An Introduction to the theory of (non-local) Dirichlet
forms

Vanja Wagner

1 Definitions and examples

1.1 Basic notions

A Dirichlet form (£,D(€)) is an analytic object that can be used to construct and study
certain Markov processes. Dirichlet forms use a quasi-sure analysis, meaning that we are
permitted to ignore certain exceptional sets which are not visited by the process, which
can sometimes have certain advantages.

A Dirichlet form is a generalization of the energy form f +— |V f|?d)\ introduced in
the 19th century in connection to the Dirichlet principle (the solution to the Dirichlet
problem minimises the Dirichlet energy).

Let (X, B,m) be a o-finite measure space.

Definition 1.1. A symmetric form on L*(X,m) is a function £ : D(£) x D(€) — R such
that

(i

(il

) D(E) is dense in L*(X,m),
)

(iii) E(au 4 v,w) = a€(u,w) + E(v,w) for all u,v,w € D(E) and a € R,
iv)

E(u,v) = E(v,u) for all u,v € D(E),

E(u,u) >0 for all u € D(E).

For a > 0 denote by &, a new symmetric form on L?(X, m) with domain D(€)
Ealu,v) = E(u,v) + a(u,v)rz, wu,v € D(E)

and note that the forms &, and &£z are comparable for different o, 3 > 0. Then the space
(D(€), &) is a pre-Hilbert space with inner product £. A symmetric form £ is said to
be closed if D(E) is complete with respect to the norm induced by &£. The space D(&)
is then a Hilbert space with inner product &, for every a > 0.

Definition 1.2. A symmetric form (€, D(€)) on L*(X,m) is closable if

n,Mm—00 n—oo n—oo O

(un) CD(E), E(Uup — U, Uy, — Up,) 0, ||un||r2 —= 0 = E(up, up) —

A symmetric form (€, D(€)) is an extension of (£,D(€)) if D(E) C D(E) and £ = € on
D(E) x D(E). We write £ < £.

Lemma 1.3. A symmetric form (£, D(E)) possesses a closed extension if and only if €
1s closable.



Proof. Let (£,D(€)) be closable and
L ={(up)n CD(E) : (up)y, is a & — Cauchy sequence}.
Define ~ on D(E) x D(E) as

/

(un)n ~ (up)n < limé& (u, —u,

n

Up —u,) =0

and note that ~ is an equivalence relation with quotient set Fi=L /~. Let

E(u,v) = im & (un, v), u,v € F (1.1)

be a symmetric linear form with domain D(g) — F. We will show that (c‘,N’, .7?) is a closed
extension of (£, D(E)) (called the smallest closed extension).
First, let’s show that the limit in (1.1) exists. Note that for every (u,), C £

IVEL (U ) — A/ E1 (U i )| < A/ Ex (U — U, Uy — U ) s 0,

so the sequence (&;(un,uy)), is a Cauchy sequence in R. Therefore, for all sequences
(Un)n, (Uy)n in L the Cauchy-Schwartz inequality implies that

1€ (Un, V) — E (U, V)| = |E(Un, Vi — Vi) + E(Un — U, V)|

g gl (una un)l/le (Un — Um, Up — Um)l/z

+& (un — Um, Un — um)l/le (Um> Um)1/2 m

0,
i.e. the sequence (&€ (un,v,)), is Cauchy in R and therefore convergent.

Next, we will show that the form £ is well defined by (1.1), i.e. that it does not depend
on the choice of sequences (u,), € [u] and (v,), € [v]. By using the same argument as
above, we get that for all (u,),, (u),), € [u] and (v,),, (V)), € [V]

n

|E (U, v) — E(ul, v))| = 1€ (Un, vy, — V) + E(up — ul,, vl)|

< E1 (U, un)Y2E1 (0 — VL, 0 — U2 4 Ex (U — Ul un — ul)Y2E (0, 02 2220,

Finally, let’s show that (£, D(€)) is a closed extension of (€, D(E)). Obviously, D(E) C
Fand £ = £ on D(E) x < D(&) (for u € D(E) just take a sequence u, = u, n € N). To
show closedness, take a 51 Cauchy sequence (uy,), C F and for each U, an approximate
sequence (unx)r C D(E). For every n € IN there exists k, € IN such that for all £ > k,,,
& (Un, — Un ey U — Un k) < =. One easﬂy shows that the sequence (uy,k, )n is & - Cauchy
(and therefore & -Cauchy). Let u € F be such that

E(u,u) = lm E(upp,, Unk, )-

Function u is also the &-limit of the sequence (uy, )y
[=] Let &€ > & be a closed extension of & and (u,), C D(E) C D(E) such that

HunHLz n_>—°°> 0 and 51(un Uy Uy, — Up) = E1(Up — Uy, Uy — Upy) TR0 0. Since
n—oo

(E,D(E)) is closed, there exists a | function u € D(E) such that & (u, — u, u, — u) 2= 0.
n—>OO

This implies that ||un —ul|lpe 225 050 u = 0. Therefore &(uy, u,) —— 0, ie. & is
closable. O



Definition 1.4. A symmetric form (€, D(£)) on L*(X,m) is Markovian if for each € > 0
there exists an increasing Lipschitz function ¢. : R — [—¢, 1 +¢| with Lipschitz constant
K =1 such that ¢ = id and

u€DE) = ¢-(u) € DE) and E(¢(u), pe(u)) < E(u,u). (1.2)

A Dirichlet form is a symmetric form on L?*(X,m) which is closed and Markovian.

Remark 1.5. (a) We say that the unit contraction operates on a symmetric form

(&,D(&)) if
ueDE), v=(uVO) ALl =veDE)),Ewv) <E(u,u). (1.3)
A function v € L*(X,m) is a normal contraction of u € L*(X,m) if
[o(y) = v(@)] < fuly) —ul@)], ()] < Ju(@)], 2,y € X.

We say that normal contractions operate on & if for every u € D(E) and every
normal contraction v of u

veDE), E(v,v) < E(u,u). (1.4)

Obviously (1.4) = (1.3) = (1.2). One can show that these conditions are equivalent
when (£, D(E)) is closed.

(b) Suppose that € is a closable Markovian symmetric form on L?*(x,m). Then its
smallest closed extension & is again Markovian and hence a Dirichlet form (see [1,
Theorem 3.1.1.] for the proof using the corresponding resolvents). Note that not
all extensions need to be Markovian, but there exists a maximal closed extension
which is Markovian.

Example 1.6. Let D C R¢ be a domain (open, connected set) and set

£(u,v) Z/ 8:1:'1 8:6 igdz)

2,j=1

e [ ) = (e ola) = (o) .

—i—/[)u(x)v(x)m(da:),
D(€) = C=(D),

where

(i) (vij)1<ij<a are Radon measures' such that for any ¢ € R? and any compact K C D

d
Z &i§ivij(K) 2 0, vy (K) = vu(K), 1<4,j <d.

i,j=1

LA Radon measure is a Borel measure which is inner regular, outer regular and locally finite.



(ii) J is a positive symmetric Radon measure on D x D off the diagonal d such that for
any compact set K and openset U, K CU C D

// ly — z|*J(dz, dy) < oo and J(K, D\ U) < co.
KxK\d

(iii) & is a positive Radon measure on D.
Under these conditions, the form (£, C°(D)) is a Markovian symmetric form.

o &(u,v) is well defined for u,v € C°(D). One only needs to check that the sec-
ond term in £(u,v) is finite. Let U be a relatively compact open set such that
supp u,supp v C U C D. By decomposing the second term in the definition of
E(u,v) we get

DxD\d UxU\d UxD\U D\UxU D\UxD\U\d

=h+L++1
That the integral I is finite follows by applying the mean value theorem and con-

dition (ii),

n=f 1) ) 00) () e ) Il gl ) < oo

Next, by the second part of condition (ii) it follows that I and I3 are finite,

I — // w(@)o(2)J(dz, dy) < Jullm|[V]|ac (supp w Usupp v, D\ ) < 00
UxD\U
Finally, note that I, = 0.

e Note that the first condition in (i) assures positivity, i.e. £(u,u) > 0 for u € C*(D).
For § > 0 there exists n = n(d) € N and cubes {C1, ..., C,} of side length § covering
supp u and supp v. Let 7, be a point from cube C}, and denote &, = 8"("’“ . By the
Lebesgue theorem and condition in (i)

Z agi»)a;; )VZJ d!L‘ - hmz Z Skgkyw Ck

k=1 1,5=1

That the bilinear form £ is symmetric follows analogously.

e Next we verify the Markovian property. Let ¢. be a function from Definition 1.4.
Then for every u € C®(D), ¢-(u) € CX(D) and

E(or (s 0:) = Y | it P T

i,7=1

+//1)x1j)\c1<¢5(u<y)) o (u(x)))?J (de, dy)

/qsa dz)

(u,u),
snce 0. 6.e) < 1, [64(0(0)) — (0l < fue) — (s, )] < )
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Let m be a positive Radon measure with supp m = D. The Markovian symmetric form
(€,C>(D)) is not a closed form in L*(D,m), but it is closable in many cases:

(1) When v;; = Xd;;, J = 0 and £ = 0, the form (£, ) is closable and the extension
(€, HY(D)) is a Dirichlet form. Here, H'(D) is the Sobolev space of order 1 on D,

H%Dy_{ueﬁ@n:gzeL%D)1<i<d}
L
where g—; is the weak derivative. For every & -Cauchy sequence (u,), C H'(D) there

exists a function u € L?*(D) such that ||u, — u||zz — 0. Also, since the sequence
(Vu,), is L?-Cauchy, there exists a function v € L?(D) such that ||Vu,, — v||zz — 0.
The function v is the weak gradient of u, since for every ¢ € C°(D)

(v, )2 = im(Vuy,, )2 = —lim(u,, V)2 = —(u, Vi) 2.

This implies that v € H'(D) is the & -limit of (uy,),.

(2) When v;;(dz) = a;j(x)dz, J = 0, K = 0 and the densities @;; satisfy the uniform
ellipticity condition,

d
D ai(@)&é 2 167, ¢ e R x €D,
1,7=1

the form (&€, C°) is again closable.

(3) When v;; =0, k = 0 and J(dz,dy) = j(x,dy)m(dx) the form (£, C*(D)) is closable.
Set
F={uc L*D,m):E(u,u) < oo}

Then the extension (€, F) of (£,C°(D)) is a Dirichlet form. To show closedness, let
(tun)n C F be a &-Cauchy sequence. Since (uy,), converges in L?(D,m) there exists
a subsequence (u,, ); converging m-a.e. to a function u € L*(D,m) (the function u
can be defined for every x € D by extending it on this null set by 0). By Fatou’s
lemma it follows that

lign E(u— Up,u —up) = lign //DXD\d lilgn(unk (y) — un(2))%j(z, dy)m(dx)

< liin limkinf //DXD\d(unk(y) — ()% (z, dy)m(dx) = 0.

1.2 Closed forms and semigroups

Definition 1.7. (a) A family (7});s0 of linear operators with domain L*(X,m) is called
a strongly continuous semigroup if the following conditions hold:

(i) (semigroup property) 7,75 = Ty1s, t,s > 0.
(ii) (contraction property) ||Tiul|rz < ||ul|pz, t > 0, u € L*(X, m).

(i) |[Tou — ul[r2 =2 0, u € L3(X,m).



(b) A family (G4)as0 of symmetric linear operators with domain L*(X,m) is called a
strongly continuous resolvent if the following conditions hold:

(i) (resolvent equation) G, — G + (a — B)G.Gs = 0.
(ii) (contraction property) ||aGaul|rz < ||ul|pz, a > 0, v € L*(X,m).
(iii) [|aGau — ul|r2 22250, u € L*(X,m).
Remark 1.8. Let (7})s~0 be a strongly continuous semigroup on L*(X,m).

(a) (T})¢>0 determines a strongly continuous resolvent (G4 )aso on L*(X,m) by

Gau:/ e Tudt.
0

(b) The generator A of (1});~0, defined by

Tou—u
Ay = lim =
10 t

D(A) = {u € L*(X, m) : Au exists as a strong limit},

is a non-positive definite self-adjoint operator. Analogously, one can define A
through the corresponding strongly continuous resolvent (G, )a>0 by

Au = au — G 'u

D(A) = G (L*(X,m)).
This is well defined since G, is invertible,

B—00

Gou=0 = Gagu=0,V8>0 = u=pBGsu ——0,
and the definition does not depend on « (follows from the resolvent equation).
Theorem 1.9. [1, Theorem 1.3.1] There is a one-to-one correspondence between the
family of closed symmetric forms (€, D(E)) on L*(X,m) and the family of non-positive
definite self-adjoint operators (A, D(A)) on L*(X,m). The correspondence is determined
by:
' D(E) = D(V-A)
E(u,v) = (V=Au,vV=Av), u,v € D(E).
This correspondence can be also characterized by
D(A) C D(€)
E(u,v) = (—Au,v), u € D(A), v e D(E).
By using the spectral representation of £ (through the spectral family associated with
the operator —A and (1.6)), one can easily show that G, (L*(X,m)) C D(£) and
Ea(Gou,v) = (u,v) 2, a >0, u € L*(X,m), v € D(E). (1.7)

Given (1.9), the closed symmetric form (£, D(E)) can be directly described in terms
of the strongly continuous semigroup (7;);~o or resolvent (Gg)a>o corresponding to the
non-positive definite self-adjoint operator A. Define the approximation forms £ and
E@ determined by (T}) and (G,

(1.6)

(u — Tyu,v), wu,v€ L*(X,m)
ED(u,v) = a(u — aGau,v), u,v € L*(X,m).
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Corollary 1.10. (/1, Lemma 1.3.4, Theorem 1.4.1.]) The closed symmetric form &
corresponding to A can be defined as

D(E) = {u e L*(R"): liglg(t)(u,u) < o0}

(1.8)
E(u,v) = ltlf(r)lg(t (u,v), wu,veDE)
or analogously as
D(E) = {ue L*(R") : lim £ (u,u) < oo}

E(u,v) = lim £ (u,v), u,v € D(E)

a—00

Definition 1.11. A linear operator S with domain L*(X,m) is called Markovian if
0<u<1m-ae. < Su <1 m-a.e.

Lemma 1.12. ([1, Theorem 1.4.1.]) Let £ be a closed symmetric form on L*(X,m).
Then & is Markovian iff one of the following holds

(a) T} is Markovian for all t > 0.

(b) aG, is Markovian for all o > 0.

Take a symmetric Markov process M = ((M;)=0, (P)zex) on the probability space
(Q, F,F,P) with values in X and transition probabilities (p:(z,))ts0zex on (X, B(X)),

pi(x, B) = P.(M, € B).

The transition probabilities are m-symmetric, i.e.

// ()pal, dy)m(de) // ()pu(, dy)m(de)

for all non-negative measurable functions v and v. The family of linear operators (7});>o
defined by

Tou(z) = /X w(y)pi(z, dy),

for all w € L?(X, m) which are bounded. This operator can be extended to an operator on
L%*(X,m), because it satisfies the contraction property. Therefore, (T})sso is a Markovian
semigroup which is not necessarily strongly continuous. The corresponding semigroup
will be strongly continuous if, for example, there exists £ C By(X) N L*(X, m) dense in
L*(X,m) such that for all u € £

Tiu(z) SEAN u(z), m-a.e. x € X.

This is, in turn, satisfied for example if the semigroup is Feller, i.e. T;(C) C Cy and

T — ul]oe 250, u € O,

where (Cw, || - ||oo) is the space of continuous functions vanishing at infinity, equipped
with uniform norm. Under these conditions there exists a unique Dirichlet form (£, D(E))
given by (1.9) corresponding to the symmetric Markov process M.

In general, given a Dirichlet form on L?(X) it is not possible to construct a Feller
transition kernel such that (1.9) holds. This is because functions T;u are defined m-a.e.
for all w € L*(X,m) and t > 0. But by introducing certain regularity to the Dirichlet
form, we are able to choose good representatives of T;u which allow us to construct a
Hunt process outside of some set of capacity zero.
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1.3 Regularity

Let X be a locally compact separable metric space and m a positive Radon measure on
X with supp m = D.

Definition 1.13. A Dirichlet form (€, D(E)) is reqular if it possesses a core, i.e. if there
exists a subset C of D(£) N C.(X) such that

(i) C is dense in D(E) with respect to the & -norm,
(ii) C is dense in C.(X) with respect to the uniform norm.

A core C of £ is said to be standard if it is a dense linear subspace of C,.(X) and ¢.(u) € C
for every u € C and function ¢, from Definition 1.4.

Remark 1.14. Assume that £ is a closable Markovian symmetric form on L?(X, m) such
that D(E) is a dense subalgebra of C.(X). Then the smallest closed extension £ of £ is
a regular Dirichlet form possessing D(E) as its special standard core.

Example 1.15. Recall the closable Markovian symmetric form (£, C°(D)) from Exam-
ple 1.6(1),
E(u,v) = (Vu, Vv)r2(py, u,v € CZ(D).

e Let HJ(D) = C’go(D)gl. Obviously, (€, H}(D)) is the smallest closed extension
of (£,C(D)). By the previous remark, (€, Hj(D)) is a regular Dirichlet form
with a core C>°(D). When D is additionally regular enough (e.g. a C* domain),
H}(D) = {u € HY(D) : trop(u) = 0}, where trop : H'(D) — L*(0D) is the trace
operator.

e The extension (£, H'(D)) is a Dirichlet form, but generally not regular. It is a
well known fact that in case D = R¢, C°(R?) is £;-dense in H'(R?), and therefore
(€, HY(RY)) is a regular Dirichlet form with a core C°(R?). Using Plancharel’s
theorem we can give an alternative description of the Dirichlet form £. Given
u,v € C2(RY),

Ew,v) = | Vu-Vude = @2n)¢ [ Vu - Vode = (21) / i€ I (€)D(E)de
Rd Rd ]Rd
— (2n)! / P aE)E)de
]Rd
(1.10)

A general representation theorem of regular Dirichlet forms is due to Beurling-Deny
and LeJan from 1960s (see |1, Section 3.2]).

Theorem 1.16. Any reqular Dirichlet form € on L*(X,m) can be expressed as

(u(z) — u(y))(v(z) —v(y))J (dz, dy) +/ u(x)v(z)r(dzr),

E(u,v) = 9 (u,v) +/
(1.11)

XxX\d

for u,v € D(E) N C.(X). Here



(i) £ is the local part of &, i.e. a symmetric form with domain D(E) = D(E) N
C.(X) which satisfies the strong local property:

E9(u,v) =0 for all u,v € D(E@) such that v is constant on U, supp u C U C X,

(ii) J is a symmetric positive Radon measure on X x X off the diagonal d, called the
jumping measure,

(i11) K is a positive Radon measure on X called the killing measure.

Such €€, J and k are uniquely determined by &.

Remark 1.17. Let D be a domain in R%. Every closable Markovian symmetric form
(€,C>(D)) on L*(D, m) can be uniquely expressed by the form (1.5) from Example 1.6.

2 Potential theory

Dirichlet forms give an axiomatic approach to potential theory, starting with the notion
of energy. In this framework one can explore other potential-theoretical notions, e.g.
capacities, (equilibrium) potentials, etc.

Let X be a LCS metric space, m a positive Radon measure such that supp m = X
and (€, D(€)) a regular Dirichlet form on L*(X, m).

Definition 2.1. (i) &-capacity (1-capacity) of a set is defined in the following way; for
an open set U C R”

Capg(U) = inf{& (u,u) : u € D(E), u > 1 m-a.e. on U},
and for A C R" arbitrary set
Capg(A) = inf{Capg(U) : A C U open }.
(ii) We say that a statement depending on = € A holds &-quasi-everywhere (q.e.) on A

if there exists a set N C A of zero £-capacity such that the statement is true for
every v € A\ N.

(iii) Let u be a real valued function defined q.e. on X. We call u quasi continuous if
for any € > 0 there exists an open set G C X such that Capg(G) < e and ujx\¢ is
continuous.

(iv) A functions v is said to be a quasi continuous modification of a function u €
L*(X,m) if v is quasi continuous and v = u m-a.e.

(v) A sequence {Fy}ren of closed increasing sets such that Capg(X \ Fy) | 0, k1 oo is
called a nest on X.

Remark 2.2. (a) The present notion of capacity enables us to think of exceptional sets
finer than sets of measure m zero. This is because, by definition, m(A) < Capg(A)
for all open A C X such that {u € D(€), u > 1m-a.e. on A} # ().

(b) By [1, (2.1.6)] capacity of any Borel set A can be calculated as

Capg(A) = sup{Cap¢(K) : K C A, K is compact}.
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(c) Capacity Cap, is a Choquet capacity, i.e. increasing, continuous w.r.t. increasing
sequences of sets, continuous w.r.t. decreasing sequences of compact sets.

Theorem 2.3. [1, Theorem 2.1.3] Every function u € D(E) admits a quasi-continuous
modification 1.

Proof. For u € D(E)NC(X) and A > 0 set G = {z € X : |u(z)| > A\}. Note that G is

open and that % > 1 on G. Using the normal contraction property (1.4) we get that

Capg(G) < & (M M) < i<S'1(u,u). (2.1)

Now let u € D(E). Since £ is regular, there exists a sequence (uy,), C D(E)NC.(X) such
that & (u, — u,u, —u) — 0. Without loss of generality we can assume that

E1(Up — Ung1, Up — Upyp) < 2770
Define a sequence of sets G,, = {z € X : |up(x) —tups1(z)| > 27"}, n € N. Then by (2.1),
Cap(Gh) <2728 (Up — U1, Un — Upgy) < 27"

A sequence of sets {F,, },,, Fy, ==\, G%, is a nest and for all k,m > N > n and z € F,

o0

k(o) = (@) € 3 fsle) — v (0)] < -

This means that for each n € N the sequence (uy)y is uniformly convergent. Set F' =

U,~, F,, and define

u(z) = lim u(x), = € F.

n—oo

Since Capg(F') = 0, Up, is continuous and u = u m-a.e., u is a quasi-continuous modifi-
cation of u. m

3 Regular Dirichlet forms and symmetric Markov pro-
cesses

Definition 3.1. A F-adapted stochastic process Ml = ((My)i=0, (Pz)zex) on (Q, F,F,P)
with state space X is a Hunt process (w.r.t. the right-continuous minimal completed
admissible filtration F = (F;)~0) if the following hold:

(i) = = P,(X; € B) is measurable for all t > 0 and B € B(X),

(ii)) M is a strong Markov process, i.e. for every stopping time 7', My is (Fr, B(X))-
measurable and for every B € B(X)

P,(Mpy € B|Fr) = Pp . (My € B) Pp-as. on {T < oo},

(iii) M is right-continuous, i.e.

lifn M, = M;, Vt P,-a.s.
st
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(iv) M is quasi left-continuous, i.e. for all stopping times 7" and (7,,),, such that T,, 1T
a.s.
lim My, = Mp, Py-as. on {T < co}.

n—oo

Remark 3.2. (a) Note that quasi left-continuity does not imply left-continuity, be-
cause the set

A= {hmM = Mt}

snTt
depends on the choice of sequence (sy,), s, T t.
(b) If (P,(M; € -)),+ are sub-probability measures, we can preform a one-point com-

pactification of X by introducing a cemetery state 0 ¢ X and redefine P, to be a
probability measure on X U {30}. See, for example |1, Section 7.2].

(c) The transition probability measures (p;(z,-))i0.ex for M are given by

pe(z,B) =P, (M € B), t > 00, Be B(X), v € X.

(d) We only consider symmetric Hunt processes with transition probabilities which are
m-symmetric, i.e.

// y)pe(x, dy)m(dx) // x)pe(z, dy)m(dx)

for all non-negative measurable functions v and v. The family of linear operators

(T})¢>0 defined by
Tou(z) = / (), dy),
X

for all u € L?(X,m) which are bounded. This operator can be extended to an
operator on L?(X,m), because it satisfies the contraction property. One can show
that this is a strongly continuous semigroup. We can also define the corresponding
strongly continuous resolvent in the following way

Gof(z) = /OOO O, f () dt — VOOO “"tf(Mt)dt} fe X (X,m), a>0.

(e) For A € F and a nonnegative measurable function h such that ||A|[1(xm) = 1 let
Pj..m be the probability measure with respect to the initial distribution h(z)m(dz),

Py (A) = /X P, (A)h(z)m(dz).

Definition 3.3. Two symmetric Hunt processes M) and M® are equivalent if their tran-

sition probabilities (pg )( x,-))te and (p; 2 (x,+))t coincide outside of a common properly

exceptional set N, i.e. a set such that m(N) =0 and
Tt(i)(ulNc) = 1xT'u  m-ae.
for any w € L*(X,m) and i = 1,2,

Theorem 3.4. (/1, Theorem 4.2.8, Theorem 7.2.1]) Given a regular Dirichlet form
(E,D(E)) there exists a symmetric Hunt process M with Dirichlet form £. Two sym-
metric Hunt processes M) and M@ possessing a common reqular Dirichlet form are
equivalent.
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