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Abstract. We present a global pressure formulation of immiscible, compressible two-phase
flow in porous media that is completely equivalent to the original formulation. The new model is
discretized by a finite volume method in order to demonstrateadvantages of the global pressure
formulation for the simulation of water-gas flow in the context of nuclear waste underground
disposal.

1 Introduction
Historically, there have been two main approaches to modeling multiphase flow in porous

media. The first is based on individual balance equations foreach of the fluids, while the sec-
ond involves manipulation and combination of those balanceequations into modified forms,
with concomitant introduction of ancillary functions thatwe will refer to as the fractional flow
or global pressure-saturation formulation. The notion of global pressure was first introduced
by [4], [5] and was then revisited by other authors, see for instance [6]. It has been since used
in a wide range of engineering specialties related to numerical simulation in hydrology and
petroleum reservoir engineering, see for instance [7] and references therein. It has been proven
that this fractional flow approach is far more efficient than the original two-pressure approach
from the computational point of view [7]. Numerical methodsare very sensitive to the choice
of form of the governing equation. In the light of the new and continuing developments in nu-
merical methods for the solution of the multiphase flow equations, it is worthwhile revisiting
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the question of the form of the governing equations and exploring the implications of this equa-
tion form for a numerical method based on it. In this talk, we will present a new formulation
[2] to describe immiscible compressible two-phase flow in porous media. The main feature of
this formulation is the introduction of a global pressure. The resulting equations are written
in a fractional flow formulation and lead to a coupled system which consists of a nonlinear
parabolic (the global pressure equation) and a nonlinear diffusion-convection one (the water
saturation equation) which can be efficiently solved numerically. Finally, we will present some
numerical results obtained by using a finite volume scheme toillustrate the performance of the
new formulation for water-gas flow in the context of nuclear waste underground disposal.

2 Governing equations
The usual equations describing immiscible compressible two-phase flow in a porous medium

are given by the mass balance equation and Darcy’s law for each of the fluid phases (see, e.g.,
[5], [7]):

Φ
∂

∂t
(ραSα) + div(ρα

~Vα) = 0 and ~Vα = −K
krα(Sα)

µα

(∇pα − ρα~g), (1)

whereΦ andK are the porosity and the absolute permeability of the porousmedium;α = w
denotes the wetting phase (e.g. water),α = n indicates the nonwetting phase (e.g. gas),
ρα, Sα, pα, ~Vα, µα andkrα are, respectively, the density, (reduced) saturation, pressure, volu-
metric velocity, viscosity and relative permeability of the α-phase, and~g is the gravitational,
downward-pointing, constant vector. In addition to (1), wealso have the customary property
for saturations and the capillary pressure function:

Sw + Sn = 1 and pc(Sw) = pn − pw. (2)

The primary variables areSα, pα, and~Vα. Here we assume that the porosityΦ and the absolute
permeabilityK are functions of space and viscositiesµw, µn are constant. Finally, we assume
that the capillary pressure and relative permeabilities depend upon the saturation solely. For
notational simplicity, we neglect their dependence on space variable. With respect to the mass
densities we do not need any particular restrictions, but for simplicity we will consider water-
gas system whereρw is a constant andρn is given by the ideal gas law:ρn(pn) = cgpn, with
constantcg.

3 Global pressure formulation

For expository convenience we neglect gravity terms and we introduce the phase mobilities
λα(Sw) = krα(Sw)/µα, α = w, n, total mobilityλ(Sw, pn) = ρwλw(Sw)+ρn(pn)λn(Sw), water
fractional flow functionsfw(Sw, pn) = ρwλw(Sw)/λ(Sw, pn), diffusion coefficienta(Sw, pn) =

−ρwρn(pn)λw(Sw)λn(Sw)p′c(Sw)/λ(Sw, pn), and total flux~Qt = ρw
~Vw + ρn(pn)~Vg.

The idea of global pressure is to eliminate capillary pressure gradient term from the total flux
~Qt, or, in other words, to find somemean pressurep such that

∇pn − fw(Sw, pn)p′c(Sw)∇Sw = ω(Sw, p)∇p,

where a functionω(Sw, p) is to be determined. To that aim we introduce the unknown function
π such thatpn = π(Sw, p) which relates gas pressurepn and a new variablep, that is called
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global pressure. By an easy calculation (see [2]) it follows thatπ is defined as the solution of
the following Cauchy’s problem for ordinary differential equation:

dπ(S, p)

dS
= fw(S, π(S, p))p′c(S), S < 1, π(1, p) = p. (3)

This definition impliespw ≤ p ≤ pn. Having found the functionπ we can expressω as follows:

ω(Sw, p) = exp

(
∫

1

Sw

ρwcgλw(s)λn(s)p
′

c(s)

(ρwλw(s) + cgπ(s, p)λn(s))2
ds

)

, (4)

which shows thatω is strictly positive. Finally, using the change of variables pn = π(Sw, p),
we can transform the system (1)–(2) to the following system of equations (see [2] for details):

Φ
∂

∂t
(Swρw + cgπ(Sw, p)(1 − Sw)) − div

(

λn(Sw, p)ω(Sw, p)K∇p
)

= 0, (5)

~Qt = −λn(Sw, p)ω(Sw, p)K∇p, (6)

Φ
∂

∂t
(Swρw) + div(fn

w(Sw, p) ~Qt) = div(an(Sw, p)K∇Sw), (7)

where the coefficients denoted by superscriptn are obtained from corresponding coefficients
without superscript by replacingpn by π(Sw, p): λn(Sw, p) = λ(Sw, π(Sw, p)) etc. System (5)–
(7) is completely equivalent to system (1)–(2) and it has sound mathematical structure: equation
(7) is convection-diffusion equation for saturationSw, while equation (5) can be interpreted as a
parabolic equation for the global pressurep, with a source term coming from the time derivative
of water saturationSw.

In numerical simulation based on system (5)–(7) one needs tocalculate the coefficients by
integrating equation (3) for different initial values of global pressurep. From a practical point
of view one can solve (3) approximately for certain values ofinitial data and then use an inter-
polation procedure to extend these values to the whole rangeof interest. Necessary calculations
can be done in a prepocessing phase, without penalizing the flow simulation.

4 Numerical simulations
Spatial discretization of system (5)–(7) is performed by a vertex centered finite volume

method (see [1]), which is applied to the both equations. Implicit time stepping is used and
the whole discrete nonlinear system is solved by the Newton method.

We chose here to present only one 1D simulation in which gas isinjected into a porous
domain initially saturated by water. The porous domain is 100 meters long with homogeneous
permeabilityK of 1 mD and porosityΦ = 0.1. Fluid properties are taken from Couplex test
case [3], with incompressible water and hydrogen as gaseousphase. We have,µw = 7.98 · 10−3

Pas,µn = 9 · 10−6 Pas,ρw = 103 kg/m3 andcg = 0.808 kg/(m3MPa). Two-phase saturation
functions are of van Genuchten’s type with parametersn = 2 andPr = 2 MPa.

Boundary conditions are taken as followsSw(0, t) = 0.4, p(0, t) = 2.0, p(100, t) =
0.1, ∂

∂x
Sw(100, t) = 0, and the initial conditions are:Sw(x, 0) = 1.0, p(x, 0) = 0.1 MPa.

The results of this simulation are shown on Figure 1 for the time instance of 40 days. On the
left part of the figure we plot the three pressures, global pressurep, and gas and water pressures
pn andpw; on the right figure we show water saturation.

From the plot of pressures we see that in the region of small water saturation the water
pressure has very steep gradient, which is not the case for the global and gas pressure. Similarly,
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Figure 1: Global and phase pressures (left figure) and water saturation (right figure) at 40 days.

in the point where water saturation reaches valueSw = 1 the gas pressure has a steep change of
gradient while global pressure remains smooth.

These simple observations lead us to conclude that introduction of the global pressure helps
not only to make the coupling between equations (5) and (7) less strong, but also leads to a new
pressure variable with more smoothness, which is thereforemore convenient for a numerical
treatment.
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