Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 55-64.

SMALL-DEGREE PARAMETRIC SOLUTIONS FOR DEGREE 6 AND 7 IDEAL MULTIGRADES

Allan J. Macleod

Statistics, O.R. and Mathematics Group (Retired), University of the West of Scotland, High St., Paisley, Scotland. PA1 2BE
e-mail: peediejenn@hotmail.com


Abstract.   We derive parametric solutions for 6 and 7 term ideal multigrades. These are of significantly smaller degree than previous solutions, such as those of Chernick.

2020 Mathematics Subject Classification.   11D25, 11P05, 11Y50.

Key words and phrases.   Multigrade, parametric solution, elliptic curve.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yvjrdcvrwy


References:

  1. J. Chernick, Ideal solutions of the Tarry-Escott problem, Amer. Math. Monthly 44 (1937), 626-633.
    MathSciNet     CrossRef

  2. A. Choudhry, A new approach to the Tarry-Escott problem, Int. J. Number Theory 13 (2017), 393-417.
    MathSciNet     CrossRef

  3. A. Gloden, Mehrgradige Gleichungen, Noordhoff, Groningen, 1944.
    MathSciNet

  4. A. J. MacLeod, On Crussol's method for Σi=14 Xin = Σi=14 Yin, n=2,4,6, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20 (2016), 19-26.
    MathSciNet

  5. L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
    MathSciNet

  6. T. Piezas III, A Collection of Algebraic Identities, website available at https://sites.google.com/site/tpiezas/Home.

  7. C. Shuwen, Equal Sums of Like Powers, website available at http://eslpower.org/eslp.htm.

  8. C. J. Smyth, Ideal 9th-order multigrades and Letac's elliptic curve, Math. Comp. 57 (1991), 817-823.
    MathSciNet     CrossRef


Rad HAZU Home Page