Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 19-26.

ON CRUSSOL’S METHOD FOR Σi=14 Xin = Σi=14 Yin, n=2,4,6

Allan J. MacLeod

Statistics, O.R. and Mathematics Group (retired), University of the West of Scotland, High St., Paisley, Scotland. PA1 2BE, UK
e-mail: peediejenn@hotmail.com


Abstract.   Crussol gave a method for computing non-trivial integer solutions to the equations in the title. We show that the method can be linked to finding points on either of two possible elliptic curves, both of which have rank greater than zero.

2010 Mathematics Subject Classification.   11D09, 11Y50.

Key words and phrases.   Elliptic curve, Crussol, multigrade.


Full text (PDF) (free access)


References:

  1. L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis, AMS Publishing, New York, 1992.
    MathSciNet

  2. A. Gloden, Aperçu historique des multigrades, Bull. Soc. Nat. Luxemb. 54 (1950) 5-17.
    MathSciNet

  3. L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
    MathSciNet

  4. J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, New York, 1992.
    MathSciNet     CrossRef

  5. D. Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002) 7-17.
    MathSciNet     CrossRef


Rad HAZU Home Page