Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 75-87.

A NOTE ON THE AFFINE VERTEX ALGEBRA ASSOCIATED TO gl(1|1) AT THE CRITICAL LEVEL AND ITS GENERALIZATIONS

Dražen Adamović

Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: adamovic@math.hr


Abstract.   In this note we present an explicit realization of the affine vertex algebra Vcri(gl(1|1)) inside of the tensor product FM where F is a fermionic verex algebra and M is a commutative vertex algebra. This immediately gives an alternative description of the center of Vcri(gl(1|1)) as a subalgebra M0 of M. We reconstruct the Molev-Mukhin formula for the Hilbert-Poincare series of the center of Vcri(gl(1|1)). Moreover, we construct a family of irreducible Vcri(gl(1|1))-modules realized on F and parameterized by χ+, χ-C((z)). We propose a generalization of Vcri(gl(1|1)) as a critical level version of the super W1+∞ vertex algebra.

2010 Mathematics Subject Classification.   17B69, 17B67.

Key words and phrases.   Vertex algebras, affine Lie superalgebras, critical level, W-algebras.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yrvgqtpk89


References:

  1. D. Adamović, R. Lu and K. Zhao, Whittaker modules for the affine Lie algebra A1(1), Adv. Math. 289 (2016) 438-479.
    MathSciNet     CrossRef

  2. D. Adamović and A. Milas, Logarithmic intertwining operators and W(2, 2p - 1)-algebras, J. Math. Phys. 48 (2007), no. 7, 073503, 20 pp.
    MathSciNet     CrossRef

  3. D. Adamović and O. Perše, Fusion Rules and Complete Reducibility of Certain Modules for Affine Lie Algebras, J. Algebra Appl. 13 (2014), no. 1, 1350062, 18 pp.
    MathSciNet     CrossRef

  4. K. Bringmann and A. Milas, W-algebras, false theta functions and quantum modular forms, I, Int. Math. Res. Notices 2015 (2015), no. 21, 11351-11387.
    MathSciNet     CrossRef

  5. T. Creutzig and A. Linshaw, The super W1+∞ algebra with integral central charge, Trans. Amer. Math. Soc. 367 (2015), 5521-5551.
    MathSciNet     CrossRef

  6. B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys. A 7, Suppl. 1A (1992), 197-215.
    MathSciNet     CrossRef

  7. A. J. Feingold and I. B. Frenkel, Classical affine algebras, Adv. in Math. 56 (1985), 117-172.
    MathSciNet     CrossRef

  8. E. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), 297-404.
    MathSciNet     CrossRef

  9. E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Second edition, Mathematical Surveys and Monographs 88, American Mathematical Society, Providence, RI, 2004.
    MathSciNet     CrossRef

  10. E. Frenkel, V. Kac, A. Radul and W. Wang, W1+∞-algebra and glN with central charge N, Comm. Math. Phys. 170 (1995) 337-357.
    MathSciNet

  11. V. Kac, Vertex Algebras for Beginners, Second Edition, University Lecture Series 10, Amer. Math. Soc., Providence, RI, 1998.
    MathSciNet     CrossRef

  12. V. Kac and A. Radul, Representation Theory of the Vertex Algebra W1+∞, Transform. Groups 1 (1996), 41-70.
    MathSciNet     CrossRef

  13. J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Birkhäuser, Boston, 2003.
    MathSciNet     CrossRef

  14. A. Linshaw, Invariant theory and the W1+∞ algebra with negative integral central charge, J. Eur. Math. Soc. (JEMS) 13 (2011), 1737-1768.
    MathSciNet     CrossRef

  15. A. I. Molev and E. Mukhin, Invariants of the vacuum module associated with the Lie superalgebra gl(1|1), J. Phys. A 48 (2015), no. 31, 314001, 20 pp., arXiv:1502.03511.
    MathSciNet     CrossRef

  16. A. I. Molev and E. Ragoucy, The MacMahon Master Theorem for right quantum superalgebras and higher Sugawara operators for glm|n, Moscow Math. J. 14 (2014), 83-119.
    MathSciNet

  17. W. Wang, W1+∞ algebra, W3 algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998), 95-111.
    MathSciNet     CrossRef


Rad HAZU Home Page