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For an integer n, a set of m distinct nonzero integers with the property
that the product of any two of its distinct elements plus n is a square, is
called a Diophantine m-tuple with the property D(n) or D(n)-m-tuple.
The D(1)-m-tuples (with rational elements) are called simply (rational)
Diophantine m-tuples, and have been studied since the ancient time.
The first example of a rational Diophantine quadruple was the set{

1
16, 33

16, 17
4 , 105

16

}
found by Diophantus. Fermat found the first Diophantine quadruple
in integers {1, 3, 8, 120}. Euler proved that the exist infinitely many
rational Diophantine quintuples (see [18]), in particular he was able to
extend the integer Diophantine quadruple found by Fermat, to the ra-
tional quintuple {

1, 3, 8, 120, 777480
8288641

}
.

Stoll [20] recently showed that this extension is unique.
In 1969, using linear forms in logarithms of algebraic numbers and a
reduction method based on continued fractions, Baker and Davenport
[3] proved that if d is a positive integer such that {1, 3, 8, d} forms a
Diophantine quadruple, then d has to be 120. This result motivated the
conjecture that there does not exist a Diophantine quintuple in integers.
The conjecture has been proved recently by He, Togbé and Ziegler [17]
(see also [4, 7]).
On the other hand, it is not known how large can a rational Diophantine
tuple be. In 1999, Gibbs found the first example of rational Diophantine
sextuple [16] {

11
192, 35

192, 155
27 , 512

27 , 1235
48 , 180873

16

}
.

In 2017, Dujella, Kazalicki, Mikić and Szikszai proved that there are
infinitely many rational Diophantine sextuples. Recently, Dujella, Kaza-
licki and Petričević in [13] proved that there are infinitely many rational
Diophantine sextuples such that denominators of all the elements (in
the lowest terms) in the sextuples are perfect squares, and in [12] they
proved that there are infinitely many Diophantine sextuples containing
two regular quadruples and one regular quintuple. No example of a ra-
tional Diophantine septuple is known. The Lang conjecture on varieties
of general type implies that the number of elements of a rational Dio-
phantine tuple is bounded by an absolute constant (see the introduction
of [10]). Diophantine m-tuples have been studied over the rings other
that Z and Q, for example Dujella and Kazalicki [9] computed the num-
ber of Diophantine quadruples over finite fields. For more information
on Diophantine m-tuples see the survey article [8].
Sets with D(n) properties have also been extensively studied. It is easy to
show that there are no integer D(n)-quadruples if n ≡ 2 (mod 4), and
it is know that if n ̸≡ 2 (mod 4) and n ̸∈ {−4,−3,−1, 3, 5, 8, 12, 20},
then there is at least one D(n)-quadruple [6]. Recently, Bonciocat, Cipu
and Mignotte [2] proved that there are no D(−1)-quadruples (as well
as D(−4)-quadruples) thus leaving the existence of D(n)-quadruples in
the remaining six sporadic cases open.
Dražić and Kazalicki [5] described rational D(n)-quadruples with fixed
product of elements in terms of points on certain elliptic curves. It is
not known if there is a rational Diophantine D(n)-quintuple for every n,
and no example of rational D(n)-sextuple is known if n is not a perfect
square.
One can also study m-tuples that have D(n)-property for more than one
n. Adžaga, Dujella, Kreso and Tadić [1] presented several families of
Diophantine triples which have D(n)-property for two distinct n’s with
n ̸= 1 as well as some Diophantine triples which are D(n)-sets for three
distinct n’s with n ̸= 1. Dujella and Petričević in [14] proved that there
are infinitely many (essentially different) integer quadruples which are
simultaneously D(n1)-quadruples and D(n2)-quadruples with n1 ̸= n2,
and in [15] showed that the same thing is true for three distinct n’s
(since the elements of their quadruples are squares one of n’s is equal
to zero). Our main result extends the previous results to quintuples.
Theorem 1 There are infinitely many nonequivalent quintuples that
have D(n1) property for some n1 ∈ N such that all the elements in
the quintuple are perfect squares. In particular, there are infinitely
many nonequivalent integer quintuples that are simultaneously D(n1)-
quintuples and D(n2)-quintuples with n1 ̸= n2 since then we can take
n2 = 0.
Note that if {a, b, c , d , e} is a D(n1)-quintuple, and u a nonzero ratio-
nal, then {ua, ub, uc , ud , ue} is a D(n1u2)-quintuple and we say that
these two quintuples are equivalent. Since every rational Diophantine
quintuple is equivalent to some D(u2)-quintuple whenever u is an integer
divisible by the common denominator of the elements in the quintuple,
Theorem 1 will follow if we prove that there are infinitely many rational
Diophantine quintuples with the property that the product of any two
of its elements is a perfect square.

1 Search methodology
In searching for D-sets with m elements, it is natural to first find some
sets with m − 1 element. So we first looked what a D-pair could be.
In this quest, we have actually been searching for D(1) and D(0) ra-
tional sets in which all elements have the same denominator, and all
numerators are squares or D ×�, where D is squarefree.

So for some a1, a2 ∈ N to be a pair, for some b ∈ N, then it has to hold
Da2

1
b · Da2

2
b + 1 = c2, for some c ∈ Q. Or in the other words, it has to

hold (Da1 ·a2)2 +b2 = c2, for c ∈ N. So for a fixed b, we calculated all
Pythagorean triangles with one leg b. And then D · a1 · a2 is the other
leg. Well known formulas for Pythagorean triples are

b = 2dkl and Da1a2 = d(k + l)(k − l),

for some k , l , d ∈ N, and opposite.
So we just had to find all divisors of the other leg.
We written program in C++. To remember pairs, we constructed a
graph, so we just had to find the bigger clique in it. Because such a
graph is very sparse, it’s not hard to do it. On 6-core computer the first
quintuple was shown in about 10 seconds:

M =
{

2252

480480, 25482

480480, 2862

480480, 14082

480480, 8192

480480

}
which by clearing denominators gives Diophantine D(4804802)-quintuple
with square elements.
We used the simplest algorithm for finding divisors. Using sieve of Er-
atosthenes we generate all primes ≤ P . And then check only those
primes (experimental results from other tests suggested that big D-sets
usually have only small prime factors; for example, for our first quintu-
ple, P = 11 is good enough).
To check all prime divisors it would be hard because if for example
b = 2k · l , divisors of k + l could be big (and it is very small possibility
that this number be in other D-pairs).
We check two versions of pairs in algorithm. In one, each numerator is
a square, and in the other D > 1. The first one is much faster, and the
second finds more results.
We first checked only for P ≤ 106. But for example, let us see for
b ≤ N = 480480 and the first algorithm. On a 6-core computer. For
P = 103 ... 108 there are no bigger changes in times, while the last one
used about 1GB of memory. So let us see differences between P = 11,
and P = 103 (Bi represent number of found set including maybe some
the same, and the last two columns (G4 and G5) are number of distinct
sets):

< B2 B3 B4 B5 G4 G5 time
11 1957115 36897 1948 2 14741 1 13sec
106 3629788 51068 2256 5 1618 1 28sec,

while for P = 99, there is only one second better and only number of
B2 = 3629040, and all is the same as fo P = 108.
In the second table we show for P = 11 how numbers are changing
when we double N , or double it once more:

N B2 B3 B4 B5 G4 G5 time
2× 3848686 65022 3279 3 2521 1 28sec
4× 7370326 112135 5418 5 4240 2 60sec.

This last number G2 = 2 meens that we have found equivalent quintu-
ple.

We noticed that first few found nonequivalent quintuples have special
structure.
A Diophantine quadruple {a, b, c , d} is called regular if

(a + b − c − d)2 = 4(ab + 1)(cd + 1).

Definition 1 We say that rational Diophantine quintuple {a, b, c , d , e}
is exotic if abcd = 1, quadruples {a, b, d , e} and {a, c , d , e} are regular,
and if the product of any two of its elements is a perfect square.
So we could create many quintuples using parametrizations on some
surfaces, and we proved that there are infinitely of them [11].

2 Regular quintuples
After about a week of brute-force searching (on 24-core computer), the
fourth found quintuple had not this structure:{

123842

1337776440, 181302

1337776440, 307452

1337776440, 1108802

1337776440, 2592592

1337776440

}
.

A Diophantine quintuple {a, b, c , d , e} is called regular if

(abcde +2abc +a+b+c−d−e)2 = 4(ab+1)(ac +1)(bc +1)(de +1).

The last quintuple is regular quintuple. Later, using parametrizations on
some surfaces we were able to find many such quintuples, but we don’t
know is there infinitely many of them.

3 Concluding remarks
While we have found infinitely many rational Diophantine quintuples
with D(0) property, it remains open if there is a rational Diophantine
quintuple with square elements.

On the other hand, there are infinitely many rational Diophantine
quadruples with square elements, for example the following two para-
metric family has this property

a = 32(s − 1)2(s + 1)2v2

22(2s3 − 2s + v2)2 ,

b = v2(−4s3 + 4s + v2)2

22(s + 1)2(s − 1)2(−s3 + s + v2)2,

c = (2s3 − 2s + v2)2

32v2s2 ,

d = 42(−s3 + s + v2)2s2

v2(−4s3 + 4s + v2)2.

In all examples we had using brute-force search for Diophantine sets
with square elements, quadruples have an extra property that the prod-
uct abcd = 1. This would suggest that there is no quintuple with square
elements.
But when we write similar program for such search, after few hours on
6-core computer, we find some for which the product abcd ̸= 1 (and
thousands for which product is 1), for example:{(

18
77

)2
,
(

55
96

)2
,
(

56
15

)2
,
(

340
77

)2
}

.
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