An Introduction to the theory of (non-local) Dirichlet forms

Vanja Wagner

1 Definitions and examples

1.1 Basic notions

A Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is an analytic object that can be used to construct and study certain Markov processes. Dirichlet forms use a quasi-sure analysis, meaning that we are permitted to ignore certain exceptional sets which are not visited by the process, which can sometimes have certain advantages.

A Dirichlet form is a generalization of the energy form $f \mapsto |\nabla f|^2 d\lambda$ introduced in the 19th century in connection to the Dirichlet principle (the solution to the Dirichlet problem minimises the Dirichlet energy).

Let (X, \mathcal{B}, m) be a σ -finite measure space.

Definition 1.1. A symmetric form on $L^2(X, m)$ is a function $\mathcal{E} : \mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}) \to \mathbb{R}$ such that

- (i) $\mathcal{D}(\mathcal{E})$ is dense in $L^2(X, m)$,
- (ii) $\mathcal{E}(u, v) = \mathcal{E}(v, u)$ for all $u, v \in \mathcal{D}(\mathcal{E})$,
- (iii) $\mathcal{E}(au+v,w) = a\mathcal{E}(u,w) + \mathcal{E}(v,w)$ for all $u, v, w \in \mathcal{D}(\mathcal{E})$ and $a \in \mathbb{R}$,
- (iv) $\mathcal{E}(u, u) \ge 0$ for all $u \in \mathcal{D}(\mathcal{E})$.

For $\alpha > 0$ denote by \mathcal{E}_{α} a new symmetric form on $L^2(X, m)$ with domain $\mathcal{D}(\mathcal{E})$

$$\mathcal{E}_{\alpha}(u,v) = \mathcal{E}(u,v) + \alpha(u,v)_{L^2}, \quad u,v \in \mathcal{D}(\mathcal{E})$$

and note that the forms \mathcal{E}_{α} and \mathcal{E}_{β} are comparable for different $\alpha, \beta > 0$. Then the space $(\mathcal{D}(\mathcal{E}), \mathcal{E}_1)$ is a pre-Hilbert space with inner product \mathcal{E}_1 . A symmetric form \mathcal{E} is said to be *closed* if $\mathcal{D}(\mathcal{E})$ is complete with respect to the norm induced by \mathcal{E}_1 . The space $\mathcal{D}(\mathcal{E})$ is then a Hilbert space with inner product \mathcal{E}_{α} for every $\alpha > 0$.

Definition 1.2. A symmetric form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ on $L^2(X, m)$ is closable if

$$(u_n) \subset \mathcal{D}(\mathcal{E}), \ \mathcal{E}(u_n - u_m, u_n - u_m) \xrightarrow{n, m \to \infty} 0, \ ||u_n||_{L^2} \xrightarrow{n \to \infty} 0 \implies \mathcal{E}(u_n, u_n) \xrightarrow{n \to \infty} 0.$$

A symmetric form $(\widetilde{\mathcal{E}}, \mathcal{D}(\widetilde{\mathcal{E}}))$ is an *extension* of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ if $\mathcal{D}(\mathcal{E}) \subset \mathcal{D}(\widetilde{\mathcal{E}})$ and $\mathcal{E} = \widetilde{\mathcal{E}}$ on $\mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E})$. We write $\mathcal{E} \leq \widetilde{\mathcal{E}}$.

Lemma 1.3. A symmetric form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ possesses a closed extension if and only if \mathcal{E} is closable.

Proof. \leftarrow Let $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ be closable and

$$\mathcal{L} = \{ (u_n)_n \subset \mathcal{D}(\mathcal{E}) : (u_n)_n \text{ is a } \mathcal{E}_1 - \text{Cauchy sequence} \}.$$

Define ~ on $\mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E})$ as

$$(u_n)_n \sim (u'_n)_n \Leftrightarrow \lim_n \mathcal{E}_1(u_n - u'_n, u_n - u'_n) = 0$$

and note that \sim is an equivalence relation with quotient set $\widetilde{\mathcal{F}} := \mathcal{L}/_{\sim}$. Let

$$\widetilde{\mathcal{E}}(u,v) = \lim_{n} \mathcal{E}(u_n, v_n), \ u, v \in \widetilde{\mathcal{F}}$$
(1.1)

be a symmetric linear form with domain $\mathcal{D}(\widetilde{\mathcal{E}}) = \widetilde{\mathcal{F}}$. We will show that $(\widetilde{\mathcal{E}}, \widetilde{\mathcal{F}})$ is a closed extension of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ (called the smallest closed extension).

First, let's show that the limit in (1.1) exists. Note that for every $(u_n)_n \subset \mathcal{L}$

$$|\sqrt{\mathcal{E}_1(u_n, u_n)} - \sqrt{\mathcal{E}_1(u_m, u_m)}| \leqslant \sqrt{\mathcal{E}_1(u_n - u_m, u_n - u_m)} \xrightarrow{n, m \to \infty} 0,$$

so the sequence $(\mathcal{E}_1(u_n, u_n))_n$ is a Cauchy sequence in \mathbb{R} . Therefore, for all sequences $(u_n)_n, (v_n)_n$ in \mathcal{L} the Cauchy-Schwartz inequality implies that

$$\begin{aligned} |\mathcal{E}(u_n, v_n) - \mathcal{E}(u_m, v_m)| &= |\mathcal{E}(u_n, v_n - v_m) + \mathcal{E}(u_n - u_m, v_m)| \\ &\leqslant \mathcal{E}_1(u_n, u_n)^{1/2} \mathcal{E}_1(v_n - v_m, v_n - v_m)^{1/2} \\ &+ \mathcal{E}_1(u_n - u_m, u_n - u_m)^{1/2} \mathcal{E}_1(v_m, v_m)^{1/2} \xrightarrow{n, m \to \infty} 0, \end{aligned}$$

i.e. the sequence $(\mathcal{E}(u_n, v_n))_n$ is Cauchy in \mathbb{R} and therefore convergent.

Next, we will show that the form \mathcal{E} is well defined by (1.1), i.e. that it does not depend on the choice of sequences $(u_n)_n \in [u]$ and $(v_n)_n \in [v]$. By using the same argument as above, we get that for all $(u_n)_n, (u'_n)_n \in [u]$ and $(v_n)_n, (v'_n)_n \in [v]$

$$\begin{aligned} |\mathcal{E}(u_n, v_n) - \mathcal{E}(u'_n, v'_n)| &= |\mathcal{E}(u_n, v_n - v'_n) + \mathcal{E}(u_n - u'_n, v'_n)| \\ &\leqslant \mathcal{E}_1(u_n, u_n)^{1/2} \mathcal{E}_1(v_n - v'_n, v_n - v'_n)^{1/2} + \mathcal{E}_1(u_n - u'_n, u_n - u'_n)^{1/2} \mathcal{E}_1(v'_n, v'_n)^{1/2} \xrightarrow{n \to \infty} 0 \end{aligned}$$

Finally, let's show that $(\widetilde{\mathcal{E}}, \mathcal{D}(\widetilde{\mathcal{E}}))$ is a closed extension of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$. Obviously, $\mathcal{D}(\mathcal{E}) \subset \widetilde{\mathcal{F}}$ and $\mathcal{E} = \widetilde{\mathcal{E}}$ on $\mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E})$ (for $u \in \mathcal{D}(\mathcal{E})$ just take a sequence $u_n = u, n \in \mathbb{N}$). To show closedness, take a $\widetilde{\mathcal{E}}_1$ -Cauchy sequence $(u_n)_n \subset \widetilde{\mathcal{F}}$ and for each u_n an approximate sequence $(u_{n,k})_k \subset \mathcal{D}(\mathcal{E})$. For every $n \in \mathbb{N}$ there exists $k_n \in \mathbb{N}$ such that for all $k \ge k_n$, $\widetilde{\mathcal{E}}_1(u_n - u_{n,k_n}, u_n - u_{n,k_n}) < \frac{1}{n}$. One easily shows that the sequence $(u_{n,k_n})_n$ is $\widetilde{\mathcal{E}}_1$ -Cauchy (and therefore \mathcal{E}_1 -Cauchy). Let $u \in \widetilde{\mathcal{F}}$ be such that

$$\widetilde{\mathcal{E}}(u,u) = \lim_{n \to \infty} \mathcal{E}(u_{n,k_n}, u_{n,k_n}).$$

Function u is also the $\widetilde{\mathcal{E}}_1$ -limit of the sequence $(u_n)_n$.

 $\begin{array}{c|c} \hline \Rightarrow & \text{Let } \widetilde{\mathcal{E}} \geqslant \mathcal{E} \text{ be a closed extension of } \mathcal{E} \text{ and } (u_n)_n \subset \mathcal{D}(\mathcal{E}) \subset \mathcal{D}(\widetilde{\mathcal{E}}) \text{ such that} \\ ||u_n||_{L^2} \xrightarrow{n \to \infty} 0 \text{ and } \widetilde{\mathcal{E}}_1(u_n - u_m, u_n - u_m) = \mathcal{E}_1(u_n - u_m, u_n - u_m) \xrightarrow{n, m \to \infty} 0. \end{array} \\ (\widetilde{\mathcal{E}}, \mathcal{D}(\widetilde{\mathcal{E}})) \text{ is closed, there exists a function } u \in \mathcal{D}(\widetilde{\mathcal{E}}) \text{ such that } \widetilde{\mathcal{E}}_1(u_n - u, u_n - u) \xrightarrow{n \to \infty} 0. \end{array} \\ \text{This implies that } ||u_n - u||_{L^2} \xrightarrow{n \to \infty} 0 \text{ so } u = 0. \text{ Therefore } \mathcal{E}(u_n, u_n) \xrightarrow{n \to \infty} 0, \text{ i.e. } \mathcal{E} \text{ is closable.} \end{array}$

Definition 1.4. A symmetric form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ on $L^2(X, m)$ is *Markovian* if for each $\varepsilon > 0$ there exists an increasing Lipschitz function $\phi_{\varepsilon} : \mathbb{R} \to [-\varepsilon, 1+\varepsilon]$ with Lipschitz constant K = 1 such that $\phi_{\varepsilon|[0,1]} = \text{id}$ and

$$u \in \mathcal{D}(\mathcal{E}) \Rightarrow \phi_{\varepsilon}(u) \in \mathcal{D}(\mathcal{E}) \text{ and } \mathcal{E}(\phi_{\varepsilon}(u), \phi_{\varepsilon}(u)) \leqslant \mathcal{E}(u, u).$$
 (1.2)

A Dirichlet form is a symmetric form on $L^2(X, m)$ which is closed and Markovian.

Remark 1.5. (a) We say that the unit contraction operates on a symmetric form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ if

$$u \in \mathcal{D}(\mathcal{E}), \ v = (u \lor 0) \land 1 \Rightarrow v \in \mathcal{D}(\mathcal{E}), \ \mathcal{E}(v,v) \leqslant \mathcal{E}(u,u).$$
 (1.3)

A function $v \in L^2(X, m)$ is a normal contraction of $u \in L^2(X, m)$ if

$$|v(y) - v(x)| \le |u(y) - u(x)|, |v(x)| \le |u(x)|, x, y \in X.$$

We say that normal contractions operate on \mathcal{E} if for every $u \in \mathcal{D}(\mathcal{E})$ and every normal contraction v of u

$$v \in \mathcal{D}(\mathcal{E}), \, \mathcal{E}(v, v) \leqslant \mathcal{E}(u, u).$$
 (1.4)

Obviously $(1.4) \Rightarrow (1.3) \Rightarrow (1.2)$. One can show that these conditions are equivalent when $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is closed.

(b) Suppose that \mathcal{E} is a closable Markovian symmetric form on $L^2(x,m)$. Then its smallest closed extension $\tilde{\mathcal{E}}$ is again Markovian and hence a Dirichlet form (see [1, Theorem 3.1.1.] for the proof using the corresponding resolvents). Note that not all extensions need to be Markovian, but there exists a maximal closed extension which is Markovian.

Example 1.6. Let $D \subset \mathbb{R}^d$ be a domain (open, connected set) and set

$$\mathcal{E}(u,v) = \sum_{i,j=1}^{d} \int_{D} \frac{\partial u(x)}{\partial x_{i}} \frac{\partial v(x)}{\partial x_{j}} \nu_{ij}(dx) + \iint_{D \times D \setminus \mathbf{d}} (u(y) - u(x))(v(y) - v(x))J(dx, dy)$$
(1.5)
$$+ \int_{D} u(x)v(x)\kappa(dx), \mathcal{D}(\mathcal{E}) = C_{c}^{\infty}(D),$$

where

(i) $(\nu_{ij})_{1 \leq i,j \leq d}$ are Radon measures¹ such that for any $\xi \in \mathbb{R}^d$ and any compact $K \subset D$

$$\sum_{i,j=1}^{d} \xi_i \xi_j \nu_{i,j}(K) \ge 0, \ \nu_{ij}(K) = \nu_{ji}(K), \ 1 \le i, j \le d.$$

¹A Radon measure is a Borel measure which is inner regular, outer regular and locally finite.

(ii) J is a positive symmetric Radon measure on $D \times D$ off the diagonal **d** such that for any compact set K and open set $U, K \subset U \subset D$

$$\iint_{K \times K \setminus \mathbf{d}} |y - x|^2 J(dx, dy) < \infty \text{ and } J(K, D \setminus U) < \infty.$$

(iii) κ is a positive Radon measure on D.

Under these conditions, the form $(\mathcal{E}, C_c^{\infty}(D))$ is a Markovian symmetric form.

• $\mathcal{E}(u, v)$ is well defined for $u, v \in C_c^{\infty}(D)$. One only needs to check that the second term in $\mathcal{E}(u, v)$ is finite. Let U be a relatively compact open set such that supp u, supp $v \subset U \subset D$. By decomposing the second term in the definition of $\mathcal{E}(u, v)$ we get

$$\begin{split} \iint_{D \times D \backslash \mathbf{d}} \dots &= \iint_{U \times U \backslash \mathbf{d}} \dots + \iint_{U \times D \backslash U} \dots + \iint_{D \backslash U \times U} \dots + \iint_{D \backslash U \times D \backslash U \backslash \mathbf{d}} \dots \\ &= I_1 + I_2 + I_3 + I_4 \end{split}$$

That the integral I_1 is finite follows by applying the mean value theorem and condition (ii),

$$I_1 = \iint_{U \times U \backslash \mathbf{d}} (u(y) - u(x))(v(y) - v(x))J(dx, dy) \lesssim \iint_{U \times U \backslash \mathbf{d}} |y - x|^2 J(dx, dy) < \infty.$$

Next, by the second part of condition (ii) it follows that I_2 and I_3 are finite,

$$I_2 = \iint_{U \times D \setminus U} u(x)v(x)J(dx, dy) \leq ||u||_{\infty}||v||_{\infty}J(\text{supp } u \cup \text{supp } v, D \setminus U) < \infty.$$

Finally, note that $I_4 = 0$.

• Note that the first condition in (i) assures positivity, i.e. $\mathcal{E}(u, u) \ge 0$ for $u \in C_c^{\infty}(D)$. For $\delta > 0$ there exists $n = n(\delta) \in \mathbb{N}$ and cubes $\{C_1, \ldots, C_n\}$ of side length δ covering supp u and supp v. Let η_k be a point from cube C_k and denote $\xi_k^i = \frac{\partial u(\eta_k)}{\partial x_i}$. By the Lebesgue theorem and condition in (i)

$$\sum_{i,j=1}^{d} \frac{\partial u(x)}{\partial x_i} \frac{\partial v(x)}{\partial x_j} \nu_{ij}(dx) = \lim_{\delta \to 0} \sum_{k=1}^{n(\delta)} \sum_{i,j=1}^{d} \xi_k^i \xi_k^j \nu_{ij}(C_k) \ge 0.$$

That the bilinear form \mathcal{E} is symmetric follows analogously.

• Next we verify the Markovian property. Let ϕ_{ε} be a function from Definition 1.4. Then for every $u \in C_c^{\infty}(D)$, $\phi_{\varepsilon}(u) \in C_c^{\infty}(D)$ and

$$\begin{aligned} \mathcal{E}(\phi_{\varepsilon}(u),\phi_{\varepsilon}(u)) &= \sum_{i,j=1}^{d} \int_{D} |\phi_{\varepsilon}'(u(x))|^{2} \frac{\partial u(x)}{\partial x_{i}} \frac{\partial u(x)}{\partial x_{j}} \nu_{ij}(dx) \\ &+ \iint_{D \times D \setminus \mathbf{d}} (\phi_{\varepsilon}(u(y)) - \phi_{\varepsilon}(u(x)))^{2} J(dx,dy) \\ &+ \int_{D} \phi_{\varepsilon}(u(x))^{2} \kappa(dx) \\ &\leqslant \mathcal{E}(u,u), \end{aligned}$$

since $0 \leq \phi_{\varepsilon}'(u(x)) \leq 1$, $|\phi_{\varepsilon}(u(x)) - \phi_{\varepsilon}(u(y))| \leq |u(x) - u(y)|$, $|\phi_{\varepsilon}(u(x))| \leq |u(x)|$.

Let *m* be a positive Radon measure with supp m = D. The Markovian symmetric form $(\mathcal{E}, C_c^{\infty}(D))$ is not a closed form in $L^2(D, m)$, but it is closable in many cases:

(1) When $\nu_{ij} = \lambda \delta_{ij}$, J = 0 and $\kappa = 0$, the form $(\mathcal{E}, C_c^{\infty})$ is closable and the extension $(\mathcal{E}, H^1(D))$ is a Dirichlet form. Here, $H^1(D)$ is the Sobolev space of order 1 on D,

$$H^{1}(D) = \left\{ u \in L^{2}(D) : \frac{\partial u}{\partial x_{i}} \in L^{2}(D), \ 1 \leq i \leq d \right\},$$

where $\frac{\partial u}{\partial x_i}$ is the weak derivative. For every \mathcal{E}_1 -Cauchy sequence $(u_n)_n \subset H^1(D)$ there exists a function $u \in L^2(D)$ such that $||u_n - u||_{L^2} \to 0$. Also, since the sequence $(\nabla u_n)_n$ is L^2 -Cauchy, there exists a function $v \in L^2(D)$ such that $||\nabla u_n - v||_{L^2} \to 0$. The function v is the weak gradient of u, since for every $\varphi \in C_c^{\infty}(D)$

$$(v,\varphi)_{L^2} = \lim_n (\nabla u_n,\varphi)_{L^2} = -\lim_n (u_n,\nabla\varphi)_{L^2} = -(u,\nabla\varphi)_{L^2}.$$

This implies that $u \in H^1(D)$ is the \mathcal{E}_1 -limit of $(u_n)_n$.

(2) When $\nu_{ij}(dx) = a_{ij}(x)dx$, J = 0, $\kappa = 0$ and the densities a_{ij} satisfy the uniform ellipticity condition,

$$\sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j \gtrsim |\xi|^2, \ \xi \in \mathbb{R}^d, \ x \in D,$$

the form $(\mathcal{E}, C_c^{\infty})$ is again closable.

(3) When $\nu_{ij} = 0$, $\kappa = 0$ and J(dx, dy) = j(x, dy)m(dx) the form $(\mathcal{E}, C_c^{\infty}(D))$ is closable. Set

$$\mathcal{F} = \{ u \in L^2(D, m) : \mathcal{E}(u, u) < \infty \}.$$

Then the extension $(\mathcal{E}, \mathcal{F})$ of $(\mathcal{E}, C_c^{\infty}(D))$ is a Dirichlet form. To show closedness, let $(u_n)_n \subset \mathcal{F}$ be a \mathcal{E}_1 -Cauchy sequence. Since $(u_n)_n$ converges in $L^2(D, m)$ there exists a subsequence $(u_{n_k})_k$ converging *m*-a.e. to a function $u \in L^2(D, m)$ (the function u can be defined for every $x \in D$ by extending it on this null set by 0). By Fatou's lemma it follows that

$$\lim_{n} \mathcal{E}(u - u_n, u - u_n) = \lim_{n} \iint_{D \times D \setminus \mathbf{d}} \lim_{k} (u_{n_k}(y) - u_n(x))^2 j(x, dy) m(dx)$$
$$\leq \lim_{n} \liminf_{k} \iint_{D \times D \setminus \mathbf{d}} (u_{n_k}(y) - u_n(x))^2 j(x, dy) m(dx) = 0.$$

1.2 Closed forms and semigroups

Definition 1.7. (a) A family $(T_t)_{t>0}$ of linear operators with domain $L^2(X, m)$ is called a *strongly continuous semigroup* if the following conditions hold:

- (i) (semigroup property) $T_t T_s = T_{t+s}, t, s > 0.$
- (ii) (contraction property) $||T_t u||_{L^2} \leq ||u||_{L^2}, t > 0, u \in L^2(X, m).$
- (iii) $||T_t u u||_{L^2} \xrightarrow{t \to 0} 0, u \in L^2(X, m).$

- (b) A family $(G_{\alpha})_{\alpha>0}$ of symmetric linear operators with domain $L^2(X,m)$ is called a strongly continuous resolvent if the following conditions hold:
 - (i) (resolvent equation) $G_{\alpha} G_{\beta} + (\alpha \beta)G_{\alpha}G_{\beta} = 0.$
 - (ii) (contraction property) $||\alpha G_{\alpha}u||_{L^2} \leq ||u||_{L^2}, \alpha > 0, u \in L^2(X, m).$
 - (iii) $||\alpha G_{\alpha}u u||_{L^2} \xrightarrow{\alpha \to \infty} 0, u \in L^2(X, m).$

Remark 1.8. Let $(T_t)_{t>0}$ be a strongly continuous semigroup on $L^2(X, m)$.

(a) $(T_t)_{t>0}$ determines a strongly continuous resolvent $(G_{\alpha})_{\alpha>0}$ on $L^2(X,m)$ by

$$G_{\alpha}u = \int_0^{\infty} e^{-\alpha t} T_t u dt.$$

(b) The generator A of $(T_t)_{t>0}$, defined by

 $Au = \lim_{t \downarrow 0} \frac{T_t u - u}{t}$ $\mathcal{D}(A) = \{ u \in L^2(X, m) : Au \text{ exists as a strong limit} \},\$

is a non-positive definite self-adjoint operator. Analogously, one can define A through the corresponding strongly continuous resolvent $(G_{\alpha})_{\alpha>0}$ by

$$Au = \alpha u - G_{\alpha}^{-1}u$$
$$\mathcal{D}(A) = G_{\alpha}(L^{2}(X, m))$$

This is well defined since G_{α} is invertible,

$$G_{\alpha}u = 0 \ \Rightarrow \ G_{\beta}u = 0, \ \forall \beta > 0 \ \Rightarrow \ u = \beta G_{\beta}u \xrightarrow{\beta \to \infty} 0,$$

and the definition does not depend on α (follows from the resolvent equation).

Theorem 1.9. [1, Theorem 1.3.1] There is a one-to-one correspondence between the family of closed symmetric forms $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ on $L^2(X, m)$ and the family of non-positive definite self-adjoint operators $(A, \mathcal{D}(A))$ on $L^2(X, m)$. The correspondence is determined by:

$$\mathcal{D}(\mathcal{E}) = \mathcal{D}(\sqrt{-A})$$

$$\mathcal{E}(u, v) = (\sqrt{-A}u, \sqrt{-A}v), \ u, v \in \mathcal{D}(\mathcal{E}).$$

This correspondence can be also characterized by

$$\mathcal{D}(A) \subset \mathcal{D}(\mathcal{E})$$

$$\mathcal{E}(u, v) = (-Au, v), \ u \in \mathcal{D}(A), \ v \in \mathcal{D}(\mathcal{E}).$$
(1.6)

By using the spectral representation of \mathcal{E} (through the spectral family associated with the operator -A and (1.6)), one can easily show that $G_{\alpha}(L^2(X,m)) \subset \mathcal{D}(\mathcal{E})$ and

$$\mathcal{E}_{\alpha}(G_{\alpha}u, v) = (u, v)_{L^2}, \ \alpha > 0, \ u \in L^2(X, m), \ v \in \mathcal{D}(\mathcal{E}).$$

$$(1.7)$$

Given (1.9), the closed symmetric form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ can be directly described in terms of the strongly continuous semigroup $(T_t)_{t>0}$ or resolvent $(G_{\alpha})_{\alpha>0}$ corresponding to the non-positive definite self-adjoint operator A. Define the approximation forms $\mathcal{E}^{(t)}$ and $\mathcal{E}^{(\alpha)}$ determined by (T_t) and (G_{α}) as

$$\mathcal{E}^{(t)}(u,v) = \frac{1}{t}(u - T_t u, v), \quad u, v \in L^2(X,m)$$

$$\mathcal{E}^{(\alpha)}(u,v) = \alpha(u - \alpha G_\alpha u, v), \quad u, v \in L^2(X,m).$$

Corollary 1.10. ([1, Lemma 1.3.4, Theorem 1.4.1.]) The closed symmetric form \mathcal{E} corresponding to A can be defined as

$$\mathcal{D}(\mathcal{E}) = \{ u \in L^2(\mathbb{R}^n) : \lim_{t \downarrow 0} \mathcal{E}^{(t)}(u, u) < \infty \}$$

$$\mathcal{E}(u, v) = \lim_{t \downarrow 0} \mathcal{E}^{(t)}(u, v), \quad u, v \in \mathcal{D}(\mathcal{E})$$
(1.8)

or analogously as

$$\mathcal{D}(\mathcal{E}) = \{ u \in L^2(\mathbb{R}^n) : \lim_{\alpha \to \infty} \mathcal{E}^{(\alpha)}(u, u) < \infty \}$$

$$\mathcal{E}(u, v) = \lim_{\alpha \to \infty} \mathcal{E}^{(\alpha)}(u, v), \quad u, v \in \mathcal{D}(\mathcal{E})$$
(1.9)

Definition 1.11. A linear operator S with domain $L^2(X, m)$ is called Markovian if

 $0 \leqslant u \leqslant 1$ *m*-a.e. $\Rightarrow 0 \leqslant Su \leqslant 1$ *m*-a.e.

Lemma 1.12. ([1, Theorem 1.4.1.]) Let \mathcal{E} be a closed symmetric form on $L^2(X,m)$. Then \mathcal{E} is Markovian iff one of the following holds

- (a) T_t is Markovian for all t > 0.
- (b) αG_{α} is Markovian for all $\alpha > 0$.

Take a symmetric Markov process $\mathbb{M} = ((M_t)_{t \ge 0}, (\mathbb{P}_x)_{x \in X})$ on the probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with values in X and transition probabilities $(p_t(x, \cdot))_{t>0, x \in X}$ on $(X, \mathcal{B}(X))$,

$$p_t(x,B) = \mathbb{P}_x(M_t \in B)$$

The transition probabilities are m-symmetric, i.e.

$$\int_X \int_X u(x)v(y)p_t(x,dy)m(dx) = \int_X \int_X u(y)v(x)p_t(x,dy)m(dx)$$

for all non-negative measurable functions u and v. The family of linear operators $(T_t)_{t>0}$ defined by

$$T_t u(x) = \int_X u(y) p_t(x, dy),$$

for all $u \in L^2(X, m)$ which are bounded. This operator can be extended to an operator on $L^2(X, m)$, because it satisfies the contraction property. Therefore, $(T_t)_{t>0}$ is a Markovian semigroup which is not necessarily strongly continuous. The corresponding semigroup will be strongly continuous if, for example, there exists $\mathcal{L} \subset \mathcal{B}_b(X) \cap L^1(X, m)$ dense in $L^2(X, m)$ such that for all $u \in \mathcal{L}$

$$T_t u(x) \xrightarrow{t\downarrow 0} u(x), m\text{-a.e. } x \in X.$$

This is, in turn, satisfied for example if the semigroup is Feller, i.e. $T_t(C_{\infty}) \subset C_{\infty}$ and

$$||T_t u - u||_{\infty} \xrightarrow{t\downarrow 0} 0, \ u \in C_{\infty},$$

where $(C_{\infty}, || \cdot ||_{\infty})$ is the space of continuous functions vanishing at infinity, equipped with uniform norm. Under these conditions there exists a unique Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ given by (1.9) corresponding to the symmetric Markov process \mathbb{M} .

In general, given a Dirichlet form on $L^2(X)$ it is not possible to construct a Feller transition kernel such that (1.9) holds. This is because functions $T_t u$ are defined *m*-a.e. for all $u \in L^2(X, m)$ and t > 0. But by introducing certain regularity to the Dirichlet form, we are able to choose good representatives of $T_t u$ which allow us to construct a Hunt process outside of some set of capacity zero.

1.3 Regularity

Let X be a locally compact separable metric space and m a positive Radon measure on X with supp m = D.

Definition 1.13. A Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is *regular* if it possesses a *core*, i.e. if there exists a subset \mathcal{C} of $\mathcal{D}(\mathcal{E}) \cap C_c(X)$ such that

- (i) \mathcal{C} is dense in $\mathcal{D}(\mathcal{E})$ with respect to the \mathcal{E}_1 -norm,
- (ii) \mathcal{C} is dense in $C_c(X)$ with respect to the uniform norm.

A core \mathcal{C} of \mathcal{E} is said to be *standard* if it is a dense linear subspace of $C_c(X)$ and $\phi_{\varepsilon}(u) \in \mathcal{C}$ for every $u \in \mathcal{C}$ and function ϕ_{ε} from Definition 1.4.

Remark 1.14. Assume that \mathcal{E} is a closable Markovian symmetric form on $L^2(X, m)$ such that $\mathcal{D}(\mathcal{E})$ is a dense subalgebra of $C_c(X)$. Then the smallest closed extension $\widetilde{\mathcal{E}}$ of \mathcal{E} is a regular Dirichlet form possessing $\mathcal{D}(\mathcal{E})$ as its special standard core.

Example 1.15. Recall the closable Markovian symmetric form $(\mathcal{E}, C_c^{\infty}(D))$ from Example 1.6(1),

$$\mathcal{E}(u,v) = (\nabla u, \nabla v)_{L^2(D)}, \ u, v \in C^{\infty}_c(D).$$

- Let $H_0^1(D) = \overline{C_c^{\infty}(D)}^{\mathcal{E}_1}$. Obviously, $(\mathcal{E}, H_0^1(D))$ is the smallest closed extension of $(\mathcal{E}, C_c^{\infty}(D))$. By the previous remark, $(\mathcal{E}, H_0^1(D))$ is a regular Dirichlet form with a core $C_c^{\infty}(D)$. When D is additionally regular enough (e.g. a C^1 domain), $H_0^1(D) = \{u \in H^1(D) : tr_{\partial D}(u) = 0\}$, where $tr_{\partial D} : H^1(D) \to L^2(\partial D)$ is the trace operator.
- The extension $(\mathcal{E}, H^1(D))$ is a Dirichlet form, but generally not regular. It is a well known fact that in case $D = \mathbb{R}^d$, $C_c^{\infty}(\mathbb{R}^d)$ is \mathcal{E}_1 -dense in $H^1(\mathbb{R}^d)$, and therefore $(\mathcal{E}, H^1(\mathbb{R}^d))$ is a regular Dirichlet form with a core $C_c^{\infty}(\mathbb{R}^d)$. Using Plancharel's theorem we can give an alternative description of the Dirichlet form \mathcal{E} . Given $u, v \in C_c^{\infty}(\mathbb{R}^d)$,

$$\mathcal{E}(u,v) = \int_{\mathbb{R}^d} \nabla u \cdot \nabla v dx = (2\pi)^d \int_{\mathbb{R}^d} \widehat{\nabla u} \cdot \overline{\widehat{\nabla v}} d\xi = (2\pi)^d \int_{\mathbb{R}^d} i\xi \cdot \overline{i\xi} \, \widehat{u}(\xi) \overline{\widehat{v}(\xi)} d\xi$$
$$= (2\pi)^d \int_{\mathbb{R}^d} |\xi|^2 \, \widehat{u}(\xi) \overline{\widehat{v}(\xi)} d\xi$$
(1.10)

A general representation theorem of regular Dirichlet forms is due to Beurling-Deny and LeJan from 1960s (see [1, Section 3.2]).

Theorem 1.16. Any regular Dirichlet form \mathcal{E} on $L^2(X,m)$ can be expressed as

$$\mathcal{E}(u,v) = \mathcal{E}^{(c)}(u,v) + \int_{X \times X \setminus \mathbf{d}} (u(x) - u(y))(v(x) - v(y))J(dx,dy) + \int_X u(x)v(x)\kappa(dx),$$
(1.11)

for $u, v \in \mathcal{D}(\mathcal{E}) \cap C_c(X)$. Here

(i) $\mathcal{E}^{(c)}$ is the local part of \mathcal{E} , i.e. a symmetric form with domain $\mathcal{D}(\mathcal{E}^{(c)}) = \mathcal{D}(\mathcal{E}) \cap C_c(X)$ which satisfies the strong local property:

 $\mathcal{E}^{(c)}(u,v) = 0$ for all $u, v \in \mathcal{D}(\mathcal{E}^{(c)})$ such that v is constant on U, supp $u \subset U \subset X$,

- (ii) J is a symmetric positive Radon measure on $X \times X$ off the diagonal **d**, called the jumping measure,
- (iii) κ is a positive Radon measure on X called the killing measure.
- Such $\mathcal{E}^{(c)}$, J and κ are uniquely determined by \mathcal{E} .

Remark 1.17. Let D be a domain in \mathbb{R}^d . Every closable Markovian symmetric form $(\mathcal{E}, C_c^{\infty}(D))$ on $L^2(D, m)$ can be uniquely expressed by the form (1.5) from Example 1.6.

2 Potential theory

Dirichlet forms give an axiomatic approach to potential theory, starting with the notion of energy. In this framework one can explore other potential-theoretical notions, e.g. capacities, (equilibrium) potentials, etc.

Let X be a LCS metric space, m a positive Radon measure such that supp m = Xand $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ a regular Dirichlet form on $L^2(X, m)$.

Definition 2.1. (i) \mathcal{E} -capacity (1-capacity) of a set is defined in the following way; for an open set $U \subset \mathbb{R}^n$

$$\operatorname{Cap}_{\mathcal{E}}(U) = \inf \{ \mathcal{E}_1(u, u) : u \in \mathcal{D}(\mathcal{E}), u \ge 1 \text{ m-a.e. on } U \},\$$

and for $A \subset \mathbb{R}^n$ arbitrary set

$$\operatorname{Cap}_{\mathcal{E}}(A) = \inf \{ \operatorname{Cap}_{\mathcal{E}}(U) : A \subset U \text{ open } \}.$$

- (ii) We say that a statement depending on $x \in A$ holds \mathcal{E} -quasi-everywhere (q.e.) on A if there exists a set $N \subset A$ of zero \mathcal{E} -capacity such that the statement is true for every $x \in A \setminus N$.
- (iii) Let u be a real valued function defined q.e. on X. We call u quasi continuous if for any $\varepsilon > 0$ there exists an open set $G \subset X$ such that $\operatorname{Cap}_{\mathcal{E}}(G) < \varepsilon$ and $u_{|X\setminus G}$ is continuous.
- (iv) A functions v is said to be a quasi continuous modification of a function $u \in L^2(X,m)$ if v is quasi continuous and v = u m-a.e.
- (v) A sequence $\{F_k\}_{k\in\mathbb{N}}$ of closed increasing sets such that $\operatorname{Cap}_{\mathcal{E}}(X\setminus F_k)\downarrow 0, k\uparrow\infty$ is called a *nest* on X.
- **Remark 2.2.** (a) The present notion of capacity enables us to think of exceptional sets finer than sets of measure m zero. This is because, by definition, $m(A) \leq \operatorname{Cap}_{\mathcal{E}}(A)$ for all open $A \subset X$ such that $\{u \in \mathcal{D}(\mathcal{E}), u \geq 1 \text{ }m\text{-a.e. on }A\} \neq \emptyset$.
 - (b) By [1, (2.1.6)] capacity of any Borel set A can be calculated as

 $\operatorname{Cap}_{\mathcal{E}}(A) = \sup\{\operatorname{Cap}_{\mathcal{E}}(K) : K \subset A, K \text{ is compact}\}.$

(c) Capacity $\operatorname{Cap}_{\mathcal{E}}$ is a Choquet capacity, i.e. increasing, continuous w.r.t. increasing sequences of sets, continuous w.r.t. decreasing sequences of compact sets.

Theorem 2.3. [1, Theorem 2.1.3] Every function $u \in \mathcal{D}(\mathcal{E})$ admits a quasi-continuous modification \tilde{u} .

Proof. For $u \in \mathcal{D}(\mathcal{E}) \cap C(X)$ and $\lambda > 0$ set $G = \{x \in X : |u(x)| > \lambda\}$. Note that G is open and that $\frac{|u|}{\lambda} \ge 1$ on G. Using the normal contraction property (1.4) we get that

$$\operatorname{Cap}_{\mathcal{E}}(G) \leq \mathcal{E}_1\left(\frac{|u|}{\lambda}, \frac{|u|}{\lambda}\right) \leq \frac{1}{\lambda^2} \mathcal{E}_1(u, u).$$
 (2.1)

Now let $u \in \mathcal{D}(\mathcal{E})$. Since \mathcal{E} is regular, there exists a sequence $(u_n)_n \subset \mathcal{D}(\mathcal{E}) \cap C_c(X)$ such that $\mathcal{E}_1(u_n - u, u_n - u) \to 0$. Without loss of generality we can assume that

$$\mathcal{E}_1(u_n - u_{n+1}, u_n - u_{n+1}) < 2^{-3n}$$

Define a sequence of sets $G_n = \{x \in X : |u_n(x) - u_{n+1}(x)| > 2^{-n}\}, n \in \mathbb{N}$. Then by (2.1),

$$\operatorname{Cap}(G_n) \leq 2^{-2n} \mathcal{E}_1(u_n - u_{n+1}, u_n - u_{n+1}) < 2^{-n}.$$

A sequence of sets $\{F_n\}_n$, $F_n := \bigcap_{k=n}^{\infty} G_k^c$, is a nest and for all $k, m > N \ge n$ and $x \in F_n$

$$|u_k(x) - u_m(x)| \leq \sum_{i=N+1}^{\infty} |u_i(x) - u_{i+1}(x)| < \frac{1}{2^N}.$$

This means that for each $n \in \mathbb{N}$ the sequence $(u_k)_k$ is uniformly convergent. Set $F = \bigcup_{n=1}^{\infty} F_n$ and define

$$\widetilde{u}(x) = \lim_{n \to \infty} u(x), \ x \in F.$$

Since $\operatorname{Cap}_{\mathcal{E}}(F) = 0$, $\widetilde{u}_{|F_n}$ is continuous and $u = \widetilde{u}$ *m*-a.e., \widetilde{u} is a quasi-continuous modification of u.

3 Regular Dirichlet forms and symmetric Markov processes

Definition 3.1. A \mathbb{F} -adapted stochastic process $\mathbb{M} = ((M_t)_{t \ge 0}, (\mathbb{P}_x)_{x \in X})$ on $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with state space X is a *Hunt process* (w.r.t. the right-continuous minimal completed admissible filtration $\mathbb{F} = (\mathcal{F}_t)_{t>0}$) if the following hold:

- (i) $x \to \mathbb{P}_x(X_t \in B)$ is measurable for all t > 0 and $B \in \mathcal{B}(X)$,
- (ii) \mathbb{M} is a strong Markov process, i.e. for every stopping time T, M_T is $(\mathcal{F}_T, \mathcal{B}(X))$ measurable and for every $B \in \mathcal{B}(X)$

$$\mathbb{P}_x(M_{T+t} \in B | \mathcal{F}_T) = \mathbb{P}_{M_T}(M_t \in B) \mathbb{P}_x\text{-a.s. on } \{T < \infty\},$$

(iii) \mathbb{M} is right-continuous, i.e.

$$\lim_{s \downarrow t} M_s = M_t, \ \forall t \ \mathbb{P}_x\text{-a.s.}$$

(iv) \mathbb{M} is quasi left-continuous, i.e. for all stopping times T and $(T_n)_n$ such that $T_n \uparrow T$ a.s.

$$\lim_{n\to\infty} M_{T_n} = M_T, \ \mathbb{P}_x\text{-a.s. on } \{T < \infty\}.$$

Remark 3.2. (a) Note that quasi left-continuity does not imply left-continuity, because the set

$$A = \left\{ \lim_{s_n \uparrow t} M_{s_n} = M_t \right\}$$

depends on the choice of sequence $(s_n)_n$, $s_n \uparrow t$.

- (b) If $(\mathbb{P}_x(M_t \in \cdot))_{x,t}$ are sub-probability measures, we can preform a one-point compactification of X by introducing a cemetery state $\partial \notin X$ and redefine P_x to be a probability measure on $X \cup \{\partial\}$. See, for example [1, Section 7.2].
- (c) The transition probability measures $(p_t(x, \cdot))_{t \ge 0, x \in X}$ for \mathbb{M} are given by

$$p_t(x,B) = \mathbb{P}_x(M_t \in B), \ t > 00, \ B \in \mathcal{B}(X), \ x \in X.$$

(d) We only consider symmetric Hunt processes with transition probabilities which are m-symmetric, i.e.

$$\int_X \int_X u(x)v(y)p_t(x,dy)m(dx) = \int_X \int_X u(y)v(x)p_t(x,dy)m(dx)$$

for all non-negative measurable functions u and v. The family of linear operators $(T_t)_{t>0}$ defined by

$$T_t u(x) = \int_X u(y) p_t(x, dy),$$

for all $u \in L^2(X, m)$ which are bounded. This operator can be extended to an operator on $L^2(X, m)$, because it satisfies the contraction property. One can show that this is a strongly continuous semigroup. We can also define the corresponding strongly continuous resolvent in the following way

$$G_{\alpha}f(x) = \int_0^{\infty} e^{-\alpha t} T_t f(x) dt = \mathbb{E}_x \left[\int_0^{\infty} e^{-\alpha t} f(M_t) dt \right], \ f \in L^2(X, m), \ \alpha > 0.$$

(e) For $A \in \mathcal{F}$ and a nonnegative measurable function h such that $||h||_{L^1(X,m)} = 1$ let $\mathbb{P}_{h \cdot m}$ be the probability measure with respect to the initial distribution h(x)m(dx),

$$\mathbb{P}_{h \cdot m}(A) = \int_X \mathbb{P}_x(A)h(x)m(dx).$$

Definition 3.3. Two symmetric Hunt processes $\mathbb{M}^{(1)}$ and $\mathbb{M}^{(2)}$ are *equivalent* if their transition probabilities $(p_t^{(1)}(x,\cdot))_{t,x}$ and $(p_t^{(2)}(x,\cdot))_{t,x}$ coincide outside of a common properly exceptional set N, i.e. a set such that m(N) = 0 and

$$T_t^{(i)}(u1_{N^c}) = 1_{N^c} T_t^{(i)} u$$
 m-a.e.

for any $u \in L^2(X, m)$ and i = 1, 2.

Theorem 3.4. ([1, Theorem 4.2.8, Theorem 7.2.1]) Given a regular Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ there exists a symmetric Hunt process \mathbb{M} with Dirichlet form \mathcal{E} . Two symmetric Hunt processes $\mathbb{M}^{(1)}$ and $\mathbb{M}^{(2)}$ possessing a common regular Dirichlet form are equivalent.

References

[1] M. Fukushima, Y. Oshima, and M. Takeda. *Dirichlet forms and symmetric Markov processes*. de Gruyter, 2nd edition, Berlin, 2010.