
PAG
Prescribed Automorphism Groups

0.2.2

23 May 2023

Vedran Krcadinac

Vedran Krcadinac
Email: vedran.krcadinac@math.hr
Homepage: https://web.math.pmf.unizg.hr/~krcko/homepage.html
Address: University of Zagreb, Faculty of Science,

Department of Mathematics
Bijenicka cesta 30, HR-10000 Zagreb, Croatia

mailto://vedran.krcadinac@math.hr
https://web.math.pmf.unizg.hr/~krcko/homepage.html

PAG 2

Abstract
PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

Copyright
© 2023 by Vedran Krcadinac

The PAG package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

Development of the PAG package has been supported by the Croatian Science Foundation under the project
IP-2020-02-9752.

http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html

Contents

1 The PAG Package 4
1.1 Getting Started . 4
1.2 Installation . 5
1.3 Examples: Designs . 6
1.4 Examples: Latin Squares . 10
1.5 Examples: Cubes of Symmetric Designs . 12

2 The PAG Functions 20
2.1 Working With Permutation Groups . 20
2.2 Generating Orbits . 22
2.3 Constructing Objects . 23
2.4 Inspecting Objects and Other Functions . 25
2.5 Latin Squares . 27
2.6 Cubes of Symmetric Designs . 30
2.7 Hadamard Matrices . 33
2.8 Global Options . 35

References 37

Index 38

3

Chapter 1

The PAG Package

Prescribed Automorphism Groups (PAG) is a GAP package for constructing combinatorial objects
with prescribed automorphism groups.

1.1 Getting Started

The package is loaded by
Example

gap> LoadPackage("PAG");

Let us present a small example from the paper [Krc18]. In Theorem 8.1, a simple 5-(16,7,10) design
with the following automorphism group was constructed.

Example
gap> g:=Group((2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16),

> (1,5)(2,12)(3,15)(4,8)(6,14)(7,16)(9,10)(11,13));

The design can be obtained by typing
Example

gap> KramerMesnerSearch(5,16,7,10,g);

Computing t-subset orbit representatives...

28

Computing k-subset orbit representatives...

71

Computing the Kramer-Mesner matrix...

[29, 72]

Starting solver...

No BOUNDS

The RHS is fixed !

No upper bounds: 0/1 variables are assumed

Orthogonal defect: 26.953339

First reduction successful

Orthogonal defect: 20.216092

Second reduction successful

.

.

.

4

PAG 5

Comments during the calculation can be supressed by setting global options.
Example

gap> PAGGlobalOptions.Silent:=true;

true

gap> d:=KramerMesnerSearch(5,16,7,10,g);

[rec(autSubgroup := Group([(2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16),

(1,5)(2,12)(3,15)(4,8)(6,14)(7,16)(9,10)(11,13)]),

blocks := [[1, 2, 3, 4, 5, 6, 13], [1, 2, 3, 4, 5, 6, 14],

[1, 2, 3, 4, 5, 7, 9], [1, 2, 3, 4, 5, 7, 12],

[1, 2, 3, 4, 5, 9, 16], [1, 2, 3, 4, 5, 10, 12],

[1, 2, 3, 4, 5, 10, 13], [1, 2, 3, 4, 5, 11, 12],

[1, 2, 3, 4, 5, 11, 16], [1, 2, 3, 4, 5, 12, 14],

[1, 2, 3, 4, 6, 7, 14], [1, 2, 3, 4, 6, 7, 15],

.

.

.

The output is a list of non-isomorphic designs in the Design package format (DESIGN: Design). We
can check that it is really a 5-design.

Example
gap> List(d,AllTDesignLambdas);

[[2080, 910, 364, 130, 40, 10]]

The output is large because the Design format includes a list of all blocks, and 5-(16,7,10) designs
have 2080 blocks. Instead, we can ask just for the base blocks.

Example
gap> bb:=KramerMesnerSearch(5,16,7,10,g,rec(BaseBlocks:=true));

[[[1, 2, 3, 4, 5, 6, 13], [1, 2, 3, 4, 5, 6, 14],

[1, 2, 3, 5, 6, 7, 11], [1, 2, 3, 5, 6, 8, 9],

[1, 2, 3, 5, 6, 9, 10], [1, 2, 3, 5, 6, 9, 12],

[1, 2, 3, 5, 6, 10, 15], [1, 2, 3, 5, 6, 14, 16],

[1, 2, 3, 5, 8, 11, 12], [1, 2, 5, 6, 7, 8, 16],

[1, 2, 5, 6, 7, 9, 14], [1, 2, 5, 6, 7, 12, 13],

[1, 2, 5, 6, 7, 14, 15]],

[[1, 2, 3, 4, 5, 6, 8], [1, 2, 3, 4, 5, 6, 14],

[1, 2, 3, 5, 6, 7, 11], [1, 2, 3, 5, 6, 9, 12],

[1, 2, 3, 5, 6, 10, 12], [1, 2, 3, 5, 6, 10, 16],

[1, 2, 3, 5, 6, 12, 13], [1, 2, 3, 5, 6, 14, 15],

[1, 2, 3, 5, 8, 11, 12], [1, 2, 5, 6, 7, 8, 9],

[1, 2, 5, 6, 7, 9, 14], [1, 2, 5, 6, 7, 12, 13],

[1, 2, 5, 6, 11, 14, 16]]]

In this case isomorph rejection is not performed and we get two sets of base blocks. They
can be turned into designs by calling the BlockDesign (DESIGN: BlockDesign) function:
List(bb,x->BlockDesign(16,x,g));.

1.2 Installation

The PAG package requires GAP 4.11 and the following packages:

• Images 1.3

PAG 6

• GRAPE 4.8

• Design 1.7

The following packages are also loaded, if available. They are needed for a limited number of PAG
functions.

• AssociationSchemes 2.0

• DifSets 2.3.1

• GUAVA 3.15

The current installation file for PAG is available at https://vkrcadinac.github.io/PAG/. To
install PAG, unpack it to the pkg directory of your local GAP installation. The package uses external
binaries. To compile them on UNIX-like environments, change to the pkg/PAG-* directory and call

Example
$./configure.sh

This produces a Makefile in the current directory. Now call
Example

$ make all

to compile the binares. They are placed in the bin subdirectory. Documentation in the doc sub-
directory is already compiled and can be read in PDF, html or from within GAP. To recompile the
documentation, call GAP with the makedoc.g file.

1.3 Examples: Designs

The PAG function KramerMesnerSearch performs a search for t-designs with given parameters and
a given permutation group as group of automorphisms. See the paper by B. Schmalz [Sch93] for an
introduction to the Kramer-Mesner approach to constructing t-designs. Our first two examples are
from this paper. The original paper of Earl Kramer and Dale Mesner is [KM76].

1.3.1 6-(14,7,4) Designs

The summary about known 6-designs on page 130 of [Sch93] mentions that there are exactly two 6-
(14,7,4) designs with cyclic derived designs. This means that the two 6-designs have automorphisms
of order 13. They can be constructed by the following GAP commands.

Example
gap> g:=Group(CyclicPerm(13));

Group([(1,2,3,4,5,6,7,8,9,10,11,12,13)])

gap> d:=KramerMesnerSearch(6,14,7,4,g);;

gap> List(d,AllTDesignLambdas);

[[1716, 858, 396, 165, 60, 18, 4], [1716, 858, 396, 165, 60, 18, 4]]

The solver quickly finds 24 solutions of the Kramer-Mesner system. Most of the computation time is
used to eliminate isomorphic designs. This can be turned off:

https://vkrcadinac.github.io/PAG/

PAG 7

Example
gap> d2:=KramerMesnerSearch(6,14,7,4,g,rec(NonIsomorphic:=false));;

gap> Size(d2);

30

gap> Size(AsSet(d2));

24

Now we get a list of 30 designs. By default, A. Wassermann’s LLL solver [Was98] is used; it may re-
turn the same solution more than once. The number of distinct designs is 24. The two non-isomorphic
designs have Z13 as their full automorphism group.

Example
gap> List(d,BlockDesignAut);

[Group([(1,2,3,4,5,6,7,8,9,10,11,12,13)]),

Group([(1,2,3,4,5,6,7,8,9,10,11,12,13)])]

1.3.2 6-(28,8,λ) Designs

In [Sch93], the existence of 6-(28,8,λ) designs was established for λ = 42, 63, 84, and 105. The exact
numbers of these designs with automorphism group PΓL(2,27) were computed. While the projective
general linear groups are readily available in GAP through the PGL command, there seems to be no
equivalent command for semilinear groups. We can get PΓL(2,27) using the FinInG package, as the
collineation group of the projective line over GF(27).

Example
gap> LoadPackage("FinInG");

gap> g1:=CollineationGroup(ProjectiveSpace(1,27));

The FinInG collineation group PGammaL(2,27)

We need a permutation representation of this group on 28 points.
Example

gap> g:=Image(ActionOnAllProjPoints(g1));

Group([(3,28,27,26,25,24,23,22,21,20,19,18,17,4,16,15,14,13,12,11,10,9,8,7,6,5),

(1,2,4)(5,8,24)(6,21,10)(7,16,15)(9,25,28)(11,13,14)(12,27,23)(17,26,18)

(19,20,22), (5,7,13)(6,10,21)(8,16,14)(9,18,22)(11,24,15)(12,27,23)(17,19,25)

(20,28,26)])

Alternatively, we can get PΓL(2,27) from the library of small primitive permutation groups.
Example

gap> PrimitiveGroupsOfDegree(28);

[PGL(2, 7), PSL(2, 8), PGammaL(2, 8), PSU(3, 3), PGammaU(3, 3), PSp(6, 2), A(8),

S(8), PSL(2, 27), PGL(2, 27), PSL(2, 27):3, PGammaL(2, 27), A(28), S(28)]

Now we can construct the designs with λ = 42.
Example

gap> d:=KramerMesnerSearch(6,28,8,42,g,rec(BaseBlocks:=true));;

gap> Size(AsSet(d));

3

Most of the CPU time in the example above was used to compute the Kramer-Mesner matrix. The left
side of the Kramer-Mesner system is the same matrix for all λ , so we can compute it once and reuse
it to save time.

PAG 8

Example
gap> tsub:=SubsetOrbitRep(g,28,6);;

gap> ksub:=SubsetOrbitRep(g,28,8);;

gap> m:=KramerMesnerMat(g,tsub,ksub);;

Now we can quickly get the exact numbers of designs from the paper [Sch93].
Example

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,42))));

3

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,63))));

367

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,84))));

21743

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,105))));

38277

1.3.3 2-(81,6,2) Designs

The first simple 2-(81,6,2) design was recently found by A. Nakic [Nak21]. Here are the base blocks
of this design copy-pasted from the paper.

Example
gap> bb:=[[[0,0,0,0],[0,0,0,1],[0,0,0,2],[0,1,0,0],[0,1,0,1],[0,1,0,2]],

> [[0,0,0,0],[0,0,1,1],[0,0,2,2],[2,1,0,0],[2,1,1,1],[2,1,2,2]],

> [[0,0,0,0],[0,1,1,1],[0,2,2,2],[0,0,1,0],[0,1,2,1],[0,2,0,2]],

> [[0,0,0,0],[0,1,2,0],[0,2,1,0],[2,0,2,1],[2,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,0,0,0],[2,0,0,0],[0,2,2,1],[1,2,2,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,1,0],[2,0,2,0],[0,1,0,0],[1,1,1,0],[2,1,2,0]],

> [[0,0,0,0],[1,0,1,1],[2,0,2,2],[0,0,2,0],[1,0,0,1],[2,0,1,2]],

> [[0,0,0,0],[1,0,2,0],[2,0,1,0],[0,2,1,1],[1,2,0,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,2,2],[2,0,1,1],[0,1,2,1],[1,1,1,0],[2,1,0,2]],

> [[0,0,0,0],[1,1,0,0],[2,2,0,0],[0,2,0,1],[1,0,0,1],[2,1,0,1]],

> [[0,0,0,0],[1,1,0,1],[2,2,0,2],[0,2,2,0],[1,0,2,1],[2,1,2,2]],

> [[0,0,0,0],[1,1,2,0],[2,2,1,0],[0,0,2,1],[1,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,1,2,1],[2,2,1,2],[0,2,1,1],[1,0,0,2],[2,1,2,0]],

> [[0,0,0,0],[1,1,2,2],[2,2,1,1],[0,2,2,0],[1,0,1,2],[2,1,0,1]],

> [[0,0,0,0],[1,2,1,2],[2,1,2,1],[0,0,2,1],[1,2,0,0],[2,1,1,2]],

> [[0,0,0,0],[1,2,2,0],[2,1,1,0],[0,2,2,1],[1,1,1,1],[2,0,0,1]]]*Z(3)^0;;

The points of this design are elements of the 4-dimensional vector space V over GF(3). Here is how
to get the desing in the Design package format.

Example
gap> V:=Tuples([0,1,2],4)*Z(3)^0;;

gap> d1:=Union(List(bb,y->List(V,x->AsSet(x+y))));;

gap> d:=BlockDesign(81,List(d1,y->List(y,x->Position(V,x))));;

gap> AllTDesignLambdas(d);

[432, 32, 2]

The full automorphism group of the design is of order 2592. It is a semidirect product of the additive
group of V and a group of order 32.

PAG 9

Example
gap> aut:=BlockDesignAut(d);

<permutation group with 5 generators>

gap> Size(aut);

2592

gap> StructureDescription(aut);

"(C3 x C3 x C3 x C3) : (C16 : C2)"

This group has three subgroups of order 648 up to conjugation. We can use the second subgroup to
construct four more simple 2-(81,6,2) designs.

Example
gap> g:=Filtered(AllSubgroupsConjugation(aut),x->Size(x)=648);

[<permutation group of size 648 with 7 generators>,

<permutation group of size 648 with 7 generators>,

<permutation group of size 648 with 7 generators>]

gap> dd:=KramerMesnerSearch(2,81,6,2,g[2]);;

gap> List(dd,x->Size(AutomorphismGroup(x)));

[1296, 2592, 3888, 1944, 15552]

Two of the new designs have larger full automorphism groups than the design from [Nak21]. Using
their subgroups, more simple 2-(81,6,2) designs can be constructed.

1.3.4 Quasi-symmetric 2-(56,16,18) Designs

Here is how the quasi-symmetric 2-(56,16,18) designs with intersection numbers x = 4, y = 8 from
the paper [KV16] can be constructed.

Example
gap> g:=Group((1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)

> (21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)

> (41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55),

> (1,6,8)(2,21,26)(3,32,34)(4,11,5)(7,15,22)(9,16,13)(10,29,17)

> (12,33,30)(14,19,31)(18,23,35)(24,28,36)(25,37,39)(27,38,40)

> (42,51,49)(43,52,45)(44,46,47)(48,54,53)(50,56,55));

<permutation group with 2 generators>

gap> d:=KramerMesnerSearch(2,56,16,18,g,rec(IntersectionNumbers:=[4,8]));;

gap> Size(d);

3

We check that they have all required properties and compute their full automorphism groups:
Example

gap> List(d,AllTDesignLambdas);

[[231, 66, 18], [231, 66, 18], [231, 66, 18]]

gap> List(d,IntersectionNumbers);

[[4, 8], [4, 8], [4, 8]]

gap> aut:=List(d,BlockDesignAut);;

gap> List(aut,StructureDescription);

["(C2 x C2 x C2 x C2) : S5", "(C2 x C2 x C2 x C2) : A5", "PSL(3,4) : C2"]

PAG 10

1.4 Examples: Latin Squares

See [KD15] for an introduction to Latin squares and definitions of isotopy, paratopy, etc. Multiplica-
tion tables of groups are examples of Latin squares.

Example
gap> CayleyTableOfGroup(CyclicGroup(7));

[[1, 2, 3, 4, 5, 6, 7],

[2, 3, 4, 5, 6, 7, 1],

[3, 4, 5, 6, 7, 1, 2],

[4, 5, 6, 7, 1, 2, 3],

[5, 6, 7, 1, 2, 3, 4],

[6, 7, 1, 2, 3, 4, 5],

[7, 1, 2, 3, 4, 5, 6]]

We can construct more examples by prescribing symmetry groups. The PAG function
KramerMesnerMOLS performs a search for sets of s mutually orthogonal Latin squares (MOLS) of
order n and a given permutation group as autotopy or autoparatopy group. The group must act on the
s+2 point classes of the corresponding transversal design. By [Fal12] and [SVW12], an autotopism
of order 5 of a Latin square of order 7 must have the following cycle structure.

Example
gap> a:=MultiPerm(CyclicPerm(5),[1..7],3);

(1,2,3,4,5)(8,9,10,11,12)(15,16,17,18,19)

There are two main classes of such Latin squares. They are multiplication tables of non-associative
quasigroups.

Example
gap> KramerMesnerMOLS(7,1,Group(a));

[[[[1, 3, 2, 6, 7, 4, 5],

[7, 2, 4, 3, 6, 5, 1],

[6, 7, 3, 5, 4, 1, 2],

[5, 6, 7, 4, 1, 2, 3],

[2, 1, 6, 7, 5, 3, 4],

[3, 4, 5, 1, 2, 6, 7],

[4, 5, 1, 2, 3, 7, 6]]],

[[[1, 3, 5, 6, 7, 2, 4],

[7, 2, 4, 1, 6, 3, 5],

[6, 7, 3, 5, 2, 4, 1],

[3, 6, 7, 4, 1, 5, 2],

[2, 4, 6, 7, 5, 1, 3],

[4, 5, 1, 2, 3, 6, 7],

[5, 1, 2, 3, 4, 7, 6]]]]

Single Latin squares are treated as MOLS sets of size s = 1, hence the excess brackets. When the
order n is a prime power, complete sets of s = n−1 MOLS are easily constructed from finite fields.

Example
gap> ls4:=FieldToMOLS(GF(4));

[[[1, 2, 3, 4],

[2, 1, 4, 3],

[3, 4, 1, 2],

[4, 3, 2, 1]],

[[1, 2, 3, 4],

PAG 11

[3, 4, 1, 2],

[4, 3, 2, 1],

[2, 1, 4, 3]],

[[1, 2, 3, 4],

[4, 3, 2, 1],

[2, 1, 4, 3],

[3, 4, 1, 2]]]

gap> AreMOLS(ls4);

true

The package Guava contains a function AreMOLS (GUAVA: AreMOLS) to test sets of MOLS. A
famous problem is to find MOLS of order 10. The Handbook of Combinatorial Designs [CD07],
III.5.6 contains an example of a 1-diagonally cyclic self-orthogonal Latin square L of order 10. Self-
orthogonal means that L is orthogonal to its transpose. In other words, the MOLS set {L,Lt} is in-
variant under the following conjugation, simultaneously exchanging rows–columns and the two Latin
squares.

Example
gap> c:=Sortex(Concatenation([11..20],[1..10],[31..40],[21..30]));

(1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,

31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)

Furthermore, the example from [CD07] has an autotopism of order 9.
Example

gap> a:=MultiPerm(CyclicPerm(9),[1..10],4);

(1,2,3,4,5,6,7,8,9)(11,12,13,14,15,16,17,18,19)(21,22,23,24,25,26,

27,28,29)(31,32,33,34,35,36,37,38,39)

The permutations a and c generate an autoparatopy group of order 18 we can use to construct the
example.

Example
gap> g:=Group(a,c);;

gap> Size(g);

18

gap> ls10:=KramerMesnerMOLS(10,2,g);;

gap> List(ls10,AreMOLS);

[true, true, true, true, true]

We see that there are 5 inequivalent pairs of MOLS with g as autoparatopy group. Here is one pair.
Example

gap> ls10[1];

[[[1, 3, 6, 9, 2, 10, 5, 7, 4, 8],

[5, 2, 4, 7, 1, 3, 10, 6, 8, 9],

[9, 6, 3, 5, 8, 2, 4, 10, 7, 1],

[8, 1, 7, 4, 6, 9, 3, 5, 10, 2],

[10, 9, 2, 8, 5, 7, 1, 4, 6, 3],

[7, 10, 1, 3, 9, 6, 8, 2, 5, 4],

[6, 8, 10, 2, 4, 1, 7, 9, 3, 5],

[4, 7, 9, 10, 3, 5, 2, 8, 1, 6],

[2, 5, 8, 1, 10, 4, 6, 3, 9, 7],

[3, 4, 5, 6, 7, 8, 9, 1, 2, 10]],

[[1, 5, 9, 8, 10, 7, 6, 4, 2, 3],

PAG 12

[3, 2, 6, 1, 9, 10, 8, 7, 5, 4],

[6, 4, 3, 7, 2, 1, 10, 9, 8, 5],

[9, 7, 5, 4, 8, 3, 2, 10, 1, 6],

[2, 1, 8, 6, 5, 9, 4, 3, 10, 7],

[10, 3, 2, 9, 7, 6, 1, 5, 4, 8],

[5, 10, 4, 3, 1, 8, 7, 2, 6, 9],

[7, 6, 10, 5, 4, 2, 9, 8, 3, 1],

[4, 8, 7, 10, 6, 5, 3, 1, 9, 2],

[8, 9, 1, 2, 3, 4, 5, 6, 7, 10]]]

1.5 Examples: Cubes of Symmetric Designs

Cubes of symmetric designs are studied in the paper [KPT23a]. Here is an example.
Example

gap> c:=DifferenceCube(Group((1,2,3,4,5,6,7)),[1,2,4],3);

[[[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 0]],

[[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0]],

[[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1]],

[[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1]],

[[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0]],

[[0, 0, 1, 1, 0, 1, 0],

PAG 13

[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1]],

[[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0]]]

This is a 3-dimensional array of zeros and ones such that all 2-dimensional slices are incidence matri-
ces of (7,3,1) designs. For example, here is a slice obtained by varying coordinates 1,3 and setting
coordinate 2 to 7.

Example
gap> m:=CubeSlice(c,1,3,[7]);

[[0, 1, 1, 0, 1, 0, 0],

[1, 1, 0, 1, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 0]]

gap> m*TransposedMat(m);

[[3, 1, 1, 1, 1, 1, 1],

[1, 3, 1, 1, 1, 1, 1],

[1, 1, 3, 1, 1, 1, 1],

[1, 1, 1, 3, 1, 1, 1],

[1, 1, 1, 1, 3, 1, 1],

[1, 1, 1, 1, 1, 3, 1],

[1, 1, 1, 1, 1, 1, 3]]

A cube of arbitrary dimension n ≥ 2 can be constructed from a difference set in a group by calling
DifferenceCube (2.6.1). The function uses the representation of difference sets from the DifSets
package (DifSets: Difference Sets). For n = 2, the difference cube is simply an incidence matrix of
the associated symmetric design, i.e. the development of the difference set.

Example
gap> g:=SmallGroup(15,1);

<pc group of size 15 with 2 generators>

gap> StructureDescription(g);

"C15"

gap> ds:=DifferenceSets(g);

[[1, 2, 3, 4, 8, 11, 12]]

gap> m:=DifferenceCube(g,ds[1],2);

[[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0],

[1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1],

[1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],

[0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1],

PAG 14

[0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0],

[0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1],

[1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1],

[0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0],

[0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0],

[1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0],

[1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0],

[0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1],

[0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0],

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]]

gap> d:=BlockDesign(15,List(m,x->Positions(x,1)));;

gap> AllTDesignLambdas(d);

[15, 7, 3]

The function DifferenceSets (DifSets: DifferenceSets) returns a list of all difference sets up to
equivalence in a given group. Here is a small 4-dimensional (3,2,1) cube.

Example
gap> c:=DifferenceCube(Group((1,2,3)),[1,2],4);

[[[[1, 1, 0], [1, 0, 1], [0, 1, 1]],

[[1, 0, 1], [0, 1, 1], [1, 1, 0]],

[[0, 1, 1], [1, 1, 0], [1, 0, 1]]],

[[[1, 0, 1], [0, 1, 1], [1, 1, 0]],

[[0, 1, 1], [1, 1, 0], [1, 0, 1]],

[[1, 1, 0], [1, 0, 1], [0, 1, 1]]],

[[[0, 1, 1], [1, 1, 0], [1, 0, 1]],

[[1, 1, 0], [1, 0, 1], [0, 1, 1]],

[[1, 0, 1], [0, 1, 1], [1, 1, 0]]]]

gap> CubeTest(c);

[[3, 2, 1]]

The function CubeTest (2.6.12) looks at all possible slices and checks if they are incidence matrices
of (v,k,λ) designs. In the next example we construct all 3-dimensional difference cubes of order 21.

Example
gap> g:=AllSmallGroups(21);;

gap> List(g,StructureDescription);

["C7 : C3", "C21"]

gap> ds:=List(g,DifferenceSets);

[[[1, 2, 3, 9, 10]], [[1, 2, 7, 10, 16]]]

gap> c1:=DifferenceCube(g[1],ds[1][1],3);;

gap> c2:=DifferenceCube(g[2],ds[2][1],3);;

gap> List([c1,c2],CubeTest);

[[[21, 5, 1]], [[21, 5, 1]]]

gap> Size(CubeAut(c1));

1323

gap> Size(CubeAut(c2));

2646

The function CubeAut (2.6.14) computes the full autotopy group of a cube. By setting options, full
autoparatopy groups can also be obtained. We can make a non-difference cube by the "group cube"
construction of Theorem 4.1 from [KPT23a]. First we search for all (21,5,1) designs with blocks
being difference sets in the Frobenius group of order 21.

PAG 15

Example
gap> allds:=Filtered(Combinations([1..21],5),x->IsDifferenceSet(g[1],x));;

gap> Size(allds);

294

gap> A:=KramerMesnerMat(Group(()),Combinations([1..21],2),allds,1,21);;

gap> PAGGlobalOptions.Silent:=true;;

gap> sol:=AsSet(SolveKramerMesner(A));;

gap> des:=List(sol,x->BaseBlocks(allds,x));;

gap> Size(des);

70

Among these 70 designs, 14 are left developments, and 14 are right developments. The remaining 42
designs are not developments, but all of their blocks are difference sets.

Example
gap> dev1:=AsSet(List(allds,x->LeftDevelopment(g[1],x).blocks));;

gap> Size(dev1);

14

gap> dev2:=AsSet(List(allds,x->RightDevelopment(g[1],x).blocks));;

gap> Size(dev2);

14

gap> nondev:=Difference(des,Union(dev1,dev2));;

gap> Size(nondev);

42

Now we apply the group cube construction to these 42 designs. The obtained cubes are equivalent.
Example

gap> cc:=List(nondev,x->GroupCube(g[1],x,3));;

gap> Size(CubeFilter(cc));

1

The function CubeFilter (2.6.15) eliminates equivalent copies from a list of cubes. Our new cube is
not equivalent with the two (21,5,1) difference cubes.

Example
gap> c3:=cc[1];;

gap> CubeTest(c3);

[[21, 5, 1]]

gap> Size(CubeFilter([c1,c2,c3]));

3

gap> Size(CubeAut(c3));

441

However, the three cubes have the same slice invariant; see [KPT23a] for the definition.
Example

gap> List([c1,c2,c3],SliceInvariant);

[[[[[120960, 21]], 3]], [[[[120960, 21]], 3]],

[[[[120960, 21]], 3]]]

Cubes with slice invariants different from any difference cube can be constructed for parameters of
the form (4m,2m−1(2m−1),2m−1(2m−1−1)), m≥ 2.

PAG 16

Example
gap> m:=2;; n:=3;;

gap> cl:=List([1,2,3],i->GroupCube(SDPSeriesGroup(m),SDPSeriesDesign(m,i),n));;

gap> List(cl,CubeTest);

[[[16, 6, 2]], [[16, 6, 2]], [[16, 6, 2]]]

gap> List(cl,SliceInvariant);

[[[[[11520, 16]], 3]],

[[[[768, 16]], 2], [[[11520, 16]], 1]],

[[[[384, 16]], 2], [[[11520, 16]], 1]]]

The first cube in the list cl is a difference cube. The other two cubes are not, because
they have non-isomorphic slices in different directions. This construction works for all m ≥
2 and dimensions n ≥ 3, but it takes a lot of time and memory for bigger values of m
and n. We classified all 3-dimensional group cubes of (16,6,2) designs; they are available at
https://web.math.pmf.unizg.hr/~krcko/results/cubes.html. A list of 1423 non-group
cubes of (16,6,2) designs is also provided.

The package DifSets contains precomputed lists of difference sets up to equivalence. They are
loaded by the function LoadDifferenceSets (DifSets: LoadDifferenceSets). We can use them to
compute all difference cubes up to equivalence.

Example
gap> v:=27;

27

gap> l1:=Concatenation(List([1..NrSmallGroups(v)],

> i->List(LoadDifferenceSets(v,i),x->[i,x])));

[[4, [1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26]],

[4, [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 18, 19, 23]],

[5, [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 23, 25, 27]]]

The list l1 now contains all inequivalent difference sets in groups of order 27. The first entry is the
group ID from the GAP library of small groups, followed by the difference set.

Example
gap> StructureDescription(SmallGroup(27,4));

"C9 : C3"

gap> StructureDescription(SmallGroup(27,5));

"C3 x C3 x C3"

gap> l2:=List(l1,x->DifferenceCube(SmallGroup(v,x[1]),x[2],3));;

gap> l3:=l1{CubeFilter(l2,rec(Positions:=true))};

[[4, [1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26]],

[5, [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 23, 25, 27]]]

The list l3 contains difference sets giving 3-cubes that are inequivalent (not paratopic). Notice that
the two cubes arising from difference sets in Z9 oZ3 (group ID 4) are paratopic, but not isotopic:

Example
gap> l4:=l1{CubeFilter(l2,rec(Positions:=true,Isotopy:=true))};

[[4, [1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26]],

[4, [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 18, 19, 23]],

[5, [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 23, 25, 27]]]

We will now construct some non-difference group cubes in Z9 oZ3. Here is an efficient way to
get all difference sets, including equivalent ones.

https://web.math.pmf.unizg.hr/~krcko/results/cubes.html

PAG 17

Example
gap> g:=SmallGroup(v,4);

<pc group of size 27 with 3 generators>

gap> ge:=ExtendedPermRepresentation(g);

<permutation group with 7 generators>

gap> ds:=LoadDifferenceSets(v,4);

[[1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26],

[1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 18, 19, 23]]

gap> allds:=Union(List(ds,x->Orbit(ge,x,OnSets)));;

gap> Size(allds);

972

For parameters (21,5,1) we could search for all designs with difference sets as blocks. This would
take too much time for (27,13,6), so we prescribe an automorphism group of order 3.

Example
gap> sub:=AllSubgroupsConjugation(ge);;

gap> h:=sub[4];

Group([(1,10,4)(2,15,7)(3,17,9)(5,20,12)(6,22,14)(8,23,16)

(11,25,19)(13,26,21)(18,27,24)])

gap> alldsorb:=List(Orbits(h,allds,OnSets),Representative);;

gap> Size(alldsorb);

324

gap> pairsorb:=List(Orbits(h,Combinations([1..27],2),OnSets),Representative);;

gap> Size(pairsorb);

117

gap> A:=KramerMesnerMat(h,pairsorb,alldsorb,6,27);;

gap> sol:=AsSet(SolveKramerMesner(A));;

gap> des:=List(sol,x->BlockDesign(27,BaseBlocks(alldsorb,x),h).blocks);;

gap> Size(des);

288

We get 288 designs with difference sets as blocks. Let us remove the ones which are developments of
their blocks.

Example
gap> dev1:=AsSet(List(allds,x->LeftDevelopment(g,x).blocks));;

gap> dev2:=AsSet(List(allds,x->RightDevelopment(g,x).blocks));;

gap> nondev:=List(Difference(des,Union(dev1,dev2)),x->[4,x]);;

gap> Size(nondev);

216

Next, we remove the ones leading to equivalent 3-cubes.
Example

gap> cc:=List(nondev,x->GroupCube(SmallGroup(v,x[1]),x[2],3));;

gap> l5:=nondev{CubeFilter(cc,rec(Positions:=true))};

[[4,

[[1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26],

[1, 2, 3, 4, 5, 7, 10, 13, 14, 19, 21, 22, 24],

[1, 2, 3, 7, 11, 12, 13, 15, 20, 23, 24, 25, 27],

[1, 2, 4, 6, 10, 11, 13, 14, 15, 17, 18, 20, 26],

[1, 2, 4, 8, 9, 12, 13, 16, 17, 18, 22, 24, 27],

[1, 2, 9, 10, 11, 14, 16, 17, 19, 21, 23, 25, 27],

[1, 3, 4, 7, 8, 11, 17, 18, 19, 22, 23, 25, 26],

PAG 18

[1, 3, 5, 8, 9, 10, 14, 15, 18, 23, 24, 26, 27],

[1, 3, 5, 8, 10, 11, 12, 15, 16, 17, 20, 21, 22],

[1, 4, 6, 7, 9, 10, 12, 15, 21, 22, 25, 26, 27],

[1, 5, 6, 7, 9, 11, 14, 16, 18, 20, 22, 24, 25],

[1, 5, 6, 8, 13, 17, 19, 20, 21, 24, 25, 26, 27],

[1, 6, 7, 8, 12, 13, 14, 15, 16, 18, 19, 21, 23],

[2, 3, 5, 6, 9, 13, 15, 17, 18, 21, 22, 23, 25],

[2, 3, 6, 7, 8, 9, 11, 12, 14, 17, 21, 24, 26],

[2, 3, 6, 8, 10, 12, 14, 18, 19, 20, 22, 25, 27],

[2, 4, 5, 7, 8, 9, 11, 15, 18, 19, 20, 21, 27],

[2, 4, 8, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26],

[2, 5, 6, 7, 8, 10, 11, 13, 16, 22, 23, 26, 27],

[2, 5, 7, 10, 12, 15, 16, 17, 18, 19, 24, 25, 26],

[3, 4, 5, 11, 12, 13, 14, 16, 18, 21, 25, 26, 27],

[3, 4, 6, 7, 10, 16, 17, 18, 20, 21, 23, 24, 27],

[3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 19, 24, 25],

[3, 7, 9, 13, 14, 15, 16, 17, 19, 20, 22, 26, 27],

[4, 5, 6, 11, 12, 14, 15, 17, 19, 22, 23, 24, 27],

[4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 20, 23, 25],

[9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 26]]],

[4,

[[1, 2, 3, 4, 5, 6, 9, 12, 16, 19, 20, 23, 26],

[1, 2, 3, 5, 7, 11, 14, 15, 18, 20, 23, 24, 25],

[1, 2, 3, 7, 9, 13, 14, 17, 19, 20, 21, 22, 27],

[1, 2, 4, 6, 7, 8, 10, 11, 13, 18, 20, 22, 26],

[1, 2, 4, 10, 12, 14, 15, 21, 22, 23, 25, 26, 27],

[1, 2, 5, 8, 12, 13, 17, 18, 19, 21, 24, 25, 26],

[1, 3, 4, 6, 8, 11, 13, 15, 17, 19, 23, 25, 27],

[1, 3, 5, 8, 10, 11, 12, 15, 16, 17, 20, 21, 22],

[1, 3, 6, 7, 8, 9, 10, 12, 18, 21, 23, 24, 27],

[1, 4, 5, 6, 7, 10, 13, 14, 15, 16, 19, 21, 24],

[1, 4, 8, 9, 14, 15, 16, 17, 18, 20, 24, 26, 27],

[1, 5, 6, 9, 11, 12, 13, 14, 16, 18, 22, 25, 27],

[1, 7, 9, 10, 11, 16, 17, 19, 22, 23, 24, 25, 26],

[2, 3, 4, 5, 10, 13, 16, 17, 18, 22, 23, 24, 27],

[2, 3, 4, 8, 9, 10, 11, 14, 16, 18, 19, 21, 25],

[2, 3, 6, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26],

[2, 4, 5, 7, 8, 9, 11, 12, 15, 19, 22, 24, 27],

[2, 5, 6, 7, 8, 11, 14, 16, 17, 21, 23, 26, 27],

[2, 6, 7, 10, 12, 15, 16, 17, 18, 19, 20, 25, 27],

[2, 6, 8, 9, 13, 15, 16, 20, 21, 22, 23, 24, 25],

[3, 4, 5, 6, 7, 9, 15, 17, 18, 21, 22, 25, 26],

[3, 4, 7, 11, 12, 13, 16, 20, 21, 24, 25, 26, 27],

[3, 5, 6, 8, 10, 14, 19, 20, 22, 24, 25, 26, 27],

[3, 7, 8, 12, 13, 14, 15, 16, 18, 19, 22, 23, 26],

[4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 20, 23, 25],

[4, 6, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24],

[5, 9, 10, 11, 13, 15, 18, 19, 20, 21, 23, 26, 27]]]]

We have constructed two (27,13,6) designs with blocks being difference sets in Z9oZ3, which are not
their developments. Here are the slice invariants of the difference and non-difference group 3-cubes
constructed so far.

PAG 19

Example
gap> dc:=List(l3,x->DifferenceCube(SmallGroup(v,x[1]),x[2],3));;

gap> gc:=List(l5,x->GroupCube(SmallGroup(v,x[1]),x[2],3));;

gap> List(dc,SliceInvariant);

[[[[[1053, 27]], 3]], [[[[1053, 27]], 3]]]

gap> List(gc,SliceInvariant);

[[[[[27, 27]], 2], [[[1053, 27]], 1]],

[[[[27, 27]], 2], [[[1053, 27]], 1]]]

More examples of difference and non-difference group cubes are available on our web page:
https://web.math.pmf.unizg.hr/~krcko/results/cubes.html

https://web.math.pmf.unizg.hr/~krcko/results/cubes.html

Chapter 2

The PAG Functions

The following functions are available in the PAG package.

2.1 Working With Permutation Groups

2.1.1 CyclicPerm

. CyclicPerm(n) (function)

Returns the cyclic permutation (1,...,n).

2.1.2 ToGroup

. ToGroup(G, f) (function)

Apply function f to each generator of the group G .

2.1.3 MovePerm

. MovePerm(p, from, to) (function)

Moves permutation p acting on the set from to a permutation acting on the set to . The argu-
ments from and to should be lists of integers of the same size. Alternatively, if instead of from
and to just one integer argument by is given, the permutation is moved from MovedPoints(p) to
MovedPoints(p)+by ; see MovedPoints (Reference: MovedPoints for a permutation).

2.1.4 MoveGroup

. MoveGroup(G, from, to) (function)

Apply MovePerm (2.1.3) to each generator of the group G .

20

PAG 21

2.1.5 MultiPerm

. MultiPerm(p, set, m) (function)

Repeat the action of a permutation m times. The new permutation acts on m disjoint copies of
set .

2.1.6 MultiGroup

. MultiGroup(G, set, m) (function)

Apply MultiPerm (2.1.5) to each generator of the group G .

2.1.7 RestrictedGroup

. RestrictedGroup(G, set) (function)

Apply RestrictedPerm (Reference: RestrictedPerm) to each generator of the group G .

2.1.8 PrimitiveGroupsOfDegree

. PrimitiveGroupsOfDegree(v) (function)

Returns a list of all primitive permutation groups on v points.

2.1.9 TransitiveGroupsOfDegree

. TransitiveGroupsOfDegree(v) (function)

Returns a list of all transitive permutation groups on v points.

2.1.10 AllSubgroupsConjugation

. AllSubgroupsConjugation(G) (function)

Returns a list of all subgroups of G up to conjugation.

2.1.11 PermRepresentationRight

. PermRepresentationRight(G) (function)

Returns the regular permutation representation of a group G by right multiplication.

2.1.12 PermRepresentationLeft

. PermRepresentationLeft(G) (function)

Returns the regular permutation representation of a group G by left multiplication.

PAG 22

2.1.13 ExtendedPermRepresentation

. ExtendedPermRepresentation(G) (function)

Returns the extended permutation representation of a group G including right multiplication, left
multiplication, and group automorphisms.

2.2 Generating Orbits

2.2.1 SubsetOrbitRep

. SubsetOrbitRep(G, v, k[, opt]) (function)

Computes orbit representatives of k -subsets of [1..v] under the action of the permutation group G .
The basic algorithm is described in [KVK21]. The algorithm for short orbits is described in [KV16].
The last argument is a record opt for options. The possible components of opt are:

• SizeLE :=n If defined, only representatives of orbits of size less or equal to n are computed.

• IntesectionNumbers :=lin If defined, only representatives of good orbits are returned. These
are orbits with intersection numbers in the list of integers lin .

2.2.2 SubsetOrbitRepShort1

. SubsetOrbitRepShort1(G, v, k, size) (function)

Computes G -orbit representatives of k -subsets of [1..v] of size less or equal size . Here, size is
an integer smaller than the order of the group G . The algorithm is described in [KV16].

2.2.3 SubsetOrbitRepIN

. SubsetOrbitRepIN(G, v, k, lin[, opt]) (function)

Computes orbit representatives of k -subsets of [1..v] under the action of the permutation group G

with intersection numbers in the list lin . Parts of the search tree with partial subsets intersecting in
more than the largest number in lin are skipped. Short orbits are computed separately. The algorithm
is described in [KVK21]. The last (optional) argument opt is a record for options. The possible
components are:

• Verbose :=true/false Print comments reporting the progress of the calculation.

• FilteringLevel :=n Apply filrering of the search tree up to subsets of size n . By default,
n=k .

2.2.4 IsGoodSubsetOrbit

. IsGoodSubsetOrbit(G, rep, lin) (function)

PAG 23

Check if the subset orbit generated by the permutation group G and the representative rep is a
good orbit with respect to the list of intersection numbers lin . This means that the intersection size
of any pair of sets from the orbit is an integer in lin .

2.2.5 SmallLambdaFilter

. SmallLambdaFilter(G, tsub, ksub, lambda) (function)

Remove k-subset representatives from ksub such that the corresponding G -orbit covers some of
the t-subset representatives from tsub more than lambda times.

2.2.6 OrbitFilter1

. OrbitFilter1(G, obj, action) (function)

Takes a list of objects obj and returns one representative from each orbit of the group G acting
by action . The result is a sublist of obj . The algorithm uses the GAP function Orbit (Reference:
Orbit).

2.2.7 OrbitFilter2

. OrbitFilter2(G, obj, action) (function)

Takes a list of objects obj and returns one representative from each orbit of the group G acting by
action . Canonical representatives are returned, so the result is not a sublist of obj . The algorithm
uses the CanonicalImage (images: CanonicalImage) function from the package Images.

2.3 Constructing Objects

2.3.1 KramerMesnerSearch

. KramerMesnerSearch(t, v, k, lambda, G[, opt]) (function)

Performs a search for t -(v ,k ,lambda) designs with prescribed automorphism group G by the
Kramer-Mesner method. A record with options can be supplied. By default, designs are returned
in the Design package format (DESIGN: Design) and isomorph-rejection is performed by calling
BlockDesignFilter (2.4.2). It can be turned off by setting opt.NonIsomorphic :=false. By set-
ting opt.BaseBlocks :=true, base blocks are returned instead of designs. This automatically turns
off isomorph-rejection. Other available options are:

• SmallLambda :=true/false. Perform the “small lambda filter”, i.e. remove k -orbits covering
some of the t -orbits more than lambda times. By default, this is done if lambda<=3.

• IntersectionNumbers :=lin /false. Search for designs with block intersection nubers in the
list of integers lin (e.g. quasi-symmetric designs).

PAG 24

2.3.2 KramerMesnerMat

. KramerMesnerMat(G, tsub, ksub[, lambda][, b]) (function)

Returns the Kramer-Mesner matrix for a permutation group G . The rows are labelled by t-subset
orbits represented by tsub , and the columns by k-subset orbits represented by ksub . A column of
constants lambda is added if the optional argument lambda is given. Another row is added if the
optional argument b is given, repesenting the constraint that sizes of the chosen k-subset orbits must
sum up to the number of blocks b .

2.3.3 CompatibilityMat

. CompatibilityMat(G, ksub, lin) (function)

Returns the compatibility matrix of the k-subset representatives ksub with respect to the group G

and list of intersection numbers lin . Entries are 1 if intersection sizes of subsets in the corresponding
G -orbits are all integers in lin , and 0 otherwise.

2.3.4 SolveKramerMesner

. SolveKramerMesner(mat[, cm][, opt]) (function)

Solve a system of linear equations determined by the matrix mat over {0,1}. By default,
A.Wassermann’s LLL solver solvediophant [Was98] is used. If the second argument is a com-
patibility matrix cm , the backtracking program solvecm from the papers [KNP11] and [KV16] is
used. The solver can also be chosen explicitly in the record opt . Possible components are:

• Solver :="solvediophant" If defined, solvediophant is used.

• Solver :="solvecm" If defined, solvecm is used.

2.3.5 BaseBlocks

. BaseBlocks(ksub, sol) (function)

Returns base blocks of design(s) from solution(s) sol by picking them from k-subset orbit repre-
sentatives ksub .

2.3.6 ExpandMatRHS

. ExpandMatRHS(mat, lambda) (function)

Add a column of lambda ’s to the right of the matrix mat .

2.3.7 RightDevelopment

. RightDevelopment(G, ds) (function)

Returns a block design that is the development of the difference set ds by right multiplication in
the group G .

PAG 25

2.3.8 LeftDevelopment

. LeftDevelopment(G, ds) (function)

Returns a block design that is the development of the difference set ds by left multiplication in
the group G .

2.4 Inspecting Objects and Other Functions

2.4.1 BlockDesignAut

. BlockDesignAut(d[, opt]) (function)

Computes the full automorphism group of a block design d . Uses nauty/Traces 2.8 by
B.D.McKay and A.Piperno [MP14]. This is an alternative for the AutGroupBlockDesign function
from the Design package (DESIGN: Automorphism groups and isomorphism testing for block
designs). The optional argument opt is a record for options. Possible components of opt are:

• Traces :=true/false Use Traces. This is the default.

• SparseNauty :=true/false Use nauty for sparse graphs.

• DenseNauty :=true/false Use nauty for dense graphs. This is usually the slowest program,
but it allows vertex invariants. Vertex invariants are ignored by the other programs.

• BlockAction :=true/false If set to true, the action of the automorphisms on blocks is also
given. In this case automorphisms are permutations of degree v+b. By default, only the action
on points is given, i.e. automorphisms are permutations of degree v.

• Dual :=true/false If set to true, dual automorphisms (correlations) are also included. They
will appear only for self-dual symmetric designs (with the same number of points and blocks).
The default is false.

• PointClasses :=s Color the points into classes of size s that cannot be mapped onto each
other. By default all points are in the same class.

• VertexInvariant :=n Use vertex invariant number n . The numbering is the same as in
dreadnaut, e.g. n=1: twopaths, n=2: adjtriang, etc. The default is twopaths. Vertex
invariants only work with dense nauty. They are ignored by sparse nauty and Traces.

• Mininvarlevel :=n Set mininvarlevel to n . The default is n=0.

• Maxinvarlevel :=n Set maxinvarlevel to n . The default is n=2.

• Invararg :=n Set invararg to n . The default is n=0.

PAG 26

2.4.2 BlockDesignFilter

. BlockDesignFilter(dl[, opt]) (function)

Eliminates isomorphic copies from a list of block designs dl . Uses nauty/Traces

2.8 by B.D.McKay and A.Piperno [MP14]. This is an alternative for the
BlockDesignIsomorphismClassRepresentatives function from the Design package (DESIGN:
Automorphism groups and isomorphism testing for block designs). The optional argument opt is
a record for options. Possible components of opt are:

• Traces :=true/false Use Traces. This is the default.

• SparseNauty :=true/false Use nauty for sparse graphs.

• PointClasses :=s Color the points into classes of size s that cannot be mapped onto each
other. By default all points are in the same class.

• Positions :=true/false Return positions of nonisomorphic designs instead of the designs
themselves.

2.4.3 IntersectionNumbers

. IntersectionNumbers(d[, opt]) (function)

Returns the list of intersection numbers of the block design d . The optional argument opt is a
record for options. Possible components of opt are:

• Frequencies :=true/false If set to true, frequencies of the intersection numbers are also
returned.

2.4.4 BlockScheme

. BlockScheme(d[, opt]) (function)

Returns the block intersection association scheme of a block design d , or fail if d is not
block schematic. The optional argument opt is a record for options. If it contains the component
Matrix :=true, the block intersection matrix is returned instead. Uses the package Association-
Schemes. If the package is not available, BlockScheme always returns the block intersection matrix
and does not check if it defines an association scheme.

2.4.5 PointPairScheme

. PointPairScheme(d[, opt]) (function)

Returns the point pair association scheme of a block design d , or fail if d is not point pair
schematic. The optional argument opt is a record for options. If it contains the component
Matrix :=true, the point pair inclusion matrix is returned instead. The point pair scheme was de-
fined by Cameron [Cam75] for Steiner 3-designs. This command is a slight generalisation that works
for arbitrary designs. Uses the package AssociationSchemes. If the package is not available,
PointPairScheme always returns the point pair inclusion matrix and does not check if it defines
an association scheme.

PAG 27

2.4.6 TDesignB

. TDesignB(t, v, k, lambda) (function)

The number of blocks of a t -(v ,k ,lambda) design.

2.4.7 IversonBracket

. IversonBracket(P) (function)

Returns 1 if P is true, and 0 otherwise.

2.4.8 SymmetricDifference

. SymmetricDifference(X, Y) (function)

Returns the symmetric difference of two sets X and Y .

2.5 Latin Squares

2.5.1 ReadMOLS

. ReadMOLS(filename) (function)

Read a list of MOLS sets from a file. The file starts with the number of rows m, columns n, and
the size of the sets s, followed by the matrix entries. Integers in the file are separated by whitespaces.

2.5.2 WriteMOLS

. WriteMOLS(filename, list) (function)

Write a list of MOLS sets to a file. The number of rows m, columns n, and the size of the sets s is
written first, followed by the matrix entries. Integers are separated by whitespaces.

2.5.3 CayleyTableOfGroup

. CayleyTableOfGroup(G) (function)

Returns a Cayley table of the group G . The elements are integers 1, . . . ,Order(G).

2.5.4 FieldToMOLS

. FieldToMOLS(F) (function)

Construct a complete set of MOLS from the finite field F . A similar function is MOLS (GUAVA:
MOLS) from the package Guava.

PAG 28

2.5.5 MOLSToOrthogonalArray

. MOLSToOrthogonalArray(ls) (function)

Transforms the set of MOLS ls to an equivalent orthogonal array.

2.5.6 OrthogonalArrayToMOLS

. OrthogonalArrayToMOLS(oa) (function)

Transforms the orthogonal array oa to an equivalent set of MOLS.

2.5.7 MOLSToTransversalDesign

. MOLSToTransversalDesign(ls) (function)

Transforms the set of MOLS ls to an equivalent transversal design.

2.5.8 TransversalDesignToMOLS

. TransversalDesignToMOLS(td) (function)

Transforms the transversal design td to an equivalent set of MOLS.

2.5.9 MOLSAut

. MOLSAut(ls[, opt]) (function)

Computes the full auto(para)topy group of a set of MOLS ls . Uses nauty/Traces 2.8 by
B.D.McKay and A.Piperno [MP14]. The optional argument opt is a record for options. Possible
components are:

• Isotopy :=true/false Compute the full autotopy group of ls . This is the default.

• Paratopy :=true/false Compute the full autoparatopy group of ls .

Any other components will be forwarded to the BlockDesignAut (2.4.1) function; see its documen-
tation.

2.5.10 MOLSFilter

. MOLSFilter(ls[, opt]) (function)

Eliminates isotopic/paratopic copies from a list of MOLS sets ls . Uses nauty/Traces 2.8 by
B.D.McKay and A.Piperno [MP14]. The optional argument opt is a record for options. Possible
components are:

• Paratopy :=true/false Eliminate paratopic MOLS sets. This is the default.

• Isotopy :=true/false Eliminate isotopic MOLS sets.

PAG 29

Any other components will be forwarded to the BlockDesignFilter (2.4.2) function; see its docu-
mentation.

2.5.11 IsAutotopyGroup

. IsAutotopyGroup(n, s, G) (function)

Check if G is an autotopy group for transversal designs with s+2 point classes of order n .

2.5.12 MOLSSubsetOrbitRep

. MOLSSubsetOrbitRep(n, s, G) (function)

Computes representatives of pairs and transversals of the s+2 point classes for the construction
of MOLS of order n with prescribed autotopy group G . A list containing pair representatives in the
first component and transversal representatives in the second component is returned.

2.5.13 KramerMesnerMOLS

. KramerMesnerMOLS(n, s, G[, opt]) (function)

If the function IsAutotopyGroup (2.5.11)(G) returns true for the group G , call
KramerMesnerMOLSAutotopy (2.5.14); otherwise call KramerMesnerMOLSAutoparatopy (2.5.15).

2.5.14 KramerMesnerMOLSAutotopy

. KramerMesnerMOLSAutotopy(n, s, G[, opt]) (function)

Search for MOLS sets of order n and size s with prescribed autotopy group G . By default,
A.Wassermann’s LLL solver solvediophant is used for s= 1, and the backtracking solver solvecm
is used for s> 1. This can be changed by setting options in the record opt . Available options are:

• Solver :="solvediophant" Use solvediophant.

• Solver :="solvecm" Use solvecm.

• Paratopy :=true/false Eliminate paratopic solutions. This is the default.

• Isotopy :=true/false Eliminate isotopic solutions. All solutions are returned if either option
is set to false.

2.5.15 KramerMesnerMOLSAutoparatopy

. KramerMesnerMOLSAutoparatopy(n, s, G[, opt]) (function)

Search for MOLS sets of order n and size s with prescribed autoparatopy group G . By default,
A.Wassermann’s LLL solver solvediophant is used for s= 1, and the backtracking solver solvecm
is used for s> 1. This can be changed by setting options in the record opt . Available options are:

• Solver :="solvediophant" Use solvediophant.

PAG 30

• Solver :="solvecm" Use solvecm.

• Paratopy :=true/false Eliminate paratopic solutions. This is the default.

• Isotopy :=true/false Eliminate isotopic solutions. All solutions are returned if either option
is set to false.

2.6 Cubes of Symmetric Designs

2.6.1 DifferenceCube

. DifferenceCube(G, ds, n) (function)

Returns the n -dimenional difference cube constructed from a difference set ds in the group G .

2.6.2 GroupCube

. GroupCube(G, dds, n) (function)

Returns the n -dimenional group cube constructed from a symmetric design dds such that the
blocks are difference sets in the group G .

2.6.3 CubeSlice

. CubeSlice(C, x, y, fixed) (function)

Returns a 2-dimensional slice of the incidence cube C obtained by varying coordinates in positions
x and y , and taking fixed values for the remaining coordinates given in a list fixed .

2.6.4 CubeSlices

. CubeSlices(C[, x, y][, fixed]) (function)

Returns 2-dimensional slices of the incidence cube C . Optional arguments are the varying coor-
dinates x and y , and values of the fixed coordinates in a list fixed . If optional arguments are not
given, all possibilities will be supplied. For an n-dimensional cube C of order v, the following calls
will return:

• CubeSlices(C , x , y) . . .vn−2 slices obtained by varying values of the fixed coordinates.

• CubeSlices(C , fixed) . . .
(n

2

)
slices obtained by varying the non-fixed coordinates x < y.

• CubeSlices(C) . . .
(n

2

)
·vn−2 slices obtained by varying both the non-fixed coordinates x < y and

values of the fixed coordinates.

PAG 31

2.6.5 CubeLayer

. CubeLayer(C, x, fixed) (function)

Returns an (n−1)-dimensional layer of the n-dimensional cube C obtained by setting coordinate
x to the value fixed and varying the remaining coordinates.

2.6.6 CubeLayers

. CubeLayers(C, x) (function)

Returns the (n−1)-dimensional layers of the n-dimensional cube C obtained by fixing coordinate
x .

2.6.7 CubeToOrthogonalArray

. CubeToOrthogonalArray(C) (function)

Transforms the incidence cube C to an equivalent orthogonal array.

2.6.8 OrthogonalArrayToCube

. OrthogonalArrayToCube(oa) (function)

Transforms the orthogonal array oa to an equivalent incidence cube.

2.6.9 CubeToTransversalDesign

. CubeToTransversalDesign(C) (function)

Transforms the incidence cube C to an equivalent transversal design.

2.6.10 TransversalDesignToCube

. TransversalDesignToCube(td) (function)

Transforms the transversal design td to an equivalent incidence cube.

2.6.11 LatinSquareToCube

. LatinSquareToCube(L) (function)

Transforms the Latin square L to an equivalent incidence cube.

PAG 32

2.6.12 CubeTest

. CubeTest(C) (function)

Test whether an incidence cube C is a cube of symmetric designs. The result should be
[[v,k,lambda]]. Anything else means that C is not a (v,k, lambda) cube.

2.6.13 SliceInvariant

. SliceInvariant(C) (function)

Computes a paratopy invariant of the cube C based on automorphism group sizes of parallel slices.
Cubes equivalent under paratopy have the same invariant.

2.6.14 CubeAut

. CubeAut(C[, opt]) (function)

Computes the full auto(para)topy group of an incidence cube C . Uses nauty/Traces 2.8 by
B.D.McKay and A.Piperno [MP14]. The optional argument opt is a record for options. Possible
components are:

• Isotopy :=true/false Compute the full autotopy group of C . This is the default.

• Paratopy :=true/false Compute the full autoparatopy group of C .

Any other components will be forwarded to the BlockDesignAut (2.4.1) function; see its documen-
tation.

2.6.15 CubeFilter

. CubeFilter(cl[, opt]) (function)

Eliminates equivalent copies from a list of incidence cubes cl . Uses nauty/Traces 2.8 by
B.D.McKay and A.Piperno [MP14]. The optional argument opt is a record for options. Possible
components are:

• Paratopy :=true/false Eliminate paratopic cubes. This is the default.

• Isotopy :=true/false Eliminate isotopic cubes.

Any other components will be forwarded to the BlockDesignFilter (2.4.2) function; see its docu-
mentation.

2.6.16 SDPSeriesGroup

. SDPSeriesGroup(m) (function)

Returns a group for the designs of SDPSeriesDesign (2.6.17). This is the elementary Abelian
group of order 4m.

PAG 33

2.6.17 SDPSeriesDesign

. SDPSeriesDesign(m, i) (function)

Returns a symmetric block design with parameters (4m,2m−1(2m−1),2m−1(2m−1−1)). The argu-
ment i must be 1, 2, or 3. If i= 1, the design is the symplectic design of Kantor [Kan75]. This design
has the symmetric difference property (SDP). If i= 2 or i= 3, two other non-isomorphic designs with
the same parameters are returned. They are not SDP designs, but have the property that all their blocks
are difference sets in the group returned by SDPSeriesGroup (2.6.16). Developments of these blocks
are isomorphic to the design for i= 1, so the two other designs are not developments of their blocks.

2.7 Hadamard Matrices

2.7.1 IsHadamardMat

. IsHadamardMat(H) (function)

Returns true if H is an n-dimensional Hadamard matrix and false otherwise.

2.7.2 IsProperHadamardMat

. IsProperHadamardMat(H) (function)

Returns true if H is a proper n-dimensional Hadamard matrix and false otherwise.

2.7.3 Paley1Mat

. Paley1Mat(q) (function)

Returns a Paley type I Hadamard matrix of order q + 1 constructed from the squares in GF(q).
The argument should be a prime power q ≡ 3 (mod 4).

2.7.4 Paley2Mat

. Paley2Mat(q) (function)

Returns a Paley type II Hadamard matrix of order 2(q+1) constructed from the squares in GF(q).
The argument should be a prime power q ≡ 1 (mod 4).

2.7.5 Paley3DMat

. Paley3DMat(v) (function)

Returns a three-dimensional Hadamard matrix of order v obtained by the Paley-like construction
introduced in [KPT23b]. The argument should be an even number v such that v−1 is a prime power.

PAG 34

2.7.6 SDPSeriesHadamardMat

. SDPSeriesHadamardMat(m, i) (function)

Returns a Hadamard matrix of order 4m for the SDP series of designs. The argument i must be 1,
2, or 3. See documentation for the SDPSeriesDesign (2.6.17) function.

2.7.7 AllOnesMat

. AllOnesMat(v[, n]) (function)

Returns the n -dimensional matrix of order v with all entries 1. By default, n= 2.

2.7.8 ProductConstructionMat

. ProductConstructionMat(H, n) (function)

Given a 2-dimensional Hadamard matrix H , returns the n -dimensional proper Hadamard matrix
obtained by the product construction of Yang [Yan86].

2.7.9 CyclicDimensionIncrease

. CyclicDimensionIncrease(H) (function)

Given an n-dimensional Hadamard matrix H , returns the (n+ 1)-dimensional Hadamard matrix
obtained by Theorem 6.1.5 of [YNX10]. The construction also works for cyclic cubes of symmetric
designs.

2.7.10 HadamardMatAut

. HadamardMatAut(H[, opt]) (function)

Computes the full automorphism group of a Hadamard matrix H . Represents the matrix by a
colored graph (see [McK79]) and uses nauty/Traces 2.8 by B.D.McKay and A.Piperno [MP14].
The optional argument opt is a record for options. Possible components of opt are:

• Dual :=true/false If set to true, dual automorphisms (transpositions) are also allowed. The
default is false.

2.7.11 HadamardMatFilter

. HadamardMatFilter(hl[, opt]) (function)

Eliminates equivalent copies from a list of Hadamard matrices hl . Represents the matrices by
colored graphs (see [McK79]) and uses nauty/Traces 2.8 by B.D.McKay and A.Piperno [MP14].
The optional argument opt is a record for options. Possible components of opt are:

• Dual :=true/false If set to true, dual equivalence is allowed (i.e. the matrices can be trans-
posed). The default is false.

PAG 35

• Positions :=true/false Return positions of inequivalent Hadamard matrices instead of the
matrices themselves.

2.7.12 HadamardToIncidence

. HadamardToIncidence(M) (function)

Transforms the Hadamard matrix M to an incidence matrix by replacing all −1 entries by 0.

2.7.13 IncidenceToHadamard

. IncidenceToHadamard(M) (function)

Transforms the incidence matrix M to a (1,−1)-matrix by replacing all 0 entries by −1.

2.8 Global Options

2.8.1 PAGGlobalOptions

. PAGGlobalOptions (global variable)

A record with global options for the PAG package. Components are:

• Silent :=true/false If set to true, functions such as SolveKramerMesner will not print com-
ments reporting the progress of the calculation.

• TempDir :=directory object Temporary directory used to communicate with external pro-
grams.

References

[Cam75] P. J. Cameron. Two remarks on Steiner systems. Geometriae Dedicata, 4:403–418, 1975.
26

[CD07] C. J. Colbourn and J. H. Dinitz, editors. Handbook of combinatorial designs. Second
edition. Chapman & Hall/CRC, 2007. 11

[Fal12] R. M. Falcon. Cycle structures of autotopisms of the latin squares of order up to 11. Ars
Combin., 103:239–256, 2012. 10

[Kan75] W. M. Kantor. Symplectic groups, symmetric designs, and line ovals. J. Algebra, 33:43–58,
1975. 33

[KD15] A. D. Keedwell and J. Denes. Latin squares and their applications. Second edition.
Elsevier/North-Holland, 2015. 10

[KM76] E. S. Kramer and D. M. Mesner. t-designs on hypergraphs. Discrete Math., 15(3):263–296,
1976. 6

[KNP11] V. Krcadinac, A. Nakic, and M. O. Pavcevic. The Kramer-Mesner method with tactical
decompositions: some new unitals on 65 points. J. Combin. Des., 19(4):290–303, 2011.
24

[KPT23a] V. Krcadinac, M. O. Pavcevic, and K. Tabak. Cubes of symmetric designs. preprint, 2023.
http://arxiv.org/abs/2304.05446. 12, 14, 15

[KPT23b] V. Krcadinac, M. O. Pavcevic, and K. Tabak. Three-dimensional Hadamard matrices of
Paley type. preprint, 2023. https://arxiv.org/abs/2305.12415. 33

[Krc18] V. Krcadinac. Some new designs with prescribed automorphism groups. J. Combin. Des.,
26(4):193–200, 2018. 4

[KV16] V. Krcadinac and R. Vlahovic. New quasi-symmetric designs by the Kramer-Mesner
method. Discrete Math., 339(12):2884–2890, 2016. 9, 22, 24

[KVK21] V. Krcadinac and R. Vlahovic Kruc. Quasi-symmetric designs on 56 points. Adv. Math.
Commun., 15(4):633–646, 2021. 22

[McK79] B. McKay. Hadamard equivalence via graph isomorphism. Discrete Math., 27:213–214,
1979. 34

[MP14] B. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic Comput.,
60:94–112, 2014. 25, 26, 28, 32, 34

36

http://arxiv.org/abs/2304.05446
https://arxiv.org/abs/2305.12415

PAG 37

[Nak21] A. Nakic. The first example of a simple 2-(81,6,2) design. Examples and Counterexamples,
1:100005, 2021. 8, 9

[Sch93] B. Schmalz. The t-designs with prescribed automorphism group, new simple 6-designs. J.
Combin. Des., 1(2):125–170, 1993. 6, 7, 8

[SVW12] D. S. Stones, P. Vojtechovsky, and I. M. Wanless. Cycle structure of autotopisms of quasi-
groups and Latin squares. J. Combin. Des., 20(5):227–263, 2012. 10

[Was98] A. Wassermann. Finding simple t-designs with enumeration techniques. J. Combin. Des.,
6(2):79–90, 1998. 7, 24

[Yan86] Y. X. Yang. Proofs of some conjectures about higher-dimensional Hadamard matrices
(Chinese). Kexue Tongbao, 31(2):85–88, 1986. 34

[YNX10] Y. X. Yang, X. X. Niu, and C. Q. Xu. Theory and applications of higher-dimensional
Hadamard matrices. Second edition. CRC Press, 2010. 34

Index

AllOnesMat, 34
AllSubgroupsConjugation, 21

BaseBlocks, 24
BlockDesignAut, 25
BlockDesignFilter, 26
BlockScheme, 26

CayleyTableOfGroup, 27
CompatibilityMat, 24
CubeAut, 32
CubeFilter, 32
CubeLayer, 31
CubeLayers, 31
CubeSlice, 30
CubeSlices, 30
CubeTest, 32
CubeToOrthogonalArray, 31
CubeToTransversalDesign, 31
CyclicDimensionIncrease, 34
CyclicPerm, 20

DifferenceCube, 30

ExpandMatRHS, 24
ExtendedPermRepresentation, 22

FieldToMOLS, 27

GroupCube, 30

HadamardMatAut, 34
HadamardMatFilter, 34
HadamardToIncidence, 35

IncidenceToHadamard, 35
IntersectionNumbers, 26
IsAutotopyGroup, 29
IsGoodSubsetOrbit, 22
IsHadamardMat, 33
IsProperHadamardMat, 33

IversonBracket, 27

KramerMesnerMat, 24
KramerMesnerMOLS, 29
KramerMesnerMOLSAutoparatopy, 29
KramerMesnerMOLSAutotopy, 29
KramerMesnerSearch, 23

LatinSquareToCube, 31
LeftDevelopment, 25
License, 2

MOLSAut, 28
MOLSFilter, 28
MOLSSubsetOrbitRep, 29
MOLSToOrthogonalArray, 28
MOLSToTransversalDesign, 28
MoveGroup, 20
MovePerm, 20
MultiGroup, 21
MultiPerm, 21

OrbitFilter1, 23
OrbitFilter2, 23
OrthogonalArrayToCube, 31
OrthogonalArrayToMOLS, 28

PAG, 4
PAGGlobalOptions, 35
Paley1Mat, 33
Paley2Mat, 33
Paley3DMat, 33
PermRepresentationLeft, 21
PermRepresentationRight, 21
PointPairScheme, 26
PrimitiveGroupsOfDegree, 21
ProductConstructionMat, 34

ReadMOLS, 27
RestrictedGroup, 21

38

PAG 39

RightDevelopment, 24

SDPSeriesDesign, 33
SDPSeriesGroup, 32
SDPSeriesHadamardMat, 34
SliceInvariant, 32
SmallLambdaFilter, 23
SolveKramerMesner, 24
SubsetOrbitRep, 22
SubsetOrbitRepIN, 22
SubsetOrbitRepShort1, 22
SymmetricDifference, 27

TDesignB, 27
ToGroup, 20
TransitiveGroupsOfDegree, 21
TransversalDesignToCube, 31
TransversalDesignToMOLS, 28

WriteMOLS, 27

	The PAG Package
	Getting Started
	Installation
	Examples: Designs
	Examples: Latin Squares
	Examples: Cubes of Symmetric Designs

	The PAG Functions
	Working With Permutation Groups
	Generating Orbits
	Constructing Objects
	Inspecting Objects and Other Functions
	Latin Squares
	Cubes of Symmetric Designs
	Hadamard Matrices
	Global Options

	References
	Index

