Publications

Journals

  1. B. Amaziane, M. Jurak, I. Radišić: Convergence of a finite volume scheme for immiscible compressible two-phase flow in porous media by the concept of the global pressure, Journal of Computational and Applied Mathematics 399 (2022) 113728 doi.org/10.1016/j.cam.2021.113728.
  2. B. Amaziane, M. Jurak, L. Pankratov, A. Piatnitski: Homogenization of non-isothermal immiscible incompressible flow in double porosity media, Nonlinear Analysis: Real World Applications 61 (2021) 103323 doi 10.1016/j.nonrwa.2021.103323.
  3. M. Jurak, A. Koldoba, A. Konyukhov, L. Pankratov: Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media, C. R. Mecanique 347 (2019) 920-929, doi: 10.1016/j.crme.2019.11.015.
  4. M. Jurak, I. Radišić, A. Žgaljić Keko: Two-phase Two-component Flow in Porous Media in Low Solubility Regime, SIAM J. Math. Anal. 51-3 (2019), pp. 2019-2052, doi: 10.1137/18M1182206.
  5. B. Amaziane, M. Jurak, L. Pankratov, A. Piatnitski: Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media, Nonlinear Analysis: Real World Applications, Vol. 43, 192-212, (2018) doi: 10.1016/j.nonrwa.2018.02.012.
  6. B. Amaziane, M. Jurak, L. Pankratov, A. Vrbaški: Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media, Discrete and Continuous Dynamical Systems Series B, Vol. 23, No. 2, 629-665 (2018) doi: 10.3934/dcdsb.2018037.
  7. B. Amaziane, M. Jurak, L. Pankratov, A. Piatnitski: An existence result for nonisothermal immiscible incompressible two-phase flow in heterogeneous porous media. Math. Meth. Appl. Sci. Vol. 40, No. 18, 7510-7539 (2017) doi: 10.1002/mma.4544.
  8. M. Jurak, L. Pankratov, A. Vrbaški: A fully homogenized model for incompressible two-phase flow in double porosity media, Applicable Analysis, Vol. 95, No. 10, 2280-2299 (2016) doi:10.1080/00036811.2015.1031221.
  9. E. Ahusborde, B. Amaziane, M. Jurak: Three-dimensional numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, Geological Society Special Publications 415, Ed. R. P. Shaw, The Geological Society London, 123-141 (2015). doi:10.1144/SP415.2
  10. B. Amaziane, M. Jurak, A. Žgaljić Keko: Modeling Compositional Compressible Two-phase Flow in Porous Media by the Concept of the Global Pressure, Comput Geosci. Vol. 18, 3-4 (2014) 297-309, DOI 10.1007/s10596-013-9362-2.
  11. B. Amaziane, M. El Ossmani, M. Jurak: Numerical simulation of gas migration through engineered and geological barriers for a deep repository for radioactive waste, Computing and Visualization in Science Vol. 15, 1 (2012) 3-20, DOI 10.1007/s00791-013-0196-1.
  12. A. Bourgeat, M. Jurak, F. Smaï, On persistent primary variables for numerical modeling of gas migration in a nuclear waste repository, Comput Geosci Vol. 17, 2, (2013) 287-305, DOI:10.1007/s10596-012-9331-1
  13. B. Amaziane, M. Jurak, A. Žgaljić Keko: Numerical Simulations of Water-Gas Flow in Heterogeneous Porous Media with Discontinuous Capillary Pressures by the Concept of the Global Pressure, Journal of Computational and Applied Mathematics, Vol. 236, 17, (2012) 4227–4244, DOI:10.1016/j.cam.2012.05.013
  14. B. Amaziane, M. Jurak, A. Vrbaški: Existence for a global pressure formulation of water-gas flow in porous media, Electron. J. Diff. Equ., Vol. 2012 (2012), No. 102, pp. 1-22, ejde.math.txstate.edu.
  15. B. Amaziane, M. Jurak, A. Vrbaški: Homogenization results for a coupled system modeling immiscible compressible two-phase flow in porous media by the concept of global pressure, Applicable Analysis Vol. 92, 7 (2013), pp. 1417-1433, DOI:10.1080/00036811.2012.682059.
  16. B. Amaziane, M. Jurak, A. Žgaljić Keko: An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, J. Differential Equation 250, No 3 (2011) 1685-1718. DOI: 10.1016/j.jde.2010.09.008.
  17. B. Amaziane, M. Jurak, A. Žgaljić Keko: Modeling and Numerical Simulations of Immiscible Compressible Two-Phase Flow in Porous Media by the Concept of Global Pressure, Transport in Porous Media 84, No 1 (2010) 133-152. DOI: 10.1007/s11242-009-9489-8
  18. A. Bourgeat, M. Jurak: A Two Level Scaling-up method for multiphase flow in porous media; numerical validation and comparison with other methods Comput Geosci 14, No 1 (2010) 1-14. DOI: 10.1007/s10596-009-9128-z
  19. A. Bourgeat, M. Jurak, F. Smaï: Two phase partially miscible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository, Comput Geosci 13, No 1 (2009) 29–42, DOI. 10.1007/s10596-008-9102-1
  20. B. Amaziane, M. Jurak: A new formulation of immiscible compressible two-phase flow in porous media, C. R. Méchaniques 336 (2008) 600-605. (pdf)
  21. B. Amaziane,A. Bourgeat, M. Jurak: Effective Macrodiffusion in Solute Transport Through Heterogeneous Porous Media, Multiscale Model. Simul. Vol. 5, No. 1, (2006) 184-204. (pdf)
  22. A. Bourgeat, M. Jurak, A. Piatnitski: Averaging a transport equation with small diffusion and oscillating velocity, Math. Meth. Appl. Sci. (2003) 26:95-117.
  23. M. Jurak, J. Tambača: Linear Curved Rod Model. General Curve, Math. Models Methods Appl. Sci. Vol. 11, No. 7 (2001) 1237-1252.
  24. M. Jurak, J. Tambača: Derivation and justification of a curved rod model, Math. Models Methods Appl. Sci. 9, No. 7, (1999) 991-1014.
  25. M. Jurak, Z. Tutek: Wrinkled Rod, Mathematical Models and Methods in Applied Sciences, Vol. 9, No. 5 (1999) 665-692.
  26. M. Jurak, J. Tambača, Z. Tutek: Derivation of a Curved Rod Model by Kirchhoff Assumptions, ZAMM, 79 (1999) 7, 455-463.
  27. I. Aganović, M. Jurak, E. Marušić-Paloka, Z. Tutek: Moderately wrinkled plate, Asymptotic Analysis 16 (1998) 273-297.
  28. M. Jurak: Homogenization of capillary oscillations of an inviscid fluid in a porous reservoir, Bolletino U. M. I. (7) 10-B (1996) 67-97.
  29. M. Jurak: On the limit behavior of the solutions of a sequence of generalized eigenproblems in different Hilbert spaces, Glasnik Matematički, 29(49) (1994) 79--95.
  30. M. Jurak, Z. Tutek: A one-dimensional model of homogenized rod, Glasnik Matematički 24 (1989) 271--290.

Proceedings

  1. B. Amaziane, M. Jurak, A. Žgaljić Keko: Modeling Compositional Compressible Two-Phase Flow in Porous Media by the Concept of the Global Pressure, in Proceedings of ECMOR XIII: 13th European Conference on the Mathematical Oil Recovery, 10-13 Septembre 2012, Biarritz, France. (pdf)
  2. B. Amaziane, M. Jurak, A. Žgaljić Keko: Modeling and numerical simulations of water-gas flow in porous media using the concept of global pressure, in Proceedings of the 3rd International Conference on Approximation Methods and Numerical Modelling in Enviroment and Natural Resources, MAMERN'09, Pau, France June 8-11, ed. B. Amaziane et all., Vol. 1, pp 115-120 (2009). (pdf)
  3. B. Amaziane, A. Bourgeat, M. El Ossmani, M. Jurak, J. Koebbe: Homogenizer++: A Platform for Upscaling Multiphase Flows in Heterogeneous Porous Media, Monografías del Seminario Matemático García de Galdeano 33, (2006) 395­-402. (pdf)
  4. M. Jurak, Ž. Prnić: Heating of oil well by hot water circulation, in Proceedings of the Conference on Applied Mathematics and Scientific computing, ed. Z. Drmač, et. all, (2003) 235-244, Springer-Verlag. (pdf)
  5. M. Jurak, J. Tambača, Z. Tutek: Modelling of curved rods, in Z. Drmač et al. (eds.) Applied Mathematics and Scientific Computing, pp. 91-121, Kluwer Academic, 2003.
  6. M. Jurak: Upscaling of Two-Phase Flow, Proceedings of the Conference on Applied Mathematics and Computation, Dubrovnik  Sep 13-18, 1999, ed. M. Rogina, V. Hari, N. Limić and Z. Tutek, Zagreb, 2001.
  7. M. Jurak, Z. Tutek: Model of Wrinkled Rod, ZAMM 77 (1997) S2, pp. 583-584.
  8. I. Aganović, M. Jurak, E. Marušić-Paloka, Z. Tutek: A Model of Wrinkled Plate, ZAMM 76 (1996) S2, pp. 457-458.

Conference slides