MoreStlcMore on the Simply Typed Lambda-Calculus
Set Warnings "-notation-overridden,-parsing".
From PLF Require Import Maps.
From PLF Require Import Types.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
Simple Extensions to STLC
Numbers
Let Bindings
t ::= Terms
| ... (other terms same as before)
| let x=t in t let-binding
t1 --> t1' | (ST_Let1) |
let x=t1 in t2 --> let x=t1' in t2 |
(ST_LetValue) | |
let x=v1 in t2 --> [x:=v1]t2 |
Gamma ⊢ t1 ∈ T1 x⊢>T1; Gamma ⊢ t2 ∈ T2 | (T_Let) |
Gamma ⊢ let x=t1 in t2 ∈ T2 |
Pairs
\x : Nat*Nat, let sum = x.fst + x.snd in let diff = x.fst - x.snd in (sum,diff)
t ::= Terms | ... | (t,t) pair | t.fst first projection | t.snd second projection v ::= Values | ... | (v,v) pair value T ::= Types | ... | T * T product type
t1 --> t1' | (ST_Pair1) |
(t1,t2) --> (t1',t2) |
t2 --> t2' | (ST_Pair2) |
(v1,t2) --> (v1,t2') |
t1 --> t1' | (ST_Fst1) |
t1.fst --> t1'.fst |
(ST_FstPair) | |
(v1,v2).fst --> v1 |
t1 --> t1' | (ST_Snd1) |
t1.snd --> t1'.snd |
(ST_SndPair) | |
(v1,v2).snd --> v2 |
Gamma ⊢ t1 ∈ T1 Gamma ⊢ t2 ∈ T2 | (T_Pair) |
Gamma ⊢ (t1,t2) ∈ T1*T2 |
Gamma ⊢ t0 ∈ T1*T2 | (T_Fst) |
Gamma ⊢ t0.fst ∈ T1 |
Gamma ⊢ t0 ∈ T1*T2 | (T_Snd) |
Gamma ⊢ t0.snd ∈ T2 |
Unit
t ::= Terms | ... (other terms same as before) | unit unit v ::= Values | ... | unit unit value T ::= Types | ... | Unit unit typeTyping:
(T_Unit) | |
Gamma ⊢ unit ∈ Unit |
Sums
Nat + BoolWe create elements of these types by tagging elements of the component types. For example, if n is a Nat then inl n is an element of Nat+Bool; similarly, if b is a Bool then inr b is a Nat+Bool. The names of the tags inl and inr arise from thinking of them as functions
inl ∈ Nat -> Nat + Bool inr ∈ Bool -> Nat + Boolthat "inject" elements of Nat or Bool into the left and right components of the sum type Nat+Bool. (But note that we don't actually treat them as functions in the way we formalize them: inl and inr are keywords, and inl t and inr t are primitive syntactic forms, not function applications.)
div ∈ Nat -> Nat -> (Nat + Unit) div = \x:Nat, \y:Nat, test iszero y then inr unit else inl ...The type Nat + Unit above is in fact isomorphic to option nat in Coq -- i.e., it's easy to write functions that translate back and forth.
getNat ∈ Nat+Bool -> Nat
getNat =
\x:Nat+Bool,
case x of
inl n => n
| inr b => test b then 1 else 0
More formally...
t ::= Terms | ... (other terms same as before) | inl T t tagging (left) | inr T t tagging (right) | case t of case inl x => t | inr x => t v ::= Values | ... | inl T v tagged value (left) | inr T v tagged value (right) T ::= Types | ... | T + T sum type
t1 --> t1' | (ST_Inl) |
inl T2 t1 --> inl T2 t1' |
t2 --> t2' | (ST_Inr) |
inr T1 t2 --> inr T1 t2' |
t0 --> t0' | (ST_Case) |
case t0 of inl x1 => t1 | inr x2 => t2 --> | |
case t0' of inl x1 => t1 | inr x2 => t2 |
(ST_CaseInl) | |
case (inl T2 v1) of inl x1 => t1 | inr x2 => t2 | |
--> [x1:=v1]t1 |
(ST_CaseInr) | |
case (inr T1 v2) of inl x1 => t1 | inr x2 => t2 | |
--> [x2:=v2]t2 |
Gamma ⊢ t1 ∈ T1 | (T_Inl) |
Gamma ⊢ inl T2 t1 ∈ T1 + T2 |
Gamma ⊢ t2 ∈ T2 | (T_Inr) |
Gamma ⊢ inr T1 t2 ∈ T1 + T2 |
Gamma ⊢ t0 ∈ T1+T2 | |
x1⊢>T1; Gamma ⊢ t1 ∈ T3 | |
x2⊢>T2; Gamma ⊢ t2 ∈ T3 | (T_Case) |
Gamma ⊢ case t0 of inl x1 => t1 | inr x2 => t2 ∈ T3 |
Lists
\x:List Nat, case x of nil => 0 | a::x' => case x' of nil => a | b::x'' => a+b
t ::= Terms | ... | nil T | cons t t | case t of nil => t | x::x => t v ::= Values | ... | nil T nil value | cons v v cons value T ::= Types | ... | List T list of Ts
t1 --> t1' | (ST_Cons1) |
cons t1 t2 --> cons t1' t2 |
t2 --> t2' | (ST_Cons2) |
cons v1 t2 --> cons v1 t2' |
t1 --> t1' | (ST_Lcase1) |
(case t1 of nil => t2 | xh::xt => t3) --> | |
(case t1' of nil => t2 | xh::xt => t3) |
(ST_LcaseNil) | |
(case nil T1 of nil => t2 | xh::xt => t3) | |
--> t2 |
(ST_LcaseCons) | |
(case (cons vh vt) of nil => t2 | xh::xt => t3) | |
--> [xh:=vh,xt:=vt]t3 |
(T_Nil) | |
Gamma ⊢ nil T1 ∈ List T1 |
Gamma ⊢ t1 ∈ T1 Gamma ⊢ t2 ∈ List T1 | (T_Cons) |
Gamma ⊢ cons t1 t2 ∈ List T1 |
Gamma ⊢ t1 ∈ List T1 | |
Gamma ⊢ t2 ∈ T2 | |
(h⊢>T1; t⊢>List T1; Gamma) ⊢ t3 ∈ T2 | (T_Lcase) |
Gamma ⊢ (case t1 of nil => t2 | h::t => t3) ∈ T2 |
General Recursion
fact = \x:Nat, test x=0 then 1 else x * (fact (pred x)))Note that the right-hand side of this binder mentions the variable being bound -- something that is not allowed by our formalization of let above.
fact = \x:Nat, test x=0 then 1 else x * (fact (pred x)))we will write:
fact =
fix
(\f:Nat->Nat,
\x:Nat,
test x=0 then 1 else x * (f (pred x)))
We can derive the latter from the former as follows:
- In the right-hand side of the definition of fact, replace
recursive references to fact by a fresh variable f.
- Add an abstraction binding f at the front, with an
appropriate type annotation. (Since we are using f in place
of fact, which had type Nat→Nat, we should require f
to have the same type.) The new abstraction has type
(Nat→Nat) → (Nat→Nat).
- Apply fix to this abstraction. This application has
type Nat→Nat.
- Use all of this as the right-hand side of an ordinary let-binding for fact.
t ::= Terms
| ...
| fix t fixed-point operator
Reduction:
t1 --> t1' | (ST_Fix1) |
fix t1 --> fix t1' |
(ST_FixAbs) | |
fix (\xf:T1.t1) --> [xf:=fix (\xf:T1.t1)] t1 |
Gamma ⊢ t1 ∈ T1->T1 | (T_Fix) |
Gamma ⊢ fix t1 ∈ T1 |
F = (\f. \x. test x=0 then 1 else x * (f (pred x)))(type annotations are omitted for brevity).
fix F 3--> ST_FixAbs + ST_App1
(\x. test x=0 then 1 else x * (fix F (pred x))) 3--> ST_AppAbs
test 3=0 then 1 else 3 * (fix F (pred 3))--> ST_Test0_Nonzero
3 * (fix F (pred 3))--> ST_FixAbs + ST_Mult2
3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 3))--> ST_PredNat + ST_Mult2 + ST_App2
3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) 2)--> ST_AppAbs + ST_Mult2
3 * (test 2=0 then 1 else 2 * (fix F (pred 2)))--> ST_Test0_Nonzero + ST_Mult2
3 * (2 * (fix F (pred 2)))--> ST_FixAbs + 2 x ST_Mult2
3 * (2 * ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 2)))--> ST_PredNat + 2 x ST_Mult2 + ST_App2
3 * (2 * ((\x. test x=0 then 1 else x * (fix F (pred x))) 1))--> ST_AppAbs + 2 x ST_Mult2
3 * (2 * (test 1=0 then 1 else 1 * (fix F (pred 1))))--> ST_Test0_Nonzero + 2 x ST_Mult2
3 * (2 * (1 * (fix F (pred 1))))--> ST_FixAbs + 3 x ST_Mult2
3 * (2 * (1 * ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 1))))--> ST_PredNat + 3 x ST_Mult2 + ST_App2
3 * (2 * (1 * ((\x. test x=0 then 1 else x * (fix F (pred x))) 0)))--> ST_AppAbs + 3 x ST_Mult2
3 * (2 * (1 * (test 0=0 then 1 else 0 * (fix F (pred 0)))))--> ST_Test0Zero + 3 x ST_Mult2
3 * (2 * (1 * 1))--> ST_MultNats + 2 x ST_Mult2
3 * (2 * 1)--> ST_MultNats + ST_Mult2
3 * 2--> ST_MultNats
6
Exercise: 1 star, standard, optional (halve_fix)
Translate this informal recursive definition into one using fix:halve = \x:Nat, test x=0 then 0 else test (pred x)=0 then 0 else 1 + (halve (pred (pred x)))(* FILL IN HERE *)
☐
Exercise: 1 star, standard, optional (fact_steps)
Write down the sequence of steps that the term fact 1 goes through to reduce to a normal form (assuming the usual reduction rules for arithmetic operations).☐
fix (\x:T,x)
equal = fix (\eq:Nat->Nat->Bool, \m:Nat, \n:Nat, test m=0 then iszero n else test n=0 then fls else eq (pred m) (pred n))And finally, here is an example where fix is used to define a pair of recursive functions (illustrating the fact that the type T1 in the rule T_Fix need not be a function type):
evenodd = fix (\eo: (Nat->Bool * Nat->Bool), let e = \n:Nat, test n=0 then tru else eo,snd (pred n) in let o = \n:Nat, test n=0 then fls else eo,fst (pred n) in (e,o)) even = evenodd.fst odd = evenodd.snd
Records
t ::= Terms | ... | {i1=t1, ..., in=tn} record | t.i projection v ::= Values | ... | {i1=v1, ..., in=vn} record value T ::= Types | ... | {i1:T1, ..., in:Tn} record type
ti --> ti' | (ST_Rcd) |
{i1=v1, ..., im=vm, in=ti , ...} | |
--> {i1=v1, ..., im=vm, in=ti', ...} |
t0 --> t0' | (ST_Proj1) |
t0.i --> t0'.i |
(ST_ProjRcd) | |
{..., i=vi, ...}.i --> vi |
Gamma ⊢ t1 ∈ T1 ... Gamma ⊢ tn ∈ Tn | (T_Rcd) |
Gamma ⊢ {i1=t1, ..., in=tn} ∈ {i1:T1, ..., in:Tn} |
Gamma ⊢ t0 ∈ {..., i:Ti, ...} | (T_Proj) |
Gamma ⊢ t0.i ∈ Ti |
- We can directly formalize the syntactic forms and inference
rules, staying as close as possible to the form we've given
them above. This is conceptually straightforward, and it's
probably what we'd want to do if we were building a real
compiler (in particular, it will allow us to print error
messages in the form that programmers will find easy to
understand). But the formal versions of the rules will not be
very pretty or easy to work with, because all the ...s above
will have to be replaced with explicit quantifications or
comprehensions. For this reason, records are not included in
the extended exercise at the end of this chapter. (It is
still useful to discuss them informally here because they will
help motivate the addition of subtyping to the type system
when we get to the Sub chapter.)
- Alternatively, we could look for a smoother way of presenting
records -- for example, a binary presentation with one
constructor for the empty record and another constructor for
adding a single field to an existing record, instead of a
single monolithic constructor that builds a whole record at
once. This is the right way to go if we are primarily
interested in studying the metatheory of the calculi with
records, since it leads to clean and elegant definitions and
proofs. Chapter Records shows how this can be done.
- Finally, if we like, we can avoid formalizing records altogether, by stipulating that record notations are just informal shorthands for more complex expressions involving pairs and product types. We sketch this approach in the next section.
Encoding Records (Optional)
{} ----> unit {t1, t2, ..., tn} ----> (t1, trest) where {t2, ..., tn} ----> trestSimilarly, we can encode tuple types using nested product types:
{} ----> Unit {T1, T2, ..., Tn} ----> T1 * TRest where {T2, ..., Tn} ----> TRestThe operation of projecting a field from a tuple can be encoded using a sequence of second projections followed by a first projection:
t.0 ----> t.fst t.(n+1) ----> (t.snd).nNext, suppose that there is some total ordering on record labels, so that we can associate each label with a unique natural number. This number is called the position of the label. For example, we might assign positions like this:
LABEL POSITION a 0 b 1 c 2 ... ... bar 1395 ... ... foo 4460 ... ...We use these positions to encode record values as tuples (i.e., as nested pairs) by sorting the fields according to their positions. For example:
{a=5,b=6} ----> {5,6} {a=5,c=7} ----> {5,unit,7} {c=7,a=5} ----> {5,unit,7} {c=5,b=3} ----> {unit,3,5} {f=8,c=5,a=7} ----> {7,unit,5,unit,unit,8} {f=8,c=5} ----> {unit,unit,5,unit,unit,8}Note that each field appears in the position associated with its label, that the size of the tuple is determined by the label with the highest position, and that we fill in unused positions with unit.
{a:Nat,b:Nat} ----> {Nat,Nat} {c:Nat,a:Nat} ----> {Nat,Unit,Nat} {f:Nat,c:Nat} ----> {Unit,Unit,Nat,Unit,Unit,Nat}Finally, record projection is encoded as a tuple projection from the appropriate position:
t.l ----> t.(position of l)
It is not hard to check that all the typing rules for the original
"direct" presentation of records are validated by this
encoding. (The reduction rules are "almost validated" -- not
quite, because the encoding reorders fields.)
Variants (Optional)
Exercise: 3 stars, standard (STLCE_definitions)
In this series of exercises, you will formalize some of the extensions described in this chapter. We've provided the necessary additions to the syntax of terms and types, and we've included a few examples that you can test your definitions with to make sure they are working as expected. You'll fill in the rest of the definitions and extend all the proofs accordingly.- numbers
- sums
- lists
- unit
- pairs
- let (which involves binding)
- fix
Inductive ty : Type :=
| Ty_Arrow : ty → ty → ty
| Ty_Nat : ty
| Ty_Sum : ty → ty → ty
| Ty_List : ty → ty
| Ty_Unit : ty
| Ty_Prod : ty → ty → ty.
Inductive tm : Type :=
(* pure STLC *)
| tm_var : string → tm
| tm_app : tm → tm → tm
| tm_abs : string → ty → tm → tm
(* numbers *)
| tm_const: nat → tm
| tm_succ : tm → tm
| tm_pred : tm → tm
| tm_mult : tm → tm → tm
| tm_if0 : tm → tm → tm → tm
(* sums *)
| tm_inl : ty → tm → tm
| tm_inr : ty → tm → tm
| tm_case : tm → string → tm → string → tm → tm
(* i.e., case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2 *)
(* lists *)
| tm_nil : ty → tm
| tm_cons : tm → tm → tm
| tm_lcase : tm → tm → string → string → tm → tm
(* i.e., case t1 of | nil ⇒ t2 | x::y ⇒ t3 *)
(* unit *)
| tm_unit : tm
(* You are going to be working on the following extensions: *)
(* pairs *)
| tm_pair : tm → tm → tm
| tm_fst : tm → tm
| tm_snd : tm → tm
(* let *)
| tm_let : string → tm → tm → tm
(* i.e., let x = t1 in t2 *)
(* fix *)
| tm_fix : tm → tm.
Note that, for brevity, we've omitted booleans and instead
provided a single if0 form combining a zero test and a
conditional. That is, instead of writing
if x = 0 then ... else ...we'll write this:
if0 x then ... else ...
Definition x : string := "x".
Definition y : string := "y".
Definition z : string := "z".
Hint Unfold x : core.
Hint Unfold y : core.
Hint Unfold z : core.
Declare Custom Entry stlc_ty.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
(tm_abs x t y) (in custom stlc at level 90, x at level 99,
t custom stlc_ty at level 99,
y custom stlc at level 99,
left associativity).
Coercion tm_var : string >-> tm.
Notation "{ x }" := x (in custom stlc at level 1, x constr).
Notation "'Nat'" := Ty_Nat (in custom stlc_ty at level 0).
Notation "'succ' x" := (tm_succ x) (in custom stlc at level 0,
x custom stlc at level 0).
Notation "'pred' x" := (tm_pred x) (in custom stlc at level 0,
x custom stlc at level 0).
Notation "x * y" := (tm_mult x y) (in custom stlc at level 1,
left associativity).
Notation "'if0' x 'then' y 'else' z" :=
(tm_if0 x y z) (in custom stlc at level 89,
x custom stlc at level 99,
y custom stlc at level 99,
z custom stlc at level 99,
left associativity).
Coercion tm_const : nat >-> tm.
Notation "S + T" :=
(Ty_Sum S T) (in custom stlc_ty at level 3, left associativity).
Notation "'inl' T t" := (tm_inl T t) (in custom stlc at level 0,
T custom stlc_ty at level 0,
t custom stlc at level 0).
Notation "'inr' T t" := (tm_inr T t) (in custom stlc at level 0,
T custom stlc_ty at level 0,
t custom stlc at level 0).
Notation "'case' t0 'of' '|' 'inl' x1 '=>' t1 '|' 'inr' x2 '=>' t2" :=
(tm_case t0 x1 t1 x2 t2) (in custom stlc at level 89,
t0 custom stlc at level 99,
x1 custom stlc at level 99,
t1 custom stlc at level 99,
x2 custom stlc at level 99,
t2 custom stlc at level 99,
left associativity).
Notation "X * Y" :=
(Ty_Prod X Y) (in custom stlc_ty at level 2, X custom stlc_ty, Y custom stlc_ty at level 0).
Notation "( x ',' y )" := (tm_pair x y) (in custom stlc at level 0,
x custom stlc at level 99,
y custom stlc at level 99).
Notation "t '.fst'" := (tm_fst t) (in custom stlc at level 0).
Notation "t '.snd'" := (tm_snd t) (in custom stlc at level 0).
Notation "'List' T" :=
(Ty_List T) (in custom stlc_ty at level 4).
Notation "'nil' T" := (tm_nil T) (in custom stlc at level 0, T custom stlc_ty at level 0).
Notation "h '::' t" := (tm_cons h t) (in custom stlc at level 2, right associativity).
Notation "'case' t1 'of' '|' 'nil' '=>' t2 '|' x '::' y '=>' t3" :=
(tm_lcase t1 t2 x y t3) (in custom stlc at level 89,
t1 custom stlc at level 99,
t2 custom stlc at level 99,
x constr at level 1,
y constr at level 1,
t3 custom stlc at level 99,
left associativity).
Notation "'Unit'" :=
(Ty_Unit) (in custom stlc_ty at level 0).
Notation "'unit'" := tm_unit (in custom stlc at level 0).
Notation "'let' x '=' t1 'in' t2" :=
(tm_let x t1 t2) (in custom stlc at level 0).
Notation "'fix' t" := (tm_fix t) (in custom stlc at level 0).
Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr).
Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
(* pure STLC *)
| tm_var y ⇒
if eqb_string x y then s else t
| <{\y:T, t1}> ⇒
if eqb_string x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> ⇒
<{([x:=s] t1) ([x:=s] t2)}>
(* numbers *)
| tm_const _ ⇒
t
| <{succ t1}> ⇒
<{succ [x := s] t1}>
| <{pred t1}> ⇒
<{pred [x := s] t1}>
| <{t1 × t2}> ⇒
<{ ([x := s] t1) × ([x := s] t2)}>
| <{if0 t1 then t2 else t3}> ⇒
<{if0 [x := s] t1 then [x := s] t2 else [x := s] t3}>
(* sums *)
| <{inl T2 t1}> ⇒
<{inl T2 ( [x:=s] t1) }>
| <{inr T1 t2}> ⇒
<{inr T1 ( [x:=s] t2) }>
| <{case t0 of | inl y1 ⇒ t1 | inr y2 ⇒ t2}> ⇒
<{case ([x:=s] t0) of
| inl y1 ⇒ { if eqb_string x y1 then t1 else <{ [x:=s] t1 }> }
| inr y2 ⇒ {if eqb_string x y2 then t2 else <{ [x:=s] t2 }> } }>
(* lists *)
| <{nil _}> ⇒
t
| <{t1 :: t2}> ⇒
<{ ([x:=s] t1) :: [x:=s] t2 }>
| <{case t1 of | nil ⇒ t2 | y1 :: y2 ⇒ t3}> ⇒
<{case ( [x:=s] t1 ) of
| nil ⇒ [x:=s] t2
| y1 :: y2 ⇒
{if eqb_string x y1 then
t3
else if eqb_string x y2 then t3
else <{ [x:=s] t3 }> } }>
(* unit *)
| <{unit}> ⇒ <{unit}>
(* Complete the following cases. *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ t (* ... and delete this line when you finish the exercise *)
end
where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Inductive value : tm → Prop :=
(* In pure STLC, function abstractions are values: *)
| v_abs : ∀ x T2 t1,
value <{\x:T2, t1}>
(* Numbers are values: *)
| v_nat : ∀ n : nat,
value <{n}>
(* A tagged value is a value: *)
| v_inl : ∀ v T1,
value v →
value <{inl T1 v}>
| v_inr : ∀ v T1,
value v →
value <{inr T1 v}>
(* A list is a value iff its head and tail are values: *)
| v_lnil : ∀ T1, value <{nil T1}>
| v_lcons : ∀ v1 v2,
value v1 →
value v2 →
value <{v1 :: v2}>
(* A unit is always a value *)
| v_unit : value <{unit}>
(* A pair is a value if both components are: *)
| v_pair : ∀ v1 v2,
value v1 →
value v2 →
value <{(v1, v2)}>.
Hint Constructors value : core.
Reserved Notation "t '-->' t'" (at level 40).
Inductive step : tm → tm → Prop :=
(* pure STLC *)
| ST_AppAbs : ∀ x T2 t1 v2,
value v2 →
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
| ST_App1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 t2}> --> <{t1' t2}>
| ST_App2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 t2}> --> <{v1 t2'}>
(* numbers *)
| ST_Succ : ∀ t1 t1',
t1 --> t1' →
<{succ t1}> --> <{succ t1'}>
| ST_SuccNat : ∀ n : nat,
<{succ n}> --> <{ {S n} }>
| ST_Pred : ∀ t1 t1',
t1 --> t1' →
<{pred t1}> --> <{pred t1'}>
| ST_PredNat : ∀ n:nat,
<{pred n}> --> <{ {n - 1} }>
| ST_Mulconsts : ∀ n1 n2 : nat,
<{n1 × n2}> --> <{ {n1 × n2} }>
| ST_Mult1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 × t2}> --> <{t1' × t2}>
| ST_Mult2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 × t2}> --> <{v1 × t2'}>
| ST_If0 : ∀ t1 t1' t2 t3,
t1 --> t1' →
<{if0 t1 then t2 else t3}> --> <{if0 t1' then t2 else t3}>
| ST_If0_Zero : ∀ t2 t3,
<{if0 0 then t2 else t3}> --> t2
| ST_If0_Nonzero : ∀ n t2 t3,
<{if0 {S n} then t2 else t3}> --> t3
(* sums *)
| ST_Inl : ∀ t1 t1' T2,
t1 --> t1' →
<{inl T2 t1}> --> <{inl T2 t1'}>
| ST_Inr : ∀ t2 t2' T1,
t2 --> t2' →
<{inr T1 t2}> --> <{inr T1 t2'}>
| ST_Case : ∀ t0 t0' x1 t1 x2 t2,
t0 --> t0' →
<{case t0 of | inl x1 ⇒ t1 | inr x2 ⇒ t2}> -->
<{case t0' of | inl x1 ⇒ t1 | inr x2 ⇒ t2}>
| ST_CaseInl : ∀ v0 x1 t1 x2 t2 T2,
value v0 →
<{case inl T2 v0 of | inl x1 ⇒ t1 | inr x2 ⇒ t2}> --> <{ [x1:=v0]t1 }>
| ST_CaseInr : ∀ v0 x1 t1 x2 t2 T1,
value v0 →
<{case inr T1 v0 of | inl x1 ⇒ t1 | inr x2 ⇒ t2}> --> <{ [x2:=v0]t2 }>
(* lists *)
| ST_Cons1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 :: t2}> --> <{t1' :: t2}>
| ST_Cons2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 :: t2}> --> <{v1 :: t2'}>
| ST_Lcase1 : ∀ t1 t1' t2 x1 x2 t3,
t1 --> t1' →
<{case t1 of | nil ⇒ t2 | x1 :: x2 ⇒ t3}> -->
<{case t1' of | nil ⇒ t2 | x1 :: x2 ⇒ t3}>
| ST_LcaseNil : ∀ T1 t2 x1 x2 t3,
<{case nil T1 of | nil ⇒ t2 | x1 :: x2 ⇒ t3}> --> t2
| ST_LcaseCons : ∀ v1 vl t2 x1 x2 t3,
value v1 →
value vl →
<{case v1 :: vl of | nil ⇒ t2 | x1 :: x2 ⇒ t3}>
--> <{ [x2 := vl] ([x1 := v1] t3) }>
(* Add rules for the following extensions. *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
where "t '-->' t'" := (step t t').
Notation multistep := (multi step).
Notation "t1 '-->*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step : core.
Next we define the typing rules. These are nearly direct
transcriptions of the inference rules shown above.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40, t custom stlc, T custom stlc_ty at level 0).
Inductive has_type : context → tm → ty → Prop :=
(* pure STLC *)
| T_Var : ∀ Gamma x T1,
Gamma x = Some T1 →
Gamma ⊢ x \in T1
| T_Abs : ∀ Gamma x T1 T2 t1,
(x ⊢> T2 ; Gamma) ⊢ t1 \in T1 →
Gamma ⊢ \x:T2, t1 \in (T2 → T1)
| T_App : ∀ T1 T2 Gamma t1 t2,
Gamma ⊢ t1 \in (T2 → T1) →
Gamma ⊢ t2 \in T2 →
Gamma ⊢ t1 t2 \in T1
(* numbers *)
| T_Nat : ∀ Gamma (n : nat),
Gamma ⊢ n \in Nat
| T_Succ : ∀ Gamma t,
Gamma ⊢ t \in Nat →
Gamma ⊢ succ t \in Nat
| T_Pred : ∀ Gamma t,
Gamma ⊢ t \in Nat →
Gamma ⊢ pred t \in Nat
| T_Mult : ∀ Gamma t1 t2,
Gamma ⊢ t1 \in Nat →
Gamma ⊢ t2 \in Nat →
Gamma ⊢ t1 × t2 \in Nat
| T_If0 : ∀ Gamma t1 t2 t3 T0,
Gamma ⊢ t1 \in Nat →
Gamma ⊢ t2 \in T0 →
Gamma ⊢ t3 \in T0 →
Gamma ⊢ if0 t1 then t2 else t3 \in T0
(* sums *)
| T_Inl : ∀ Gamma t1 T1 T2,
Gamma ⊢ t1 \in T1 →
Gamma ⊢ (inl T2 t1) \in (T1 + T2)
| T_Inr : ∀ Gamma t2 T1 T2,
Gamma ⊢ t2 \in T2 →
Gamma ⊢ (inr T1 t2) \in (T1 + T2)
| T_Case : ∀ Gamma t0 x1 T1 t1 x2 T2 t2 T3,
Gamma ⊢ t0 \in (T1 + T2) →
(x1 ⊢> T1 ; Gamma) ⊢ t1 \in T3 →
(x2 ⊢> T2 ; Gamma) ⊢ t2 \in T3 →
Gamma ⊢ (case t0 of | inl x1 ⇒ t1 | inr x2 ⇒ t2) \in T3
(* lists *)
| T_Nil : ∀ Gamma T1,
Gamma ⊢ (nil T1) \in (List T1)
| T_Cons : ∀ Gamma t1 t2 T1,
Gamma ⊢ t1 \in T1 →
Gamma ⊢ t2 \in (List T1) →
Gamma ⊢ (t1 :: t2) \in (List T1)
| T_Lcase : ∀ Gamma t1 T1 t2 x1 x2 t3 T2,
Gamma ⊢ t1 \in (List T1) →
Gamma ⊢ t2 \in T2 →
(x1 ⊢> T1 ; x2 ⊢> <{{List T1}}> ; Gamma) ⊢ t3 \in T2 →
Gamma ⊢ (case t1 of | nil ⇒ t2 | x1 :: x2 ⇒ t3) \in T2
(* unit *)
| T_Unit : ∀ Gamma,
Gamma ⊢ unit \in Unit
(* Add rules for the following extensions. *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type : core.
(* Do not modify the following line: *)
Definition manual_grade_for_extensions_definition : option (nat×string) := None.
☐
Examples
Exercise: 3 stars, standard (STLCE_examples)
This section presents formalized versions of the examples from above (plus several more).Open Scope string_scope.
(* NOTATION: LATER: These can all be Notations -- just make sure to add a
Hint Unfold for each one. *)
Notation x := "x".
Notation y := "y".
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
Notation processSum := "processSum".
Notation n := "n".
Notation eq := "eq".
Notation m := "m".
Notation evenodd := "evenodd".
Notation even := "even".
Notation odd := "odd".
Notation eo := "eo".
Next, a bit of Coq hackery to automate searching for typing
derivations. You don't need to understand this bit in detail --
just have a look over it so that you'll know what to look for if
you ever find yourself needing to make custom extensions to
auto.
The following Hint declarations say that, whenever auto
arrives at a goal of the form (Gamma ⊢ (tm_app e1 e1) \in T), it
should consider eapply T_App, leaving an existential variable
for the middle type T1, and similar for lcase. That variable
will then be filled in during the search for type derivations for
e1 and e2. We also include a hint to "try harder" when
solving equality goals; this is useful to automate uses of
T_Var (which includes an equality as a precondition).
Hint Extern 2 (has_type _ (tm_app _ _) _) ⇒
eapply T_App; auto : core.
Hint Extern 2 (has_type _ (tm_lcase _ _ _ _ _) _) ⇒
eapply T_Lcase; auto : core.
Hint Extern 2 (_ = _) ⇒ compute; reflexivity : core.
Module Numtest.
(* tm_test0 (pred (succ (pred (2 * 0))) then 5 else 6 *)
Definition test :=
<{if0
(pred
(succ
(pred
(2 × 0))))
then 5
else 6}>.
Example typechecks :
empty ⊢ test \in Nat.
Proof.
unfold test.
(* This typing derivation is quite deep, so we need
to increase the max search depth of auto from the
default 5 to 10. *)
auto 10.
(* FILL IN HERE *) Admitted.
Example numtest_reduces :
test -->* 5.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
End Numtest.
Module Prodtest.
(* ((5,6),7).fst.tm_snd *)
Definition test :=
<{((5,6),7).fst.snd}>.
Example typechecks :
empty ⊢ test \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
test -->* 6.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
End Prodtest.
Module LetTest.
(* let x = pred 6 in succ x *)
Definition test :=
<{let x = (pred 6) in
(succ x)}>.
Example typechecks :
empty ⊢ test \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
test -->* 6.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
End LetTest.
Module Sumtest1.
(* case (inl Nat 5) of
inl x => x
| inr y => y *)
Definition test :=
<{case (inl Nat 5) of
| inl x ⇒ x
| inr y ⇒ y}>.
Example typechecks :
empty ⊢ test \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
Example reduces :
test -->* 5.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
End Sumtest1.
Module Sumtest2.
(* let processSum =
\x:Nat+Nat.
case x of
inl n => n
inr n => tm_test0 n then 1 else 0 in
(processSum (inl Nat 5), processSum (inr Nat 5)) *)
Definition test :=
<{let processSum =
(\x:Nat + Nat,
case x of
| inl n ⇒ n
| inr n ⇒ (if0 n then 1 else 0)) in
(processSum (inl Nat 5), processSum (inr Nat 5))}>.
Example typechecks :
empty ⊢ test \in (Nat × Nat).
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
Example reduces :
test -->* <{(5, 0)}>.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
End Sumtest2.
Module ListTest.
(* let l = cons 5 (cons 6 (nil Nat)) in
case l of
nil => 0
| x::y => x*x *)
Definition test :=
<{let l = (5 :: 6 :: (nil Nat)) in
case l of
| nil ⇒ 0
| x :: y ⇒ (x × x)}>.
Example typechecks :
empty ⊢ test \in Nat.
Proof. unfold test. eauto 20. (* FILL IN HERE *) Admitted.
Example reduces :
test -->* 25.
Proof.
(*
unfold test. normalize.
*)
(* FILL IN HERE *) Admitted.
End ListTest.
Module FixTest1.
(* fact := fix
(\f:nat->nat.
\a:nat.
test a=0 then 1 else a * (f (pred a))) *)
Definition fact :=
<{fix
(\f:Nat→Nat,
\a:Nat,
if0 a then 1 else (a × (f (pred a))))}>.
(Warning: you may be able to typecheck fact but still have some
rules wrong!)
Example typechecks :
empty ⊢ fact \in (Nat → Nat).
Proof. unfold fact. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
<{fact 4}> -->* 24.
Proof.
(*
unfold fact. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
End FixTest1.
Module FixTest2.
(* map :=
\g:nat->nat.
fix
(\f:nat->nat.
\l:nat.
case l of
| ->
| x::l -> (g x)::(f l)) *)
Definition map :=
<{ \g:Nat→Nat,
fix
(\f:(List Nat)→(List Nat),
\l:List Nat,
case l of
| nil ⇒ nil Nat
| x::l ⇒ ((g x)::(f l)))}>.
Example typechecks :
empty ⊢ map \in
((Nat → Nat) → ((List Nat) → (List Nat))).
Proof. unfold map. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
<{map (\a:Nat, succ a) (1 :: 2 :: (nil Nat))}>
-->* <{2 :: 3 :: (nil Nat)}>.
Proof.
(*
unfold map. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
End FixTest2.
Module FixTest3.
(* equal =
fix
(\eq:Nat->Nat->Bool.
\m:Nat. \n:Nat.
tm_test0 m then (tm_test0 n then 1 else 0)
else tm_test0 n then 0
else eq (pred m) (pred n)) *)
Definition equal :=
<{fix
(\eq:Nat→Nat→Nat,
\m:Nat, \n:Nat,
if0 m then (if0 n then 1 else 0)
else (if0 n
then 0
else (eq (pred m) (pred n))))}>.
Example typechecks :
empty ⊢ equal \in (Nat → Nat → Nat).
Proof. unfold equal. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
<{equal 4 4}> -->* 1.
Proof.
(*
unfold equal. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
Example reduces2 :
<{equal 4 5}> -->* 0.
Proof.
(*
unfold equal. normalize.
*)
(* FILL IN HERE *) Admitted.
End FixTest3.
Module FixTest4.
(* let evenodd =
fix
(\eo: (Nat->Nat * Nat->Nat).
let e = \n:Nat. tm_test0 n then 1 else eo.tm_snd (pred n) in
let o = \n:Nat. tm_test0 n then 0 else eo.tm_fst (pred n) in
(e,o)) in
let even = evenodd.tm_fst in
let odd = evenodd.tm_snd in
(even 3, even 4)
*)
Definition eotest :=
<{let evenodd =
fix
(\eo: ((Nat → Nat) × (Nat → Nat)),
(\n:Nat, if0 n then 1 else (eo.snd (pred n)),
\n:Nat, if0 n then 0 else (eo.fst (pred n)))) in
let even = evenodd.fst in
let odd = evenodd.snd in
(even 3, even 4)}>.
Example typechecks :
empty ⊢ eotest \in (Nat × Nat).
Proof. unfold eotest. eauto 30. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)
Example reduces :
eotest -->* <{(0, 1)}>.
Proof.
(*
unfold eotest. normalize.
*)
(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)
End FixTest4.
End Examples.
☐
Properties of Typing
Progress
Exercise: 3 stars, standard (STLCE_progress)
Complete the proof of progress.Theorem progress : ∀ t T,
empty ⊢ t \in T →
value t ∨ ∃ t', t --> t'.
Proof with eauto.
intros t T Ht.
remember empty as Gamma.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty ⊢ x \in T (since the context is empty). *)
discriminate H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = \ x0 : T2, t1, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty ⊢ t1 \in T1 → T2
empty ⊢ t2 \in T1
By the induction hypothesis, each of t1 and t2 either is
a value or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = \x0 : T0, t11, since abstractions are the
only values that can have an arrow type. But
(\x0 : T0, t11) t2 --> [x:=t2]t11 by ST_AppAbs. *)
destruct H; try solve_by_invert.
∃ <{ [x0 := t2]t1 }>...
× (* t2 steps *)
(* If t1 is a value and t2 --> t2',
then t1 t2 --> t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃ <{t1 t2'}>...
+ (* t1 steps *)
(* Finally, If t1 --> t1', then t1 t2 --> t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃ <{t1' t2}>...
- (* T_Nat *)
left...
- (* T_Succ *)
right.
destruct IHHt...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
∃ <{ {S n} }>...
+ (* t1 steps *)
destruct H as [t' Hstp].
∃ <{succ t'}>...
- (* T_Pred *)
right.
destruct IHHt...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
∃ <{ {n - 1} }>...
+ (* t1 steps *)
destruct H as [t' Hstp].
∃ <{pred t'}>...
- (* T_Mult *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct IHHt2...
× (* t2 is a value *)
destruct H; try solve_by_invert.
destruct H0; try solve_by_invert.
∃ <{ {n × n0} }>...
× (* t2 steps *)
destruct H0 as [t2' Hstp].
∃ <{t1 × t2'}>...
+ (* t1 steps *)
destruct H as [t1' Hstp].
∃ <{t1' × t2}>...
- (* T_Test0 *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
destruct n as [|n'].
× (* n1=0 *)
∃ t2...
× (* n1<>0 *)
∃ t3...
+ (* t1 steps *)
destruct H as [t1' H0].
∃ <{if0 t1' then t2 else t3}>...
- (* T_Inl *)
destruct IHHt...
+ (* t1 steps *)
right. destruct H as [t1' Hstp]...
(* exists (tm_inl _ t1')... *)
- (* T_Inr *)
destruct IHHt...
+ (* t1 steps *)
right. destruct H as [t1' Hstp]...
(* exists (tm_inr _ t1')... *)
- (* T_Case *)
right.
destruct IHHt1...
+ (* t0 is a value *)
destruct H; try solve_by_invert.
× (* t0 is inl *)
∃ <{ [x1:=v]t1 }>...
× (* t0 is inr *)
∃ <{ [x2:=v]t2 }>...
+ (* t0 steps *)
destruct H as [t0' Hstp].
∃ <{case t0' of | inl x1 ⇒ t1 | inr x2 ⇒ t2}>...
- (* T_Nil *)
left...
- (* T_Cons *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2...
× (* tail steps *)
right. destruct H0 as [t2' Hstp].
∃ <{t1 :: t2'}>...
+ (* head steps *)
right. destruct H as [t1' Hstp].
∃ <{t1' :: t2}>...
- (* T_Lcase *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
× (* t1=tm_nil *)
∃ t2...
× (* t1=tm_cons v1 v2 *)
∃ <{ [x2:=v2]([x1:=v1]t3) }>...
+ (* t1 steps *)
destruct H as [t1' Hstp].
∃ <{case t1' of | nil ⇒ t2 | x1 :: x2 ⇒ t3}>...
- (* T_Unit *)
left...
(* Complete the proof. *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
intros t T Ht.
remember empty as Gamma.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty ⊢ x \in T (since the context is empty). *)
discriminate H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = \ x0 : T2, t1, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty ⊢ t1 \in T1 → T2
empty ⊢ t2 \in T1
By the induction hypothesis, each of t1 and t2 either is
a value or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = \x0 : T0, t11, since abstractions are the
only values that can have an arrow type. But
(\x0 : T0, t11) t2 --> [x:=t2]t11 by ST_AppAbs. *)
destruct H; try solve_by_invert.
∃ <{ [x0 := t2]t1 }>...
× (* t2 steps *)
(* If t1 is a value and t2 --> t2',
then t1 t2 --> t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃ <{t1 t2'}>...
+ (* t1 steps *)
(* Finally, If t1 --> t1', then t1 t2 --> t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃ <{t1' t2}>...
- (* T_Nat *)
left...
- (* T_Succ *)
right.
destruct IHHt...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
∃ <{ {S n} }>...
+ (* t1 steps *)
destruct H as [t' Hstp].
∃ <{succ t'}>...
- (* T_Pred *)
right.
destruct IHHt...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
∃ <{ {n - 1} }>...
+ (* t1 steps *)
destruct H as [t' Hstp].
∃ <{pred t'}>...
- (* T_Mult *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct IHHt2...
× (* t2 is a value *)
destruct H; try solve_by_invert.
destruct H0; try solve_by_invert.
∃ <{ {n × n0} }>...
× (* t2 steps *)
destruct H0 as [t2' Hstp].
∃ <{t1 × t2'}>...
+ (* t1 steps *)
destruct H as [t1' Hstp].
∃ <{t1' × t2}>...
- (* T_Test0 *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
destruct n as [|n'].
× (* n1=0 *)
∃ t2...
× (* n1<>0 *)
∃ t3...
+ (* t1 steps *)
destruct H as [t1' H0].
∃ <{if0 t1' then t2 else t3}>...
- (* T_Inl *)
destruct IHHt...
+ (* t1 steps *)
right. destruct H as [t1' Hstp]...
(* exists (tm_inl _ t1')... *)
- (* T_Inr *)
destruct IHHt...
+ (* t1 steps *)
right. destruct H as [t1' Hstp]...
(* exists (tm_inr _ t1')... *)
- (* T_Case *)
right.
destruct IHHt1...
+ (* t0 is a value *)
destruct H; try solve_by_invert.
× (* t0 is inl *)
∃ <{ [x1:=v]t1 }>...
× (* t0 is inr *)
∃ <{ [x2:=v]t2 }>...
+ (* t0 steps *)
destruct H as [t0' Hstp].
∃ <{case t0' of | inl x1 ⇒ t1 | inr x2 ⇒ t2}>...
- (* T_Nil *)
left...
- (* T_Cons *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2...
× (* tail steps *)
right. destruct H0 as [t2' Hstp].
∃ <{t1 :: t2'}>...
+ (* head steps *)
right. destruct H as [t1' Hstp].
∃ <{t1' :: t2}>...
- (* T_Lcase *)
right.
destruct IHHt1...
+ (* t1 is a value *)
destruct H; try solve_by_invert.
× (* t1=tm_nil *)
∃ t2...
× (* t1=tm_cons v1 v2 *)
∃ <{ [x2:=v2]([x1:=v1]t3) }>...
+ (* t1 steps *)
destruct H as [t1' Hstp].
∃ <{case t1' of | nil ⇒ t2 | x1 :: x2 ⇒ t3}>...
- (* T_Unit *)
left...
(* Complete the proof. *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_progress : option (nat×string) := None.
☐
Weakening
Lemma weakening : ∀ Gamma Gamma' t T,
inclusion Gamma Gamma' →
Gamma ⊢ t \in T →
Gamma' ⊢ t \in T.
Proof.
intros Gamma Gamma' t T H Ht.
generalize dependent Gamma'.
induction Ht; eauto 7 using inclusion_update.
Qed.
Lemma weakening_empty : ∀ Gamma t T,
empty ⊢ t \in T →
Gamma ⊢ t \in T.
Proof.
intros Gamma t T.
eapply weakening.
discriminate.
Qed.
Substitution
Exercise: 2 stars, standard (STLCE_subst_preserves_typing)
Complete the proof of substitution_preserves_typing.Lemma substitution_preserves_typing : ∀ Gamma x U t v T,
(x ⊢> U ; Gamma) ⊢ t \in T →
empty ⊢ v \in U →
Gamma ⊢ [x:=v]t \in T.
Proof with eauto.
intros Gamma x U t v T Ht Hv.
generalize dependent Gamma. generalize dependent T.
(* Proof: By induction on the term t. Most cases follow
directly from the IH, with the exception of var
and abs. These aren't automatic because we must
reason about how the variables interact. The proofs
of these cases are similar to the ones in STLC.
We refer the reader to StlcProp.v for explanations. *)
induction t; intros T Gamma H;
(* in each case, we'll want to get at the derivation of H *)
inversion H; clear H; subst; simpl; eauto.
- (* var *)
rename s into y. destruct (eqb_stringP x y); subst.
+ (* x=y *)
rewrite update_eq in H2.
injection H2 as H2; subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var. rewrite update_neq in H2; auto.
- (* abs *)
rename s into y, t into S.
destruct (eqb_stringP x y); subst; apply T_Abs.
+ (* x=y *)
rewrite update_shadow in H5. assumption.
+ (* x<>y *)
apply IHt.
rewrite update_permute; auto.
- (* tm_case *)
rename s into x1, s0 into x2.
eapply T_Case...
+ (* left arm *)
destruct (eqb_stringP x x1); subst.
× (* x = x1 *)
rewrite update_shadow in H8. assumption.
× (* x <> x1 *)
apply IHt2.
rewrite update_permute; auto.
+ (* right arm *)
destruct (eqb_stringP x x2); subst.
× (* x = x2 *)
rewrite update_shadow in H9. assumption.
× (* x <> x2 *)
apply IHt3.
rewrite update_permute; auto.
- (* tm_lcase *)
rename s into y1, s0 into y2.
eapply T_Lcase...
destruct (eqb_stringP x y1); subst.
+ (* x=y1 *)
destruct (eqb_stringP y2 y1); subst.
× (* y2=y1 *)
repeat rewrite update_shadow in H9.
rewrite update_shadow.
assumption.
× rewrite update_permute in H9; [|assumption].
rewrite update_shadow in H9.
rewrite update_permute; assumption.
+ (* x<>y1 *)
destruct (eqb_stringP x y2); subst.
× (* x=y2 *)
rewrite update_shadow in H9.
assumption.
× (* x<>y2 *)
apply IHt3.
rewrite (update_permute _ _ _ _ _ _ n0) in H9.
rewrite (update_permute _ _ _ _ _ _ n) in H9.
assumption.
(* Complete the proof. *)
(* FILL IN HERE *) Admitted.
intros Gamma x U t v T Ht Hv.
generalize dependent Gamma. generalize dependent T.
(* Proof: By induction on the term t. Most cases follow
directly from the IH, with the exception of var
and abs. These aren't automatic because we must
reason about how the variables interact. The proofs
of these cases are similar to the ones in STLC.
We refer the reader to StlcProp.v for explanations. *)
induction t; intros T Gamma H;
(* in each case, we'll want to get at the derivation of H *)
inversion H; clear H; subst; simpl; eauto.
- (* var *)
rename s into y. destruct (eqb_stringP x y); subst.
+ (* x=y *)
rewrite update_eq in H2.
injection H2 as H2; subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var. rewrite update_neq in H2; auto.
- (* abs *)
rename s into y, t into S.
destruct (eqb_stringP x y); subst; apply T_Abs.
+ (* x=y *)
rewrite update_shadow in H5. assumption.
+ (* x<>y *)
apply IHt.
rewrite update_permute; auto.
- (* tm_case *)
rename s into x1, s0 into x2.
eapply T_Case...
+ (* left arm *)
destruct (eqb_stringP x x1); subst.
× (* x = x1 *)
rewrite update_shadow in H8. assumption.
× (* x <> x1 *)
apply IHt2.
rewrite update_permute; auto.
+ (* right arm *)
destruct (eqb_stringP x x2); subst.
× (* x = x2 *)
rewrite update_shadow in H9. assumption.
× (* x <> x2 *)
apply IHt3.
rewrite update_permute; auto.
- (* tm_lcase *)
rename s into y1, s0 into y2.
eapply T_Lcase...
destruct (eqb_stringP x y1); subst.
+ (* x=y1 *)
destruct (eqb_stringP y2 y1); subst.
× (* y2=y1 *)
repeat rewrite update_shadow in H9.
rewrite update_shadow.
assumption.
× rewrite update_permute in H9; [|assumption].
rewrite update_shadow in H9.
rewrite update_permute; assumption.
+ (* x<>y1 *)
destruct (eqb_stringP x y2); subst.
× (* x=y2 *)
rewrite update_shadow in H9.
assumption.
× (* x<>y2 *)
apply IHt3.
rewrite (update_permute _ _ _ _ _ _ n0) in H9.
rewrite (update_permute _ _ _ _ _ _ n) in H9.
assumption.
(* Complete the proof. *)
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_substitution_preserves_typing : option (nat×string) := None.
☐
Theorem preservation : ∀ t t' T,
empty ⊢ t \in T →
t --> t' →
empty ⊢ t' \in T.
Proof with eauto.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
(* Proof: By induction on the given typing derivation. Many
cases are contradictory (T_Var, T_Abs). We show just
the interesting ones. Again, we refer the reader to
StlcProp.v for explanations. *)
induction HT;
intros t' HE; subst; inversion HE; subst...
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
apply substitution_preserves_typing with T2...
inversion HT1...
(* T_Case *)
- (* ST_CaseInl *)
inversion HT1; subst.
eapply substitution_preserves_typing...
- (* ST_CaseInr *)
inversion HT1; subst.
eapply substitution_preserves_typing...
- (* T_Lcase *)
+ (* ST_LcaseCons *)
inversion HT1; subst.
apply substitution_preserves_typing with <{{List T1}}>...
apply substitution_preserves_typing with T1...
(* Complete the proof. *)
(* fst and snd *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
(* Proof: By induction on the given typing derivation. Many
cases are contradictory (T_Var, T_Abs). We show just
the interesting ones. Again, we refer the reader to
StlcProp.v for explanations. *)
induction HT;
intros t' HE; subst; inversion HE; subst...
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
apply substitution_preserves_typing with T2...
inversion HT1...
(* T_Case *)
- (* ST_CaseInl *)
inversion HT1; subst.
eapply substitution_preserves_typing...
- (* ST_CaseInr *)
inversion HT1; subst.
eapply substitution_preserves_typing...
- (* T_Lcase *)
+ (* ST_LcaseCons *)
inversion HT1; subst.
apply substitution_preserves_typing with <{{List T1}}>...
apply substitution_preserves_typing with T1...
(* Complete the proof. *)
(* fst and snd *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_preservation : option (nat×string) := None.
☐