Croatian Science Foundation project IP-2018-01-5591
Efficient algorithms for robust discrete optimization (RoDiOpt)
Principal investigator: Robert Manger
Host institution: University of Zagreb, Faculty of Science, Department of Mathematics
From: October 2018; Duration: 48 months
Research papers
- A. Klobučar, R. Manger: "Independent sets and vertex covers considered within the
context of robust optimization". Mathematical Communications (2020), Vol 25,
Issue 1, 67-86.
- R. Manger: "An algebraic framework for multi-objective and robust variants of path problems".
Glasnik Matematički (2020), Vol 55(75), Issue 1, 143-176.
- M. Špoljarec, R. Manger: "Heuristic solutions to robust variants of the minimum-cost
integer flow problem". Journal of Heuristics (2020), Vol 26, Issue 4, 531-559.
https://doi.org/10.1007/s10732-020-09441-1
- A. Klobučar, R. Manger: "Solving robust variants of the maximum weighted independent set
problem on trees". Mathematics MDPI (2020), Vol 8, Issue 2, Article No 285, 16 pages.
https://doi.org/10.3390/math8020285
- K. Puljić, R. Manger: "Evolutionary operators for the Hamiltonian completion problem".
Soft Computing (2020). Vol 24, Issue 23, 18073-18088.
https://doi.org/10.1007/s00500-020-05063-8
- A. Klobučar, R. Manger: "An evolutionary algorithm for the robust maximum weighted
independent set problem". Automatika (2020), Vol 61, Issue 4, 523–536.
- A. Klobučar, A. Klobučar: "Properties of double roman domination on cardinal
products of graphs. Ars Mathematica Conteporanea (2020), Vol 19, Issue 2, 337-349.
- M. Špoljarec, R. Manger: "Solving robust variants of integer flow problems with
uncertain arc capacities". Promet – Traffic & Transportation (2021), Vol 33, Issue 1,
77-89. https://doi.org/10.7307/ptt.v33i1.3538
- A. Klobučar, R. Manger: "Solving robust weighted independent set problems on trees
and under interval uncertainty". Symmetry MDPI (2021), Vol 13, Issue 12,
Article No 2259, 16 pages. https://doi.org/10.3390/sym13122259
- A. Klobučar Barišić, R. Manger: "Solving the minimum-cost double Roman domination
problem". Central European Journal of Operations Research (2023).
https://doi.org/10.1007/s10100-023-00884-y