Projection cubes of symmetric designs


Projection cubes of symmetric designs were introduced in the paper [5]. A similar concept was earlier studied in [4]. A (v,k,λ) projection n-cube is an n-dimensional matrix with {0,1}-entries such that every 2-dimensional projection is an incidence matrix of a symmetric (v,k,λ) design. The set of all such objects is denoted Pn(v,k,λ). Here are pictures of three P3(7,3,1)-cubes rendered in POV-Ray:

C1
C2
C3

These are the cubes C1, C2, and C3 from [5]. The file examples.oa contains all examples from the paper in GAP-compatible format. They can be explored using commands from the PAG package. Instructions and examples are available in the PAG manual. The following table contains lower bounds on the number of inequivalent cubes in Pn(v,k,λ) with link to files in GAP format. These examples were constructed using n-dimensional difference sets, see [5].

(v,k,λ)n
 3  4  5  6   7  8  9  10   11  12  13  14 
(7,3,1)22 111
(7,4,2)22 111
(11,5,2)24 664 211 1
(11,6,3)24 664 211 1
(13,4,1)37 101414 1073 111
(15,7,3)3
(15,8,4)61
  (16,6,2)   724   8464  1601   1754  986   505  178   70  16   7  2   1 
(21,5,1)6

[5], TABLE 4. Lower bounds on the number of Pn(v,k,λ)-cubes.

There are at least 102 inequivalent projection cubes in P3(16,6,2) that cannot be obtained from difference sets. They were constructed by prescribing autotopy groups and using a Kramer-Mesner-like procedure [5]. A GAP file with these examples is available here.

More results about projection cubes were obtained in the follow up paper [6]. A complete classification of Pn(7,3,1) and Pn(7,4,2)-cubes was performed. All examples up to equivalence are given in the next table, along with the smallest nontrivial cubes Pn(3,2,1).

  (v,k,λ)  n
  2   3  4  5   6   7    8    9    10 
(3,2,1)12 110
(7,3,1)113 2043 2000
(7,4,2)1 877   884  74   19 9 650

[6], TABLE 1. Numbers of Pn(v,k,λ)-cubes up to equivalence.

For the next parameters (11,5,2) we could not perform complete classification, but we found all Pn(11,5,2)-cubes with nontrivial autotopies. A new algorithm for constructing P-cubes with prescribed autotopies by successively increasing the dimension was used.

pn
  2   3  4    5    6     7    8     9   10  11  12 
111 24 66 42 11 10
51 283443 87 42 11 10
31 47580000 00000
21 51420000 00000
 Total 1  10178  443  87 42 11 10

[6], TABLE 2. The Pn(11,5,2)-cubes with nontrivial autotopies.

Using the algorithm we could also find all P3(16,6,2)-cubes with an autotopy of order 8 acting semiregularly. There are 1076 such cubes in total. The following table gives their distribution by the projections and full auto(para)topy group sizes. There are three (16,6,2) designs up to isomorphism called the red, green, and blue design in [5, 6] and denoted by R, G, and B in the table. All possible combinations (with repetition) of three designs occur as projections. The group sizes are denoted by T=|Atop(C)| and P=|Apar(C)|/|Atop(C)|.

 (T,P   R  
R
R
  R  
R
G
  R  
R
B
  R  
G
G
  R  
G
B
  R  
B
B
  G  
G
G
  G  
G
B
  G  
B
B
  B  
B
B
 Total 
(8,1)44876124152561021364835781
(8,2)2108720640806179
(8,3)000000600511
(8,6)10000000023
(16,1)238016001200059
(16,2)1800800000026
(16,3)00000040004
(16,6)40000000004
(32,1)10000000001
(32,2)30000000003
(32,3)10000000001
(32,6)10000000001
(48,2)10000000001
(48,6)10000000001
 (96,6) 10000000001
Total8056 84 220   152  120   124  144  4848  1076 

[6], TABLE 3. P3(16,6,2)-cubes with an autotopy of order 8 acting semiregularly.

In [5], a question was posed whether there exist P3(16,6,2)-cubes with three pairwise non-isomorphic (16,6,2) designs appearing as projections. From the table, we see that there are 152 such cubes with the prescribed autotopy of order 8. A picture of one of them was rendered in POV-Ray with red, green, and blue light sources placed so that the projections appear as shadows in the appropriate color:

(16,6,2)

The final table in [6] contains numbers of inequivalent P-cubes constructed from n-dimensional difference sets in small groups G. A classification of n-dimensional difference sets was performed using an algorithm implemented in the programming language C. Several theorems and conjectures from the paper are based on this data.

G(v,k,λ) n
  2    3    4     5    6    7    8     9    10    11    12     13    14    15    16     17    18    19    20     21    22    23    24     25    26    27   28   29  30  31 
Z7(7,3,1)1 221 11
(7,4,2)12 211 1
Z11(11,5,2)1 246 642 111
(11,6,3)12 466 421 11
Z13(13,4,1)1 3710 141410 731 11
(13,9,6)1146 422652305 60138 311 1
Z15(15,7,3)1 300000 0000000
(15,8,4)1 61 00000000000
ID2(16,6,2) 131 8100000 0000000
(16,10,6)1 2565152314 1211536 0000000000
ID3(16,6,2) 116 5500000 0000000
(16,10,6)1 6638462880  111294 196 0000000000
ID4(16,6,2) 138 11300000 0000000
(16,10,6)1 6516389060 3407653 0000000000
ID5(16,6,2) 256 1400000000 00000
(16,10,6)2  10680  323520  68740000 0000000
ID6(16,6,2) 18 600000 0000000
(16,10,6)1 5061192 0000000 00000
ID8(16,6,2) 118 4400000000 0000
(16,10,6)1 374676580 54448 0000000000
ID9(16,6,2)1 38112 000000000000
ID10(16,6,2)1 861941 000000000000
ID11(16,6,2)1 2488 000000000000
 ID13 (16,6,2)2 1294960 19734 8106  3742 0000000 0
Z19(19,9,4) 18 1436 86154 228280 280228 15486 3614 41 11
(19,10,5) 18 1436 86154 228280 280228 15486 3614 41 11
Z21(21,5,1) 12 000000000000 000000
F21(21,5,1) 16 000000000000 000000
Z23(23,11,5) 111 2069 207492 9841630 22822694 26942282 1630984 492207 6920 41 11
 (23,12,6)  111 2069 207492 9841630 22822694 26942282 1630984 492207 6920 41 11
Z31(31,6,1) 110 49195 812 2846   8528  21731   47801  91148  151924  221959  285357   323396  323396  285357  221959  151924   91148  47801   21731  8528   2846 811 18738 61 11

[6], TABLE 4. Numbers of inequivalent Pn(v,k,λ)-cubes obtained from difference sets.

References

  1. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.13.1, 2024. https://www.gap-system.org
  2. V. Krcadinac, Prescribed Automorphism Groups, Version 0.2.4, 2024 (GAP package). https://vkrcadinac.github.io/PAG
  3. V. Krcadinac, The PAG manual, 2024. https://web.math.pmf.unizg.hr/acco/PAGmanual.pdf
  4. V. Krcadinac, M. O. Pavcevic, K. Tabak, Cubes of symmetric designs, Ars Math. Contemp. (2024). https://doi.org/10.26493/1855-3974.3222.e53
  5. V. Krcadinac, L. Relic, Projection cubes of symmetric designs, preprint, 2024. https://arxiv.org/abs/2411.06936
  6. V. Krcadinac, M. O. Pavcevic, On higher-dimensional symmetric designs, preprint, 2024. https://arxiv.org/abs/2412.09067
  7. Persistence of Vision Raytracer, Version 3.7, 2013. http://www.povray.org

Vedran Krcadinac,