Citations 

Preprints

  • D. Adamović, S.Nakatsuka, Center of affine $\mathfrak{sl}_{2|1}$ at the critical level arXiv:2412.04895 [math.QA]
  • D. Adamović, A. Babichenko , Nappi-Witten vertex operator algebra via inverse Quantum Hamiltonian Reduction, arXiv:2409.02093 [math.QA]
  • D. Adamović, C. Ai, X. Lin, J. Yang Semisimplicity of module categories of certain affine vertex operator superalgebras , arXiv:2409.11797 [math.QA]
  • D. Adamović, O. Perše, I. Vukorepa, A method for describing the maximal ideal in universal affine vertex algebras at non-admissible levels, arXiv:2402.14722 [math.QA]
  • D. Adamović, A. Kontrec, On Kazama-Suzuki duality between $ W_k(sl_4, f_{sub})$ and $N= 2$ superconformal vertex algebra, arXiv:2411.08406 [math.QA]

    Published or accepted

    1. D. Adamović, C. H. Lam, V. Pedić Tomić, N. Yu, On irreducibility of modules of Whittaker type: twisted modules and nonabelian orbifolds, Journal of Pure and Applied Algebra 229 (2025) 107840
    2. D. Adamović, V. Kac, P. Möseneder Frajria, P. Papi, Defining relations for minimal unitary quantum affine W-algebras, Communications in Mathematical Physics 405, 33 (2024), arXiv:2302.05269 [math.RT]
    3. D. Adamović, K.Kawasetsu, D. Ridout, Weight module classifications for Bershadsky-Polyakov algebras, Communications in Contemporary Mathematics (2024) arXiv:2303.03713 [math.QA]
    4. D. Adamović, A. Milas, Logarithmic vertex algebras associated to $sp(4)$, Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 259--281.
    5. D. Adamović, T. Creutzig, O. Perše, I. Vukorepa, Tensor category $KL_k(sl(2n))$ via minimal affine W-algebras at the non-admissible level $k=-(2n+1)/2$, Journal of Pure and Applied Algebra, Volume 228, Issue 5, May 2024, 107565 arXiv:2212.00704 [math.QA]
    6. D. Adamović, P. Möseneder Frajria, P. Papi, New approaches for studying conformal embeddings and collapsing levels for W--algebras, International Mathematics Research Notices, Volume 2023, Issue 22, November 2023, Pages 19431-19475, rnad138, arXiv:2203.08497 [math.RT]
    7. D. Adamović, T. Creutzig, N. Genra, Relaxed and logarithmic modules of $\widehat {sl(3)}$, Mathematische Annalen (2023), arXiv:2110.15203 [math.RT]
    8. D. Adamović, Q. Wang, A duality between vertex superalgebras $L_{-3/2}(osp(1|2))$ and $V^{(2)}$ and generalizations to logarithmic vertex algebras, Journal of Algebra 631(2023) 72-105 arXiv:2109.06475 [math.QA]
    9. D. Adamović, V. Pedić Tomić, Whittaker modules for $\widehat{gl}$ and $W_{1+\infty}$-modules which are not tensor products, Letters in Mathematical Physics 113, 39 (2023), arXiv:2112.08725 [math.QA]
    10. D. Adamović, P. Möseneder Frajria, P. Papi, On the semisimplicity of the category $KL_k$ for affine Lie superalgebras, Advances in Mathematics 405 (2022) 108493, arXiv:2107.12105 [math.RT]
    11. D. Adamović, O. Perše, I. Vukorepa, On the representation theory of the vertex algebra $L_{-5/2}(sl(4))$, Communications in Contemporary Mathematics (2021) arXiv:2103.02985 [math.QA]
    12. D. Adamović, A. Kontrec, Bershadsky-Polyakov vertex algebras at positive integer levels and duality, Transformation Groups (2022) arXiv:2011.10021 [math.QA] .
    13. D. Adamović, B. Jandrić, G. Radobolja, The N=1 super Heisenberg-Virasoro vertex algebra at level zero, Journal of Algebra and its applications (2021), arXiv:2011.11989 [math.QA]
    14. D. Adamović, K. Kawasetsu, D. Ridout A realisation of the Bershadsky-Polyakov algebras and their relaxed modules , Letters in Math. Physics 111, 38 (2021) arXiv:2007.00396 [math.QA].
    15. D. Adamović, T. Creutzig, N. Genra, J. Yang The vertex algebras $\mathcal V^{(p)} $ and $ \mathcal R^{(p)} $ , Communications in Mathematical Physics volume 383, pages1207-1241(2021) arXiv:2001.08048 [math.RT].
    16. D. Adamović, A. Milas, Q. Wang, On parafermion vertex algebras of sl(2) and sl(3) at level -3/2, Commun. Contemp. Math. 24 (2022), no. 1, Paper No. 2050086, 23 pp. arXiv:2005.02631[math.QA].
    17. D. Adamović, A. Milas, M. Penn, On certain $W$--algebras of type $\mathcal W_k(sl_4, f)$ Contemporary Mathematics 768 (2021) 151-165 .
    18. D. Adamović, B. Jandrić, G. Radobolja, On the N=1 super Heisenberg-Virasoro vertex algebra Contemporary Mathematics 768 (2021) 167-178.
    19. D. Adamović, A. Čeperić, On Zhu's algebra and $C_2$-algebra for symplectic fermion vertex algebra $SF(d)^+$, Journal of Algebra, Volume 563, 1 December 2020, Pages 376-403, arXiv:2005.13842 [math.QA].
    20. D. Adamović, A. Milas, On some vertex algebras related to $V_{-1}(sl(n))$ and their characters, Transformation Groups 26, 1-30 (2021), arXiv:1805.09771 [math.QA].
    21. D. Adamović, A. Kontrec, Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels , Journal of Algebra and its applications Vol. 20, No. 06, 2150102 (2021) arXiv:1910.13781 [math.QA]
    22. D. Adamović , P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings in affine vertex superalgebras , Advances in Mathematics, 360 (2020) 106918 arXiv:1903.03794 [math.RT]
    23. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, An application of collapsing levels to the representation theory of affine vertex algebras, International Mathematics Research Notices, Volume 2020, Issue 13, July 2020, Pages 4103–4143, arXiv:1801.09880 [math.RT].
    24. D. Adamović, C. H. Lam, V. Pedić, N. Yu, On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebra, Journal of Algebra 539 (2019) 1-23, arXiv:1811.04649 [math.QA]
    25. D. Adamović, V. Pedić, On fusion rules and intertwining operators for the Weyl vertex algebra, Journal of Mathematical Physics 60 (2019), no. 8, 081701, 18 pp. arXiv:1903.10248 [math.QA]
    26. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Kostant's pair of Lie type and conformal embeddings, to appear in Springer INdAM Series, arXiv:1802.02929 .
    27. D. Adamović Realizations of simple affine vertex algebras and their modules: the cases $\widehat{sl(2)}$ and $\widehat{osp(1,2)}, Communications in Mathematical Physics, March 2019, Volume 366, Issue 3, pp 1025-1067; arXiv:1711.11342 [math.QA].
    28. D. Adamović, G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg-Virasoro algebra at level zero, Communications in Contemporary Mathematics Vol. 21, No. 02, 1850008 (2019); arXiv:1703.00531 [math.QA].
    29. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, On classification of non-equal rank affine conformal embeddings and applications, Selecta Mathematica New Series, July 2018, Volume 24, Issue 3, pp 2455-2498
    30. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions, Japanese Journal of Mathematics, September 2017, Volume 12, Issue 2, pp 261-315
    31. D. Adamović, A note on the affine vertex algebra associated to gl(1|1) at the critical level and its generalizations, Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 75-87. (special issue in honor of Sibe Mardešić).
    32. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results, Journal of Algebra Volume 500, 15 April 2018, Pages 117-152 .
    33. D. Adamović, N. Jing, K.C. Misra, On principal realization of modules for the affine Lie algebra A1(1) at the critical level, Transactions of the American Mathematical Society 369 (2017), 5113-5136.
    34. D. Adamović, G. Radobolja, On free field realization of W(2,2)-modules, SIGMA 12 (2016), 113, 13 pages.
    35. D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Finite vs infinite decompositions in conformal embeddings, Communications in Mathematical Physics 348 (2016) 445-473.
    36. D. Adamović, A. Milas, Some applications and constructions of intertwining operators in LCFT, Contemporary Mathematics 695, 15-27; arXiv:1605.05561 [math.QA].
    37. D. Adamović, O. Perše, On extensions of affine vertex algebras at half integer levels, Perspectives in Lie Theory pp 281-298.
    38. D. Adamović, R. Lu, K. Zhao, Whittaker modules for the affine Lie algebra A1(1), Advances in Mathematics 289 (2016) 438-479.
    39. D. Adamović, A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A2(1), Transformation Groups, Vol. 21, No. 2 (2016) 299-327.
    40. D. Adamović, X. Lin, A. Milas, Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities, SIGMA 11 (2015), 019, 16 pages.
    41. D. Adamović, G. Radobolja, Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications, Journal of Pure and Applied Algebra 219 (10) 2015, pp. 4322-4342.
    42. D. Adamović, A classification of irreducible Wakimoto modules for the affine Lie algebra $A_1 ^{(1)}$ , Contemporary Mathematics 623 2014, pp. 1-12.
    43. D. Adamović, X. Lin, A. Milas, ADE subalgebras of the triplet vertex algebra W(p): D-series , Int. J. Math. 25, 1450001 (2014) [34 pages].
    44. D. Adamović, A. Milas, Vertex operator superalgebras and LCFT Journal of Physics A: Mathematical and Theoretical. 46 (2013) , 49; 494005, Special Issue on Logarithmic conformal field theory .
    45. D. Adamović, X. Lin, A. Milas, ADE subalgebras of the triplet vertex algebra W(p): A-series, Commun. Contemp. Math. 15, 1350028 (2013) [30 pages].
    46. D. Adamović, A. Milas, The doublet vertex operator superalgebras A(p) and A_{2,p}, Contemporary Mathematics 602 (2013) 23-38
    47. D. Adamović, O. Perse, Fusion rules and complete reducibility of certain modules for affine Lie algebras, Journal of algebra and its applications 13, 1350062 (2014) (18 pages)
    48. D. Adamović, A. Milas, C_2-cofinite vertex algebras and their logarithmic modules, in Conformal field theories and tensor categories, Mathematical Lectures from Peking University 2014, 249-270
    49. D. Adamović, O. Perse, The Vertex Algebra M(1)^+ and Certain Affine Vertex Algebras of Level -1 SIGMA 8 (2012), 040, 16 pages
    50. D. Adamović, A. Milas, An explicit realization of logarithmic modules for the vertex operator algebra W_{p,p'} Journal of Mathematical Physics 073511 (2012), 16 pages
    51. D. Adamović, A. Milas, On W-algebra extensions of (2,p) Minimal Models: p > 3 Journal of Algebra 344 (2011) 313-332
    52. D. Adamović, O. Perse, Some general results on conformal embeddings of affine vertex operator algebras, Algebr. Represent. Theory 16 (2013), no. 1, 51-64
    53. D. Adamović, A. Milas The structure of Zhu's algebras for certain W-algebras, Advances in Mathematics 227 (2011) 2425-2456
    54. D. Adamović, A. Milas, On W-Algebras Associated to (2, p) Minimal Models and Their Representations International Mathematics Research Notices 2010 (2010) 20 : 3896-3934
    55. D. Adamović, O. Perse, On coset vertex algebras with central charge 1 , Mathematical Communications 15 (2010) 143-157
    56. D. Adamović, A. Milas, Lattice construction of logarithmic modules for certain vertex algebras Selecta Mathematica, New Series 15 (2009) 535-561
    57. D. Adamović, A. Milas, An analogue of modular BPZ equation in logarithmic (super)conformal field theory, Contemporary Mathematics 497 (2009) 1-16
    58. D. Adamović, A. Milas, The N=1 triplet vertex operator superalgebras : twisted sector , SIGMA 4 (2008), 087, 24 pages, Contribution to the Special Issue on Kac-Moody Algebras and Applications
    59. D. Adamović, A. Milas, The N=1 triplet vertex operator superalgebras, Communications in Mathematical Physics 288 (2009) 225-270
    60. D. Adamović, A. Milas, On the triplet vertex algebra W(p), Advances in Mathematics 217 (2008) 2664-2699
    61. D. Adamović, O. Perse, Representations of certain non-rational vertex operator algebras of affine type , Journal of Algebra 319 (2008) 2434-2450
    62. D. Adamović, A. Milas, Logarithmic intertwining operators and W(2,2p-1)-algebras , Journal of Mathamatical Physics 073503 (2007) (20 pp)
    63. D. Adamović, A family of regular vertex operator algebras with two generators , Central European Journal of Mathematics 5 (2007) 1-18
    64. D. Adamović , Lie superalgebras and irreducibility of $A_1^{(1)}$- modules at the critical level , Communications in Mathematical Physics 270 (2007) 141-161
    65. D. Adamović, A construction of admissible $A_1 ^(1)$--modules of level 4/3 , Journal of Pure and Applied Algebra 196 (2005) 119-134
    66. D. Adamović, An application of U(g)-bimodules to representation theory of affine Lie algebras, Algebras and Representation theory 7 (2004) 457-469
    67. D. Adamović, Regularity of certain vertex operator superalgebras. Kac-Moody Lie algebras and related topics, 1--16, Contemp. Math., 343,
    68. Amer. Math. Soc., Providence, RI, 2004
    69. D. Adamović Classification of irreducible modules of certain subalgebras of free boson vertex algebra , Journal of Algebra 270 (2003) 115-132
    70. D. Adamović, A construction of some ideals in affine vertex algebras, International Journal of Mathematics and Mathematical Sciences, 2003:15, (2003) 971-980
    71. D. Adamović, Vertex algebra approach to fusion rules for N=2 superconformal minimal models , Journal of Algebra 239 (2001) 549-572
    72. D. Adamović, Representations of the vertex algebra $W_{1+\infty}$ with a negative integer central charge, Communications in Algebra 29(7) (2001) 3153-3166,
    73. D. Adamović, Representations of the N=2 superconformal vertex algebra, International Mathematics Research Notices (1999), 61-79,
    74. D. Adamović, Representations of vertex algebras, Mathematical Communications 3 (1998), 109-114
    75. D. Adamovic, Rationality of Neveu-Schwarz vertex operator superalgebras, International Mathematics Research Notices (1997), 865-875, .
    76. D. Adamović, Vertex operator algebras and irreducibilty of certain modules for affine Lie algebras, Mathematical Research Letters 4 (1997), 809-821, .
    77. D. Adamović, New irreducible modules for affine Lie algebras at the critical level, International Mathematics Research Notices (1996), 253-262, .
    78. D. Adamović, On vertex algebras associated to representations of affine Lie algebras, Grazer Mathematische Berichte 328 (1996), 1-10.
    79. D. Adamović, A. Milas, Vertex operator algebras associated to modular invariant representations for $A_1 ^ (1)$ , Mathematical Research Letters 2 (1995) , 563-575
    80. D. Adamović, Some rational vertex algebras, Glasnik Matematicki 29(49) (1994), 25-40.

    Preprints at Los Alamos Preprint Arxive

    Math Reviews list of published papers.

    Zentralblatt MATH list of published papers.