Let T be an admissible torsion group for
an elliptic curve over the rationals.
Define
G(T) =
sup {rank E(Q(t)) :
torsion group of elliptic curve E over Q(t)
is T},
C(T) =
lim sup {rank E(Q) : torsion group of elliptic curve
E over Q is T}.
In the following two tables the best known
lower bounds for G(T) and C(T) are given.
If C(T) > G(T),
it means that the current
record for C(T)
comes from a parametrization by rational points of some
elliptic curves with positive rank.
I. Adelstein and E. Christiansen, Personal communication, 2006.
A. O. L. Atkin and F. Morain, Finding suitable curves for
the elliptic curve method of factorization, Math. Comp. 60
(1993), 399-405.
G. Campbell, Finding Elliptic Curves and Families of
Elliptic Curves over Q of Large Rank, Dissertation, Rutgers University, 1999.
G. Campbell, On the rank of elliptic curves with a rational
point of order 4, preprint.
G. Campbell and E. H. Goins, Heron triangles,
Diophantine problems and elliptic curves, preprint.
A. Dujella, Diophantine triples and
construction of high-rank elliptic curves over Q
with three non-trivial 2-torsion
points, Rocky Mountain J. Math. 30 (2000), 157-164.
A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples,
Glas. Mat. Ser. III 42 (2007), 3-18.
A. Dujella, Diophantine m-tuples. Connections with
elliptic curves, http://web.math.hr/~duje/coell.html
N. D. Elkies, Z28 in E(Q), etc.,
Number Theory Listserver, May 2006.
N. D. Elkies, Personal communication, 2006.
N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank,
Lecture notes, Oberwolfach, 2007.
S. Fermigier, Exemples de courbes elliptiques de grand rang
sur Q(t) et sur Q possedant des points d'ordre
2, C. R. Acad. Sci. Paris Ser. I 332 (1996), 949-952.
S. Kihara, On an infinite family of elliptic curves with rank
≥ 14 over Q, Proc. Japan Acad. Ser A Math. Sci.
73 (1997), 32.
S. Kihara, On the rank of elliptic curves with three rational
points of order 2, Proc. Japan Acad. Ser A Math. Sci.
73 (1997), 77-78.
S. Kihara, On the rank of elliptic curves with three rational
points of order 2, II, Proc. Japan Acad. Ser A Math. Sci.
73 (1997), 151.
S. Kihara, Construction of high-rank elliptic curves with a
non-trivial rational point of order 2, Proc. Japan Acad. Ser. A
Math. Sci. 73 (1997), 165.
S. Kihara, On the rank of elliptic curves with a rational
point of order 3, Proc. Japan Acad. Ser. A Math. Sci.
76 (2000), 126-127.
S. Kihara, On an elliptic curve over Q(t) of
rank ≥ 9 with a non-trivial 2-torsion point,
Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), 11-12.
S. Kihara, On an elliptic curve over Q(t) of
rank ≥ 14,
Proc. Japan. Acad. Ser. A Math. Sci. 77 (2001), 50-51.
S. Kihara, On the rank of elliptic curves with three rational
points of order 2, III, Proc. Japan Acad. Ser A Math. Sci.
80 (2004), 13-14.
S. Kihara, On the rank of elliptic curves with a rational
point of order 4, Proc. Japan Acad. Ser A Math. Sci.
80 (2004), 26-27.
S. Kihara, On the rank of elliptic curves with a rational
point of order 4, II, Proc. Japan Acad. Ser A Math. Sci.
80 (2004), 158-159.
S. Kihara, On the rank of the elliptic curves with a rational point of order 6,
Proc. Japan Acad. Ser A Math. Sci. 82 (2006), 81-82.
D. S. Kubert, Universal bounds on the torsion of elliptic curves,
Proc. London Math. Soc. 33 (1976), 193-237.
L. Kulesz, Arithmetique des courbes algebriques de genre
au moins deux, These de doctorat, Universite Paris 7, 1998.
L. Kulesz, Courbes elliptiques de rang ≥ 5 sur
Q(t) avec un
groupe de torsion isomorphe a
Z/2Z × Z/2Z, C. R. Acad. Sci.
Paris Ser. I Math. 329 (1999), 503-506.
L. Kulesz, Families of elliptic curves of high rank with
nontrivial torsion group over Q, Acta Arith.
108 (2003), 339-356.
O. Lecacheux, Rang de courbes elliptiques sur
Q avec un groupe
de torsion isomorphe a Z/5Z,
C. R. Acad. Sci. Paris Ser. I Math.
332 (2001), 1-6.
O. Lecacheux, Rang de familles de courbes elliptiques,
Acta Arith. 109 (2003), 131-142.
O. Lecacheux, Rang de courbes elliptiques avec groupe de
torsion non trivial, J. Theor. Nombres Bordeaux 15 (2003),
231-247.
O. Lecacheux, Rang de courbes elliptiques dont le groupe de torsion
est non trivial, Ann. Sci. Math. Quebec 28 (2004), 145-151.
J.-F. Mestre, Courbes elliptiques de rang ≥ 11
sur Q(t), C. R. Acad. Sci. Paris Ser. I 313 (1991), 139-142.
J.-F. Mestre, Courbes elliptiques de rang ≥ 12
sur Q(t), C. R. Acad. Sci. Paris Ser. I 313 (1991), 171-174.
J.-F. Mestre, Construction polynomiales et theorie de
Galois, Proc. International Congress Mathematicians, Zurich 1994,
Birkhauser, 1995, pp. 318-323.
K. Nagao, An example of elliptic curve over
Q(T) with rank ≥ 13,
Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 152-153.
K. Nagao, Construction of high-rank elliptic curves,
Kobe J. Math. 11 (1994), 211-219.
K. Nagao, Construction of high-rank elliptic curves with a
nontrivial torsion point, Math. Comp. 66 (1997), 411-415.
H. Suyama, Informal preliminary report (8), October 1985.