HOUSEHOLDER’'S APPROXIMANTS AND

| Newton’s iterative method I

Continued fractions give good rational approximations of arbitrary a € R.

)

Newton's iterative method x; 1 = x; — Flxe) for solving nonlinear equa-

tions f(x) = 0 is another approximation method.

let @ = c+Vd, c,d € Q, d > 0 and d is not a square of a rational
number. It is well known that regular continued fraction expansion of «
is periodic, i.e. has the form o = [ag, a1, ..., ak, 3k+1, Fkr2, -+ 3kt |-
Here ¢ = /(«) denotes the length of the shortest period in the expan-
sion of . Connections between these two approximation methods were

discussed by several authors. Let Z” be the nth convergent of .. The

principal question is: Let f(x) = (x — a)(x — ), where o = ¢ — V/d

and xp = %, Is x1 also a convergent of a/?
n

It is well known that for & = v/d, d € N, d # 0O, and the corresponding
Newton's approximant R, = 2('0” -+ dq”) it follows that

pn
Rip_1 = Pkt— , for k> 1. (1)
A2ki—1
It was proved by Mikusinski [5] that if £ = 2t, then
Ri_1 = p2kt_1, for k > 1. (2)
2kt —1

These results imply that if £(v/d) < 2, then all approximants R,, are con-
vergents of v/d. Dujella [1] proved the converse of this result. Namely, if
((+/d) > 2, we know that some of approximants R, are not convergents.
He showed that being again a convergent is a periodic and a palindromic
property. Formulas (1) and (2) suggest that R, should be convergent
whose index is twice as large when it is a good approximant. However,
this is not always true. Dujella defined the number j(v/d) as a distance

from two times larger index, and pointed out that j(v/d) is unbounded.
1+2\/3

In 2011, the author [6] proved the analogous results for @ =
deN,d#and d =1 (mod 4).

Sharma [8] observed arbitrary quadratic surd o = ¢ ++/d, ¢, d € Q,
d > 0, d is not a square of a rational number, whose period begins
with a;. He showed that for every such « and the corresponding New-

ton's approximant N, = 25,,:(;?;37) it holds Ny y_1 = pzii_i, for k > 1,
and when ¢ = 2t and the period is palindromic then it holds N;;_1 =
%, for k > 1. Frank and Sharma [3]| discussed generalization of
Newton's formula. They showed that for every a, whose period begins

with aq, for k, n € N it holds
Pokt—1 _ (Pe—1 — @' qke—1)" — o' (Pre—1 — qhr—1)" 3)
Gnki—1  (Pre—1 — &' Que—1)" — (Pke—1 — @qup—1)"

and when ¢ = 2t and the period is palindromic then for k, n € N it holds
Pokt—1 _ UPke—1 — @' qke—1)" — ' (Phe—1 — ¥Gpe—1)" (4)
Gnkt—1  (Pkt—1 — @' Que—1)" — (Pke—1 — @que—1)"

For detailed proofs and explanation of the rest of the poster see [7].

| Householder’s iterative methods I

Householder's iterative method (see e.g. [4 84.4]) of order p for root-

HP)(xp) = xn+p- (1{2) p)((xg) where (1/£)(P)

p-th derivation of 1/f. Householder's method of order 1 is just Newton's
method. For Householder's method of order 2 one gets Halley's method,
and Householder's method of order p has rate of convergence p + 1.

It is not hard to show that for f(x) = (x — a)(x — /) it holds:

xH(M)(x) — aa
HmM(x) +x —a— o

denotes

solving: X,11 =

H(m+1)(x) _

for m € N. (5)

Let us define

R,gl) def &, and for m > 1 R( m) def H(m—= )(&)
dn dn
We will say that R,(,’") is good approximation, if it is a convergent of .
Formula (3) shows that for arbitrary quadratic surd, whose period begins
with a; and k, m € N, it holds
Kl Gk )
and when ¢ = 2t and period is periodic, from (4) it follows
R(m) _ Pmkt—l_
kt—1 Amkt—1

Good approximants are periodic and
palindromic

Formula [8, (8)] says: For k € N it holds

>
(ap — a0)Pke—1 + Pke—2 = qre—1(d — ), (7)
(ar — a0)qkr—1 + Gke—2 = Pre—1 — 2¢qkp—1, (8)
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and formula (5) says
1) p(m) /
RIVRI™ —
R,ngrl): (';) L ( )O@ - formeN,n=0,1,.... (9)
Ry + Ry — 2¢
Lemmal Form ke Nandi=1,2, ...
(m) B R(m_) RI-(T)—ozo/
a1, it holds Rk€+ = R{5)11+R,.(1"71)—2c'
PROOF. For m =1, statement of the lemma is proven in [2, Thm.2.1].
Using mathematical induction and (9) it is not hard to show that the
statement of the lemma holds too. 0

, £, when the period begins with

When period is palindromic and begins with aj, formulas (7) and (8)
become

0PkI—1 + Pri—2 = 2¢Pki—1 + qo—1(d — %), (10)

a0qk(—1 + Gke—2 = Pki—1- (11)

Lemma 2 For mk € Nandi =1,2,...,¢ — 1, when period is palin-
(m) Ry (R —2¢)+aa/

dromic and begins with ay, it holds R, ,”. | = R _ p(m)
i—1 ki—1

PROOF. For m =1 we have:
i O prp_i+ Prp—i_
R/((?_,'_l _ Pki—i-1 _ V" Pkl—i T Pki—i—-1 _ [ag, ..., agp_j 0]
Ako—i—-1 O Qre—i+ qre—i—1
= lag, ..., akr—j akp—i—1, ---» aky—1, 0, 0, —apg, —ay, ..., —aj_1|
pi—1
= {ao, oy Ay A 11 - Bk(—1, 30 — — }
di—1
1 (1) (p(1)
B Pre—1(a0 — Ri(—)1> T Pke—2 (10) Rkﬁ—l(Ri—l —2¢) + ad
o 1 11 1 1
ake-1(a0— RO) +aee 10 RY R
Using mathematical induction and (9) it is not hard to show that the
statement of the lemma holds too. 0

Proposition 1 Let m € N. When period begins with ay, for i =

(m)
2.....0—1 and@(m) _ Pmiz1 =R dmi L it holds

Pi— R G

(m)

Rit O Ptk ) TP s

+iml T ' = U,
5im)qm(k€+i) T Am(kl+i)—1
and when period is palindromic, then

Pon(kt—i) 1 — Be " Pen(kt—i) 2

plm) - Imlktzi)=l i FmkZ)=2 o ik > 1.

kl=i—1 = -
Am(kf—i)—1 — 5,( )qm(kz—/)—z

PROOF. We have Bfm) = |0, —amj, —amj—1, .-, —a1, —ap + R;_{ |.
If kK =0 we have

(m)

\ -+ D
5, Pmi ™ Pmi—1 _ [307 " 3mi16,(m)}

5,(m) dmi t+ 9mi—1
(m)

m)

= [ao, ey @miy 0, —ami, —ami—1, .-, —ay, —ag + Ri(—l} = Ri—l’
and similarly if kK > 0 we have
5(m)pm(k€—|—i) T Pm(kt+i)—1 m
' =140, -\ Amkr—1, amké_aOJVR,( 1)}

5I(m)qm(k€—l—i) + Am(kl+i)—1

(m)

B Pmki—1(amke — a0 + Ri_7) + Pmki—2

Amki—1(3mke — a0 + R,(ml)) + Amke—2
(7).(6) R/(d)l ,(m1) +d — ¢ Lm.1 p(m)

o ( ) ( ) o k{+i—1

&) R+ R —2c
When period is palindromic we have:

\ . gm .
Pm(kt—i)—1 = B} Pm(kt—i)—2 1
(m) = | 900 Im(kl—i)—1 — (m)
;

Am(ki—i)—1 — B Am(ke—i)—2

— [a(),...,am(kg ) m(kf—i)’am(kg—i)—l—]_v“!a

~ Prke—1(a0 — /(ml)) + k2 (10),(6) Ry (R —2¢) + 2~ d
amkt—1(20 = ™)) + Gi—n (1D R — Ry,
which is using Lemma 2 equal to the R/((Z?_)I._l. 0

Analogously as in [1, Lm. 3], from Proposition 1 it follows:

Theorem 1 To be a good approximant is a periodic property, i.e. for all
r € N it holds
R,(7m) _ Pk — ngl)n _ Prm€+k’
qk Armi+k
and when period is palindromic, it is also a palindromic property, i.e. it

holds:

_ Pm¢—k—2
Ami—k—2

Which convergents may appear? |

(m) b

Let us define coprime positive numbers P,(/"), Qn
pim™

y

def R( )

Q(m)

n

From (9) it is not hard to show that it holds
pI™ — aQl™ = (P,(ql) —~ OzQ,(vl))m =
(m)

Lemma 3 R,
R(m)

n ~ can be an even convergent only if n is even and m is odd.

(Pn — @qn)m-

< « if and only if n is even and m is odd. Therefore,

Similarly as in [1], if R,(,’") = %, we can define j(™ = j(M)(q, n) as the
distance from convergent with m times larger index:

j(m):k+1—2m(n+1). (12)

This is an integer, by Lemma 3. Using Theorem 1 we have j(m)(oz, n) =
—ilm(a, 0—n—2).

j(m)(a, k{+n), and in palindromic case: j(m)(oz, n) =

From now on, let us observe only quadratic irrationals of the form
a=+vd deN, d=#0 Itis well known that period of such « is
palindromic and begins with aj.

Theorem2|Rn+1 \F]<|R ]

Proposition 2 When d # O, for n > 0 we have |}
m(¢/2—1)
2 .

"(Vd,n)| <

Lemma 4 Let F, denote the k-th Fibonacci number. Let n € N and
2
k>1k=1,2 (mod 3). Ford,(n) = ((2n+12)Fk+1) +(2n+1)Fi_1+1

it holds \/di(n) = {(2”‘12)5“,;,1,...,1,;,(2n—1)Fk+1}, and
k—1 times

((\/dk(n)) = k.

Theorem 3 Let F; denote the (-th Fibonacci number. Let { > 3,0 =
2

+1 (mod 6). Then for dy — (FHQFM) +FyaFj_y+1and M e N

it holds £(\/dy) = ¢ and

3M1\/70_J3M \/770

3M+1 \/7 O

PROOF. By (12), we have to prove
p(BM=1) _ PMt—2  (3M) _ PMi—1  (3M+1) _ P
0 o ’ 0 o ’ 0 o '
ame—2 ami—1 amye
We have a5 = Fg_fﬁl, and by Lemma 4 it holds \/Fg —
[ao,l, 1,...,1,1, 2a0]. From Cassini's identity, it follows
E—lmmes
Fo_ _
Rél) PO 20, RéQ) _ g =2 Pe=2
q0 Fo_1  qu—
Fo_1F? F
R(()3)=ao—|— 5 621 6_22 :ao—l-ﬂ:%. (13)
Fr (Ff ,+Ff, Foo qr1

Let us prove the theorem using induction on M. For proving the inductive
step, first observe that from (9) for m > 3 we have:

(2) p(m—=2) (3) p(m=3)
Rl((m) _ R, "R, +d Rl((m) _ R, R, + d. (14)
R(z) 4 R(m_2) R(3) 4 R(m_3)
Suppose that for some i € {0,¢ — 2,/ — 1} it holds q(M_i)E: = Rém_3).
We have:
PMEL — a0, 11 L Lag+ Ry | =
IME+i /—1 times
—3 3 -3
(10) Pg—lRém )+ day_y (13) ch )Ré”’ )+ d (14) R(()m)_ q
(1) g 1RS™ ) 4 oy Ry + Ry

Corollary 1 For each m > 2 it holds

sup {|;")(Vd, n)|} = +o0,

. )\ m
lim sup{ g(\/g) } > 3
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