High rank elliptic curves with prescribed torsion

Maintained by Andrej Dujella, University of Zagreb

Let T be an admissible torsion group for an elliptic curve over the rationals. Define

B(T) = sup {rank(E(Q)) : torsion group of elliptic curve E over Q is T}.

In the following table we give the best known lower bounds for B(T).

______________________________________________________________________________________________________

    T         B(T)>=	              Author(s)
______________________________________________________________________________________________________

    0           29        Elkies - Klagsbrun (2024)	

   Z/2Z         20        Elkies - Klagsbrun (2020)	

   Z/3Z         15        Elkies - Klagsbrun (2020)

   Z/4Z         13        Elkies - Klagsbrun (2020) 

   Z/5Z          9        Klagsbrun (2020) 

   Z/6Z          9        Klagsbrun (2020), Voznyy (2020)	

   Z/7Z          6        Klagsbrun (2020)

   Z/8Z          6        Elkies (2006), Dujella - MacLeod - Peral (2013), Voznyy (2021) 

   Z/9Z          4        Fisher (2009), van Beek (2015), Dujella - Petricevic (2021), 
                          Dujella - Petricevic - Rathbun (2022) 

   Z/10Z         4        Dujella (2005,2008), Elkies (2006), Fisher (2016)    

   Z/12Z         4        Fisher (2008) 

Z/2Z × Z/2Z     15        Elkies (2009)

Z/2Z × Z/4Z      9        Dujella - Peral (2012,2019), Klagsbrun (2020)

Z/2Z × Z/6Z      6        Elkies (2006), Dujella - Peral - Tadic (2015), Dujella - Peral (2020)

Z/2Z × Z/8Z      3        Connell (2000), Dujella (2000,2001,2006,2008), Campbell - Goins (2003), 
                          Rathbun (2003,2006,2013,2022), Dujella - Rathbun (2006), 
                          Flores - Jones - Rollick - Weigandt - Rathbun (2007), Fisher (2009), 
                          AttarBashi - Rathbun - Voznyy (2022), 
			  AttarBashi - Fisher - Rathbun - Voznyy (2022), 
			  AttarBashi - Fisher - Voznyy (2022)         
                                                   
______________________________________________________________________________________________________

Click on rank r to see the corresponding "record" curve(s) with torsion points and independent points P1, P2, ... , Pr of infinite order.


References:

  1. J. Aguirre, F. Castaneda, J. C. Peral, High rank elliptic curves with torsion group Z/(2Z), Math. Comp. 73 (2004), 323-331.

  2. J. Aguirre, A. Dujella, M. Jukic Bokun, J. C. Peral, High rank elliptic curves with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2014), 222-230.

  3. J. Aguirre, A. Dujella and J. C. Peral, On the rank of elliptic curves coming from rational Diophantine triples, Rocky Mountain J. Math. 42 (2012), 1759-1776.

  4. J. Aguirre, A. Lozano-Robledo, J. C. Peral, Elliptic curves of maximal rank. Proceedings of the Segundas Jornadas de Teoria de Numeros, 1-28, Bibl. Rev. Mat. Iberoamericana, Madrid, 2008.

  5. J. Aguirre, J. C. Peral, Personal communication, 2009.

  6. K. P. Ansaldi, A. R. Ford, J. L. George, K. M. Mugo, C. E. Phifer, In search of an 8: Rank computations on a family of quartic curves, The Journal of the SUMSRI, Summer 2005.

  7. A. O. L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of factorization, Math. Comp. 60 (1993), 399-405.

  8. Y. AttarBashi, Personal communication, 2021, 2022.

  9. J. Bosman, P. Bruin, A. Dujella and F. Najman, Ranks of elliptic curves with prescribed torsion over number fields, Int. Math. Res. Not. IMRN 2014 (11) (2014), 2885-2923.

  10. T. D. Brooks, E. A. Fowler, K. C. Hastings, D. L. Hiance, M. A. Zimmerman, Elliptic curves with torsion subgroup Z/2Z × Z/8Z: does a rank 4 curve exist?, The Journal of the SUMSRI, Summer 2006.

  11. G. Campbell, Finding Elliptic Curves and Families of Elliptic Curves over Q of Large Rank, Dissertation, Rutgers University, 1999.

  12. G. Campbell and E. H. Goins, Heron triangles, Diophantine problems and elliptic curves, preprint.

  13. S. Chan, J. Hanselman and W. Li, Ranks, 2-Selmer groups, and Tamagawa numbers of elliptic curves with Z/2Z × Z/8Z-torsion, Thirteenth Algorithmic Number Theory Symposium, The Open Book Series 2 (2019), 173-189.

  14. I. Connell, APECS, http://www.math.mcgill.ca/connell/public/apecs/

  15. H. B. Daniels and H. Goodwillie, On the ranks of elliptic curves with isogenies, Int. J. Number Theory 13 (2017), 2215-2227.

  16. A. Dujella, Number Theory Listserver, Apr 2000, May 2000, Mar 2001, Apr 2001, Sep 2002, Dec 2005.

  17. A. Dujella, Diophantine triples and construction of high-rank elliptic curves over Q with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.

  18. A. Dujella, Irregular Diophantine m-tuples and elliptic curves of high rank, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 66-67.

  19. A. Dujella, An example of elliptic curve over Q with rank equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109-111.

  20. A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42 (2007), 3-18.

  21. A. Dujella, Diophantine m-tuples. Connections with elliptic curves, http://web.math.hr/~duje/coell.html

  22. A. Dujella, High-rank elliptic curves with given torsion group and some applications, Proceedings of NuTMiC 2022, Poznań, Banach Center Publications, Warszawa, to appear.

  23. A. Dujella and C. Elsholtz, Sumsets being squares, Acta Math. Hungar. 141 (2013), 353-357.

  24. A. Dujella and M. Jukic Bokun, On the rank of elliptic curves over Q(i) with torsion group Z/4Z × Z/4Z, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), 93-96.

  25. A. Dujella and F. Najman, Elliptic curves with large torsion and positive rank over number fields of small degree and ECM factorization, Period. Math. Hungar. 65 (2012), 193-203.

  26. A. Dujella and J. C. Peral, High rank elliptic curves with torsion Z/2Z × Z/4Z induced by Diophantine triples, LMS J. Comput. Math. 17 (2014), 282-288.

  27. A. Dujella and J. C. Peral, Elliptic curves with torsion group Z/8Z or Z/2Z × Z/6Z, in Trends in Number Theory, Contemp. Math. 649 (2015), 47-62.

  28. A. Dujella and J. C. Peral, Elliptic curves induced by Diophantine triples, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113 (2019), 791-806.

  29. A. Dujella and J. C. Peral, Construction of high rank elliptic curves, J. Geom. Anal. 31 (2021), 6698-6724.

  30. A. Dujella and J. C. Peral, High rank elliptic curves induced by rational Diophantine triples, Glas. Mat. Ser. III 55 (2020), 237-252.

  31. A Dujella, J. C. Peral and P. Tadic, Elliptic curves with torsion group Z/6Z, Glas. Mat. Ser. III 51 (2016), 321-333.

  32. A. Dujella and G. Soydan, On elliptic curves induced by rational Diophantine quadruples, Proc. Japan Acad. Ser. A Math. Sci., to appear.

  33. N. D. Elkies, Algorithmic Number Theory: Tables and Links, http://www.math.harvard.edu/~elkies/compnt.html

  34. N. D. Elkies, E(Q) = (Z/2Z) × (Z/4Z) × Z8, Number Theory Listserver, Jun 2005.

  35. N. D. Elkies, E(Q) = (Z/4Z) × Z11 [also (Z/2Z)2 × Z11], Number Theory Listserver, Jun 2005.

  36. N. D. Elkies, E(Q) = (Z/2Z) × Z17, Number Theory Listserver, Jun 2005.

  37. N. D. Elkies, E(Q) = (Z/2Z)2 × Z14, Number Theory Listserver, Dec 2005.

  38. N. D. Elkies, Z28 in E(Q), etc., Number Theory Listserver, May 2006.

  39. N. D. Elkies, Some more rank records: E(Q) = (Z/2Z) × Z18, (Z/4Z) × Z12, (Z/8Z) × Z6, (Z/2Z) × (Z/6Z) × Z6, Number Theory Listserver, Jun 2006.

  40. N. D. Elkies, Personal communication, 2006, 2008, 2009, 2019.

  41. N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank, Lecture notes, Oberwolfach, 2007, arXiv:0709.2908.

  42. N. D. Elkies, E(Q) = (Z/3Z) × Z14, Number Theory Listserver, Oct 2018.

  43. N. D. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion, Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Mathematical Sciences Publishers, Berkeley, 2020, pp. 233-250.

  44. N. D. Elkies and Z. Klagsbrun, Z29 in E(Q), Number Theory Listserver, Aug 2024.

  45. N. D. Elkies and N. F. Rogers, New rank records for x3 + y3 = k, Number Theory Listserver, May 2003, Jul 2003, Oct 2003.

  46. N. D. Elkies and N. F. Rogers, Elliptic curves x3 + y3 = k of high rank, Proceedings of ANTS-6 (D. Buell, ed.), Lecture Notes in Comput. Sci. 3076 (2004), 184-193.

  47. Y. G. Eroshkin, Personal communication, 2006, 2007, 2008, 2009, 2010, 2011.

  48. S. Fermigier, Un exemple de courbe elliptique definie sur Q de rang ≥ 19, C. R. Acad. Sci. Paris Ser. I 315 (1992), 719-722.

  49. S. Fermigier, Exemples de courbes elliptiques de grand rang sur Q(t) et sur Q possedant des points d'ordre 2, C. R. Acad. Sci. Paris Ser. I 322 (1996), 949-952.

  50. S. Fermigier, Une courbe elliptique definie sur Q de rang ≥ 22, Acta Arith. (1997), 359-363.

  51. T. A. Fisher, Personal communication, 2008, 2009, 2016.

  52. T. A. Fisher, Higher descents on an elliptic curve with a rational 2-torsion point, Math. Comp. 86 (2017), 2493-2518.

  53. J. Flores, K. Jones, A. Rollick, J. Weigandt, A statistical analysis of 2-Selmer groups for elliptic curves with torsion subgroup Z2 × Z8, The Journal of the SUMSRI, Summer 2007.

  54. S. Ivy, B. Jefferson, M. Josey, C. Outing, C. Taylor, S. White, 4-covering maps on elliptic curves with torsion subgroup Z2 × Z8, The Journal of the SUMSRI, Summer 2008.

  55. F. Izadi, F. Khoshnam, A. J. MacLeod, A. S. Zargar, On parametric spaces of bicentric quadrilaterals, Math. Slovaca 67 (2017), 611-622.

  56. M. Jukic Bokun, On the rank of elliptic curves over Q(√-3) with torsion groups Z/3Z × Z/3Z and Z/3Z × Z/6Z, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 61-64.

  57. F. Khoshnam and D. Moody, High rank elliptic curves with torsion Z/4Z induced by Kihara's elliptic curves, Integers 16 (2016), #A70, 1-12.

  58. S. Kim and M. Ram Murty (with an appendix by A. V. Sutherland), From the Birch and Swinnerton-Dyer conjecture to Nagao's conjecture, 2021, arXiv:2105.10805.

  59. Z. Klagsbrun, Personal communication, 2020.

  60. Z. Klagsbrun, T. Sherman and J. Weigandt, The Elkies curve has rank 28 subject only to GRH, Math. Comp. 88 (2019), 837-846.

  61. T.J. Kretschmer, Construction of elliptic curves with large rank, Math. Comp. 46 (1986), 627-635.

  62. L. Kulesz, Arithmetique des courbes algebriques de genre au moins deux, These de doctorat, Universite Paris 7, 1998.

  63. L. Kulesz and C. Stahlke, Elliptic curves of high rank with nontrivial torsion group over Q, Experiment. Math. 10 (2001), 475-480.

  64. O. Lecacheux, Rang de courbes elliptiques sur Q avec un groupe de torsion isomorphe a Z/5Z, C. R. Acad. Sci. Paris Ser. I Math. 332 (2001), 1-6.

  65. O. Lecacheux, Rang de courbes elliptiques avec groupe de torsion non trivial, J. Theor. Nombres Bordeaux 15 (2003), 231-247.

  66. O. Lecacheux, Rang de courbes elliptiques dont le groupe de torsion est non trivial, Ann. Sci. Math. Quebec 28 (2004), 145-151.

  67. A. MacLeod, Personal communication, 2004.

  68. R. Martin and W. McMillen, An elliptic curve over Q with rank at least 23, Number Theory Listserver, March 1998.

  69. R. Martin and W. McMillen, An elliptic curve over Q with rank at least 24, Number Theory Listserver, May 2000.

  70. J.-F. Mestre, Construction d'une courbe elliptique de rang ≥ 12, C. R. Acad. Sci. Paris Ser I Math. 295 (1982), 643-644.

  71. J.-F. Mestre, Un exemple de courbe elliptique sur Q de rang ≥ 15, C. R. Acad. Sci. Paris Ser I Math. 314 (1992), 453-455.

  72. P.L. Montgomery, Speeding the Polard and elliptic curve methods of factorization, Math. Comp. 48 (1987), 243-264.

  73. K. Nagao, Examples of elliptic curves over Q with rank ≥ 17, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 287-289.

  74. K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.

  75. K. Nagao, Construction of high-rank elliptic curves, Kobe J. Math. 11 (1994), 211-219.

  76. K. Nagao and T. Kouya, An example of elliptic curve over Q with rank ≥ 21, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 104-105.

  77. F. Najman, Some rank records for elliptic curves with prescribed torsion over quadratic fields, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 22 (2014). 215-220

  78. F. P. Rabarison, Structure de torsion des courbes elliptiques sur les corps quadratiques, Acta Arith. 144 (2010), 17-52.

  79. R. L. Rathbun, Number Theory Listserver, Oct 2003.

  80. R. L. Rathbun, Personal communication, 2006, 2010, 2013, 2022.

  81. U. Schneiders and H.G. Zimmer, The rank of elliptic curves upon quadratic extensions, in: Computational Number Theory (A. Petho, H.C. Williams, H.G. Zimmer, eds.), de Gruyter, Berlin, 1991, pp. 239-260.

  82. M. van Beek, Personal communication, 2015.

  83. M. van Beek, Computing the Cassels-Tate pairing, PhD thesis, University of Cambridge, 2015.

  84. M. van Beek and T. Fisher, Computing the Cassels-Tate pairing on 3-isogeny Selmer groups via cubic norm equations, Acta Arith. 185 (2018), 367-396.

  85. M. Voznyy, Personal communication, 2019, 2020, 2021, 2022, 2023, 2024, 2025.

  86. M. Watkins, Personal communication, 2005.

  87. T. Womack, Curves with moderate rank and interesing torsion group, http://www.tom.womack.net/maths/torsion.htm


Infinite families of elliptic curves with high rank and prescribed torsion

History of elliptic curves rank records

High rank elliptic curves with prescribed torsion over quadratic fields


PDF version