Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 75-87.
A NOTE ON THE AFFINE VERTEX ALGEBRA
ASSOCIATED TO gl(1|1) AT THE CRITICAL LEVEL AND ITS GENERALIZATIONS
Dražen Adamović
Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: adamovic@math.hr
Abstract. In this note we present an explicit realization of the affine vertex algebra
Vcri(gl(1|1)) inside of the tensor product
F ⊗ M where F is a fermionic verex algebra and M is a commutative vertex algebra.
This immediately gives an alternative description of the center of
Vcri(gl(1|1)) as a subalgebra M0 of M.
We reconstruct the Molev-Mukhin formula for the Hilbert-Poincare series of the center of
Vcri(gl(1|1)). Moreover, we construct a family of irreducible
Vcri(gl(1|1))-modules realized on F and parameterized by
χ+, χ- ∈ C((z)).
We propose a generalization of Vcri(gl(1|1)) as a critical level version of the super
W1+∞ vertex algebra.
2010 Mathematics Subject Classification.
17B69, 17B67.
Key words and phrases. Vertex algebras, affine Lie superalgebras, critical level, W-algebras.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yrvgqtpk89
References:
- D. Adamović, R. Lu and K. Zhao, Whittaker modules for the affine Lie algebra
A1(1), Adv. Math. 289 (2016) 438-479.
MathSciNet
CrossRef
- D. Adamović and A. Milas, Logarithmic intertwining operators and
W(2, 2p - 1)-algebras,
J. Math. Phys. 48 (2007), no. 7, 073503, 20 pp.
MathSciNet
CrossRef
- D. Adamović and O. Perše, Fusion Rules and Complete Reducibility of
Certain Modules for Affine Lie Algebras,
J. Algebra Appl. 13 (2014), no. 1, 1350062, 18 pp.
MathSciNet
CrossRef
- K. Bringmann and A. Milas, W-algebras,
false theta functions and quantum modular forms, I, Int. Math. Res. Notices 2015 (2015), no. 21,
11351-11387.
MathSciNet
CrossRef
- T. Creutzig and A. Linshaw, The super
W1+∞ algebra with integral central charge,
Trans. Amer. Math. Soc. 367 (2015), 5521-5551.
MathSciNet
CrossRef
- B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras,
Int. J. Mod. Phys. A 7, Suppl. 1A (1992), 197-215.
MathSciNet
CrossRef
- A. J. Feingold and I. B. Frenkel, Classical affine algebras,
Adv. in Math. 56 (1985), 117-172.
MathSciNet
CrossRef
- E. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level,
Adv. Math. 195 (2005), 297-404.
MathSciNet
CrossRef
- E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Second edition,
Mathematical Surveys and Monographs 88, American
Mathematical Society, Providence, RI, 2004.
MathSciNet
CrossRef
- E. Frenkel, V. Kac, A. Radul and W. Wang,
W1+∞-algebra
and glN with central charge N,
Comm. Math. Phys. 170 (1995) 337-357.
MathSciNet
- V. Kac, Vertex Algebras for Beginners, Second Edition, University
Lecture Series 10, Amer. Math. Soc., Providence, RI, 1998.
MathSciNet
CrossRef
- V. Kac and A. Radul, Representation Theory of the Vertex Algebra
W1+∞,
Transform. Groups 1 (1996), 41-70.
MathSciNet
CrossRef
- J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations,
Birkhäuser, Boston, 2003.
MathSciNet
CrossRef
- A. Linshaw, Invariant theory and the
W1+∞ algebra with negative
integral central charge, J. Eur. Math. Soc. (JEMS) 13 (2011), 1737-1768.
MathSciNet
CrossRef
- A. I. Molev and E. Mukhin, Invariants of the vacuum module associated with the Lie superalgebra
gl(1|1), J. Phys. A 48 (2015), no. 31, 314001, 20 pp., arXiv:1502.03511.
MathSciNet
CrossRef
- A. I. Molev and E. Ragoucy, The MacMahon Master Theorem for right quantum superalgebras
and higher Sugawara operators for glm|n,
Moscow Math. J. 14 (2014), 83-119.
MathSciNet
- W. Wang,
W1+∞ algebra,
W3 algebra, and Friedan-Martinec-Shenker bosonization,
Comm. Math. Phys. 195 (1998), 95-111.
MathSciNet
CrossRef
Rad HAZU Home Page