equivalently, Wiy = U0/ Irny.
The proof of Theorem 4.2 is given in Section 6.

Remark 4.3. The form of the elements R,,(—m) is motivated by the integrability con-
dition
T(wi+1)a,(2) = 0 on any level k standard module, (4.4)

which is due to Lepowsky and Primc [31]. It implies quasi-particle charges constraint (c3).

5. PROOF OF THEOREMS 3.1 AND 4.1 IN TYPE F

In this section, we prove Theorems 3.1 and 4.1 in type F. The proof is divided into six
steps, i.e. Sections 5.1-5.6. We consider the affine Lie algebra g of type Ff) so that [ =4
and the basis II of the root system R for the corresponding simple Lie algebra g consists
of the simple roots ay, ag, ag, ay; see [21, Chap. I1I]. The maximal root 6 equals

0 = 20 + 3 + 4as + 204 and satisfies  «;(0Y) = dy; for i = 1,2, 3, 4. (5.1)

5.1. Linear order on quasi-particle monomials. In this section, we briefly cover
some basic concepts originated in [20] which are typically used to handle quasi-particle
monomials. In particular, we introduce a certain linear order among such monomials

which will come in useful in Section 5.5. Let

b :(J;n o as(mw ) T e (mm)) (xn o s (M) e T (ml,g))
T4 4 4 > T3 ,3 3

(%w,zm (m,00) -+ Ty (1.2 ) (I"rgw,ﬂl (m,00,) T (1)) ()
be an element of End V', where V' = N(kAy) or V = L(kAy), such that
o, <...<ny; and m.o <. o<myy, foralli=1,2,3,4. (5.2)
Define the charge-type C and the energy-type £ of b by

C = <nr4(11>,4’ ce ,n174; nr§1)73, Ce ,7”L173; nr§1>72, ce ,n172; nri1)71, Ce ,7”L171> s (53)
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5 = (mrff)A’ Ce ,m174; mr§1>73, . ,m173; m?“él),Q’ Ce ,ml,g; mri”&’ RN ,le) .
Moreover, define the color-type of b as the quadruple (n4, ng, n2, n1) such that n; denotes
the sum of charges of all color j quasi-particles, i.e. such that n; = nT§1>7j + ...+ ng.
Let by,bs be any two quasi-particle monomials of the same color-type, expressed as
in (mpg,), such that their charges and energies satisfy (5.2). Denote their charge-types
and energy-types by Ci,Cy and &1, & respectively. Define the strict linear order among

quasi-particle monomials of the same color-type by
b1 < bg if Cl < CQ or Cl = CQ and 81 < 82, (54)
where the order on (finite) sequences of integers is defined as follows:

(py .o sx1) < (Yps -+, 1) if there exists s such that (5.5)

XL =Yly +vvy Ts1 = Ys_1 and s=p+1<r or xzz<ys.

5.2. Projection of the principal subspace. As in [4], we now generalize Georgiev’s
projection [20] to type F. Consider quasi-particle monomial (mpg,) as an element of
End L(kAp). Suppose that its charges and energies satisfy (5.2). Define its dual charge-type
D as

D= (ril), e ,ri2k); 7‘:(31), . ,r:(fk); rgl), e ,ré’“); rgl), e ,rgk)) , (5.6)

where r§”) denotes the number of color ¢ quasi-particles of charge greater than or equal
to n in the monomial. Observe that, due to (4.4), the monomial does not posses any
quasi-particles of color ¢ whose charge is strictly greater than kuv;.

The standard module L(kAg) can be regarded as a submodule of the tensor product
module L(Ag)®* generated by the highest weight vector VL(kAo) = v%(kAo). Let mp be the

projection of the principal subspace W, a,) on the tensor product space

Rk Rk
W(uik);u(sk);rék);rik)) R ® W(ufll);uél)ﬁél)ﬁgl)) C WL(AO) C L(Ao) , (5.7)

where W(M(t).u(t). (1)1 denote the h-weight subspaces of the level 1 principal subspace
4 M3 3T 5T

Wiag) of weight ul’ay + pi’as +riay + 1Yoy € R with

/Lgt) = r§2t) + r§2t71) for t=1,....k and i=3,4. (5.8)

Note that by (5.8) the h-weight of monomial (mp,) equals

k
Z (NY)% o ag +rdas + rﬁt)m) '

t=1
We denote by the same symbol 7p the generalization of the projection to the space of

formal series with coefficients in Wr,xa,). Applying the generating function corresponding

to (mp,) on the highest weight vector via,) = v%(kAO) we obtain

(fEn (1) 44 (Z’rfll) 4) T Ty g0 (2174)) (IEn (1) ;03 (Zré1> 3) ©Tng sas (21,3))
74 N ? 73 N ?

X (x" (1) 02 (Zrél) 2) """ xnl,zoéz(/zl,?)) (JTn (1) (ngl) 1) Ty oen (Zl,l))UL(kAO)‘ (59)
72 N ? 71 N ?
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Relations (4.4) imply that by applying the projection mp on (5.9) we get

(xn(lz;kl) 4a4 <Zr£l2k71),4) e xnﬁaz; (21’4)> (xn(lzgkn 3043 (Zr§2k71),3> e wnglgag (2173))
T4 s T3 ’

x (%;’z,; (7 ) 2,09,,(512)) (xnffz;) (1) T, (1)) vst00
2 1

X R (xn(l) o (Z ) 4) .- .xnﬁm (21’4)) (l’nu) (Z ) 3) ------ :L‘n(lg%(zl,g))

r a3 \ .
4 3
72(11)’4 rg1>,3

< (00, e e (212)) (50) )+, (20) ) oncag (310)
o, ri7,

multiplied by some nonzero scalar, where we set xo,,(2) = 1. Indeed, the form of expres-

sion (5.10) is uniquely determined by (4.4) and the requirement that the h-weights of

the tensor factors in (5.7) and in (5.10) coincide. In particular, this requirement uniquely

determines the integers n](otz in (5.10). They are found by

k
0< nl(fi) <... < ”;(;21) < nélz) <y and ny; = an(fz forallz=1,2,3,4,
t=1

(t)

D,
even, then all nz(fz belong to {0, 2}. Moreover, if n, ;, where ¢ = 3,4, is odd, then there exists

1 <ty < ksuch that nl(f";) = 1 and ngz € {0,2} for t # t,. Therefore, for every variable z,,

where i = 1,2,3, 4 and r = 1,... ,rm the projection mp places at most one generating

7 )
function x,,(z.;) if i = 1,2 and at most two generating functions z,,(z,,) if ¢ = 3,4 on

each tensor factor of W (Ag)®*. Note that the inequalities ngfi) <...< nfz) < nz(,lz) may not

hold if the projection mp, with D’ # D is applied on power series (5.9) of dual charge-type

where for fixed p and 7 = 3,4 at most one n,; equals 1. Clearly, if n,;, where i = 3,4, is

D, as we demonstrate in Example 5.2.
Example 5.1. Consider the formal power series
Tay (22,4)Taa, (21,4)T2as (22,3) T305 (21,3) Tas (21,2) T2a, (21,1) VL (2A0) (5.11)
with coefficients in Wp,2p,). Its dual charge-type is equal to
D=(21,1,1;2,2,1,0; 1,0; 1, 1).
As before, we denote by mp the generalization of the projection
Wreng) = Wienon) @ Wiz C W (Ag)®?

to the space of formal power series with coefficients in Wr,24,). By combining relations
(4.4) and the fact that the h-weights of Wia.1,0,1) and W11y are oy + ag + 204 and
ag + ag + 4ag + 3ay respectively, one finds that the image of (5.11) with respect to the
projection mp equals, up to a nonzero scalar multiple,

Toay (21,4) %0y (21,3)Tay (21,1)VL(A0) (5.12)
R Ta, (22,4)$2a4 (21,4)513'2a3 (22,3)56'2a3 (21,3)$a2 (21,2)117a1 (21,1)UL(A0) . (5- 13)

More specifically, the projection 7p applies every factor z,,(211) of the vertex operator

Toa, (211) = Ta,(211)? on the different tensor factor, so that, using the notation as in

10



(5.10), we have nﬁ = nﬂ = 1. Next, the vertex operator z,,(z12) is applied only

on the rightmost tensor factor, so n§1§ = 1 and n?% = 0. As for the color i = 3, the
relation @344(213) = Tas(213)% = 0 on L(Ag) ensures the projection 7p applies two vertex

operators Z,,(21,3) on the rightmost tensor factor and one vertex operator x,,(z13) on
the remaining tensor factor. Hence we have ngl?)) = 2 and n% = 1. Finally, the vertex

operator Za,(z2,3) is applied on the rightmost tensor factor, so that we have nél?)) =2 and

n% = 0. As with the color 7 = 3, in the i = 4 case we have x3,,(22.4) = Ta,(224)> =0 on

L(Ap) so by arguing analogously we find ngli = nﬂt =2, ngli =1 and nézi = 0.

UL(Ao)

UL(Ao)

Qg 40(4 2043 30&3 (65) 2041

FIGURE 2. mp ($a4(22,4)564a4(21,4)$2a3(22,3)I3a3(z1,3)$a2(21,2)1’2al(21,1)1)1;(21\0))

The image of (5.11) with respect to the projection 7p can be represented graphically as
in Figure 2. The number of boxes in each column equals the corresponding quasi-particle
charge in (5.11). The first two and the second two rows in the diagram correspond to
the first and the second tensor factor, i.e. to (5.12) and (5.13) respectively. Hence the
number of boxes in the first two and in the second two rows in the column corresponding
)

to x”p,i@i(zp,i) equals nz(fz) and nl(jl}

. respectively.

Example 5.2. In Example 5.1, we considered the image of formal power series (5.11) of
dual charge-type D with respect to the projection mp. In this example, the same projection
7p is applied on the formal power series of dual charge-type D’ # D.

The charge-type of

Loy (22,4)1’4a4 (21,4)952a3 (22,3)$3a3 (21,3)$a2 (21,2)$a1 (22,1)33a1 (2’1,1)UL(2A0) (5- 14)

is less than the charge-type of (5.11) with respect to linear order (5.5). However, the both
expressions posses the same color-type. By arguing as in Example 5.1 we find that the
image of (5.14) with respect to the projection 7p is a linear combination of two formal
power series presented in Figure 3. Note that for the color ¢« = 1, in the first case we

have n§13 = ng) = 0 and nﬁ) = nélz) = 1 while in the second case n?} = nézz) =1 and

i =nl) =0

The charge-type of

Loy (22,4)Ta0, (21,4) Ty (22,3) Taas (21,3) Tas (21,2) T2a, (21,1)VL(200) (5.15)

is greater than the charge-type of (5.11) although the both expressions are of the same
color-type. By arguing as before, we find that the image of (5.15) with respect to the

projection mp is zero. Indeed, this is caused by the term %4, (21.3) = T20s(21,3)T205 (21.3)-
11



UL(Ao) UL(Ao)

UL(Ao) UL(Ao)

Qy 4(14 20(3 3043 Qo (1 (7 Qg 40(4 2043 30&3 Qo (1 Q71
FIGURE 3. mp ($a4(22,4)134(14(21,4)5132a3(22,3)2173a3(21,3)$a2(21,2)13&1(22,1)$a1(21,1)UL(2A0))

More specifically, we have x34,(213) = 0 on L(Ag). Hence, in order for the image to be
nonzero, the projection would have to move one copy of x4, (21,3) to the first and another
copy of Taq,(213) to the second tensor factor. However, this is not possible as the weight
of the first tensor factor is only a; + a3 + 2ay.

5.3. Operators Ay and e,. Let b € Bya,) be a quasi-particle monomial of charge-type
C and dual charge-type D. Denote the charges and the energies of its quasi-particles as in
(mp,). In this section, generalizing the approach from [6], we demonstrate how to reduce
b to obtain a new monomial b’ € By ;a,) such that its charge-type C’ satisfies C' < C with
respect to linear order (5.4). This will be a key step in the proof of linear independence
of the set B a,) in Section 5.4.

Let Ay be the constant term of the operator

ze(2) = ng(r)z_r_l € End L(A)[[z*Y]],

i.e. Ay = x9(—1), where 6 is the maximal root; recall (5.1). Consider the image of the
vector mp burka,) € Wﬁio) with respect to the operator

(A4g)s =1®--R1R4HpR1®---®1 for  s=mn;.
k 1
s I
This image can be obtained as the coefficient of the variables
- 7mr(1)747nT(1)74 —mg.1—"N —mi11—n
Z = Z,,S); 4 . 2271 2,1 2,12171 1,1 1,1 (516)
in the expression

(Ae)s TD T (1) ,0a (Zril) 4) " Tpg g (z2,1)xn1,1011 (2171>UL(kA0)' (517)
r4 N ’

Using the commutator formula, see, e.g., [17, Eq. (2.3.13)], one can check that the operator
Ay commutes with the action of quasi-particles. Hence, using (5.10), we find that the s-th
tensor factor (from the right) in (5.17) equals F, z9(—1)vr(a,), where

= (xnii;s_ﬁ aEpn ) 200, 10)) (xnii;s_ﬂ as(apeg) 2 (19))
4 ’ 3 ’

X (xn(?)s) 20‘2 <zré5)72) e xnf%(ﬂ (2172)> (mn(s()s> 10[1 (er),l) e xnfim (21’1>> .
ry s T
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Consider the Weyl group translation operator e, € End L(Ag) defined by
€a = €XP x—a(l) eXp(_xa<_1)) exXp x—a<1) exXp ‘rﬂt<0) exp(—x_a(O)) exXp IQ(O)
for v € R; see [23, Chap. 3|. It possesses the following properties:

€aVL(Ag) = —Ta(—1)vL(ay) for every long root a, (5.18)

z5(j)ea = ears(j + B(a”)) forall a,8 € R and j € Z. (5.19)

Using (5.18) and (5.19) for a = 0 we rewrite the s-th tensor factor as
Fsxo(—1)vnng = —€o Fsvra) RO RRAE-REIRE (5.20)
Recall (5.1) and notation (3.2). Taking the coefficient of variables (5.16) in (5.20) we find

(Ag)s Tp bureng) = —(€0)s ™0 b UL (kA),

where (ep)s denotes the action of ey on the s-th tensor factor (from the right) and

+ <$ 18 <s __
b" = bay bay bay 030 b, where 037 = xnrgl)’lal(mrg),l) . 'xnrgsul,lo‘l(mrgs)ﬂ,l)

+ 1) o Tng g (ml,l + 1)

s  __
and b, = x”r§5>,1°‘1 (mr§s>71

Therefore, by applying the above procedure we increased the energies of all quasi-
particles of color 1 and charge s = n;; in the monomial b € By a,) by 1. Recall that
by (c2) we have my; < —ny 1 = —s. We may continue to apply the same procedure, now
starting with b*vL(k Ao)» until we obtain the monomial

b = ba, bas by bay s where by = Tn ) o (mrgl)’l) S Ty gag (M) and
o,
(mr§1),1’ T T yy 1) = (mrgl),l, S T T T S —s).

Since b is an element of By a,), the quasi-particle monomial b belongs to Brxa,) as well.
Moreover, the charge-type and the dual charge-type of b equal C and D respectively.

By (5.18) we have x,,(=1)vr(a,) = —€a,VL(ay). Hence, the vector WDZUL(kAO), which
belongs to WL®(15\0)> equals the coefficient of the variables

_ mi,1+s
z (ngs),l A 22712171> (521)
in
(_1)5 D anil)Aml (272(11)74) e mn2,1a1<22,1) (1®UC_S) & egf) U%(]CAOy (5'22)

where Z is given by (5.16). We now employ (5.19) to move 12¢~%) g e&? all the way to the
left in (5.22). Next, by dropping the invertible operator (—1)*(1*~*) @ e%*) and taking
the coefficient of variables (5.21) we get mp/ b'vr(ka,), Where the quasi-particle monomial
b’ of charge-type C' and dual charge-type D’ is given by

/ / / / ~ ~
V' = bay bay by, b, for by = T o (mr§1) Lt 2nr§1) D Tngaan (Mo + 2n21),
7 ) )

1

)

(1) (s) (
g — N W, — N 2)"'xn1,2a2(m1,2 -
T2 kl 2

T

1o ) (s)
ba, = Tn M 02 (mrél) 5=t ng,).
ry s

)
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Clearly, the energies of the quasi-particles in colors 3 and 4 did not change. Furthermore,
if the dual charge-type D of b equals

D= (73(11), o ,rfk); rél), ré%) rgl), . ré ), r?), o ,rgm’l),(), o ,O),
k
then the dual charge-type D’ of b equals
D = fr(l), e (Qk); r(l), . ,r(%); r(l), r(k), r 1,... ,r(m’l) —1,0,...,0).
(ra 4 3 3 2 2 51 1 k )

Finally, by arguing as in [5, Proposition 3.3.1] one can check that ¢’ belongs to Brka,)-

5.4. Linear independence of the sets By . In this section, we prove linear indepen-
dence of the set B a,). Linear independence of By, can be verified by arguing as
in [4, Sect. 3]. Suppose there exists a linear dependence relation among some elements
b vrkng) € BLkAo),
an b vrka) = 0, where ¢, €C, ¢, #0forallac A (5.23)
acA
and A is a finite nonempty set. As the principal subspace Wi a,) is a direct sum of its
h-weight subspaces, we can assume that all b* € Bpa,) posses the same color-type.
Recall strict linear order (5.4) and choose ay € A such that b% < b* for all a € A,
a # ag. Suppose that the charge-type C and the dual charge-type D of b* are given
by (5.3) and (5.6) respectively. Applying the projection 7p on (5.23) we obtain a linear
combination of elements in

W W n n n
(Mflk);ugk);rék);o) K- & ( 1, 1+1),,u:(3 1, 1+1),ré 1,1+1) 0)

QW (i1 () (n11) (n11), @ ®W OGNS
(Bq M3 ) Ty ) Hy "5y 3T 3T

recall (5.8). The definition of the projection mp implies that all b*v;a,) such that the
charge-type of b is strictly greater than C with respect to (5.5) are annihilated by 7p.
Therefore, we can assume that all b* posses the same charge-type C and, consequently,
the same dual-charge-type D.

As in (3.2), write the monomials b as b = b5, 05,.05,0%,, where by, consist of quasi-
particles of color 7. We now apply the procedure described in Section 5.3 on the linear
combination

Cap T D" VL (kng) + Z Ca ™p b VL (kng) = 0. (5.24)

a€A, a#ag
We repeat it until all quasi-particles of color 1 are removed from the first summand
CaoTD D™V (kAo This also removes all quasi-particles of color 1 from other summands, so

that (5.24) becomes

Cao 5 LB Loy + Y Ca T b, b b VL (Ag) = 0 (5.25)

for some quasi-particle monomials 5‘32 of color 2 and scalars ¢, # 0 such that D is the

dual charge-type of all quasi-particle monomials b2 4bggb‘§~2 n (5.25). The summation in
14



(5.25) goes over all a # ag such that b% = b2 because the summands 7p b*v(n,) such
that 02° < b3, get annihilated in the process.

The vectors b, b2 bl vrka,) in (5.25) belong to Brxay). Furthermore, they can be
realized as elements of the principal subspace of the level k standard module L(kAg) with
the highest weight vector vy a,) for the affine Lie algebra of type C’él). Moreover, their
realizations belong to the corresponding basis in type C’:,El), as given by Theorem 3.1 (for
a detailed proof in type Cl(l) see [5]). This implies ¢,, = 0 and, consequently, ¢,, = 0, thus

contradicting (5.23). Finally, we conclude that the set B ,) is linearly independent.

5.5. Small spanning sets By. In this section, we construct certain small spanning sets
Bnrao) and Bray for the quotients U(W.)/Inkay) and U(Wy)/Irka,) of the algebra
U(n) over its left ideals Iy(ka,) = U0 )07" and Iz, defined by (4.2). We denote by z
the image of the element x € U(n, ) in these quotients with respect to the corresponding
canonical epimorphisms. First, we consider U(ny)/Inka,). By Poincaré-Birkhoff-Witt
theorem for the universal enveloping algebra we have

U(Ws) = Uin,)U (R U (o )U (), where  fia, = o, ® C[t, t7}] and na, = Caa,.

By (2.1) quasi-particles of the same color commute, so all monomials
= (0,000, 0) T saa(mia)) - () n M) T (1)) ()
LI ? L) ?

such that their charges and energies satisfy (5.2) form a spanning set for U(ny)/Ina,)-
Denote this set by & N(kAo)- We now list two families of quasi-particle relations which we
will use to reduce &y (xa,), i-€. to obtain a smaller spanning set for U (1) /Inka,)-

Lemma 5.3. (a) For any colori = 1,2,3,4 and charges ny and ny such that ny < ny the
following relation holds for operators on N(kA):

ar dP
() 0 2) = ANl () + Byle) s ()
where p = 0,1,...,2ny — 1 and A,(z), B,(z) are some formal series with coefficients in

the set of polynomials of color i quasi-particles.
(b) For any color i = 2,3,4 and charges n; 1 and n; the following relation holds for
operators on N(kAy):

(Zl - ZZ)MixniAaiq (zl)xniai<z2) = (21 - ZQ)Mil.niai(zQ)xni—laifl (Zl)v (TQ)

where M, = min{ Yin_q, nz}

Vi—1

Proof. Relations (1) are verified by arguing as in the proof of [22, Lemma 4.2] and
relations (1) follow by a direct computation which employs commutation relations for
vertex operators [29, Eq. (6.2.8)], or, alternatively, commutator formula [17, Eq. (2.3.13)].

O

In the next two lemmas we establish techniques which we will use to reduce the spanning

set Sy (kay)- The former relies on relations (r1) and the latter on (rs).
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Lemma 5.4. For any color i = 1,2,3,4, energies my, ms and charges ny,ny such that

ny < ny the monomials

Tnya; (M2)Tnya; (M), Tnga; (M2—1)Tnia,(M1+1), .. Toga, (Ma—2n9+1) 0,4, (M1 +2n2—1)
of operators on N(kAy) can be expressed as a linear combination of monomials

Tnpe; (P2)Tnya;(P1)  such that ps < mgo—2ny, pr = mi+2ny and py+p2 = my+my

and monomials which contain a quasi-particle of color i and charge ny + 1. Moreover, for

ny = n; the monomials
Tnga; (M2)Tnga, (M)  with my — 2ng < mo < My
can be expressed as a linear combination of monomials
Tnyo; (P2)Tnga; (P1)  such that py < pp —2ny  and  py + pa = my + my
and monomials which contain a quasi-particle of color i and charge no + 1.

Proof. The first statement of the lemma follows by repeating the arguments from [22,
Remark 4.6] which rely on (r1); see also [4, Lemma 2.2.1]. Moreover, it implies the second
statement; see [4, Corollary 2.2.1]. O

Consider monomial (mpg,) in U(ny)/Inwa, satisfying (5.2). Clearly, the monomial
coincides with the coefficient of the variables

7mn(;1)v4inn(;1)v4 —MMj,i =My —m2,1—Nn2,1 _—Mi,1-N1,1 5.96
Z0 g TN SR 211 (5.26)

in the generating function

X =1y (1) 4044(2}4(11) 4) o .J_:nj,iai(zj,i) o 'jn2,1a1 (Z2,1)jn1,1al (z1,1>' (527)
7‘4 N ?

Introduce the Laurent polynomial

PIT () 529

Lemma 5.5. The product PX belongs to
7'(1) r<.1)

T et min{ )
H H Zpi (U(“+)/IN(kA0))[[er)"“ o2l

=2 p=1

Proof. Every vertex operator Z,,,(2) in the product PX can be moved all the way to the
right by using (r5). Furthermore, the right hand side of

Tna; (M) = Z Lo (M) -+ Ta, (M)
mi+...+mnp=m
contains at least one quasi-particle x,,(m;) with energy m; > 0 if m > —n. Therefore,
Tna, (M) belongs to I N(kAo) for m > —n. This implies the statement of the lemma as the

negative powers of the variables z,; in PX come only from P. O
16



Let By (rao) be the set of all monomials (mp, ) satisfying difference conditions (¢;) and
(co) (with I = 4 and i = i — 1 for all i« = 1,2,3,4). Now we are ready to show that
B v (ko) SPans U(M1)/In(rae)- We only briefly outline the proof, as it goes in parallel with
the proofs for other types; see, e.g., the proof of [20, Theorem 5.1].

Suppose that a monomial b, € & N(kho) 8iven by (mp,) contains a quasi-particle
Tn, 0, (Mp;) which does not satisfy

o

Mpi < —Npi + Z min {V”—;nq,i/, nm} . (5.29)
q=1

By using Lemma 5.5, one can express b; as a linear combination of monomials by of the
same charge-type and of the same total energy m.m + ...+ my such that by < by
with respect to linear order (5.4). However, there are only finitely many such monomials
by, which are nonzero. Hence, by repeating this procedure for an appropriate number of
times, now starting with these new monomials, we can express b; as a linear combination
of monomials whose quasi-particles satisfy (5.29).

Next, suppose that all quasi-particles in a monomial b; € & N(kAo) given by (mp, ) satisfy
(5.29) and suppose that some quasi-particle Z,, ,q,(m,;) in b; does not satisfy (c;). By
repeating the arguments from the proof of [20, Theorem 5.1], which now rely on the first
statement of Lemma 5.4, we can express b; as a linear combination of two families of
monomials. The first family consists of monomials of the same charge-type and of the
same total energy as by, such that the energies m;,; of their quasi-particles Z,, ,q, (M}, ;)
now satisfy (cz). The monomials in the second family posses strictly greater charge-type
than b; and the same total charge n.om, + ...+ ny;. However, for a fixed charge-type C,
there are only finitely many charge-types C’' of the same total charge such that C < C’.
Therefore, after repeating this procedure for a sufficient number of times, the monomial
b is expressed as a linear combination of monomials whose quasi-particles satisfy (cy).

Remaining constraint (c;) is established in parallel with the preceding discussion, by
employing the second statement of Lemma 5.4. Finally, we conclude that B N(kAo) forms
a spanning set for U(ny)/In(kay)-

Remark 5.6. Due to (), the quasi-particles of colors 1 and 2 and the quasi-particles of
colors 3 and 4 interact as the quasi-particles of colors 1 and 2 for the affine Lie algebra
Agl) while the quasi-particles of colors 2 and 3 interact as the quasi-particles of colors 1
and 2 for the affine Lie algebra Bél).

We now consider U(ny)/Iny- It is clear that all monomials (/mp, ), regarded as ele-
ments of U(ny.) /Iy and satisfying difference conditions (¢;) and (¢,), form a spanning
set for the quotient U(ny.)/I1ka,). However, by (4.2) we have

Tna, (M) € ILkay) forall n>ky;+1, meZ, and i=1,2234, (r3)

so we can obtain a smaller spanning set, as follows.
Suppose that monomial (mp,) in U(ny)/I5ka,) satisfies difference conditions (¢;) and

(c2) and contains a quasi-particle Z,, o, (m,,) of charge n,; > kv;+1 and color 1 <7 < 4.
17



Clearly, such monomial coincides with the coefficient of variables (5.26) in the generating
function X given by (5.27). As before, we consider the product PX, where the Laurent
polynomial P is defined by (5.28).

By combining relations (r2) and (r3) we find PX = 0. Indeed, the operator Zp, ,a,(2p.i)
in PX can be moved all the way to the right, thus annihilating the expression. By taking
the coefficient of variables (5.26) in PX = 0 we express (my,) as a linear combination
of some quasi-particle monomials of the same charge-type and of the same total energy
mo o ma, which are greater than (mpg,) with respect to linear order (5.4).
However, there exists only finitely many such quasi-particle monomials which are nonzero.
Hence, by repeating the same procedure for an appropriate number of times, now starting
with these new monomials, we find, after finitely many steps, that (mpg,) equals zero.
Therefore, we conclude that the set Bza,) of all monomials (m,) in U(Wy)/I1xay) which
satisfy difference conditions (¢1), (¢2) and (c3) forms a spanning set for U(ny)/I1ka,)-

5.6. Proof of Theorems 3.1 and 4.1. In Section 5.4, we established the linear inde-
pendence of the sets B y(pay) and Bra,). We now prove that they span the principal
subspaces Wiy and Wi ka,), thus finishing the proof of Theorem 3.1. Moreover, as a
consequence of the proof, we obtain the presentations of the principal subspace Wp )

given by Theorem 4.1. Introduce the natural surjective map

Inwagy : UMy) — Wivgay)

a > Q- UN(kAo)s

so that we can consider the cases V' = L(kAy) and V = N(kA,) simultaneously. Recall
that the surjective map fra,) is given by (4.1), the left ideal I1ka,) is defined by (4.2)
and Iy, = UMy )07’ .

Let V be N(kAg) or L(kAo). It is clear that the left ideal Iy belongs to the kernel of
fv. Hence, there exists a unique map

]E\/I U(H+)/[V — WV such that fV = ]?V v, (530)

where 7y is the canonical epimorphism U(n,) — U(n,)/Iy. The map fy is surjective as
fy is surjective and, furthermore, it maps bijectively By to By,. Therefore, the linearly
independent set 28y, spans the principal subspace Wy, and so it forms a basis of Wy, which
proves Theorem 3.1. This implies that the map (5.30) is a vector space isomorphism, so,

in particular, we conclude that ker fraq) = Ir@ay), thus proving Theorem 4.1.

6. PROOF OF THEOREMS 3.1, 3.2 AND 4.2 IN TYPES D AND F

In this section, unless stated otherwise, we denote by g the affine Lie algebra of type
Dl(l), Eél), E§1), Eél). First, we give an outline of the proof of Theorem 3.1 for g. As the
generalization of the arguments from Section 5.5 is straightforward, we only discuss the
proof of linear independence. It relies on the coefficients of certain level 1 intertwining
operators and on the vertex operator algebra construction of basic modules, thus resem-
bling the corresponding proofs in types Al(l), Bl(l) and Cl(l); see [4,5,20]. In Section 6.1 we

recall the aforementioned construction while in Section 6.2 we demonstrate how to use
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the corresponding operators to complete the proof of Theorem 3.1. Next, in Section 6.3
we add some details as compared to Sections 5 and 6.2 to take care of the modifications
needed to carry out the argument for rectangular weights, i.e. to prove Theorems 3.2 and
4.2. Finally, in Section 6.4 we construct different quasi-particle bases in type E, such that
their linear independence can be verified by employing the operator Ay associated with
the maximal root 6, thus resembling the corresponding proof in type F' from Section 5.

6.1. Vertex operator algebra construction of basic modules. We follow [19,29] to
review the vertex operator algebra construction of the basic modules L(A;) [18,41]. Set

b, = @ (h@t™) & Ce and 6<0:@f)®tm.

mez\{0} m<0

Let

M(1) = U(b.) Rupatcace C
be the Fock space for the Heisenberg algebra fj\*, i.e. the induced E*—module, where U(h®
tC[t]) acts trivially and c acts as the identity on the one-dimensional module C. Clearly,

we have a vector space isomorphism M (1) = S (H<O). Consider the tensor products
Vp=M(1)®C[P] and Vp=M(1)aC[Q],

where C [P] and C [Q)] denote the group algebras of the weight lattice P and of the root
lattice @ with respective bases {e* : A € P} and {e® : a € Q}. We use the identification
of group elements e* = 1 ® e* € Vp.

Let ey: Vp — Vp be the linear isomorphism defined by

exe = e(\, p)e" ™ forall A, € P, (6.1)

where € is a certain map P x P — C* satisfying €¢()\,0) = €(0,A) = 1 for all A € P;
see [19,29] for more details. The space Vg is equipped with a structure of a vertex

operator algebra, with Vp being a V-module, by

Fn
Y(e*, 2) = E7 (=X, 2)ET(=\ 2)exz”, where E*(—), z) =exp (Z A(in)i—)
n

n<l

and 2* = 1 ® 2* acts by 22e# = 2 et for all X\, u € P. Moreover, the space Vp acquires
a structure of level one g-module via

Zo(m) = Res2™Y (e, 2) for « € R and m € Z.

z

With respect to this action, the space V is identified with the standard module L(Ag)
while the irreducible Vi-submodules VQeAi of Vp are identified with the standard modules

L(A;) for all i such that the weight A; is of level one. The corresponding highest weight
vectors are vp(ay) = 1 and vp(a,) = .
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6.2. Operators A,, and proof of Theorem 3.1. Let b € Ba,) be a quasi-particle
monomial as in (m), of charge-type C and dual charge-type

1 k 1 k), (1 k
D:(r}’,...,r,”;...rg), e e P). (6.2)

We now demonstrate how to carry out the procedure from Section 5.3, i.e. how to reduce

b to obtain a new monomial b’ € By, such that its charge-type C’ satisfies C' < C with
Vp )

respect to linear order (5.4). Denote by I(-, z) the intertwining operator of type (Vp Vo)

I(w, z)v = exp(zL(—1))Y (v, —2)w, where w € Vp,v € Vp,
see [17, Sect. 5.4]. For i = 1,...,l let Ay, be the constant term of I(e*, 2), that is
Ay, = Resz (e, 2).

We have
ANV = e foralli=1,...,1 (6.3)
In contrast with Section 5.3, which relies on the application of the operators Ay and ey, we

here make use of Ay, and e,, in a similar fashion. In particular, we employ the following

property of ey;:
exTa; (M) = (—1)5”1'%, (m—46;)es, foralli,j=1,...,land m € Z, (6.4)

see [11] for more details. Moreover, we use the fact that the operators Ay, commute with
the action of z,(z) for all & € R, which comes as a consequence of the commutator
formula for x,(2) and I(eM, 2); see [17, Sect. 5.4].
As in Section 5.2, denote by mp the projection of the principal subspace W,y on
Wr(k) k), ..k (k)) - ® W WD D0y C W k y C L(Ao) ,

1 T 5T 3T STy 1337 5T

where W ROBCION denote the h-weight subspaces of the level 1 principal subspace
FEREY) 2 T
Wirine) of the Welght r( )Ozl + e+ rg)ozg + rgt)ozl € R. Arguing as in Section 5.3, we

conclude that the image of mp buray) € Wrkay) C Wﬁio) with respect to the operator
(Ay)s =1® - 1A\, ®1® - ®1, where s=n11,
k— -1
equals the coefficient of the variables

W,

u)l ..Zgjnzlfnzl iﬁnhlinlJ (6.5)
in the expression
(AM)S D ‘TnTu) ,a (Zrl(l)yl) T Tng o (Z2,1)In1,1041 (Zl,l)UL(kAo)' (66)
s

Moreover, the s-th tensor factor in (6.6) (from the right) equals

Fs = (x © " o (ngsu)"'xngf;al(zl,l)> (ff ) al(zrgsu)"'xngf;al(zl,l))eAH

(S) (S)
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where the integers nsz are given by

k
Ogn(k) <. <n(2? <n£i) <1 and npﬂi:an(f;z foralle=1,...,1.

By combining (6.1) and (6.4) we get
Fs=(— 1)7"§ )e,\l Foz ()7 221211 (6.7)
Recall the notation from (3.2). By taking the coefficient of variables (6.5) in (6.7) we have
(Ax,)sTp bVLAY) = (—1)7“g )(6,\1)3 7D b UL (kA
where (e, )s denotes the action of ey, on the s-th tensor factor (from the right) and

+ _ . <s s : <s __ .
b =bg, -+ Do, 0370, with b57 = xn#)’lal(m#)’l) T ), @ (ngs)HJ)

and b}, = Tn 10‘1(m7’§s)’1 + 1) 2y 0y (Mma +1).
o),

Note that the monomial b* belongs to By a)-

As in Section 5.3, we can now continue to apply this procedure until we obtain a
monomial ' € Bpna,) of charge-type C' < C. Finally, by repeating the arguments from
Section 5.4 almost verbatim, we can prove the linear independence of the set B a,).
However, in contrast with Section 5.4, where the quasi-particle basis in type F4(1) was
reduced to a basis in type C’él), the quasi-particle basis in type Dl(l), Eél), Eél) or Eél)
is reduced, after sufficient number of steps, to a basis in type AN for some m from
Theorem 3.1. Note that such a modification of the argument is possible because we have
the operators Ay, and e satisfying (6.3) and (6.4) at our disposal; cf. corresponding

properties (5.18) and (5.19) for a = 6.

6.3. Proof of Theorems 3.2 and 4.2. Let g be the affine Lie algebra of type D(l)
E(l) or E ) and let A = koMo + kjA; be an arbitrary rectangular weight, as defined in
Section 3.3. First, we prove that the set 5, is linearly independent. As in Section 5.2,
we regard the standard module L(A) as the submodule of L(A;)®% @ L(A¢)®* generated
by the highest weight vector vyy) = UL( A ® v®k° Suppose that

Z cab'vra)y =0, where ¢, €C, ¢, #0forallac A, (6.8)
acA
A is a finite nonempty set and all b* € By posses the same color-type. Let 0% be a
monomial of dual charge-type D given by (6.2), such that b* < b* for all a € A, a # aq,
with respect to linear order (5.4). Consider the projection

ok
W (A y @ Wiy = W, EOMON O - ® Wru) M. 1), (D

7[17»27 ) r17727 )

which is defined in parallel with Section 6.2, so that W ROMOMEOME is the h-weight

’ l 10T 5T )
subspace of W (Aj,) of weight \j, +7, Doy +.. .7“5 Jauy; recall (3.0). By applying 7p on linear
combination (6.8), we obtain

an mp b vy = 0. (6.9)

a€A
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By Section 6.1, the highest weight vector vy y) is identified with (e*)®% @ 19% so that,
due to (6.1), we have

UL(A) — (eAj)®k]‘ ® 1®k0 — (e?ijkj ® 1®k0) 1®k ( k;j ® 1®]€0) ®(]€A ) for k = kO + k]

Therefore, linear combination (6.9) can be expressed as

anﬁpba( ks ® 19F0)y ¥ (A , = 0.

a€cA

By employing (6.4) to move e?fj ® 1%k all the way to the left and then dropping the
invertible operator, we get
Z Co TP be® I Ao =0

a€A

for some quasi-particle monomials b* and & = +c¢,. Note that every b is obtained by
increasing the energy of each quasi-particle of color j and charge n in b* by Y 1, ;-
Indeed, the operator ey; is applied on the tensor factors 1,...,k;, while the projection
mp places n quasi-particles of color j and charge 1 on the tensor factors ky + k; —n +
1,..., ko + k;. Hence the interactions between ey, and the quasi-particle of color j and
charge n occur on the tensor factors ko +k; —n+1,..., k; for n > ky. There are >} | d;;,
such factors and, by (6.4), each interaction increases the energy of the aforementioned
quasi-particle of charge n and color j by 1.

Finally, as the original monomials b* belong to Bp(), by comparing the difference
conditions (¢;) and (¢,) we see that the monomials b* belong to Brkay). Therefore, due
to the identification v%ﬁx ) = UL(kAo)s the linear independence of the set ®B,) now follows
from Theorem 3.1.

We now proceed as in Section 5.5 and construct a spanning set for U(n,)/Ir). We
denote the image of the element x € U(ni) in the quotient U(n1)/I1a) by Z. Let By

be the set of all monomials
= (xnr;w,lal (0 ) g (1)) - (xnrg%m (M, )+ T (1)) ()
in U(ny)/ I such that their charges and energies satisfy
o, <...<ny; and mo <. .<myy foralli=1,....1 (6.10)

and difference conditions (¢1), (¢5) and (c3). It is clear from Theorem 3.1 that the set of
all monomials b as in (1) satisfying (6.10) and difference conditions (c;), (c2) and (c3)
spans the quotient U(n,)/Ir(y). Suppose that such a monomial b does not satisfy the
more restrictive condition (). Introduce the generating function
X = i‘nr(l) lal(zrl(l),l> o "1_:”2,1(11 (2271>‘Tn1,16¥1 (2171)'
o,
Clearly, b equals the coefficient of the variables
- (1)1 " (1)1 —mg2,1—N2,1 _—M1,1—N1,1

Z 0 TR 1,1
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in X. By (4.3) we have U(n,.)n7° C Ir(s). Therefore, due to commutation relations

(Zp,i - Zq,i’)M Ty oy (Zq, )xnp,iai<zp,i) = (Zp,i - Zq,i’)M Ty, 1%(217, )an e (Zq i)
with M; = min{n,;,n,;}, the product PX, where P is the Laurent polynomial

(1) (1)

1 Ty 2 min{nq,i/,np,i}
P=1]II | [(1—=
Y
Z .
i=2 q=1p=1 bt

belongs to

T,

Lm ’ . )
I e o, /L) - 21l (6.11)

i=1 p=1
However, every vertex operator Z,q,(z) in the product PX can be moved all the way to
the right. By (4.3) we have z,,(—1)"*! € Ij(y), so that each Z,q,(2) increases the power
of its variable z in (6.11) by Y, d;j,. Therefore, we have

rit) r(l)
Zt 3 8igy— 1min{nq!i/,np7i} ~
PX € 111’[1 (U@ Tea)lzy - 21]) (6.12)
i=1 p=

By comparing the coefficients of powers of the variables z,; in (6.12), the monomial b can
be expressed as a linear combination of elements of B (). Hence we conclude that the

set B1x) spans the quotient U(N1)/I1(a).
Since the ideal 17,5y belongs to the kernel of the map fr(x) defined by (4.1), Theorems

3.2 and 4.2 can be now verified by arguing as in Section 5.6.

6.4. Operator Ay revisited. As with type G in [6], the linear independence proof in
type F' employs certain operator Ay = x4(—1); see Sections 5.3 and 5.4. In this section
we show that the operator Ay associated with the maximal root # in type E can be also

used to verify the linear independence, but of different bases. First, for g = E; set

(1,7,2,3,4,5,6,8;1,2,3,4,5,5), ifl =S8,

(i1, iz 15, ..., 4)) = (1,6,5,4,3,2,7:6,5,4,3,3), ifl =7,
(6,5,4,3,2,1:5,4,3,2), if | = 6.
Introduce the following families of difference conditions:
My, < —Npi; —2(p— D)npy, for p=1,... ,7‘8) and j=1,2; ()
7"</1/)
Mpi;, < —Npi; + Z min {nq,i;/, np7ij} —2(p—1)ny,, for p=1,... ,TS); ()
q=1

= ) 1 ik
Mpi; < —Npi; + Z me {ngs,nps; } —2(p— Dnyy, for p=1,... ,T,fj). (™)

s=if,iy ¢=1

Let B f(’k Ay De the set all monomials (m) which satisfy (6.10) and the following difference

conditions:
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o (1), (cs), (9), (ch) for j = 3,4,5,6,8 and (¢5") for (j, k) = (7,2) if | = &;
3), (D), () for j =3,4,5,7 and (4") for (j, k) = (6,1) if | = T;
3), (3), (c3) for j = 3,5,6 and (c4"*) for (j, k) = (4,1) if | = 6.

[e]
—~

o
[
SN—
—~

o
w

(0]
—~
o
~—
—~

o

Proposition 6.1. For any positive integer k the set
E ) E
B lene) = {va(k/\o) be BL(lkAo)} C Wiikno)

forms a basis of the principal subspace Wiy ks, of the standard module L(kAg) for the

affine Lie algebra in type El(l).

Proof. The maximal root € in type E satisfies
a;(0V) = d¢; for g = Es and a;(0V) = 6y; for g = Fy, Ex. (6.13)

Therefore, as described in Section 5.4, by applying the procedure from Section 5.3 on an
arbitrary linear combination of elements of %f?k Ag)» OL€ Can remove all quasi-particles of
color 1 from the corresponding quasi-particle monomials. The resulting linear combination
can be identified as a linear combination of elements of %f{k Ag)> S€€ Figure 1. Due to
(6.13), by applying the same procedure once again, one can remove all quasi-particles of
color 1" from the corresponding quasi-particle monomials, thus obtaining the expression
which can be identified as a linear combination of elements of the basis B, from
Theorem 3.1 for g = Dg; see Figure 1. As for type Eg, due to (6.13), by applying the
procedure from Section 5.3 on an arbitrary linear combination of elements of ‘Bffk Ag)» O1€
can remove all quasi-particles of color 6 from the corresponding quasi-particle monomials.
The resulting expression can be identified as a linear combination of elements of the basis
B kro) from Theorem 3.1 for g = As; see Figure 1. Therefore, the proposition follows
from Theorem 3.1 and the fact that the characters of the corresponding bases coincide
which is verified by arguing as in Section 7. O

7. CHARACTER FORMULAE AND COMBINATORIAL IDENTITIES

Let § = Zizo a;a; be the imaginary root as in [23, Chap. 5], where the integers a;
denote the labels in the Dynkin diagram [23, Table Aff] for g. As before, let V' denote
a standard module or a generalized Verma module. Define the character ch Wy, of the
corresponding principal subspace Wy, by

ch WV = Z dim(WV)fm§+n1a1+...+nlal qmy?l e y?l7

m,ni,...,n; =0
where ¢, y1, ...,y are formal variables and (Wv')_ms4nia1+...+me, denote the weight sub-

spaces of Wy, of weight —md + niaq + - - - + nyay with respect to

h=heClt,t '] ® Cea Cd.

PNote that the quasi-particles of color 1 in type E; correspond, with respect to the aforementioned

identification, to the quasi-particles of color 7 in type Ejy; see Figure 1.
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In order to simplify our notation, we set u; = v; /vy for i = 2,... [; recall (3.3). Also,
we write

T

(a;q), = H(l —aq™!) for r>0 and (a;9)00 = H(l —aq™t).

i=1 i>1
Theorem 3.1 implies the following character formulae:

Theorem 7.1. Set n; = >/~ 1 Z(t) fori=1,...,l. For any integer k > 1 we have

l vik ROk Sy sk s 1 </t) (wit-p)

TR D I
=1

Iy (¢ 9),0_, - (4.), e

ril)}n}ril’lk)}()
Tl(1)2"'2‘7‘l(ulk) 20

(1)

Proof. We give the proof of this theorem for the case F) "/, since the proof for the cases

Dl(l), Eél), Eél) and Eél) goes analogously. The proof for other types can be found in
[4-6,20]. In order to determine the character of Wy a,), we write conditions on energies
of quasi-particles of the set BWL(kAO) in terms of rgs). Fix a color-type (n4,ns,ns,ny),

charge-type
C = <nril)74’ Ce ,7”L174; nTé1)73, . ,7’L1,3; nrél)g, Ce ,7”L172; 7’LT51)71, . ,7’L171>

and dual-charge-type
D= (10,2 00, o)

The following identities are well-known, see, e.g., [20, Section 5] and [4, Section 4], and
they can be verified by a direct calculation:

o0

k
ST - Dnpa ) =D r? fori=1,2, (7.1)
t=1

p=1

(M)
T 2k
Z((Q(p — Dy +npi) = Zrl@Q for i = 3,4, (7.2)
-1 t=1
NORNE NONO)
Zme{npg,nql} Zrlt)rz : Zme{nM,nqg} Zr3 r4 , (7.3)
p=1 g=1 p=1 g=1

MORNC)

Zme{npg,ang} Z (t 2t Dy (Qt)) (7.4)

p=1 ¢=1

By combining (7.1)—(7.4), difference conditions (c¢1)—(c3) and the formula

=Y (i),

3=0
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where p,(j) denotes the number of partitions of j with at most r parts, we get

ROL POr 2
qzl 1 t=1"; t 1

gz

ch WL(kAO) = Z

r§1)>--->r§k)>0
ri el >0

x 2
P 2P 50
rfll) 2‘..27‘4(1%) >0

T (% 9), W_,o "'(Q;C])n(k) Pl

t (t t t 2t—1 2t)
1530 SRR LIS v LaRs LS LB DA Sl SR

Hi:g(q; q),0_,@ - (q:9),en

4
T
Hyil7
=3

where n; = Zle rgt) fori =1,2and n; = fkl T; ) for i = 3,4, as required. The character
formula for the generalized Verma module is verified analogously. U

Theorem 3.2 implies the following character formulae in types Dl(l), E6(1) and Eél) while
the case Al(l) is due to [20].

Theorem 7.2. Set n; = 7";1) + -+ 7" ) for i = = 1,...,l. For any rectangular weight
A = koAo + kjA; of level k = ko + kj we have

ch WL(A) = Z

r>>rF >0

qu DI Et) SN i 7“?’"5”'*‘22:1 i T'Et)éijt

l
2
1w
i=1

[T (g 0,0 _,@ - (6:9),®
rl(1)>~~:>rl(k)>0

Note that from (5.30) we have an isomorphism of n;-modules Wy s,y and U(n3Y),
so we can obtain character formula of Wy (xa,) by using Poincaré-Birkhoff-Witt basis of
U(ns") as well. For example, in the case F, 4(1), we get

1

ch WN(kAO) = 5. (7.5)
(qU1, QY1Y2, QY1Y2Y3, QY1Y2Y3Yas QY2, QY2Y3, QY2Y3Ya, QY2933 @) oo
1
X
(qQU1Y2Y3, qy1y2Y3Ya, QU1Y2Y3Y3, Y1V Y3, QU1Y3Y3Ya, QUrYSYaYL, qUs, qY2Y3Y45 @)oo
1
X

(y1y3Y3Ya, QY3Y3YE, QNY3Y3YE, QYSYSYL, QUTY3YSYE, aysya, QY2Y3YEs ayas oo
where
(@1, an; @)oo = (a1, Qoo * * (An; Qoo
For any positive root a = a;aq + - - - o € R, we introduce the following notation

ai, a2

(o @)oo = (qUT'Y5% - - "5 @)oo

so that for an arbitrary affine Lie algebra g character formula (7.5) generalizes to
1
[Loer, (@ @)x

On the other hand, by comparing the sets BWN(kAO) and BWMAO), we conclude that the

ch WN(kAO) = (76)

character formula ch Wy ia,) is obtained from ch Wi ;a,) by removing the quasi-particle
charges constraints coming from (c3). Therefore, Theorem 7.1 and (7.6) imply the follow-

ing generalization of Euler-Cauchy theorem; cf. [1].
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Theorem 7.3. For any untwisted affine Lie algebra g we have

1 t 1 1 (t) (kit—p
i=1 22217 f) =i 22t>12p0r(/)1( )

Yi's
H@_ H3>1(q Q) @) _p G+ H

where n; = Zt>1 i ) for i = = 1,...,0 and the sum on the right hand side goes over all

descending infinite sequences of nonnegative integers with finite support.

In particular, the theorem produces three new families of combinatorial identities which
correspond to types D, E and F.
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