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1 Definitions and examples

1.1 Basic notions

A Dirichlet form (E ,D(E)) is an analytic object that can be used to construct and study
certain Markov processes. Dirichlet forms use a quasi-sure analysis, meaning that we are
permitted to ignore certain exceptional sets which are not visited by the process, which
can sometimes have certain advantages.

A Dirichlet form is a generalization of the energy form f 7→ |∇f |2dλ introduced in
the 19th century in connection to the Dirichlet principle (the solution to the Dirichlet
problem minimises the Dirichlet energy).

Let (X,B,m) be a σ-finite measure space.

Definition 1.1. A symmetric form on L2(X,m) is a function E : D(E)×D(E)→ R such
that

(i) D(E) is dense in L2(X,m),

(ii) E(u, v) = E(v, u) for all u, v ∈ D(E),

(iii) E(au+ v, w) = aE(u,w) + E(v, w) for all u, v, w ∈ D(E) and a ∈ R,

(iv) E(u, u) > 0 for all u ∈ D(E).

For α > 0 denote by Eα a new symmetric form on L2(X,m) with domain D(E)

Eα(u, v) = E(u, v) + α(u, v)L2 , u, v ∈ D(E)

and note that the forms Eα and Eβ are comparable for different α, β > 0. Then the space
(D(E), E1) is a pre-Hilbert space with inner product E1. A symmetric form E is said to
be closed if D(E) is complete with respect to the norm induced by E1. The space D(E)
is then a Hilbert space with inner product Eα for every α > 0.

Definition 1.2. A symmetric form (E ,D(E)) on L2(X,m) is closable if

(un) ⊂ D(E), E(un − um, un − um)
n,m→∞−−−−→ 0, ||un||L2

n→∞−−−→ 0 =⇒ E(un, un)
n→∞−−−→ 0.

A symmetric form (Ẽ ,D(Ẽ)) is an extension of (E ,D(E)) if D(E) ⊂ D(Ẽ) and E = Ẽ on
D(E)×D(E). We write E 6 Ẽ .

Lemma 1.3. A symmetric form (E ,D(E)) possesses a closed extension if and only if E
is closable.
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Proof. ⇐ Let (E ,D(E)) be closable and

L = {(un)n ⊂ D(E) : (un)n is a E1 − Cauchy sequence}.

Define ∼ on D(E)×D(E) as

(un)n ∼ (u′n)n ⇔ lim
n
E1(un − u′n, un − u′n) = 0

and note that ∼ is an equivalence relation with quotient set F̃ := L/∼. Let

Ẽ(u, v) = lim
n
E(un, vn), u, v ∈ F̃ (1.1)

be a symmetric linear form with domain D(Ẽ) = F̃ . We will show that (Ẽ , F̃) is a closed
extension of (E ,D(E)) (called the smallest closed extension).

First, let’s show that the limit in (1.1) exists. Note that for every (un)n ⊂ L

|
√
E1(un, un)−

√
E1(um, um)| 6

√
E1(un − um, un − um)

n,m→∞−−−−→ 0,

so the sequence (E1(un, un))n is a Cauchy sequence in R. Therefore, for all sequences
(un)n, (vn)n in L the Cauchy-Schwartz inequality implies that

|E(un, vn)− E(um, vm)| = |E(un, vn − vm) + E(un − um, vm)|
6 E1(un, un)1/2E1(vn − vm, vn − vm)1/2

+ E1(un − um, un − um)1/2E1(vm, vm)1/2
n,m→∞−−−−→ 0,

i.e. the sequence (E(un, vn))n is Cauchy in R and therefore convergent.
Next, we will show that the form E is well defined by (1.1), i.e. that it does not depend

on the choice of sequences (un)n ∈ [u] and (vn)n ∈ [v]. By using the same argument as
above, we get that for all (un)n, (u

′
n)n ∈ [u] and (vn)n, (v

′
n)n ∈ [v]

|E(un, vn)− E(u′n, v
′
n)| = |E(un, vn − v′n) + E(un − u′n, v′n)|

6 E1(un, un)1/2E1(vn − v′n, vn − v′n)1/2 + E1(un − u′n, un − u′n)1/2E1(v′n, v′n)1/2
n→∞−−−→ 0.

Finally, let’s show that (Ẽ ,D(Ẽ)) is a closed extension of (E ,D(E)). Obviously, D(E) ⊂
F̃ and E = Ẽ on D(E) × D(E) (for u ∈ D(E) just take a sequence un = u, n ∈ N). To
show closedness, take a Ẽ1-Cauchy sequence (un)n ⊂ F̃ and for each un an approximate
sequence (un,k)k ⊂ D(E). For every n ∈ N there exists kn ∈ N such that for all k > kn,
Ẽ1(un − un,kn , un − un,kn) < 1

n
. One easily shows that the sequence (un,kn)n is Ẽ1-Cauchy

(and therefore E1-Cauchy). Let u ∈ F̃ be such that

Ẽ(u, u) = lim
n→∞

E(un,kn , un,kn).

Function u is also the Ẽ1-limit of the sequence (un)n.
⇒ Let Ẽ > E be a closed extension of E and (un)n ⊂ D(E) ⊂ D(Ẽ) such that
||un||L2

n→∞−−−→ 0 and Ẽ1(un − um, un − um) = E1(un − um, un − um)
n,m→∞−−−−→ 0. Since

(Ẽ ,D(Ẽ)) is closed, there exists a function u ∈ D(Ẽ) such that Ẽ1(un−u, un−u)
n→∞−−−→ 0.

This implies that ||un − u||L2
n→∞−−−→ 0 so u = 0. Therefore E(un, un)

n→∞−−−→ 0, i.e. E is
closable.
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Definition 1.4. A symmetric form (E ,D(E)) on L2(X,m) is Markovian if for each ε > 0
there exists an increasing Lipschitz function φε : R→ [−ε, 1 + ε] with Lipschitz constant
K = 1 such that φε|[0,1] = id and

u ∈ D(E) ⇒ φε(u) ∈ D(E) and E(φε(u), φε(u)) 6 E(u, u). (1.2)

A Dirichlet form is a symmetric form on L2(X,m) which is closed and Markovian.

Remark 1.5. (a) We say that the unit contraction operates on a symmetric form
(E ,D(E)) if

u ∈ D(E), v = (u ∨ 0) ∧ 1 ⇒ v ∈ D(E), E(v, v) 6 E(u, u). (1.3)

A function v ∈ L2(X,m) is a normal contraction of u ∈ L2(X,m) if

|v(y)− v(x)| 6 |u(y)− u(x)|, |v(x)| 6 |u(x)|, x, y ∈ X.

We say that normal contractions operate on E if for every u ∈ D(E) and every
normal contraction v of u

v ∈ D(E), E(v, v) 6 E(u, u). (1.4)

Obviously (1.4)⇒ (1.3)⇒ (1.2). One can show that these conditions are equivalent
when (E ,D(E)) is closed.

(b) Suppose that E is a closable Markovian symmetric form on L2(x,m). Then its
smallest closed extension Ẽ is again Markovian and hence a Dirichlet form (see [1,
Theorem 3.1.1.] for the proof using the corresponding resolvents). Note that not
all extensions need to be Markovian, but there exists a maximal closed extension
which is Markovian.

Example 1.6. Let D ⊂ Rd be a domain (open, connected set) and set

E(u, v) =
d∑

i,j=1

∫
D

∂u(x)

∂xi

∂v(x)

∂xj
νij(dx)

+

∫∫
D×D\d

(u(y)− u(x))(v(y)− v(x))J(dx, dy) (1.5)

+

∫
D

u(x)v(x)κ(dx),

D(E) = C∞c (D),

where

(i) (νij)16i,j6d are Radon measures1 such that for any ξ ∈ Rd and any compact K ⊂ D

d∑
i,j=1

ξiξjνi,j(K) > 0, νij(K) = νji(K), 1 6 i, j 6 d.

1A Radon measure is a Borel measure which is inner regular, outer regular and locally finite.
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(ii) J is a positive symmetric Radon measure on D×D off the diagonal d such that for
any compact set K and open set U , K ⊂ U ⊂ D∫∫

K×K\d
|y − x|2J(dx, dy) <∞ and J(K,D \ U) <∞.

(iii) κ is a positive Radon measure on D.

Under these conditions, the form (E , C∞c (D)) is a Markovian symmetric form.

• E(u, v) is well defined for u, v ∈ C∞c (D). One only needs to check that the sec-
ond term in E(u, v) is finite. Let U be a relatively compact open set such that
supp u, supp v ⊂ U ⊂ D. By decomposing the second term in the definition of
E(u, v) we get∫∫

D×D\d
... =

∫∫
U×U\d

...+

∫∫
U×D\U

...+

∫∫
D\U×U

...+

∫∫
D\U×D\U\d

...

= I1 + I2 + I3 + I4

That the integral I1 is finite follows by applying the mean value theorem and con-
dition (ii),

I1 =

∫∫
U×U\d

(u(y)−u(x))(v(y)−v(x))J(dx, dy) .
∫∫

U×U\d
|y−x|2J(dx, dy) <∞.

Next, by the second part of condition (ii) it follows that I2 and I3 are finite,

I2 =

∫∫
U×D\U

u(x)v(x)J(dx, dy) 6 ||u||∞||v||∞J(supp u ∪ supp v,D \ U) <∞.

Finally, note that I4 = 0.

• Note that the first condition in (i) assures positivity, i.e. E(u, u) > 0 for u ∈ C∞c (D).
For δ > 0 there exists n = n(δ) ∈ N and cubes {C1, . . . , Cn} of side length δ covering
supp u and supp v. Let ηk be a point from cube Ck and denote ξik = ∂u(ηk)

∂xi
. By the

Lebesgue theorem and condition in (i)

d∑
i,j=1

∂u(x)

∂xi

∂v(x)

∂xj
νij(dx) = lim

δ→0

n(δ)∑
k=1

d∑
i,j=1

ξikξ
j
kνij(Ck) > 0.

That the bilinear form E is symmetric follows analogously.

• Next we verify the Markovian property. Let φε be a function from Definition 1.4.
Then for every u ∈ C∞c (D), φε(u) ∈ C∞c (D) and

E(φε(u), φε(u)) =
d∑

i,j=1

∫
D

|φ′ε(u(x)|2∂u(x)

∂xi

∂u(x)

∂xj
νij(dx)

+

∫∫
D×D\d

(φε(u(y))− φε(u(x)))2J(dx, dy)

+

∫
D

φε(u(x))2κ(dx)

6 E(u, u),

since 0 6 φ′ε(u(x)) 6 1, |φε(u(x))− φε(u(y))| 6 |u(x)− u(y)|, |φε(u(x))| 6 |u(x)|.
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Let m be a positive Radon measure with supp m = D. The Markovian symmetric form
(E , C∞c (D)) is not a closed form in L2(D,m), but it is closable in many cases:

(1) When νij = λδij, J = 0 and κ = 0, the form (E , C∞c ) is closable and the extension
(E , H1(D)) is a Dirichlet form. Here, H1(D) is the Sobolev space of order 1 on D,

H1(D) =

{
u ∈ L2(D) :

∂u

∂xi
∈ L2(D), 1 6 i 6 d

}
,

where ∂u
∂xi

is the weak derivative. For every E1-Cauchy sequence (un)n ⊂ H1(D) there
exists a function u ∈ L2(D) such that ||un − u||L2 → 0. Also, since the sequence
(∇un)n is L2-Cauchy, there exists a function v ∈ L2(D) such that ||∇un− v||L2 → 0.
The function v is the weak gradient of u, since for every ϕ ∈ C∞c (D)

(v, ϕ)L2 = lim
n

(∇un, ϕ)L2 = − lim
n

(un,∇ϕ)L2 = −(u,∇ϕ)L2 .

This implies that u ∈ H1(D) is the E1-limit of (un)n.

(2) When νij(dx) = aij(x)dx, J = 0, κ = 0 and the densities aij satisfy the uniform
ellipticity condition,

d∑
i,j=1

aij(x)ξiξj & |ξ|2, ξ ∈ Rd, x ∈ D,

the form (E , C∞c ) is again closable.

(3) When νij = 0, κ = 0 and J(dx, dy) = j(x, dy)m(dx) the form (E , C∞c (D)) is closable.
Set

F = {u ∈ L2(D,m) : E(u, u) <∞}.

Then the extension (E ,F) of (E , C∞c (D)) is a Dirichlet form. To show closedness, let
(un)n ⊂ F be a E1-Cauchy sequence. Since (un)n converges in L2(D,m) there exists
a subsequence (unk

)k converging m-a.e. to a function u ∈ L2(D,m) (the function u
can be defined for every x ∈ D by extending it on this null set by 0). By Fatou’s
lemma it follows that

lim
n
E(u− un, u− un) = lim

n

∫∫
D×D\d

lim
k

(unk
(y)− un(x))2j(x, dy)m(dx)

6 lim
n

lim inf
k

∫∫
D×D\d

(unk
(y)− un(x))2j(x, dy)m(dx) = 0.

1.2 Closed forms and semigroups

Definition 1.7. (a) A family (Tt)t>0 of linear operators with domain L2(X,m) is called
a strongly continuous semigroup if the following conditions hold:

(i) (semigroup property) TtTs = Tt+s, t, s > 0.

(ii) (contraction property) ||Ttu||L2 6 ||u||L2 , t > 0, u ∈ L2(X,m).

(iii) ||Ttu− u||L2
t→0−−→ 0, u ∈ L2(X,m).
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(b) A family (Gα)α>0 of symmetric linear operators with domain L2(X,m) is called a
strongly continuous resolvent if the following conditions hold:

(i) (resolvent equation) Gα −Gβ + (α− β)GαGβ = 0.
(ii) (contraction property) ||αGαu||L2 6 ||u||L2 , α > 0, u ∈ L2(X,m).
(iii) ||αGαu− u||L2

α→∞−−−→ 0, u ∈ L2(X,m).

Remark 1.8. Let (Tt)t>0 be a strongly continuous semigroup on L2(X,m).

(a) (Tt)t>0 determines a strongly continuous resolvent (Gα)α>0 on L2(X,m) by

Gαu =

∫ ∞
0

e−αtTtudt.

(b) The generator A of (Tt)t>0, defined by

Au = lim
t↓0

Ttu− u
t

D(A) = {u ∈ L2(X,m) : Au exists as a strong limit},

is a non-positive definite self-adjoint operator. Analogously, one can define A
through the corresponding strongly continuous resolvent (Gα)α>0 by

Au = αu−G−1α u

D(A) = Gα(L2(X,m)).

This is well defined since Gα is invertible,

Gαu = 0 ⇒ Gβu = 0, ∀β > 0 ⇒ u = βGβu
β→∞−−−→ 0,

and the definition does not depend on α (follows from the resolvent equation).

Theorem 1.9. [1, Theorem 1.3.1] There is a one-to-one correspondence between the
family of closed symmetric forms (E ,D(E)) on L2(X,m) and the family of non-positive
definite self-adjoint operators (A,D(A)) on L2(X,m). The correspondence is determined
by:

D(E) = D(
√
−A)

E(u, v) = (
√
−Au,

√
−Av), u, v ∈ D(E).

This correspondence can be also characterized by

D(A) ⊂ D(E)

E(u, v) = (−Au, v), u ∈ D(A), v ∈ D(E).
(1.6)

By using the spectral representation of E (through the spectral family associated with
the operator −A and (1.6)), one can easily show that Gα(L2(X,m)) ⊂ D(E) and

Eα(Gαu, v) = (u, v)L2 , α > 0, u ∈ L2(X,m), v ∈ D(E). (1.7)

Given (1.9), the closed symmetric form (E ,D(E)) can be directly described in terms
of the strongly continuous semigroup (Tt)t>0 or resolvent (Gα)α>0 corresponding to the
non-positive definite self-adjoint operator A. Define the approximation forms E (t) and
E (α) determined by (Tt) and (Gα) as

E (t)(u, v) =
1

t
(u− Ttu, v), u, v ∈ L2(X,m)

E (α)(u, v) = α(u− αGαu, v), u, v ∈ L2(X,m).
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Corollary 1.10. ([1, Lemma 1.3.4, Theorem 1.4.1.]) The closed symmetric form E
corresponding to A can be defined as

D(E) = {u ∈ L2(Rn) : lim
t↓0
E (t)(u, u) <∞}

E(u, v) = lim
t↓0
E (t)(u, v), u, v ∈ D(E)

(1.8)

or analogously as
D(E) = {u ∈ L2(Rn) : lim

α→∞
E (α)(u, u) <∞}

E(u, v) = lim
α→∞

E (α)(u, v), u, v ∈ D(E)
(1.9)

Definition 1.11. A linear operator S with domain L2(X,m) is called Markovian if

0 6 u 6 1 m-a.e. ⇒ 0 6 Su 6 1 m-a.e.

Lemma 1.12. ([1, Theorem 1.4.1.]) Let E be a closed symmetric form on L2(X,m).
Then E is Markovian iff one of the following holds

(a) Tt is Markovian for all t > 0.

(b) αGα is Markovian for all α > 0.

Take a symmetric Markov process M = ((Mt)t>0, (Px)x∈X) on the probability space
(Ω,F ,F,P) with values in X and transition probabilities (pt(x, ·))t>0,x∈X on (X,B(X)),

pt(x,B) = Px(Mt ∈ B).

The transition probabilities are m-symmetric, i.e.∫
X

∫
X

u(x)v(y)pt(x, dy)m(dx) =

∫
X

∫
X

u(y)v(x)pt(x, dy)m(dx)

for all non-negative measurable functions u and v. The family of linear operators (Tt)t>0

defined by

Ttu(x) =

∫
X

u(y)pt(x, dy),

for all u ∈ L2(X,m) which are bounded. This operator can be extended to an operator on
L2(X,m), because it satisfies the contraction property. Therefore, (Tt)t>0 is a Markovian
semigroup which is not necessarily strongly continuous. The corresponding semigroup
will be strongly continuous if, for example, there exists L ⊂ Bb(X) ∩ L1(X,m) dense in
L2(X,m) such that for all u ∈ L

Ttu(x)
t↓0−→ u(x), m-a.e. x ∈ X.

This is, in turn, satisfied for example if the semigroup is Feller, i.e. Tt(C∞) ⊂ C∞ and

||Ttu− u||∞
t↓0−→ 0, u ∈ C∞,

where (C∞, || · ||∞) is the space of continuous functions vanishing at infinity, equipped
with uniform norm. Under these conditions there exists a unique Dirichlet form (E ,D(E))
given by (1.9) corresponding to the symmetric Markov process M.

In general, given a Dirichlet form on L2(X) it is not possible to construct a Feller
transition kernel such that (1.9) holds. This is because functions Ttu are defined m-a.e.
for all u ∈ L2(X,m) and t > 0. But by introducing certain regularity to the Dirichlet
form, we are able to choose good representatives of Ttu which allow us to construct a
Hunt process outside of some set of capacity zero.
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1.3 Regularity

Let X be a locally compact separable metric space and m a positive Radon measure on
X with supp m = D.

Definition 1.13. A Dirichlet form (E ,D(E)) is regular if it possesses a core, i.e. if there
exists a subset C of D(E) ∩ Cc(X) such that

(i) C is dense in D(E) with respect to the E1-norm,

(ii) C is dense in Cc(X) with respect to the uniform norm.

A core C of E is said to be standard if it is a dense linear subspace of Cc(X) and φε(u) ∈ C
for every u ∈ C and function φε from Definition 1.4.

Remark 1.14. Assume that E is a closable Markovian symmetric form on L2(X,m) such
that D(E) is a dense subalgebra of Cc(X). Then the smallest closed extension Ẽ of E is
a regular Dirichlet form possessing D(E) as its special standard core.

Example 1.15. Recall the closable Markovian symmetric form (E , C∞c (D)) from Exam-
ple 1.6(1),

E(u, v) = (∇u,∇v)L2(D), u, v ∈ C∞c (D).

• Let H1
0 (D) = C∞c (D)

E1 . Obviously, (E , H1
0 (D)) is the smallest closed extension

of (E , C∞c (D)). By the previous remark, (E , H1
0 (D)) is a regular Dirichlet form

with a core C∞c (D). When D is additionally regular enough (e.g. a C1 domain),
H1

0 (D) = {u ∈ H1(D) : tr∂D(u) = 0}, where tr∂D : H1(D) → L2(∂D) is the trace
operator.

• The extension (E , H1(D)) is a Dirichlet form, but generally not regular. It is a
well known fact that in case D = Rd, C∞c (Rd) is E1-dense in H1(Rd), and therefore
(E , H1(Rd)) is a regular Dirichlet form with a core C∞c (Rd). Using Plancharel’s
theorem we can give an alternative description of the Dirichlet form E . Given
u, v ∈ C∞c (Rd),

E(u, v) =

∫
Rd

∇u · ∇vdx = (2π)d
∫
Rd

∇̂u · ∇̂vdξ = (2π)d
∫
Rd

iξ · iξ û(ξ)v̂(ξ)dξ

= (2π)d
∫
Rd

|ξ|2 û(ξ)v̂(ξ)dξ

(1.10)

A general representation theorem of regular Dirichlet forms is due to Beurling-Deny
and LeJan from 1960s (see [1, Section 3.2]).

Theorem 1.16. Any regular Dirichlet form E on L2(X,m) can be expressed as

E(u, v) = E (c)(u, v) +

∫
X×X\d

(u(x)− u(y))(v(x)− v(y))J(dx, dy) +

∫
X

u(x)v(x)κ(dx),

(1.11)

for u, v ∈ D(E) ∩ Cc(X). Here
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(i) E (c) is the local part of E, i.e. a symmetric form with domain D(E (c)) = D(E) ∩
Cc(X) which satisfies the strong local property:

E (c)(u, v) = 0 for all u, v ∈ D(E (c)) such that v is constant on U, supp u ⊂ U ⊂ X,

(ii) J is a symmetric positive Radon measure on X ×X off the diagonal d, called the
jumping measure,

(iii) κ is a positive Radon measure on X called the killing measure.

Such E (c), J and κ are uniquely determined by E.

Remark 1.17. Let D be a domain in Rd. Every closable Markovian symmetric form
(E , C∞c (D)) on L2(D,m) can be uniquely expressed by the form (1.5) from Example 1.6.

2 Potential theory
Dirichlet forms give an axiomatic approach to potential theory, starting with the notion
of energy. In this framework one can explore other potential-theoretical notions, e.g.
capacities, (equilibrium) potentials, etc.

Let X be a LCS metric space, m a positive Radon measure such that supp m = X
and (E ,D(E)) a regular Dirichlet form on L2(X,m).

Definition 2.1. (i) E-capacity (1-capacity) of a set is defined in the following way; for
an open set U ⊂ Rn

CapE(U) = inf{E1(u, u) : u ∈ D(E), u > 1m-a.e. on U},

and for A ⊂ Rn arbitrary set

CapE(A) = inf{CapE(U) : A ⊂ U open }.

(ii) We say that a statement depending on x ∈ A holds E-quasi-everywhere (q.e.) on A
if there exists a set N ⊂ A of zero E-capacity such that the statement is true for
every x ∈ A \N .

(iii) Let u be a real valued function defined q.e. on X. We call u quasi continuous if
for any ε > 0 there exists an open set G ⊂ X such that CapE(G) < ε and u|X\G is
continuous.

(iv) A functions v is said to be a quasi continuous modification of a function u ∈
L2(X,m) if v is quasi continuous and v = u m-a.e.

(v) A sequence {Fk}k∈N of closed increasing sets such that CapE(X \ Fk) ↓ 0, k ↑ ∞ is
called a nest on X.

Remark 2.2. (a) The present notion of capacity enables us to think of exceptional sets
finer than sets of measure m zero. This is because, by definition, m(A) 6 CapE(A)
for all open A ⊂ X such that {u ∈ D(E), u > 1m-a.e. on A} 6= ∅.

(b) By [1, (2.1.6)] capacity of any Borel set A can be calculated as

CapE(A) = sup{CapE(K) : K ⊂ A, K is compact}.
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(c) Capacity CapE is a Choquet capacity, i.e. increasing, continuous w.r.t. increasing
sequences of sets, continuous w.r.t. decreasing sequences of compact sets.

Theorem 2.3. [1, Theorem 2.1.3] Every function u ∈ D(E) admits a quasi-continuous
modification ũ.

Proof. For u ∈ D(E) ∩ C(X) and λ > 0 set G = {x ∈ X : |u(x)| > λ}. Note that G is
open and that |u|

λ
> 1 on G. Using the normal contraction property (1.4) we get that

CapE(G) 6 E1
(
|u|
λ
,
|u|
λ

)
6

1

λ2
E1(u, u). (2.1)

Now let u ∈ D(E). Since E is regular, there exists a sequence (un)n ⊂ D(E)∩Cc(X) such
that E1(un − u, un − u)→ 0. Without loss of generality we can assume that

E1(un − un+1, un − un+1) < 2−3n.

Define a sequence of sets Gn = {x ∈ X : |un(x)−un+1(x)| > 2−n}, n ∈ N. Then by (2.1),

Cap(Gn) 6 2−2nE1(un − un+1, un − un+1) < 2−n.

A sequence of sets {Fn}n, Fn :=
⋂∞
k=nG

c
k, is a nest and for all k,m > N > n and x ∈ Fn

|uk(x)− um(x)| 6
∞∑

i=N+1

|ui(x)− ui+1(x)| < 1

2N
.

This means that for each n ∈ N the sequence (uk)k is uniformly convergent. Set F =⋃∞
n=1 Fn and define

ũ(x) = lim
n→∞

u(x), x ∈ F.

Since CapE(F ) = 0, ũ|Fn is continuous and u = ũ m-a.e., ũ is a quasi-continuous modifi-
cation of u.

3 Regular Dirichlet forms and symmetric Markov pro-
cesses

Definition 3.1. A F-adapted stochastic process M = ((Mt)t>0, (Px)x∈X) on (Ω,F ,F,P)
with state space X is a Hunt process (w.r.t. the right-continuous minimal completed
admissible filtration F = (Ft)t>0) if the following hold:

(i) x→ Px(Xt ∈ B) is measurable for all t > 0 and B ∈ B(X),

(ii) M is a strong Markov process, i.e. for every stopping time T , MT is (FT ,B(X))-
measurable and for every B ∈ B(X)

Px(MT+t ∈ B|FT ) = PMT
(Mt ∈ B) Px-a.s. on {T <∞},

(iii) M is right-continuous, i.e.

lim
s↓t

Ms = Mt, ∀t Px-a.s.
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(iv) M is quasi left-continuous, i.e. for all stopping times T and (Tn)n such that Tn ↑ T
a.s.

lim
n→∞

MTn = MT , Px-a.s. on {T <∞}.

Remark 3.2. (a) Note that quasi left-continuity does not imply left-continuity, be-
cause the set

A =

{
lim
sn↑t

Msn = Mt

}
depends on the choice of sequence (sn)n, sn ↑ t.

(b) If (Px(Mt ∈ ·))x,t are sub-probability measures, we can preform a one-point com-
pactification of X by introducing a cemetery state ∂ 6∈ X and redefine Px to be a
probability measure on X ∪ {∂}. See, for example [1, Section 7.2].

(c) The transition probability measures (pt(x, ·))t>0,x∈X for M are given by

pt(x,B) = Px(Mt ∈ B), t > 00, B ∈ B(X), x ∈ X.

(d) We only consider symmetric Hunt processes with transition probabilities which are
m-symmetric, i.e.∫

X

∫
X

u(x)v(y)pt(x, dy)m(dx) =

∫
X

∫
X

u(y)v(x)pt(x, dy)m(dx)

for all non-negative measurable functions u and v. The family of linear operators
(Tt)t>0 defined by

Ttu(x) =

∫
X

u(y)pt(x, dy),

for all u ∈ L2(X,m) which are bounded. This operator can be extended to an
operator on L2(X,m), because it satisfies the contraction property. One can show
that this is a strongly continuous semigroup. We can also define the corresponding
strongly continuous resolvent in the following way

Gαf(x) =

∫ ∞
0

e−αtTtf(x)dt = Ex
[∫ ∞

0

e−αtf(Mt)dt

]
, f ∈ L2(X,m), α > 0.

(e) For A ∈ F and a nonnegative measurable function h such that ||h||L1(X,m) = 1 let
Ph·m be the probability measure with respect to the initial distribution h(x)m(dx),

Ph·m(A) =

∫
X

Px(A)h(x)m(dx).

Definition 3.3. Two symmetric Hunt processesM(1) andM(2) are equivalent if their tran-
sition probabilities (p

(1)
t (x, ·))t,x and (p

(2)
t (x, ·))t,x coincide outside of a common properly

exceptional set N , i.e. a set such that m(N) = 0 and

T
(i)
t (u1Nc) = 1NcT

(i)
t u m-a.e.

for any u ∈ L2(X,m) and i = 1, 2.

Theorem 3.4. ([1, Theorem 4.2.8, Theorem 7.2.1]) Given a regular Dirichlet form
(E ,D(E)) there exists a symmetric Hunt process M with Dirichlet form E. Two sym-
metric Hunt processes M(1) and M(2) possessing a common regular Dirichlet form are
equivalent.
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