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Abstract. We consider the principal subspaces of certain level k > 1 integrable highest

weight modules and generalized Verma modules for the untwisted affine Lie algebras in

types D, E and F . Generalizing the approach of G. Georgiev we construct their quasi-

particle bases. We use the bases to derive presentations of the principal subspaces,

calculate their character formulae and find some new combinatorial identities.

1. Introduction

Starting with J. Lepowsky and S. Milne [30], the fascinating connection between

Rogers–Ramanujan-type identities and affine Kac–Moody Lie algebras was extensively

studied; see, e.g., [31–33,35] and references therein. The principal subspaces of standard

modules, i.e. of integrable highest weight modules for the affine Lie algebras, introduced

by B. L. Feigin and A. V. Stoyanovsky [16], present a remarkable example of this inter-

play between combinatorics and algebra. In particular, their so-called quasi-particle bases

provide an interpretation of the sum sides of various Rogers–Ramanujan-type identities;

see [4–7, 16, 20, 34]. Aside from quasi-particle bases, numerous research directions are fo-

cused on other aspects of principal subspaces and related structures such as certain gener-

alized principal subspaces [2], Feigin–Stoyanovsky’s type subspaces [3,22,38], realizations

of Jack symmetric functions [8], presentations of principal subspaces [9–12,36,37,39,40],

Rogers–Ramanujan-type recursions [13, 14], Koszul complexes [24], principal subspaces

for quantum affine algebras and double Yangians [26–28] etc. The key ingredient that all

the aforementioned studies have in common is the application of vertex-operator theoretic

methods.

Let Λ0, . . . ,Λl be the fundamental weights of the untwisted affine Lie algebra g̃ asso-

ciated with the simple Lie algebra g of rank l. In this paper, we consider the principal

subspaces WN(kΛ0) of the generalized Verma modules N(kΛ0) and the principal subspaces

WL(kΛ0) of the standard modules L(kΛ0) of highest weights kΛ0 for g̃ in types D, E and

F . The main result is a construction of the quasi-particle bases BN(kΛ0) and BL(kΛ0) of the

corresponding principal subspaces. It is presented in Theorem 3.1, which we formulate so
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cesta 30, 10 000 Zagreb, Croatia

E-mail addresses: mbutorac@math.uniri.hr, kslaven@math.hr.

2000 Mathematics Subject Classification. Primary 17B67; Secondary 05A19, 17B69.
Key words and phrases. principal subspaces, combinatorial bases, combinatorial identities, quasi-

particles, vertex operator algebras, affine Lie algebras.
1



that it includes the corresponding bases of the principal subspaces WN(kΛ0) and WL(kΛ0)

for all untwisted affine Lie algebras g̃. The bases in the remaining types A, B, C and G

were given by several authors, as we explain below.

Theorem 3.1. For any positive integer k the set BV forms a basis of the principal

subspace WV of the g̃-module V = N(kΛ0), L(kΛ0).

The bases BV are expressed in terms of monomials of certain operators, called quasi-

particles, applied on the highest weight vector, whose charges and energies satisfy cer-

tain difference conditions. Theorem 3.1 for g of type A1 goes back to Feigin and Stoy-

anovsky [16]. Next, G. Georgiev [20] constructed the quasi-particle bases of the principal

subspaces WL(Λ), where g = Al, for all rectangular weights Λ, i.e. for all integral domi-

nant highest weights Λ = k0Λ0 + kjΛj. Finally, the bases BV from Theorem 3.1, where

V = N(kΛ0), L(kΛ0) and g = Bl, Cl, G2, were obtained by the first author in [4–6]. The

quasi-particle bases of the principal subspaces WL(Λi) for g = Al and i = 0, 1, . . . , l can

be also recovered from the recent result of K. Kawasetsu [25]. Our proof of Theorem 3.1

in types D, E and F follows the approach in [20] and relies on [4, 5, 22]. In addition to

Theorem 3.1, in Theorem 3.2 we construct quasi-particle bases of the principal subspaces

WL(Λ) for all rectangular highest weights Λ in types D and E, thus generalizing [20].

Next, in Theorem 4.1, we derive presentations of the principal subspaces WL(kΛ0) for

all types of g, i.e. we give the vector space isomorphisms

WL(kΛ0)
∼= U(n+ ⊗ C[t, t−1])/IL(kΛ0),

where n+ is the subalgebra of g spanned by all positive root vectors and IL(kΛ0) is a certain

left ideal in U(n+⊗C[t, t−1]). Moreover, we provide explicit formulae for the generators of

IL(kΛ0). The presentations of principal subspaces of standard g̃-modules L(Λ) for the level

k integral dominant highest weights Λ were established by Feigin and Stoyanovsky [16]

for g = A1 and k = 1. Furthermore, the presentations were proved by C. Calinescu,

Lepowsky and A. Milas [9–11] for g = A1 and k > 1 and for g = A,D,E and k = 1, and

by C. Sadowski [39] for g = A2 and k > 1. The proofs in [9–11,39] are sometimes referred

to as a priori proofs as they do not rely on the detailed underlying structure, such as bases

of the standard modules or of the principal subspaces. Finally, Sadowski [40] proved the

general case g = Al for all k > 1 using Georgiev’s quasi-particle bases [20]. In contrast

with [9–11, 39], our proof employs the sets BL(kΛ0) from Theorem 3.1, thus solving a

simpler problem. In addition, using the quasi-particle bases from Theorem 3.2 we obtain

presentations of the principal subspaces WL(Λ) for all rectangular highest weights Λ in

types D and E; see Theorem 4.2. It is worth noting that, aside from the aforementioned

cases covered in [9–11,39], the a priori proof of these presentations is still lacking.

In the end, we use the bases from Theorems 3.1 and 3.2 to explicitly write the character

formulae for the principal subspaces. Moreover, let R+ be the set of positive roots of g

and let µi = νi/νi′ , where the numbers νj and i′ are given by (3.3). By regarding two

different bases for WN(kΛ0) we find
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Theorem 7.3. For any untwisted affine Lie algebra g̃ we have

1∏
α∈R+

(α; q)∞
=

∑
r
(1)
1 >···>r

(m)
1 >···>0...

r
(1)
l >···>r

(m)
l >···>0

q
∑l
i=1

∑
t>1 r

(t)2

i −
∑l
i=2

∑
t>1

∑µi−1
p=0 r

(t)

i′ r
(µit−p)
i∏l

i=1

∏
j>1(q; q)

r
(j)
i −r

(j+1)
i

l∏
i=1

ynii ,

where ni =
∑

t>1 r
(t)
i for i = 1, . . . , l and the sum on the right hand side goes over all

descending infinite sequences of nonnegative integers with finite support.

The theorem produces three new families of combinatorial identities which correspond

to types D, E and F , while the remaining identities, for types A, B, C and G, are already

well-known; see [4–6,20].

2. Preliminaries

Let g be a complex simple Lie algebra of rank l equipped with a nondegenerate invariant

symmetric bilinear form 〈·, ·〉 and let h be its Cartan subalgebra. As the restriction of the

form 〈·, ·〉 on h is nondegenerate, it defines a symmetric bilinear form on the dual h∗. Let

Π = {α1, . . . , αl} ⊂ h∗ be the basis of the root system R of g with respect to h and let

xα ∈ g with α ∈ R be the root vectors. The simple roots α1, . . . , αl are labelleda as in

Figure 1. We denote by α∨1 , . . . , α
∨
l the corresponding simple coroots. Let λ1, . . . , λl ∈ h∗

be the fundamental weights, i.e. the weights such that
〈
λi, α

∨
j

〉
= δij. Let Q =

∑l
i=1 Zαi

and P =
∑l

i=1 Zλi be the root lattice and the weight lattice of g respectively. We assume

that the form 〈·, ·〉 is normalized so that 〈α, α〉 = 2 for every long root α ∈ R. Hence, in

particular, we have 〈αi, αi〉 ∈ {2/3, 1, 2} for all i = 1, . . . , l. Denote by R+ and R− the

sets of positive and negative roots. Let

g = n− ⊕ h⊕ n+, where n± =
⊕
α∈R±

nα and nα = Cxα for all α ∈ R,

be the triangular decomposition of g; see [21] for more details on simple Lie algebras.

Al α1 α2

. . .
αl−1 αl

Bl α1 α2

. . .
αl−1 αl
⇒

Cl αl αl−1

. . .
α2 α1

⇐ Dl α1 α2

. . .
αl−2 αl−1

αl

a In contrast with [21] and [23, Table Fin], we reverse the labels in the Dynkin diagram of type Cl in

Figure 1, so that the root lengths in the sequence α1, . . . , αl decrease for all types of g, thus getting a

simpler formulation of Theorem 3.1.
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E6 α1 α2 α3 α4 α5

α6

E7 α1 α2 α3 α4 α5 α6

α7

E8 α1 α2 α3 α4 α5 α6 α7

α8

F4 α1 α2 α3 α4

⇒

G2 α1 α2

V

Figure 1. Finite Dynkin diagrams

The affine Kac–Moody Lie algebra g̃ associated to g is defined by

g̃ = g⊗ C[t, t−1]⊕ Cc⊕ Cd,

where the elements x(m) = x⊗ tm for x ∈ g and m ∈ Z are subject to relations

[c, g̃] = 0, [d, x(m)] = mx(m),

[x(m), y(n)] = [x, y] (m+ n) + 〈x, y〉mδm+n 0 c. (2.1)

We denote by α0, α1, . . . , αl and α∨0 , α
∨
1 , . . . , α

∨
l the simple roots and the simple coroots

of g̃. Let Λi be the fundamental weights of g̃, i.e. the weights such that Λi(d) = 0 and

Λi(α
∨
j ) = δij for all i, j = 0, . . . , l. For more details on affine Lie algebras see [23].

Let k0, . . . , kl be nonnegative integers such that k = k0 + . . . + kl is positive and let

λ = k1λ1 + . . .+klλl. Denote by Uλ the finite-dimensional irreducible g-module of highest

weight λ. The generalized Verma g̃-module N(Λ) of highest weight Λ = k0Λ0 + . . .+ klΛl

and of level k is defined as the induced g̃-module

N(Λ) = U(g̃)⊗U(g̃>0) Uλ,

where the action of the Lie algebra

g̃>0 =
⊕
n>0

(g⊗ tn)⊕ Cc⊕ Cd

on Uλ is given by

g⊗ tn · u = 0 for all n > 0, c · u = ku and d · u = 0 for all u ∈ Uλ.

Denote by L(Λ) the standard g̃-module of highest weight Λ and of level k, i.e. the inte-

grable highest weight g̃-module which equals the unique simple quotient of the generalized

Verma module N(Λ). In particular, for λ = 0 we obtain the generalized Verma g̃-module

N(kΛ0) of highest weight kΛ0 and level k = k0 which possesses a vertex operator algebra

structure. Moreover, L(kΛ0) is a simple vertex operator algebra and the level k standard
4



g̃-modules are L(kΛ0)-modules; see, e.g., [29, 33]. Finally, recall that Poincaré–Birkhoff–

Witt theorem for the universal enveloping algebra implies the vector space isomorphism

N(kΛ0) ∼= U(g̃<0), where g̃<0 =
⊕
n<0

(g⊗ tn).

For more details on the representation theory of affine Lie algebras see [23].

3. Quasi-particle bases of principal subspaces

In this section, we state our main results, Theorems 3.1 and 3.2.

3.1. Quasi-particles. Introduce the following subalgebras of g̃:

ñ+ = n+ ⊗ C[t, t−1], ñ>0
+ = n+ ⊗ C[t] and ñ<0

+ = n+ ⊗ t−1C[t−1].

Let Λ be an arbitrary integral dominant weight of g̃. Denote by V the generalized Verma

module N(Λ) or the standard module L(Λ) with a highest weight vector vV . Following

Feigin and Stoyanovsky [16], we define the principal subspace WV of V by

WV = U(ñ+)vV .

Consider the vertex operators

xαi(z) =
∑
m∈Z

xαi(m)z−m−1 ∈ Hom(V, V ((z))) ⊂ (EndV )[[z±1]], i = 1, . . . , l.

Note that (2.1) implies [xαi(z1), xαi(z2)] = 0 so that

xnαi(z) =
∑
m∈Z

xnαi(m)z−m−n = xαi(z) · · ·xαi(z)︸ ︷︷ ︸
n times

= xαi(z)n (3.1)

is a well-defined element of Hom(V, V ((z))) for all n > 1. As in [20], define the quasi-

particle of color i, charge n and energy −m as the coefficient xnαi(m) ∈ EndV of (3.1).

Consider the quasi-particle monomial

b =

(
xn

r
(1)
l

,l
αl(mr

(1)
l ,l

) . . . xn1,lαl(m1,l)

)
. . .

(
xn

r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) . . . xn1,1α1(m1,1)

)
(m)

in EndV . Note that the quasi-particle colors in (m) are increasing from right to left and

that the integers r
(1)
j > 0 with j = 1, . . . , l denote the parts of the conjugate partition of

nj = n
r
(1)
j ,j

+· · ·+n1,j; see [4–6,20] for more details. It is convenient to write quasi-particle

monomial (m) more briefly as

b = bαl · · · bα2bα1 , where bαi = xn
r
(1)
i

,i
αi(mr

(1)
i ,i

) . . . xn1,iαi(m1,i) for i = 1, . . . , l. (3.2)
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3.2. Quasi-particle bases for Λ = kΛ0. Suppose that Λ = kΛ0 for some positive

integer k so that V denotes the generalized Verma module N(kΛ0) or the standard

module L(kΛ0). We introduce certain difference conditions for energies and charges of

quasi-particles in (m). First, for the adjacent quasi-particles of the same color we require

that

for all i = 1, . . . , l and p = 1, . . . , r
(1)
i − 1

np+1,i 6 np,i and if np+1,i = np,i then mp+1,i 6 mp,i − 2np,i. (c1)

Next, we turn to the difference conditions which describe the interaction of two quasi-

particles of adjacent colors. For all i = 1, . . . , l define

νi =
2

〈αi, αi〉
and i′ =


l − 2, if i = l and g = Dl,

3, if i = l and g = E6, E7,

5, if i = l and g = E8,

i− 1, otherwise.

(3.3)

Introduce the following difference conditions:

for all i = 1, . . . , l and p = 1, . . . , r
(1)
i

mp,i 6 −np,i +

r
(1)

i′∑
q=1

min
{
νi
νi′
nq,i′ , np,i

}
− 2(p− 1)np,i, (c2)

where we set r
(1)
0 = 0 so that the sum in (c2) is zero for i = 1. In the end, we impose the

following restrictions on the quasi-particle charges:

np,i 6 kνi for all i = 1, . . . , l and p = 1, . . . , r
(1)
i . (c3)

Let BN(kΛ0) be the set of all monomials (m), regarded as elements of EndN(kΛ0),

satisfying conditions (c1) and (c2). Moreover, let BL(kΛ0) be the set of all monomials (m),

regarded as elements of EndL(kΛ0), satisfying (c1), (c2) and (c3). Finally, let

BV = {bvV : b ∈ BV } ⊂ WV for V = N(kΛ0), L(kΛ0).

Theorem 3.1. For any positive integer k the set BV forms a basis of the principal

subspace WV of the g̃-module V = N(kΛ0), L(kΛ0).

Even though Theorem 3.1 is formulated for an arbitrary untwisted affine Lie algebra

g̃, we only give proof for g of type D, E and F ; see Sections 5 and 6. The proofs for the

remaining types can be found in [4–6,20].

3.3. Quasi-particle bases for rectangular weights in types D and E. Suppose

that the affine Lie algebra g̃ is of type D
(1)
l , E

(1)
6 or E

(1)
7 . Let Λ be the rectangular weight,

i.e. the dominant integral weight of the form

Λ = k0Λ0 + kjΛj, (3.4)
6



where k0, kj are nonnegative integers and Λj is the fundamental weight of level one;

cf. [20]. Recall that j = 1, l − 1, l for g̃ = D
(1)
l , j = 1, 6 for g̃ = E

(1)
6 and j = 1 for

g̃ = E
(1)
7 ; see [23]. Denote by k = k0 + kj the level of Λ. Define

jt =

0, if 1 6 t 6 k0,

j, if k0 < t 6 k0 + kj.
(3.5)

Introduce the following difference condition:

for all i = 1, . . . , l and p = 1, . . . , r
(1)
i

mp,i 6 −np,i +

r
(1)

i′∑
q=1

min {nq,i′ , np,i} − 2(p− 1)np,i −
np,i∑
t=1

δijt . (c′2)

Note that this condition differs from (c2) by a new term
∑np,i

t=1 δijt . For a given rectangular

weight Λ denote by BL(Λ) be the set of all monomials (m), regarded as elements of

EndL(Λ), satisfying (c1), (c′2) and (c3). Finally, let

BL(Λ) =
{
bvL(Λ) : b ∈ BL(Λ)

}
⊂ WL(Λ).

Theorem 3.2. Let g̃ be the affine Lie algebra of type D
(1)
l , E

(1)
6 or E

(1)
7 . For any rectan-

gular weight Λ the set BL(Λ) forms a basis of the principal subspace WL(Λ).

The proof of Theorem 3.2 is given in Section 6.

4. Presentations of the principal subspaces WL(kΛ0)

In this section, we give the presentations of the principal subspaces WL(kΛ0) for an

arbitrary untwisted affine Lie algebra g̃; see Theorem 4.1 below. Next, in Theorem 4.2,

we give the presentations of WL(Λ) for all rectangular weights Λ in types D and E. As

pointed out in Section 1, the presentations of the principal subspaces of certain standard

g̃-modules in types A, D and E were originally found and proved in [9–11,16,39,40] while

their general form was conjectured in [40].

Let Λ be an integral dominant highest weight. Consider the natural surjective map

fL(Λ) : U(ñ+) → WL(Λ) (4.1)

a 7→ a · vL(Λ).

For any i = 1, . . . , l and integer m > kνi + 1 define the elements Rαi(−m) ∈ U(ñ+) by

Rαi(−m) =
∑

m1,...,mkνi+16−1
m1+...+mkνi+1=−m

xαi(m1) . . . xαi(mkνi+1).

Let IL(kΛ0) be the left ideal in the universal enveloping algebra U(ñ+) defined by

IL(kΛ0) = U(ñ+) ñ>0
+ +

l∑
i=1

∑
m>kνi+1

U(ñ+)Rαi(−m). (4.2)

We have the following natural presentations of the principal subspaces:
7



Theorem 4.1. For all positive integers k we have

ker fL(kΛ0) = IL(kΛ0) or, equivalently, WL(kΛ0)
∼= U(ñ+)/IL(kΛ0).

In Section 5, we employ the sets BL(kΛ0) from Theorem 3.1 to prove Theorem 4.1 for

the affine Lie algebra g̃ = F
(1)
4 . We omit the proof for other types of g̃ since it goes

analogously, by using the corresponding quasi-particle bases.

Let g̃ be the affine Lie algebra of type D
(1)
l , E

(1)
6 or E

(1)
7 . As in [40], for a given

rectangular weight Λ = k0Λ0 + kjΛj define the left ideal in the universal enveloping

algebra U(ñ+) by

IL(Λ) = IL((k0+kj)Λ0) + U(ñ+)xαj(−1)k0+1. (4.3)

Theorem 4.2. Let g̃ be the affine Lie algebra of type D
(1)
l , E

(1)
6 or E

(1)
7 . For a given

rectangular weight Λ we have

ker fL(Λ) = IL(Λ) or, equivalently, WL(Λ)
∼= U(ñ+)/IL(Λ).

The proof of Theorem 4.2 is given in Section 6.

Remark 4.3. The form of the elements Rαi(−m) is motivated by the integrability con-

dition

x(kνi+1)αi(z) = 0 on any level k standard module, (4.4)

which is due to Lepowsky and Primc [31]. It implies quasi-particle charges constraint (c3).

5. Proof of Theorems 3.1 and 4.1 in type F

In this section, we prove Theorems 3.1 and 4.1 in type F . The proof is divided into six

steps, i.e. Sections 5.1–5.6. We consider the affine Lie algebra g̃ of type F
(1)
4 so that l = 4

and the basis Π of the root system R for the corresponding simple Lie algebra g consists

of the simple roots α1, α2, α3, α4; see [21, Chap. III]. The maximal root θ equals

θ = 2α1 + 3α2 + 4α3 + 2α4 and satisfies αi(θ
∨) = δ1i for i = 1, 2, 3, 4. (5.1)

5.1. Linear order on quasi-particle monomials. In this section, we briefly cover

some basic concepts originated in [20] which are typically used to handle quasi-particle

monomials. In particular, we introduce a certain linear order among such monomials

which will come in useful in Section 5.5. Let

b =
(
xn

r
(1)
4 ,4

α4(m
r
(1)
4 ,4

) . . . xn1,4α4(m1,4)
)(
xn

r
(1)
3 ,3

α3(m
r
(1)
3 ,3

) . . . xn1,3α3(m1,3)
)

(
xn

r
(1)
2 ,2

α2(m
r
(1)
2 ,2

) . . . xn1,2α2(m1,2)
)(
xn

r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) . . . xn1,1α1(m1,1)
)

(mF4)

be an element of EndV , where V = N(kΛ0) or V = L(kΛ0), such that

n
r
(1)
i ,i
6 . . . 6 n1,i and m

r
(1)
i ,i
6 . . . 6 m1,i for all i = 1, 2, 3, 4. (5.2)

Define the charge-type C and the energy-type E of b by

C =
(
n
r
(1)
4 ,4

, . . . , n1,4; n
r
(1)
3 ,3

, . . . , n1,3; n
r
(1)
2 ,2

, . . . , n1,2; n
r
(1)
1 ,1

, . . . , n1,1

)
, (5.3)
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E =
(
m
r
(1)
4 ,4

, . . . ,m1,4; m
r
(1)
3 ,3

, . . . ,m1,3; m
r
(1)
2 ,2

, . . . ,m1,2; m
r
(1)
1 ,1

, . . . ,m1,1

)
.

Moreover, define the color-type of b as the quadruple (n4, n3, n2, n1) such that nj denotes

the sum of charges of all color j quasi-particles, i.e. such that nj = n
r
(1)
j ,j

+ . . .+ n1,j.

Let b1, b2 be any two quasi-particle monomials of the same color-type, expressed as

in (mF4), such that their charges and energies satisfy (5.2). Denote their charge-types

and energy-types by C1, C2 and E1, E2 respectively. Define the strict linear order among

quasi-particle monomials of the same color-type by

b1 < b2 if C1 < C2 or C1 = C2 and E1 < E2, (5.4)

where the order on (finite) sequences of integers is defined as follows:

(xp, . . . , x1) < (yr, . . . , y1) if there exists s such that (5.5)

x1 = y1, . . . , xs−1 = ys−1 and s = p+ 1 6 r or xs < ys.

5.2. Projection of the principal subspace. As in [4], we now generalize Georgiev’s

projection [20] to type F . Consider quasi-particle monomial (mF4) as an element of

EndL(kΛ0). Suppose that its charges and energies satisfy (5.2). Define its dual charge-type

D as

D =
(
r

(1)
4 , . . . , r

(2k)
4 ; r

(1)
3 , . . . , r

(2k)
3 ; r

(1)
2 , . . . , r

(k)
2 ; r

(1)
1 , . . . , r

(k)
1

)
, (5.6)

where r
(n)
i denotes the number of color i quasi-particles of charge greater than or equal

to n in the monomial. Observe that, due to (4.4), the monomial does not posses any

quasi-particles of color i whose charge is strictly greater than kνi.

The standard module L(kΛ0) can be regarded as a submodule of the tensor product

module L(Λ0)⊗k generated by the highest weight vector vL(kΛ0) = v⊗kL(Λ0). Let πD be the

projection of the principal subspace WL(kΛ0) on the tensor product space

W
(µ

(k)
4 ;µ

(k)
3 ;r

(k)
2 ;r

(k)
1 )
⊗ · · · ⊗W

(µ
(1)
4 ;µ

(1)
3 ;r

(1)
2 ;r

(1)
1 )
⊂ W⊗k

L(Λ0) ⊂ L(Λ0)⊗k, (5.7)

where W
(µ

(t)
4 ;µ

(t)
3 ;r

(t)
2 ;r

(t)
1 )

denote the h-weight subspaces of the level 1 principal subspace

WL(Λ0) of weight µ
(t)
4 α4 + µ

(t)
3 α3 + r

(t)
2 α2 + r

(t)
1 α1 ∈ R with

µ
(t)
i = r

(2t)
i + r

(2t−1)
i for t = 1, . . . , k and i = 3, 4. (5.8)

Note that by (5.8) the h-weight of monomial (mF4) equals

k∑
t=1

(
µ

(t)
4 α4 + µ

(t)
3 α3 + r

(t)
2 α2 + r

(t)
1 α1

)
.

We denote by the same symbol πD the generalization of the projection to the space of

formal series with coefficients in WL(kΛ0). Applying the generating function corresponding

to (mF4) on the highest weight vector vL(kΛ0) = v⊗kL(Λ0) we obtain(
xn

r
(1)
4 ,4

α4(z
r
(1)
4 ,4

) · · ·xn1,4α4(z1,4)
)(
xn

r
(1)
3 ,3

α3(z
r
(1)
3 ,3

) · · ·xn1,3α3(z1,3)
)

×
(
xn

r
(1)
2 ,2

α2(z
r
(1)
2 ,2

) · · · · · ·xn1,2α2(z1,2)
)(
xn

r
(1)
1 ,1

α1(z
r
(1)
1 ,1

) · · ·xn1,1α1(z1,1)
)
vL(kΛ0). (5.9)
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Relations (4.4) imply that by applying the projection πD on (5.9) we get(
x
n

(k)

r
(2k−1)
4 ,4

α4
(z
r
(2k−1)
4 ,4

) · · ·x
n

(k)
1,4α4

(z1,4)
)(
x
n

(k)

r
(2k−1)
3 ,3

α3
(z
r
(2k−1)
3 ,3

) · · ·x
n

(k)
1,3α3

(z1,3)
)

×
(
x
n

(k)

r
(k)
2 ,2

α2
(z
r
(1)
2 ,2

) · · ·x
n

(k)
1,2α2

(z1,2)
)(
x
n

(k)

r
(k)
1 ,1

α1
(z
r
(k)
1 ,1

) · · ·x
n

(k)
1,1α1

(z1,1)
)
vL(Λ0)

⊗ · · ·⊗
(
x
n

(1)

r
(1)
4 ,4

α4
(z
r
(1)
4 ,4

) · · · x
n

(1)
1,4α4

(z1,4)
)(
x
n

(1)

r
(1)
3 ,3

α3
(z
r
(1)
3 ,3

) · · · · · ·x
n

(1)
1,3α3

(z1,3)
)

×
(
x
n

(1)

r
(1)
2 ,2

α2
(z
r
(1)
2 ,2

) · · ·x
n

(1)
1,2α2

(z1,2)
)(
x
n

(1)

r
(1)
1 ,1

α1
(z
r
(1)
1 ,1

) · · ·x
n

(1)
1,1α1

(z1,1)
)
vL(Λ0) (5.10)

multiplied by some nonzero scalar, where we set x0αi(z) = 1. Indeed, the form of expres-

sion (5.10) is uniquely determined by (4.4) and the requirement that the h-weights of

the tensor factors in (5.7) and in (5.10) coincide. In particular, this requirement uniquely

determines the integers n
(t)
p,i in (5.10). They are found by

0 6 n
(k)
p,i 6 . . . 6 n

(2)
p,i 6 n

(1)
p,i 6 νi and np,i =

k∑
t=1

n
(t)
p,i for all i = 1, 2, 3, 4,

where for fixed p and i = 3, 4 at most one n
(t)
p,i equals 1. Clearly, if np,i, where i = 3, 4, is

even, then all n
(t)
p,i belong to {0, 2}. Moreover, if np,i, where i = 3, 4, is odd, then there exists

1 6 t0 6 k such that n
(t0)
p,i = 1 and n

(t)
p,i ∈ {0, 2} for t 6= t0. Therefore, for every variable zr,i,

where i = 1, 2, 3, 4 and r = 1, . . . , r
(1)
i , the projection πD places at most one generating

function xαi(zr,i) if i = 1, 2 and at most two generating functions xαi(zr,i) if i = 3, 4 on

each tensor factor of W (Λ0)⊗k. Note that the inequalities n
(k)
p,i 6 . . . 6 n

(2)
p,i 6 n

(1)
p,i may not

hold if the projection πD′ with D′ 6= D is applied on power series (5.9) of dual charge-type

D, as we demonstrate in Example 5.2.

Example 5.1. Consider the formal power series

xα4(z2,4)x4α4(z1,4)x2α3(z2,3)x3α3(z1,3)xα2(z1,2)x2α1(z1,1)vL(2Λ0) (5.11)

with coefficients in WL(2Λ0). Its dual charge-type is equal to

D = (2, 1, 1, 1; 2, 2, 1, 0; 1, 0; 1, 1).

As before, we denote by πD the generalization of the projection

WL(2Λ0) → W(2;1;0;1) ⊗W(3;4;1;1) ⊂ W (Λ0)⊗2

to the space of formal power series with coefficients in WL(2Λ0). By combining relations

(4.4) and the fact that the h-weights of W(2;1;0;1) and W(3;4;1;1) are α1 + α3 + 2α4 and

α1 + α2 + 4α3 + 3α4 respectively, one finds that the image of (5.11) with respect to the

projection πD equals, up to a nonzero scalar multiple,

x2α4(z1,4)xα3(z1,3)xα1(z1,1)vL(Λ0) (5.12)

⊗xα4(z2,4)x2α4(z1,4)x2α3(z2,3)x2α3(z1,3)xα2(z1,2)xα1(z1,1)vL(Λ0). (5.13)

More specifically, the projection πD applies every factor xα1(z1,1) of the vertex operator

x2α1(z1,1) = xα1(z1,1)2 on the different tensor factor, so that, using the notation as in
10



(5.10), we have n
(1)
1,1 = n

(2)
1,1 = 1. Next, the vertex operator xα2(z1,2) is applied only

on the rightmost tensor factor, so n
(1)
1,2 = 1 and n

(2)
1,2 = 0. As for the color i = 3, the

relation x3α3(z1,3) = xα3(z1,3)3 = 0 on L(Λ0) ensures the projection πD applies two vertex

operators xα3(z1,3) on the rightmost tensor factor and one vertex operator xα3(z1,3) on

the remaining tensor factor. Hence we have n
(1)
1,3 = 2 and n

(2)
1,3 = 1. Finally, the vertex

operator x2α3(z2,3) is applied on the rightmost tensor factor, so that we have n
(1)
2,3 = 2 and

n
(2)
2,3 = 0. As with the color i = 3, in the i = 4 case we have x3α4(z2,4) = xα4(z2,4)3 = 0 on

L(Λ0) so by arguing analogously we find n
(1)
1,4 = n

(2)
1,4 = 2, n

(1)
2,4 = 1 and n

(2)
2,4 = 0.

vL(Λ0)

vL(Λ0)

α4 4α4 2α3 3α3 α2 2α1

Figure 2. πD
(
xα4(z2,4)x4α4(z1,4)x2α3(z2,3)x3α3(z1,3)xα2(z1,2)x2α1(z1,1)vL(2Λ0)

)
The image of (5.11) with respect to the projection πD can be represented graphically as

in Figure 2. The number of boxes in each column equals the corresponding quasi-particle

charge in (5.11). The first two and the second two rows in the diagram correspond to

the first and the second tensor factor, i.e. to (5.12) and (5.13) respectively. Hence the

number of boxes in the first two and in the second two rows in the column corresponding

to xnp,iαi(zp,i) equals n
(2)
p,i and n

(1)
p,i respectively.

Example 5.2. In Example 5.1, we considered the image of formal power series (5.11) of

dual charge-typeD with respect to the projection πD. In this example, the same projection

πD is applied on the formal power series of dual charge-type D′ 6= D.

The charge-type of

xα4(z2,4)x4α4(z1,4)x2α3(z2,3)x3α3(z1,3)xα2(z1,2)xα1(z2,1)xα1(z1,1)vL(2Λ0) (5.14)

is less than the charge-type of (5.11) with respect to linear order (5.5). However, the both

expressions posses the same color-type. By arguing as in Example 5.1 we find that the

image of (5.14) with respect to the projection πD is a linear combination of two formal

power series presented in Figure 3. Note that for the color i = 1, in the first case we

have n
(1)
1,i = n

(2)
2,i = 0 and n

(2)
1,i = n

(1)
2,i = 1 while in the second case n

(1)
1,i = n

(2)
2,i = 1 and

n
(2)
1,i = n

(1)
2,i = 0.

The charge-type of

xα4(z2,4)x4α4(z1,4)xα3(z2,3)x4α3(z1,3)xα2(z1,2)x2α1(z1,1)vL(2Λ0) (5.15)

is greater than the charge-type of (5.11) although the both expressions are of the same

color-type. By arguing as before, we find that the image of (5.15) with respect to the

projection πD is zero. Indeed, this is caused by the term x4α3(z1,3) = x2α3(z1,3)x2α3(z1,3).
11



vL(Λ0)

vL(Λ0)

α4 4α4 2α3 3α3 α2 α1 α1

vL(Λ0)

vL(Λ0)

α4 4α4 2α3 3α3 α2 α1 α1

Figure 3. πD
(
xα4(z2,4)x4α4(z1,4)x2α3(z2,3)x3α3(z1,3)xα2(z1,2)xα1(z2,1)xα1(z1,1)vL(2Λ0)

)
More specifically, we have x3α3(z1,3) = 0 on L(Λ0). Hence, in order for the image to be

nonzero, the projection would have to move one copy of x2α3(z1,3) to the first and another

copy of x2α3(z1,3) to the second tensor factor. However, this is not possible as the weight

of the first tensor factor is only α1 + α3 + 2α4.

5.3. Operators Aθ and eα. Let b ∈ BL(kΛ0) be a quasi-particle monomial of charge-type

C and dual charge-type D. Denote the charges and the energies of its quasi-particles as in

(mF4). In this section, generalizing the approach from [6], we demonstrate how to reduce

b to obtain a new monomial b′ ∈ BL(kΛ0) such that its charge-type C ′ satisfies C ′ < C with

respect to linear order (5.4). This will be a key step in the proof of linear independence

of the set BL(kΛ0) in Section 5.4.

Let Aθ be the constant term of the operator

xθ(z) =
∑
r∈Z

xθ(r)z
−r−1 ∈ EndL(Λ0)[[z±1]],

i.e. Aθ = xθ(−1), where θ is the maximal root; recall (5.1). Consider the image of the

vector πD bvL(kΛ0) ∈ W⊗k
L(Λ0) with respect to the operator

(Aθ)s := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−s

⊗Aθ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
s−1

for s = n1,1.

This image can be obtained as the coefficient of the variables

z := z
−m

r
(1)
4 ,4
−n

r
(1)
4 ,4

r
(1)
4 ,4

· · · z−m2,1−n2,1

2,1 z
−m1,1−n1,1

1,1 (5.16)

in the expression

(Aθ)s πD xn
r
(1)
4 ,4

α4(z
r
(1)
4 ,4

) · · · xn2,1α1(z2,1)xn1,1α1(z1,1)vL(kΛ0). (5.17)

Using the commutator formula, see, e.g., [17, Eq. (2.3.13)], one can check that the operator

Aθ commutes with the action of quasi-particles. Hence, using (5.10), we find that the s-th

tensor factor (from the right) in (5.17) equals Fs xθ(−1)vL(Λ0), where

Fs =
(
x
n

(s)

r
(2s−1)
4 ,4

α4
(z
r
(2s−1)
4 ,4

) · · ·x
n

(s)
1,4α4

(z1,4)
)(
x
n

(s)

r
(2s−1)
3 ,3

α3
(z
r
(2s−1)
3 ,3

) · · ·x
n

(s)
1,3α3

(z1,3)
)

×
(
x
n

(s)

r
(s)
2 ,2

α2
(z
r
(s)
2 ,2

) · · ·x
n

(s)
1,2α2

(z1,2)
)(
x
n

(s)

r
(s)
1 ,1

α1
(z
r
(s)
1 ,1

) · · ·x
n

(s)
1,1α1

(z1,1)
)
.
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Consider the Weyl group translation operator eα ∈ EndL(Λ0) defined by

eα = expx−α(1) exp(−xα(−1)) expx−α(1) expxα(0) exp(−x−α(0)) expxα(0)

for α ∈ R; see [23, Chap. 3]. It possesses the following properties:

eαvL(Λ0) = −xα(−1)vL(Λ0) for every long root α, (5.18)

xβ(j)eα = eαxβ(j + β(α∨)) for all α, β ∈ R and j ∈ Z. (5.19)

Using (5.18) and (5.19) for α = θ we rewrite the s-th tensor factor as

Fs xθ(−1)vL(Λ0) = −eθ Fs vL(Λ0) zr(s)
1 ,1
· · · z2,1z1,1. (5.20)

Recall (5.1) and notation (3.2). Taking the coefficient of variables (5.16) in (5.20) we find

(Aθ)s πD bvL(kΛ0) = −(eθ)s πD b
+vL(kΛ0),

where (eθ)s denotes the action of eθ on the s-th tensor factor (from the right) and

b+ = bα4 bα3 bα2 b
<s
α1
bsα1
, where b<sα1

= xn
r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) · · ·xn
r
(s)
1 +1,1

α1(m
r
(s)
1 +1,1

)

and bsα1
= xn

r
(s)
1 ,1

α1(m
r
(s)
1 ,1

+ 1) · · ·xn1,1α1(m1,1 + 1).

Therefore, by applying the above procedure we increased the energies of all quasi-

particles of color 1 and charge s = n1,1 in the monomial b ∈ BL(kΛ0) by 1. Recall that

by (c2) we have m1,1 6 −n1,1 = −s. We may continue to apply the same procedure, now

starting with b+vL(kΛ0), until we obtain the monomial

b̃ = bα4 bα3 bα2 b̃α1 , where b̃α1 = xn
r
(1)
1 ,1

α1(m̃
r
(1)
1 ,1

) · · ·xn1,1α1(m̃1,1) and

(m̃
r
(1)
1 ,1

, . . . , m̃
r
(s)
1 +1,1

, m̃
r
(s)
1 ,1

, . . . , m̃1,1)=(m
r
(1)
1 ,1

, . . . ,m
r
(s)
1 +1,1

,m
r
(s)
1 ,1
−m1,1 − s, . . . ,−s).

Since b is an element of BL(kΛ0), the quasi-particle monomial b̃ belongs to BL(kΛ0) as well.

Moreover, the charge-type and the dual charge-type of b̃ equal C and D respectively.

By (5.18) we have xα1(−1)vL(Λ0) = −eα1vL(Λ0). Hence, the vector πD b̃vL(kΛ0), which

belongs to W⊗k
L(Λ0), equals the coefficient of the variables

z
(
z
r
(s)
1 ,1
· · · z2,1z1,1

)m1,1+s

(5.21)

in

(−1)s πD xn
r
(1)
4 ,4

α4(z
r
(1)
4 ,4

) · · ·xn2,1α1(z2,1) (1⊗(k−s) ⊗ e⊗sα1
) v⊗kL(Λ0), (5.22)

where z is given by (5.16). We now employ (5.19) to move 1⊗(k−s)⊗e⊗sα1
all the way to the

left in (5.22). Next, by dropping the invertible operator (−1)s(1⊗(k−s) ⊗ e⊗sα1
) and taking

the coefficient of variables (5.21) we get πD′ b
′vL(kΛ0), where the quasi-particle monomial

b′ of charge-type C ′ and dual charge-type D′ is given by

b′ = bα4 bα3 b
′
α2
b′α1

for b′α1
= xn

r
(1)
1 ,1

α1(m̃
r
(1)
1 ,1

+ 2n
r
(1)
1 ,1

) · · ·xn2,1α1(m̃2,1 + 2n2,1),

b′α2
= xn

r
(1)
2 ,2

α2(m
r
(1)
2 ,2
− n(1)

r
(1)
2 ,2
− · · · − n(s)

r
(1)
2 ,2

) · · · xn1,2α2(m1,2 − n(1)
1,2 − · · · − n

(s)
1,2).
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Clearly, the energies of the quasi-particles in colors 3 and 4 did not change. Furthermore,

if the dual charge-type D of b equals

D =
(
r

(1)
4 , . . . , r

(2k)
4 ; r

(1)
3 , . . . , r

(2k)
3 ; r

(1)
2 , . . . , r

(k)
2 ; r

(1)
1 , . . . , r

(n1,1)
1 , 0, . . . , 0︸ ︷︷ ︸

k−s

)
,

then the dual charge-type D′ of b′ equals

D′ =
(
r

(1)
4 , . . . , r

(2k)
4 ; r

(1)
3 , . . . , r

(2k)
3 ; r

(1)
2 , . . . , r

(k)
2 ; r

(1)
1 − 1, . . . , r

(n1,1)
1 − 1, 0, . . . , 0︸ ︷︷ ︸

k−s

)
.

Finally, by arguing as in [5, Proposition 3.3.1] one can check that b′ belongs to BL(kΛ0).

5.4. Linear independence of the sets BV . In this section, we prove linear indepen-

dence of the set BL(kΛ0). Linear independence of BN(kΛ0) can be verified by arguing as

in [4, Sect. 3]. Suppose there exists a linear dependence relation among some elements

bavL(kΛ0) ∈ BL(kΛ0),∑
a∈A

ca b
avL(kΛ0) = 0, where ca ∈ C, ca 6= 0 for all a ∈ A (5.23)

and A is a finite nonempty set. As the principal subspace WL(kΛ0) is a direct sum of its

h-weight subspaces, we can assume that all ba ∈ BL(kΛ0) posses the same color-type.

Recall strict linear order (5.4) and choose a0 ∈ A such that ba0 < ba for all a ∈ A,

a 6= a0. Suppose that the charge-type C and the dual charge-type D of ba0 are given

by (5.3) and (5.6) respectively. Applying the projection πD on (5.23) we obtain a linear

combination of elements in

W
(µ

(k)
4 ;µ

(k)
3 ;r

(k)
2 ;0)
⊗ · · · ⊗W

(µ
(n1,1+1)

4 ;µ
(n1,1+1)

3 ;r
(n1,1+1)

2 ;0)

⊗W
(µ

(n1,1)

4 ;µ
(n1,1)

3 ;r
(n1,1)

2 ;r
(n1,1)

1 )
⊗ · · · ⊗W

(µ
(1)
4 ;µ

(1)
3 ;r

(1)
2 ;r

(1)
1 )
,

recall (5.8). The definition of the projection πD implies that all bavL(kΛ0) such that the

charge-type of ba is strictly greater than C with respect to (5.5) are annihilated by πD.

Therefore, we can assume that all ba posses the same charge-type C and, consequently,

the same dual-charge-type D.

As in (3.2), write the monomials ba as ba = baα4
baα3
baα2
baα1

, where baαj consist of quasi-

particles of color j. We now apply the procedure described in Section 5.3 on the linear

combination

ca0 πD b
a0vL(kΛ0) +

∑
a∈A, a 6=a0

ca πD b
avL(kΛ0) = 0. (5.24)

We repeat it until all quasi-particles of color 1 are removed from the first summand

ca0πD b
a0vL(kΛ0). This also removes all quasi-particles of color 1 from other summands, so

that (5.24) becomes

c̃a0 πD̃ b
a0
α4
ba0
α3
b̃a0
α2
vL(kΛ0) +

∑
a∈A, a 6=a0

b
a0
α1

=baα1

c̃a πD̃ b
a
α4
baα3
b̃aα2
vL(kΛ0) = 0 (5.25)

for some quasi-particle monomials b̃aα2
of color 2 and scalars c̃a 6= 0 such that D̃ is the

dual charge-type of all quasi-particle monomials baα4
baα3
b̃aα2

in (5.25). The summation in
14



(5.25) goes over all a 6= a0 such that baα1
= ba0

α1
because the summands πD b

avL(kΛ0) such

that ba0
α1
< baα1

get annihilated in the process.

The vectors baα4
baα3
b̃aα2
vL(kΛ0) in (5.25) belong to BL(kΛ0). Furthermore, they can be

realized as elements of the principal subspace of the level k standard module L(kΛ0) with

the highest weight vector vL(kΛ0) for the affine Lie algebra of type C
(1)
3 . Moreover, their

realizations belong to the corresponding basis in type C
(1)
3 , as given by Theorem 3.1 (for

a detailed proof in type C
(1)
l see [5]). This implies c̃a0 = 0 and, consequently, ca0 = 0, thus

contradicting (5.23). Finally, we conclude that the set BL(kΛ0) is linearly independent.

5.5. Small spanning sets B̄V . In this section, we construct certain small spanning sets

B̄N(kΛ0) and B̄L(kΛ0) for the quotients U(ñ+)/IN(kΛ0) and U(ñ+)/IL(kΛ0) of the algebra

U(ñ+) over its left ideals IN(kΛ0) = U(ñ+)ñ>0
+ and IL(kΛ0) defined by (4.2). We denote by x̄

the image of the element x ∈ U(ñ+) in these quotients with respect to the corresponding

canonical epimorphisms. First, we consider U(ñ+)/IN(kΛ0). By Poincaré–Birkhoff–Witt

theorem for the universal enveloping algebra we have

U(ñ+) = U(ñα4)U(ñα3)U(ñα2)U(ñα1), where ñαi = nαi ⊗ C[t, t−1] and nαi = Cxαi .

By (2.1) quasi-particles of the same color commute, so all monomials

b̄ =
(
x̄n

r
(1)
4 ,4

α4(m
r
(1)
4 ,4

) . . . x̄n1,4α4(m1,4)
)
. . .
(
x̄n

r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) . . . x̄n1,1α1(m1,1)
)

(m̄F4)

such that their charges and energies satisfy (5.2) form a spanning set for U(ñ+)/IN(kΛ0).

Denote this set by S̄N(kΛ0). We now list two families of quasi-particle relations which we

will use to reduce S̄N(kΛ0), i.e. to obtain a smaller spanning set for U(ñ+)/IN(kΛ0).

Lemma 5.3. (a) For any color i = 1, 2, 3, 4 and charges n1 and n2 such that n2 6 n1 the

following relation holds for operators on N(kΛ0):(
dp

dzp
xn2αi(z)

)
xn1αi(z) = Ap(z)x(n1+1)αi(z) +Bp(z)

dp

dzp
x(n1+1)αi(z), (r1)

where p = 0, 1, . . . , 2n2 − 1 and Ap(z), Bp(z) are some formal series with coefficients in

the set of polynomials of color i quasi-particles.

(b) For any color i = 2, 3, 4 and charges ni−1 and ni the following relation holds for

operators on N(kΛ0):

(z1 − z2)Mixni−1αi−1
(z1)xniαi(z2) = (z1 − z2)Mixniαi(z2)xni−1αi−1

(z1), (r2)

where Mi = min
{

νi
νi−1

ni−1, ni

}
.

Proof. Relations (r1) are verified by arguing as in the proof of [22, Lemma 4.2] and

relations (r2) follow by a direct computation which employs commutation relations for

vertex operators [29, Eq. (6.2.8)], or, alternatively, commutator formula [17, Eq. (2.3.13)].

�

In the next two lemmas we establish techniques which we will use to reduce the spanning

set S̄N(kΛ0). The former relies on relations (r1) and the latter on (r2).
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Lemma 5.4. For any color i = 1, 2, 3, 4, energies m1,m2 and charges n1, n2 such that

n2 6 n1 the monomials

xn2αi(m2)xn1αi(m1), xn2αi(m2−1)xn1αi(m1+1), . . . , xn2αi(m2−2n2+1)xn1αi(m1+2n2−1)

of operators on N(kΛ0) can be expressed as a linear combination of monomials

xn2αi(p2)xn1αi(p1) such that p2 6 m2−2n2, p1 > m1 +2n2 and p1 +p2 = m1 +m2

and monomials which contain a quasi-particle of color i and charge n1 + 1. Moreover, for

n2 = n1 the monomials

xn2αi(m2)xn2αi(m1) with m1 − 2n2 < m2 6 m1

can be expressed as a linear combination of monomials

xn2αi(p2)xn2αi(p1) such that p2 6 p1 − 2n2 and p1 + p2 = m1 +m2

and monomials which contain a quasi-particle of color i and charge n2 + 1.

Proof. The first statement of the lemma follows by repeating the arguments from [22,

Remark 4.6] which rely on (r1); see also [4, Lemma 2.2.1]. Moreover, it implies the second

statement; see [4, Corollary 2.2.1]. �

Consider monomial (m̄F4) in U(ñ+)/IN(kΛ0) satisfying (5.2). Clearly, the monomial

coincides with the coefficient of the variables

z
−m

r
(1)
4 ,4
−n

r
(1)
4 ,4

r
(1)
4 ,4

· · · z−mj,i−nj,ij,i · · · z−m2,1−n2,1

2,1 z
−m1,1−n1,1

1,1 (5.26)

in the generating function

X̄ = x̄n
r
(1)
4 ,4

α4(z
r
(1)
4 ,4

) · · · x̄nj,iαi(zj,i) · · · x̄n2,1α1(z2,1)x̄n1,1α1(z1,1). (5.27)

Introduce the Laurent polynomial

P =
4∏
i=2

r
(1)
i−1∏
q=1

r
(1)
i∏
p=1

(
1− zq,i−1

zp,i

)min

{
νi
νi−1

nq,i−1, np,i
}
. (5.28)

Lemma 5.5. The product PX̄ belongs to

4∏
i=2

r
(1)
i∏
p=1

z
−
∑r

(1)
i−1
q=1 min

{
νi
νi−1

nq,i−1,np,i

}
p,i (U(ñ+)/IN(kΛ0))[[zr(1)

4 ,4
, . . . , z1,1]].

Proof. Every vertex operator x̄nαi(z) in the product PX̄ can be moved all the way to the

right by using (r2). Furthermore, the right hand side of

xnαi(m) =
∑

m1+...+mn=m

xαi(m1) · · ·xαi(mn)

contains at least one quasi-particle xαi(mj) with energy mj > 0 if m > −n. Therefore,

xnαi(m) belongs to IN(kΛ0) for m > −n. This implies the statement of the lemma as the

negative powers of the variables zp,i in PX̄ come only from P . �
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Let B̄N(kΛ0) be the set of all monomials (m̄F4) satisfying difference conditions (c1) and

(c2) (with l = 4 and i′ = i − 1 for all i = 1, 2, 3, 4). Now we are ready to show that

B̄N(kΛ0) spans U(ñ+)/IN(kΛ0). We only briefly outline the proof, as it goes in parallel with

the proofs for other types; see, e.g., the proof of [20, Theorem 5.1].

Suppose that a monomial b̄1 ∈ S̄N(kΛ0) given by (m̄F4) contains a quasi-particle

x̄np,iαi(mp,i) which does not satisfy

mp,i 6 −np,i +

r
(1)

i′∑
q=1

min
{
νi
νi′
nq,i′ , np,i

}
. (5.29)

By using Lemma 5.5, one can express b̄1 as a linear combination of monomials b̄2 of the

same charge-type and of the same total energy m
r
(1)
4 ,4

+ . . . + m1,1 such that b̄1 < b̄2

with respect to linear order (5.4). However, there are only finitely many such monomials

b̄2 which are nonzero. Hence, by repeating this procedure for an appropriate number of

times, now starting with these new monomials, we can express b̄1 as a linear combination

of monomials whose quasi-particles satisfy (5.29).

Next, suppose that all quasi-particles in a monomial b̄1 ∈ S̄N(kΛ0) given by (m̄F4) satisfy

(5.29) and suppose that some quasi-particle x̄np,iαi(mp,i) in b̄1 does not satisfy (c2). By

repeating the arguments from the proof of [20, Theorem 5.1], which now rely on the first

statement of Lemma 5.4, we can express b̄1 as a linear combination of two families of

monomials. The first family consists of monomials of the same charge-type and of the

same total energy as b̄1, such that the energies m′p,i of their quasi-particles x̄np,iαi(m
′
p,i)

now satisfy (c2). The monomials in the second family posses strictly greater charge-type

than b̄1 and the same total charge n
r
(1)
4 ,4

+ . . .+ n1,1. However, for a fixed charge-type C,
there are only finitely many charge-types C ′ of the same total charge such that C < C ′.
Therefore, after repeating this procedure for a sufficient number of times, the monomial

b̄1 is expressed as a linear combination of monomials whose quasi-particles satisfy (c2).

Remaining constraint (c1) is established in parallel with the preceding discussion, by

employing the second statement of Lemma 5.4. Finally, we conclude that B̄N(kΛ0) forms

a spanning set for U(ñ+)/IN(kΛ0).

Remark 5.6. Due to (r2), the quasi-particles of colors 1 and 2 and the quasi-particles of

colors 3 and 4 interact as the quasi-particles of colors 1 and 2 for the affine Lie algebra

A
(1)
2 while the quasi-particles of colors 2 and 3 interact as the quasi-particles of colors 1

and 2 for the affine Lie algebra B
(1)
2 .

We now consider U(ñ+)/IL(kΛ0). It is clear that all monomials (m̄F4), regarded as ele-

ments of U(ñ+)/IL(kΛ0) and satisfying difference conditions (c1) and (c2), form a spanning

set for the quotient U(ñ+)/IL(kΛ0). However, by (4.2) we have

xnαi(m) ∈ IL(kΛ0) for all n > kνi + 1, m ∈ Z, and i = 1, 2, 3, 4, (r3)

so we can obtain a smaller spanning set, as follows.

Suppose that monomial (m̄F4) in U(ñ+)/IL(kΛ0) satisfies difference conditions (c1) and

(c2) and contains a quasi-particle x̄np,iαi(mp,i) of charge np,i > kνi+1 and color 1 6 i 6 4.
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Clearly, such monomial coincides with the coefficient of variables (5.26) in the generating

function X̄ given by (5.27). As before, we consider the product PX̄, where the Laurent

polynomial P is defined by (5.28).

By combining relations (r2) and (r3) we find PX̄ = 0. Indeed, the operator x̄np,iαi(zp,i)

in PX̄ can be moved all the way to the right, thus annihilating the expression. By taking

the coefficient of variables (5.26) in PX̄ = 0 we express (m̄F4) as a linear combination

of some quasi-particle monomials of the same charge-type and of the same total energy

m
r
(1)
4 ,4

+ . . . + m1,1, which are greater than (m̄F4) with respect to linear order (5.4).

However, there exists only finitely many such quasi-particle monomials which are nonzero.

Hence, by repeating the same procedure for an appropriate number of times, now starting

with these new monomials, we find, after finitely many steps, that (m̄F4) equals zero.

Therefore, we conclude that the set B̄L(kΛ0) of all monomials (m̄F4) in U(ñ+)/IL(kΛ0) which

satisfy difference conditions (c1), (c2) and (c3) forms a spanning set for U(ñ+)/IL(kΛ0).

5.6. Proof of Theorems 3.1 and 4.1. In Section 5.4, we established the linear inde-

pendence of the sets BN(kΛ0) and BL(kΛ0). We now prove that they span the principal

subspaces WL(kΛ0) and WN(kΛ0), thus finishing the proof of Theorem 3.1. Moreover, as a

consequence of the proof, we obtain the presentations of the principal subspace WL(kΛ0)

given by Theorem 4.1. Introduce the natural surjective map

fN(kΛ0) : U(ñ+) → WN(kΛ0)

a 7→ a · vN(kΛ0),

so that we can consider the cases V = L(kΛ0) and V = N(kΛ0) simultaneously. Recall

that the surjective map fL(kΛ0) is given by (4.1), the left ideal IL(kΛ0) is defined by (4.2)

and IN(kΛ0) = U(ñ+)ñ>0
+ .

Let V be N(kΛ0) or L(kΛ0). It is clear that the left ideal IV belongs to the kernel of

fV . Hence, there exists a unique map

f̄V : U(ñ+)/IV → WV such that fV = f̄V πV , (5.30)

where πV is the canonical epimorphism U(ñ+)→ U(ñ+)/IV . The map f̄V is surjective as

fV is surjective and, furthermore, it maps bijectively B̄V to BV . Therefore, the linearly

independent set BV spans the principal subspace WV and so it forms a basis of WV , which

proves Theorem 3.1. This implies that the map (5.30) is a vector space isomorphism, so,

in particular, we conclude that ker fL(kΛ0) = IL(kΛ0), thus proving Theorem 4.1.

6. Proof of Theorems 3.1, 3.2 and 4.2 in types D and E

In this section, unless stated otherwise, we denote by g̃ the affine Lie algebra of type

D
(1)
l , E

(1)
6 , E

(1)
7 , E

(1)
8 . First, we give an outline of the proof of Theorem 3.1 for g̃. As the

generalization of the arguments from Section 5.5 is straightforward, we only discuss the

proof of linear independence. It relies on the coefficients of certain level 1 intertwining

operators and on the vertex operator algebra construction of basic modules, thus resem-

bling the corresponding proofs in types A
(1)
l , B

(1)
l and C

(1)
l ; see [4,5,20]. In Section 6.1 we

recall the aforementioned construction while in Section 6.2 we demonstrate how to use
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the corresponding operators to complete the proof of Theorem 3.1. Next, in Section 6.3

we add some details as compared to Sections 5 and 6.2 to take care of the modifications

needed to carry out the argument for rectangular weights, i.e. to prove Theorems 3.2 and

4.2. Finally, in Section 6.4 we construct different quasi-particle bases in type E, such that

their linear independence can be verified by employing the operator Aθ associated with

the maximal root θ, thus resembling the corresponding proof in type F from Section 5.

6.1. Vertex operator algebra construction of basic modules. We follow [19,29] to

review the vertex operator algebra construction of the basic modules L(Λi) [18, 41]. Set

ĥ∗ =
⊕

m∈Z\{0}

(h⊗ tm)⊕ Cc and ĥ<0 =
⊕
m<0

h⊗ tm.

Let

M(1) = U(ĥ∗)⊗U(h⊗tC[t]⊕Cc) C

be the Fock space for the Heisenberg algebra ĥ∗, i.e. the induced ĥ∗-module, where U(h⊗
tC[t]) acts trivially and c acts as the identity on the one-dimensional module C. Clearly,

we have a vector space isomorphism M(1) ∼= S(ĥ<0). Consider the tensor products

VP = M(1)⊗ C [P ] and VQ = M(1)⊗ C [Q] ,

where C [P ] and C [Q] denote the group algebras of the weight lattice P and of the root

lattice Q with respective bases {eλ : λ ∈ P} and {eα : α ∈ Q}. We use the identification

of group elements eλ = 1⊗ eλ ∈ VP .

Let eλ : VP → VP be the linear isomorphism defined by

eλe
µ = ε(λ, µ)eµ+λ for all λ, µ ∈ P, (6.1)

where ε is a certain map P × P → C× satisfying ε(λ, 0) = ε(0, λ) = 1 for all λ ∈ P ;

see [19, 29] for more details. The space VQ is equipped with a structure of a vertex

operator algebra, with VP being a VQ-module, by

Y (eλ, z) = E−(−λ, z)E+(−λ, z)eλzλ, where E±(−λ, z) = exp

(∑
n61

λ(±n)
z∓n

±n

)

and zλ = 1⊗ zλ acts by zλeµ = z〈λ,µ〉eµ for all λ, µ ∈ P . Moreover, the space VP acquires

a structure of level one g̃-module via

xα(m) = Res
z
zmY (eα, z) for α ∈ R and m ∈ Z.

With respect to this action, the space VQ is identified with the standard module L(Λ0)

while the irreducible VQ-submodules VQe
λi of VP are identified with the standard modules

L(Λi) for all i such that the weight Λi is of level one. The corresponding highest weight

vectors are vL(Λ0) = 1 and vL(Λi) = eλi .
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6.2. Operators Aλi and proof of Theorem 3.1. Let b ∈ BL(kΛ0) be a quasi-particle

monomial as in (m), of charge-type C and dual charge-type

D =
(
r

(1)
l , . . . , r

(k)
l ; . . . r

(1)
2 , . . . , r

(k)
2 ; r

(1)
1 , . . . , r

(k)
1

)
. (6.2)

We now demonstrate how to carry out the procedure from Section 5.3, i.e. how to reduce

b to obtain a new monomial b′ ∈ BL(kΛ0) such that its charge-type C ′ satisfies C ′ < C with

respect to linear order (5.4). Denote by I(·, z) the intertwining operator of type
(

VP
VP VQ

)
,

I(w, z)v = exp(zL(−1))Y (v,−z)w, where w ∈ VP , v ∈ VQ,

see [17, Sect. 5.4]. For i = 1, . . . , l let Aλi be the constant term of I(eλi , z), that is

Aλi = Res
z
z−1I(eλi , z).

We have

AλivL(Λ0) = eλi for all i = 1, . . . , l. (6.3)

In contrast with Section 5.3, which relies on the application of the operators Aθ and eθ, we

here make use of Aλi and eλi in a similar fashion. In particular, we employ the following

property of eλi :

eλixαj(m) = (−1)δijxαj(m− δij)eλi for all i, j = 1, . . . , l and m ∈ Z, (6.4)

see [11] for more details. Moreover, we use the fact that the operators Aλi commute with

the action of xα(z) for all α ∈ R, which comes as a consequence of the commutator

formula for xα(z) and I(eλi , z); see [17, Sect. 5.4].

As in Section 5.2, denote by πD the projection of the principal subspace WL(kΛ0) on

W
(r

(k)
l ;r

(k)
l−1;...;r

(k)
2 ;r

(k)
1 )
⊗ · · · ⊗W

(r
(1)
l ;r

(1)
l−1;...;r

(1)
2 ;r

(1)
1 )
⊂ W⊗k

L(Λ0) ⊂ L(Λ0)⊗k,

where W
(r

(t)
l ;...;r

(t)
2 ;r

(t)
1 )

denote the h-weight subspaces of the level 1 principal subspace

WL(Λ0) of the weight r
(t)
l αl + · · · + r

(t)
2 α2 + r

(t)
1 α1 ∈ R. Arguing as in Section 5.3, we

conclude that the image of πD bvL(kΛ0) ∈ WL(kΛ0) ⊂ W⊗k
L(Λ0) with respect to the operator

(Aλ1)s := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−s

⊗Aλ1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
s−1

, where s = n1,1,

equals the coefficient of the variables

z
−m

r
(1)
l

,l
−n

r
(1)
l

,l

r
(1)
l ,l

· · · z−m2,1−n2,1

2,1 z
−m1,1−n1,1

1,1 (6.5)

in the expression

(Aλ1)s πD xn
r
(1)
l

,l
αl(zr(1)

l ,l
) · · ·xn2,1α1(z2,1)xn1,1α1(z1,1)vL(kΛ0). (6.6)

Moreover, the s-th tensor factor in (6.6) (from the right) equals

Fs =
(
x
n

(s)

r
(s)
l

,l
αl

(z
r
(s)
l ,l

) · · ·x
n

(s)
1,lαl

(z1,l)
)
· · ·
(
x
n

(s)

r
(s)
1 ,1

α1
(z
r
(s)
1 ,1

) · · ·x
n

(s)
1,1α1

(z1,1)
)
eλ1 ,
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where the integers n
(t)
p,i are given by

0 6 n
(k)
p,i 6 . . . 6 n

(2)
p,i 6 n

(1)
p,i 6 1 and np,i =

k∑
t=1

n
(t)
p,i for all i = 1, . . . , l.

By combining (6.1) and (6.4) we get

Fs = (−1)r
(s)
1 eλ1 Fs zr(s)

1 ,1
· · · z2,1z1,1. (6.7)

Recall the notation from (3.2). By taking the coefficient of variables (6.5) in (6.7) we have

(Aλ1)sπD bvL(kΛ0) = (−1)r
(s)
1 (eλ1)s πD b

+vL(kΛ0),

where (eλ1)s denotes the action of eλ1 on the s-th tensor factor (from the right) and

b+ = bαl · · · bα2b
<s
α1
bsα1

with b<sα1
= xn

r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) · · ·xn
r
(s)
1 +1,1

α1(m
r
(s)
1 +1,1

)

and bsα1
= xn

r
(s)
1 ,1

α1(m
r
(s)
1 ,1

+ 1) · · ·xn1,1α1(m1,1 + 1).

Note that the monomial b+ belongs to BL(kΛ0).

As in Section 5.3, we can now continue to apply this procedure until we obtain a

monomial b′ ∈ BL(kΛ0) of charge-type C ′ < C. Finally, by repeating the arguments from

Section 5.4 almost verbatim, we can prove the linear independence of the set BL(kΛ0).

However, in contrast with Section 5.4, where the quasi-particle basis in type F
(1)
4 was

reduced to a basis in type C
(1)
3 , the quasi-particle basis in type D

(1)
l , E

(1)
6 , E

(1)
7 or E

(1)
8

is reduced, after sufficient number of steps, to a basis in type A
(1)
m for some m from

Theorem 3.1. Note that such a modification of the argument is possible because we have

the operators Aλi and eλi satisfying (6.3) and (6.4) at our disposal; cf. corresponding

properties (5.18) and (5.19) for α = θ.

6.3. Proof of Theorems 3.2 and 4.2. Let g̃ be the affine Lie algebra of type D
(1)
l ,

E
(1)
6 or E

(1)
7 and let Λ = k0Λ0 + kjΛj be an arbitrary rectangular weight, as defined in

Section 3.3. First, we prove that the set BL(Λ) is linearly independent. As in Section 5.2,

we regard the standard module L(Λ) as the submodule of L(Λj)
⊗kj ⊗L(Λ0)⊗k0 generated

by the highest weight vector vL(Λ) = v
⊗kj
L(Λj)

⊗ v⊗k0

L(Λ0). Suppose that∑
a∈A

ca b
avL(Λ) = 0, where ca ∈ C, ca 6= 0 for all a ∈ A, (6.8)

A is a finite nonempty set and all ba ∈ BL(Λ) posses the same color-type. Let ba0 be a

monomial of dual charge-type D given by (6.2), such that ba0 < ba for all a ∈ A, a 6= a0,

with respect to linear order (5.4). Consider the projection

πD : W
⊗kj
L(Λj)

⊗W⊗k0

L(Λ0) → W
(r

(k)
l ;r

(k)
l−1;...;r

(k)
2 ;r

(k)
1 )
⊗ · · · ⊗W

(r
(1)
l ;r

(1)
l−1;...;r

(1)
2 ;r

(1)
1 )
,

which is defined in parallel with Section 6.2, so that W
(r

(t)
l ;r

(t)
l−1;...;r

(t)
2 ;r

(t)
1 )

is the h-weight

subspace of W (Λjt) of weight λjt +r
(t)
l αl+ . . . r

(t)
1 α1; recall (3.5). By applying πD on linear

combination (6.8), we obtain ∑
a∈A

ca πD b
avL(Λ) = 0. (6.9)
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By Section 6.1, the highest weight vector vL(Λ) is identified with (eλj)⊗kj ⊗ 1⊗k0 , so that,

due to (6.1), we have

vL(Λ) = (eλj)⊗kj ⊗ 1⊗k0 = (e
⊗kj
λj
⊗ 1⊗k0) 1⊗k = (e

⊗kj
λj
⊗ 1⊗k0)v⊗kL(Λ0) for k = k0 + kj.

Therefore, linear combination (6.9) can be expressed as∑
a∈A

ca πD b
a(e
⊗kj
λj
⊗ 1⊗k0)v⊗kL(Λ0) = 0.

By employing (6.4) to move e
⊗kj
λj
⊗ 1⊗k0 all the way to the left and then dropping the

invertible operator, we get ∑
a∈A

c̃a πD b̃
av⊗kL(Λ0) = 0

for some quasi-particle monomials b̃a and c̃a = ±ca. Note that every b̃a is obtained by

increasing the energy of each quasi-particle of color j and charge n in ba by
∑n

t=1 δjjt .

Indeed, the operator eλj is applied on the tensor factors 1, . . . , kj, while the projection

πD places n quasi-particles of color j and charge 1 on the tensor factors k0 + kj − n +

1, . . . , k0 + kj. Hence the interactions between eλj and the quasi-particle of color j and

charge n occur on the tensor factors k0 +kj−n+1, . . . , kj for n > k0. There are
∑n

t=1 δjjt
such factors and, by (6.4), each interaction increases the energy of the aforementioned

quasi-particle of charge n and color j by 1.

Finally, as the original monomials ba belong to BL(Λ), by comparing the difference

conditions (c2) and (c′2) we see that the monomials b̃a belong to BL(kΛ0). Therefore, due

to the identification v⊗kL(Λ0) = vL(kΛ0), the linear independence of the set BL(Λ) now follows

from Theorem 3.1.

We now proceed as in Section 5.5 and construct a spanning set for U(ñ+)/IL(Λ). We

denote the image of the element x ∈ U(ñ+) in the quotient U(ñ+)/IL(Λ) by x̄. Let B̄L(Λ)

be the set of all monomials

b̄ =
(
x̄n

r
(1)
l

,l
αl(mr

(1)
l ,l

) . . . x̄n1,lαl(m1,l)
)
. . .
(
x̄n

r
(1)
1 ,1

α1(m
r
(1)
1 ,1

) . . . x̄n1,1α1(m1,1)
)

(m̄)

in U(ñ+)/IL(Λ) such that their charges and energies satisfy

n
r
(1)
i ,i
6 . . . 6 n1,i and m

r
(1)
i ,i
6 . . . 6 m1,i for all i = 1, . . . , l (6.10)

and difference conditions (c1), (c′2) and (c3). It is clear from Theorem 3.1 that the set of

all monomials b̄ as in (m̄) satisfying (6.10) and difference conditions (c1), (c2) and (c3)

spans the quotient U(ñ+)/IL(Λ). Suppose that such a monomial b̄ does not satisfy the

more restrictive condition (c′2). Introduce the generating function

X̄ = x̄n
r
(1)
l

,l
αl(zr(1)

l ,l
) · · · x̄n2,1α1(z2,1)x̄n1,1α1(z1,1).

Clearly, b̄ equals the coefficient of the variables

z
−m

r
(1)
l

,l
−n

r
(1)
l

,l

r
(1)
l ,l

· · · z−m2,1−n2,1

2,1 z
−m1,1−n1,1

1,1
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in X̄. By (4.3) we have U(ñ+)ñ>0
+ ⊂ IL(Λ). Therefore, due to commutation relations

(zp,i − zq,i′)Mixnq,i′αi′ (zq,i′)xnp,iαi(zp,i) = (zp,i − zq,i′)Mixnp,iαi(zp,i)xnq,i′αi′ (zq,i′)

with Mi = min {nq,i′ , np,i}, the product PX̄, where P is the Laurent polynomial

P =
l∏

i=2

r
(1)

i′∏
q=1

r
(1)
i∏
p=1

(
1− zq,i′

zp,i

)min{nq,i′ ,np,i}
,

belongs to

l∏
i=1

r
(1)
i∏
p=1

z
−
∑r

(1)

i′
q=1 min{nq,i′ ,np,i}

p,i (U(ñ+)/IL(Λ))[[zr(1)
l ,l

, . . . , z1,1]]. (6.11)

However, every vertex operator x̄nαi(z) in the product PX̄ can be moved all the way to

the right. By (4.3) we have xαj(−1)k0+1 ∈ IL(Λ), so that each x̄nαi(z) increases the power

of its variable z in (6.11) by
∑n

t=1 δijt . Therefore, we have

PX̄ ∈
l∏

i=1

r
(1)
i∏
p=1

z
∑np,i
t=1 δijt−

∑r
(1)

i′
q=1 min{nq,i′ ,np,i}

p,i (U(ñ+)/IL(Λ))[[zr(1)
l ,l

, . . . , z1,1]]. (6.12)

By comparing the coefficients of powers of the variables zp,i in (6.12), the monomial b̄ can

be expressed as a linear combination of elements of B̄L(Λ). Hence we conclude that the

set B̄L(Λ) spans the quotient U(ñ+)/IL(Λ).

Since the ideal IL(Λ) belongs to the kernel of the map fL(Λ) defined by (4.1), Theorems

3.2 and 4.2 can be now verified by arguing as in Section 5.6.

6.4. Operator Aθ revisited. As with type G in [6], the linear independence proof in

type F employs certain operator Aθ = xθ(−1); see Sections 5.3 and 5.4. In this section

we show that the operator Aθ associated with the maximal root θ in type E can be also

used to verify the linear independence, but of different bases. First, for g = El set

(i1, . . . , il; i
′′
3, . . . , i

′′
l ) =


(1, 7, 2, 3, 4, 5, 6, 8; 1, 2, 3, 4, 5, 5), if l = 8,

(1, 6, 5, 4, 3, 2, 7; 6, 5, 4, 3, 3), if l = 7,

(6, 5, 4, 3, 2, 1; 5, 4, 3, 2), if l = 6.

Introduce the following families of difference conditions:

mp,ij 6 −np,ij − 2(p− 1)np,ij for p = 1, . . . , r
(1)
ij

and j = 1, 2; (c0
2)

mp,ij 6 −np,ij +

r
(1)

i′′
j∑

q=1

min
{
nq,i′′j , np,ij

}
− 2(p− 1)np,ij for p = 1, . . . , r

(1)
ij

; (cj2)

mp,ij 6 −np,ij +
∑
s=i′′j ,ik

r
(1)
s∑
q=1

min
{
nq,s, np,ij

}
− 2(p− 1)np,ij for p = 1, . . . , r

(1)
ij
. (cj,k2 )

Let BEl
L(kΛ0) be the set all monomials (m) which satisfy (6.10) and the following difference

conditions:
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◦ (c1), (c3), (c0
2), (cj2) for j = 3, 4, 5, 6, 8 and (cj,k2 ) for (j, k) = (7, 2) if l = 8;

◦ (c1), (c3), (c0
2), (cj2) for j = 3, 4, 5, 7 and (cj,k2 ) for (j, k) = (6, 1) if l = 7;

◦ (c1), (c3), (c0
2), (cj2) for j = 3, 5, 6 and (cj,k2 ) for (j, k) = (4, 1) if l = 6.

Proposition 6.1. For any positive integer k the set

BEl
L(kΛ0) =

{
bvL(kΛ0) : b ∈ BEl

L(kΛ0)

}
⊂ WL(kΛ0)

forms a basis of the principal subspace WL(kΛ0) of the standard module L(kΛ0) for the

affine Lie algebra in type E
(1)
l .

Proof. The maximal root θ in type E satisfies

αi(θ
∨) = δ6i for g = E6 and αi(θ

∨) = δ1i for g = E7, E8. (6.13)

Therefore, as described in Section 5.4, by applying the procedure from Section 5.3 on an

arbitrary linear combination of elements of BE8

L(kΛ0), one can remove all quasi-particles of

color 1 from the corresponding quasi-particle monomials. The resulting linear combination

can be identified as a linear combination of elements of BE7

L(kΛ0); see Figure 1. Due to

(6.13), by applying the same procedure once again, one can remove all quasi-particles of

color 1b from the corresponding quasi-particle monomials, thus obtaining the expression

which can be identified as a linear combination of elements of the basis BL(kΛ0) from

Theorem 3.1 for g = D6; see Figure 1. As for type E6, due to (6.13), by applying the

procedure from Section 5.3 on an arbitrary linear combination of elements of BE6

L(kΛ0), one

can remove all quasi-particles of color 6 from the corresponding quasi-particle monomials.

The resulting expression can be identified as a linear combination of elements of the basis

BL(kΛ0) from Theorem 3.1 for g = A5; see Figure 1. Therefore, the proposition follows

from Theorem 3.1 and the fact that the characters of the corresponding bases coincide

which is verified by arguing as in Section 7. �

7. Character formulae and combinatorial identities

Let δ =
∑l

i=0 aiαi be the imaginary root as in [23, Chap. 5], where the integers ai
denote the labels in the Dynkin diagram [23, Table Aff] for g̃. As before, let V denote

a standard module or a generalized Verma module. Define the character chWV of the

corresponding principal subspace WV by

chWV =
∑

m,n1,...,nl>0

dim(WV )−mδ+n1α1+...+nlαl q
myn1

1 · · · y
nl
l ,

where q, y1, . . . , yl are formal variables and (WV )−mδ+n1α1+...+nlαl denote the weight sub-

spaces of WV of weight −mδ + n1α1 + · · ·+ nlαl with respect to

h̃ = h⊗ C[t, t−1]⊕ Cc⊕ Cd.

bNote that the quasi-particles of color 1 in type E7 correspond, with respect to the aforementioned

identification, to the quasi-particles of color 7 in type E8; see Figure 1.
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In order to simplify our notation, we set µi = νi/νi′ for i = 2, . . . , l; recall (3.3). Also,

we write

(a; q)r =
r∏
i=1

(1− aqi−1) for r > 0 and (a; q)∞ =
∏
i>1

(1− aqi−1).

Theorem 3.1 implies the following character formulae:

Theorem 7.1. Set ni =
∑νik

t=1 r
(t)
i for i = 1, . . . , l. For any integer k > 1 we have

chWL(kΛ0) =
∑

r
(1)
1 >···>r

(ν1k)
1 >0...

r
(1)
l >···>r

(νlk)

l >0

q
∑l
i=1

∑νik
t=1 r

(t)2

i −
∑l
i=2

∑k
t=1

∑µi−1
p=0 r

(t)

i′ r
(µit−p)
i∏l

i=1(q; q)
r
(1)
i −r

(2)
i
· · · (q; q)

r
(νik)
i

l∏
i=1

ynii .

Proof. We give the proof of this theorem for the case F
(1)
4 , since the proof for the cases

D
(1)
l , E

(1)
6 , E

(1)
7 and E

(1)
8 goes analogously. The proof for other types can be found in

[4–6,20]. In order to determine the character of WL(kΛ0), we write conditions on energies

of quasi-particles of the set BWL(kΛ0)
in terms of r

(s)
i . Fix a color-type (n4, n3, n2, n1),

charge-type

C =
(
n
r
(1)
4 ,4

, . . . , n1,4; n
r
(1)
3 ,3

, . . . , n1,3; n
r
(1)
2 ,2

, . . . , n1,2; n
r
(1)
1 ,1

, . . . , n1,1

)
and dual-charge-type

D =
(
r

(1)
4 , . . . , r

(2k)
4 ; r

(1)
3 , . . . , r

(2k)
3 ; r

(1)
2 , . . . , r

(k)
2 ; r

(1)
1 , . . . , r

(k)
1

)
The following identities are well-known, see, e.g., [20, Section 5] and [4, Section 4], and

they can be verified by a direct calculation:

r
(1)
i∑
p=1

(2(p− 1)np,i + np,i) =
k∑
t=1

r
(t)2

i for i = 1, 2, (7.1)

r
(1)
i∑
p=1

((2(p− 1)np,i + np,i) =
2k∑
t=1

r
(t)2

i for i = 3, 4, (7.2)

r
(1)
2∑
p=1

r
(1)
1∑
q=1

min{np,2, nq,1} =
k∑
t=1

r
(t)
1 r

(t)
2 ,

r
(1)
4∑
p=1

r
(1)
3∑
q=1

min{np,4, nq,3} =
2k∑
t=1

r
(t)
3 r

(t)
4 , (7.3)

r
(1)
3∑
p=1

r
(1)
2∑
q=1

min{np,3, 2nq,2} =
k∑
t=1

r
(t)
2 (r

(2t−1)
3 + r

(2t)
3 ). (7.4)

By combining (7.1)–(7.4), difference conditions (c1)–(c3) and the formula

1

(q)r
=
∑
j>0

pr(j)q
j,
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where pr(j) denotes the number of partitions of j with at most r parts, we get

ch WL(kΛ0) =
∑

r
(1)
1 >···>r

(k)
1 >0

r
(1)
2 >···>r

(k)
2 >0

q
∑2
i=1

∑k
t=1 r

(t)2

i −
∑k
t=1 r

(t)
1 r

(t)
2∏2

i=1(q; q)
r
(1)
i −r

(2)
i
· · · (q; q)

r
(k)
i

2∏
i=1

ynii

×
∑

r
(1)
3 >···>r

(2k)
3 >0

r
(1)
4 >...>r

(2k)
4 >0

q
∑4
i=3

∑2k
t=1 r

(t)2

i −
∑2k
t=1 r

(t)
3 r

(t)
4 −

∑k
t=1 r

(t)
2 (r

(2t−1)
3 +r

(2t)
3 )∏4

i=3(q; q)
r
(1)
i −r

(2)
i
· · · (q; q)

r
(2k)
i

4∏
i=3

ynii ,

where ni =
∑k

t=1 r
(t)
i for i = 1, 2 and ni =

∑2k
t=1 r

(t)
i for i = 3, 4, as required. The character

formula for the generalized Verma module is verified analogously. �

Theorem 3.2 implies the following character formulae in types D
(1)
l , E

(1)
6 and E

(1)
7 while

the case A
(1)
l is due to [20].

Theorem 7.2. Set ni = r
(1)
i + · · · + r

(k)
i for i = 1, . . . , l. For any rectangular weight

Λ = k0Λ0 + kjΛj of level k = k0 + kj we have

chWL(Λ) =
∑

r
(1)
1 >···>r

(k)
1 >0...

r
(1)
l >···>r

(k)
l >0

q
∑l
i=1

∑k
t=1 r

(t)2

i −
∑l
i=2

∑k
t=1 r

(t)

i′ r
(t)
i +

∑l
i=1

∑k
t=1 r

(t)
i δijt∏l

i=1(q; q)
r
(1)
i −r

(2)
i
· · · (q; q)

r
(k)
i

l∏
i=1

ynii .

Note that from (5.30) we have an isomorphism of ñ+-modules WN(kΛ0) and U(ñ<0
+ ),

so we can obtain character formula of WN(kΛ0) by using Poincaré–Birkhoff–Witt basis of

U(ñ<0
+ ) as well. For example, in the case F

(1)
4 , we get

chWN(kΛ0) =
1

(qy1, qy1y2, qy1y2y3, qy1y2y3y4, qy2, qy2y3, qy2y3y4, qy2y2
3; q)∞

(7.5)

× 1

(qy1y2y2
3, qy1y2y2

3y4, qy1y2y2
3y

2
4, qy1y2

2y
2
3, qy1y2

2y
2
3y4, qy1y2

2y
2
3y

2
4, qy3, qy2y2

3y4; q)∞

× 1

(qy1y2
2y

3
3y4, qy1y2

2y
3
3y

2
4, qy1y2

2y
4
3y

2
4, qy1y3

2y
4
3y

2
4, qy

2
1y

3
2y

4
3y

2
4, qy3y4, qy2y2

3y
2
4, qy4; q)∞

,

where

(a1, . . . , an; q)∞ := (a1; q)∞ · · · (an; q)∞.

For any positive root α = a1α1 + · · · alαl ∈ R+ we introduce the following notation

(α; q)∞ = (qya1
1 y

a2
2 . . . yall ; q)∞,

so that for an arbitrary affine Lie algebra g̃ character formula (7.5) generalizes to

chWN(kΛ0) =
1∏

α∈R+
(α; q)∞

. (7.6)

On the other hand, by comparing the sets BWN(kΛ0)
and BWL(kΛ0)

, we conclude that the

character formula chWN(kΛ0) is obtained from chWL(kΛ0) by removing the quasi-particle

charges constraints coming from (c3). Therefore, Theorem 7.1 and (7.6) imply the follow-

ing generalization of Euler–Cauchy theorem; cf. [1].
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Theorem 7.3. For any untwisted affine Lie algebra g̃ we have

1∏
α∈R+

(α; q)∞
=

∑
r
(1)
1 >···>r

(m)
1 >···>0...

r
(1)
l >···>r

(m)
l >···>0

q
∑l
i=1

∑
t>1 r

(t)2

i −
∑l
i=2

∑
t>1

∑µi−1
p=0 r

(t)

i′ r
(µit−p)
i∏l

i=1

∏
j>1(q; q)

r
(j)
i −r

(j+1)
i

l∏
i=1

ynii ,

where ni =
∑

t>1 r
(t)
i for i = 1, . . . , l and the sum on the right hand side goes over all

descending infinite sequences of nonnegative integers with finite support.

In particular, the theorem produces three new families of combinatorial identities which

correspond to types D, E and F .
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ŝlr+1-Modules, Comm. Math. Phys. 264 (2006), 427–464.
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