HOUSEHOLDER'S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS

Vinko Petričević

Department of Mathematics, University of Zagreb, Croatia

e-mail: vpetrice@math.hr
URL: http://web.math.hr/~vpetrice/

Newton's iterative method

Continued fractions give good rational approximations of arbitrary $\alpha \in \mathbb{R}$. Newton's iterative method $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ for solving nonlinear equations f(x) = 0 is another approximation method.

Let $\alpha=c+\sqrt{d}$, $c,d\in\mathbb{Q}$, d>0 and d is not a square of a rational number. It is well known that regular continued fraction expansion of α is periodic, i.e. has the form $\alpha=[a_0,a_1,\ldots,a_k,\overline{a_{k+1},a_{k+2},\ldots,a_{k+\ell}}]$. Here $\ell=\ell(\alpha)$ denotes the length of the shortest period in the expansion of α . Connections between these two approximation methods were discussed by several authors. Let $\frac{p_n}{q_n}$ be the nth convergent of α . The principal question is: Let $f(x)=(x-\alpha)(x-\alpha')$, where $\alpha'=c-\sqrt{d}$ and $x_0=\frac{p_n}{q_n}$, is x_1 also a convergent of α ?

It is well known that for $\alpha = \sqrt{d}$, $d \in \mathbb{N}$, $d \neq \square$, and the corresponding Newton's approximant $R_n = \frac{1}{2} \left(\frac{p_n}{q_n} + \frac{dq_n}{p_n} \right)$ it follows that

$$R_{k\ell-1} = \frac{p_{2k\ell-1}}{q_{2k\ell-1}}, \quad \text{for } k \ge 1.$$
 (1)

It was proved by Mikusiński [5] that if $\ell = 2t$, then

$$R_{kt-1} = \frac{p_{2kt-1}}{q_{2kt-1}}, \quad \text{for } k \ge 1.$$
 (2)

These results imply that if $\ell(\sqrt{d}) \leq 2$, then all approximants R_n are convergents of \sqrt{d} . Dujella [1] proved the converse of this result. Namely, if $\ell(\sqrt{d}) > 2$, we know that some of approximants R_n are not convergents. He showed that being again a convergent is a periodic and a palindromic property. Formulas (1) and (2) suggest that R_n should be convergent whose index is twice as large when it is a good approximant. However, this is not always true. Dujella defined the number $j(\sqrt{d})$ as a distance from two times larger index, and pointed out that $j(\sqrt{d})$ is unbounded. In 2011, the author [6] proved the analogous results for $\alpha = \frac{1+\sqrt{d}}{2}$, $d \in \mathbb{N}$, $d \neq \square$ and $d \equiv 1 \pmod{4}$.

Sharma [8] observed arbitrary quadratic surd $\alpha=c+\sqrt{d},\ c,d\in\mathbb{Q},\ d>0,\ d$ is not a square of a rational number, whose period begins with a_1 . He showed that for every such α and the corresponding Newton's approximant $N_n=\frac{p_n^2-\alpha\alpha'q_n^2}{2q_n(p_n-cq_n)}$ it holds $N_{k\ell-1}=\frac{p_{2k\ell-1}}{q_{2k\ell-1}}$, for $k\geq 1$, and when $\ell=2t$ and the period is palindromic then it holds $N_{kt-1}=\frac{p_{2kt-1}}{q_{2kt-1}}$, for $k\geq 1$. Frank and Sharma [3] discussed generalization of Newton's formula. They showed that for every α , whose period begins with a_1 , for $k,n\in\mathbb{N}$ it holds

$$\frac{p_{nk\ell-1}}{q_{nk\ell-1}} = \frac{\alpha(p_{k\ell-1} - \alpha'q_{k\ell-1})^n - \alpha'(p_{k\ell-1} - \alpha q_{k\ell-1})^n}{(p_{k\ell-1} - \alpha'q_{k\ell-1})^n - (p_{k\ell-1} - \alpha q_{k\ell-1})^n}, \quad (3)$$

and when
$$\ell = 2t$$
 and the period is palindromic then for $k, n \in \mathbb{N}$ it holds
$$\frac{p_{nkt-1}}{q_{nkt-1}} = \frac{\alpha(p_{kt-1} - \alpha'q_{kt-1})^n - \alpha'(p_{kt-1} - \alpha q_{kt-1})^n}{(p_{kt-1} - \alpha'q_{kt-1})^n - (p_{kt-1} - \alpha q_{kt-1})^n}. \tag{4}$$

For detailed proofs and explanation of the rest of the poster see [7].

Householder's iterative methods

Householder's iterative method (see e.g. $[4, \S 4.4]$) of order p for rootsolving: $x_{n+1} = H^{(p)}(x_n) = x_n + p \cdot \frac{(1/f)^{(p-1)}(x_n)}{(1/f)^{(p)}(x_n)}$, where $(1/f)^{(p)}$ denotes p-th derivation of 1/f. Householder's method of order 1 is just Newton's method. For Householder's method of order 2 one gets Halley's method, and Householder's method of order p has rate of convergence p+1. It is not hard to show that for $f(x) = (x - \alpha)(x - \alpha')$ it holds:

$$H^{(m+1)}(x) = \frac{xH^{(m)}(x) - \alpha\alpha'}{H^{(m)}(x) + x - \alpha - \alpha'}, \quad \text{for } m \in \mathbb{N}.$$
 (5)

Let us define

define
$$R_n^{(1)} \stackrel{\text{def}}{=} \frac{p_n}{q_n}$$
, and for $m > 1$ $R_n^{(m)} \stackrel{\text{def}}{=} H^{(m-1)} \left(\frac{p_n}{q_n}\right)$.

We will say that $R_n^{(m)}$ is *good approximation*, if it is a convergent of α . Formula (3) shows that for arbitrary quadratic surd, whose period begins with a_1 and $k, m \in \mathbb{N}$, it holds

$$R_{k\ell-1}^{(m)} = \frac{p_{mk\ell-1}}{q_{mk\ell-1}},\tag{6}$$

and when $\ell=2t$ and period is periodic, from (4) it follows $R_{kt-1}^{(m)}=\frac{p_{mkt-1}}{q_{mkt-1}}.$

Good approximants are periodic and palindromic

Formula [8, (8)] says: For $k \in \mathbb{N}$ it holds

$$(a_{\ell} - a_0)p_{k\ell-1} + p_{k\ell-2} = q_{k\ell-1}(d - c^2), \tag{7}$$

$$(a_{\ell} - a_0)q_{k\ell-1} + q_{k\ell-2} = p_{k\ell-1} - 2cq_{k\ell-1}, \tag{8}$$

and formula (5) says

$$R_n^{(m+1)} = \frac{R_n^{(1)} R_n^{(m)} - \alpha \alpha'}{R_n^{(1)} + R_n^{(m)} - 2c}, \quad \text{for } m \in \mathbb{N}, \ n = 0, 1, \dots$$
 (9)

Lemma 1 For $m, k \in \mathbb{N}$ and $i = 1, 2, ..., \ell$, when the period begins with a_1 , it holds $R_{k\ell+i-1}^{(m)} = \frac{R_{k\ell-1}^{(m)}R_{i-1}^{(m)} - \alpha\alpha'}{R_{k\ell-1}^{(m)} + R_{i-1}^{(m)} - 2c}$.

PROOF. For m = 1, statement of the lemma is proven in [2, Thm. 2.1]. Using mathematical induction and (9) it is not hard to show that the statement of the lemma holds too.

When period is palindromic and begins with a_1 , formulas (7) and (8) become

$$a_0 p_{k\ell-1} + p_{k\ell-2} = 2c p_{k\ell-1} + q_{k\ell-1} (d - c^2),$$

$$a_0 q_{k\ell-1} + q_{k\ell-2} = p_{k\ell-1}.$$
(10)

Lemma 2 For $m, k \in \mathbb{N}$ and $i = 1, 2, ..., \ell - 1$, when period is palindromic and begins with a_1 , it holds $R_{k\ell-i-1}^{(m)} = \frac{R_{k\ell-1}^{(m)}(R_{i-1}^{(m)}-2c)+\alpha\alpha'}{R_{i-1}^{(m)}-R_{i-1}^{(m)}}$.

PROOF. For m = 1 we have:

$$R_{k\ell-i-1}^{(1)} = \frac{p_{k\ell-i-1}}{q_{k\ell-i-1}} = \frac{0 \cdot p_{k\ell-i} + p_{k\ell-i-1}}{0 \cdot q_{k\ell-i} + q_{k\ell-i-1}} = [a_0, \dots, a_{k\ell-i}, 0]$$

$$= [a_0, \dots, a_{k\ell-i}, a_{k\ell-i-1}, \dots, a_{k\ell-1}, a_0, 0, -a_0, -a_1, \dots, -a_{i-1}]$$

$$= \left[a_0, \dots, a_{k\ell-i}, a_{k\ell-i-1}, \dots, a_{k\ell-1}, a_0 - \frac{p_{i-1}}{q_{i-1}}\right]$$

$$= \frac{p_{k\ell-1}(a_0 - R_{i-1}^{(1)}) + p_{k\ell-2}}{q_{k\ell-1}(a_0 - R_{i-1}^{(1)}) + q_{k\ell-2}} \stackrel{\text{(10)}}{=} \frac{R_{k\ell-1}^{(1)}(R_{i-1}^{(1)} - 2c) + \alpha\alpha'}{R_{i-1}^{(1)} - R_{k\ell-1}^{(1)}}.$$

Using mathematical induction and (9) it is not hard to show that the statement of the lemma holds too.

Proposition 1 Let $m \in \mathbb{N}$. When period begins with a_1 , for $i = 1, 2, ..., \ell - 1$ and $\beta_i^{(m)} = -\frac{p_{mi-1} - R_{i-1}^{(m)} q_{mi-1}}{p_{mi} - R_{i-1}^{(m)} q_{mi}}$, it holds

$$R_{k\ell+i-1}^{(m)} = rac{eta_i^{(m)} p_{m(k\ell+i)} + p_{m(k\ell+i)-1}}{eta_i^{(m)} q_{m(k\ell+i)} + q_{m(k\ell+i)-1}}, \ \ ext{for all} \ k \geq 0,$$

and when period is palindromic, then

$$R_{k\ell-i-1}^{(m)} = rac{p_{m(k\ell-i)-1} - eta_i^{(m)} p_{m(k\ell-i)-2}}{q_{m(k\ell-i)-1} - eta_i^{(m)} q_{m(k\ell-i)-2}}, ext{ for all } k \ge 1.$$

PROOF. We have $\beta_i^{(m)} = [0, -a_{mi}, -a_{mi-1}, ..., -a_1, -a_0 + R_{i-1}^{(m)}].$ If k = 0 we have

$$\frac{\beta_i^{(m)} p_{mi} + p_{mi-1}}{\beta_i^{(m)} q_{mi} + q_{mi-1}} = \left[a_0, \dots, a_{mi}, \beta_i^{(m)} \right]$$

 $= \left[a_0, \dots, a_{mi}, 0, -a_{mi}, -a_{mi-1}, \dots, -a_1, -a_0 + R_{i-1}^{(m)}\right] = R_{i-1}^{(m)},$ and similarly if k > 0 we have

$$\frac{\beta_{i}^{(m)}p_{m(k\ell+i)} + p_{m(k\ell+i)-1}}{\beta_{i}^{(m)}q_{m(k\ell+i)} + q_{m(k\ell+i)-1}} = \left[a_{0}, \dots, a_{mk\ell-1}, a_{mk\ell} - a_{0} + R_{i-1}^{(m)}\right]$$

$$= \frac{p_{mk\ell-1}(a_{mk\ell} - a_{0} + R_{i-1}^{(m)}) + p_{mk\ell-2}}{q_{mk\ell-1}(a_{mk\ell} - a_{0} + R_{i-1}^{(m)}) + q_{mk\ell-2}}$$

$$\frac{(7),(6)}{(8)} \frac{R_{k\ell-1}^{(m)}R_{i-1}^{(m)} + d - c^{2}}{R_{k\ell-1}^{(m)} + R_{i-1}^{(m)} - 2c} \stackrel{\text{Lm. 1}}{=} R_{k\ell+i-1}^{(m)}.$$

When period is palindromic we have:

$$\frac{p_{m(k\ell-i)-1} - \beta_{i}^{(m)} p_{m(k\ell-i)-2}}{q_{m(k\ell-i)-1} - \beta_{i}^{(m)} q_{m(k\ell-i)-2}} = \left[a_{0}, \dots, a_{m(k\ell-i)-1}, -\frac{1}{\beta_{i}^{(m)}} \right] \\
= \left[a_{0}, \dots, a_{m(k\ell-i)-1}, a_{m(k\ell-i)}, a_{m(k\ell-i)+1}, \dots, a_{mk\ell-1}, a_{0} - R_{i-1}^{(m)} \right] \\
= \frac{p_{mk\ell-1} \left(a_{0} - R_{i-1}^{(m)} \right) + p_{mk\ell-2}}{q_{mk\ell-1} \left(a_{0} - R_{i-1}^{(m)} \right) + q_{mk\ell-2}} \underbrace{\frac{(10)}{n} \binom{6}{n}}_{(11)} \frac{R_{k\ell-1}^{(m)} \left(R_{i-1}^{(m)} - 2c \right) + c^{2} - d}_{R_{i-1}^{(m)} - R_{k\ell-1}^{(m)}},$$

which is using Lemma 2 equal to the $R_{k\ell-i-1}^{(m)}$.

Analogously as in [1, Lm. 3], from Proposition 1 it follows: **Theorem 1** To be a good approximant is a periodic property, i.e. for all $r \in \mathbb{N}$ it holds

$$R_n^{(m)} = rac{p_k}{q_k} \qquad \Longleftrightarrow \qquad R_{r\ell+n}^{(m)} = rac{p_{rm\ell+k}}{q_{rm\ell+k}},$$

and when period is palindromic, it is also a palindromic property, i.e. it holds:

$$R_n^{(m)} = rac{p_k}{q_k} \qquad \Longleftrightarrow \qquad R_{\ell-n-2}^{(m)} = rac{p_{m\ell-k-2}}{q_{m\ell-k-2}}.$$

Which convergents may appear?

Let us define coprime positive numbers $P_n^{(m)}$, $Q_n^{(m)}$ by $\frac{P_n^{(m)}}{Q^{(m)}} \stackrel{\text{def}}{=} R_n^{(m)}.$

From (9) it is not hard to show that it holds

$$P_n^{(m)} - \alpha Q_n^{(m)} = (P_n^{(1)} - \alpha Q_n^{(1)})^m = (p_n - \alpha q_n)^m.$$

Lemma 3 $R_n^{(m)} < \alpha$ if and only if n is even and m is odd. Therefore, $R_n^{(m)}$ can be an even convergent only if n is even and m is odd.

Similarly as in [1], if $R_n^{(m)} = \frac{p_k}{q_k}$, we can define $j^{(m)} = j^{(m)}(\alpha, n)$ as the distance from convergent with m times larger index:

$$j^{(m)} = \frac{k+1-m(n+1)}{2}.$$
 (12)

This is an integer, by Lemma 3. Using Theorem 1 we have $j^{(m)}(\alpha, n) = j^{(m)}(\alpha, k\ell+n)$, and in palindromic case: $j^{(m)}(\alpha, n) = -j^{(m)}(\alpha, \ell-n-2)$.

From now on, let us observe only quadratic irrationals of the form $\alpha = \sqrt{d}$, $d \in \mathbb{N}$, $d \neq \square$. It is well known that period of such α is palindromic and begins with a_1 .

Theorem 2
$$|R_{n+1}^{(m)} - \sqrt{d}| < |R_n^{(m)} - \sqrt{d}|$$
.

Proposition 2 When $d \neq \Box$, for $n \geq 0$ we have $|j^{(m)}(\sqrt{d}, n)| < \frac{m(\ell/2-1)}{2}$.

Lemma 4 Let F_k denote the k-th Fibonacci number. Let $n \in \mathbb{N}$ and k > 1, $k \equiv 1, 2 \pmod{3}$. For $d_k(n) = \left(\frac{(2n+1)F_k+1}{2}\right)^2 + (2n+1)F_{k-1}+1$ it holds $\sqrt{d_k(n)} = \left[\frac{(2n-1)F_k+1}{2}, \underbrace{1, 1, \dots, 1, 1}_{k-1 \text{ times}}, (2n-1)F_k+1\right]$, and $\ell(\sqrt{d_k(n)}) = k$.

Theorem 3 Let F_{ℓ} denote the ℓ -th Fibonacci number. Let $\ell > 3$, $\ell \equiv \pm 1 \pmod{6}$. Then for $d_{\ell} = \left(\frac{F_{\ell-3}F_{\ell}+1}{2}\right)^2 + F_{\ell-3}F_{\ell-1} + 1$ and $M \in \mathbb{N}$ it holds $\ell(\sqrt{d_{\ell}}) = \ell$ and

$$j^{(3M-1)}(\sqrt{d_{\ell}},0)=j^{(3M)}(\sqrt{d_{\ell}},0)=j^{(3M+1)}(\sqrt{d_{\ell}},0)=\frac{\ell-3}{2}\cdot M.$$

PROOF. By (12), we have to prove

$$R_0^{(3M-1)} = rac{p_{M\ell-2}}{q_{M\ell-2}}, \qquad R_0^{(3M)} = rac{p_{M\ell-1}}{q_{M\ell-1}}, \qquad R_0^{(3M+1)} = rac{p_{M\ell}}{q_{M\ell}}.$$

We have $a_0 = \frac{F_{\ell-3}F_{\ell}+1}{2}$, and by Lemma 4 it holds $\sqrt{d_{\ell}} = \left[a_0, \underbrace{\frac{1}{1}, \dots, 1}_{\ell = 1 \text{ times}}, 2a_0\right]$. From Cassini's identity, it follows

$$R_0^{(1)} = \frac{p_0}{q_0} = a_0, \qquad R_0^{(2)} = a_0 + \frac{F_{\ell-2}}{F_{\ell-1}} = \frac{p_{\ell-2}}{q_{\ell-2}},$$

$$R_0^{(3)} = a_0 + \frac{F_{\ell-1}F_{\ell-2}^3}{F_{\ell-1}^2F_{\ell-2}^2 + F_{\ell-2}^2} = a_0 + \frac{F_{\ell-1}}{F_{\ell}} = \frac{p_{\ell-1}}{q_{\ell-1}}.$$
(13)

Let us prove the theorem using induction on M. For proving the inductive step, first observe that from (9) for $m \ge 3$ we have:

$$R_{k}^{(m)} = \frac{R_{k}^{(2)}R_{k}^{(m-2)} + d}{R_{k}^{(2)} + R_{k}^{(m-2)}}, \qquad R_{k}^{(m)} = \frac{R_{k}^{(3)}R_{k}^{(m-3)} + d}{R_{k}^{(3)} + R_{k}^{(m-3)}}. \tag{14}$$

Suppose that for some $i \in \{0, \ell-2, \ell-1\}$ it holds $\frac{p_{(M-1)\ell+i}}{q_{(M-1)\ell+i}} = R_0^{(m-3)}$. We have:

$$\frac{p_{M\ell+i}}{q_{M\ell+i}} = \left[a_0, \underbrace{1, 1, \dots, 1, 1}_{\ell-1 \text{ times}}, a_0 + R_0^{(m-3)} \right] = \\
\underbrace{\left(\frac{10}{=} \right)}_{(11)} \frac{p_{\ell-1}R_0^{(m-3)} + dq_{\ell-1}}{q_{\ell-1}R_0^{(m-3)} + p_{\ell-1}} \stackrel{\text{(13)}}{=} \frac{R_0^{(3)}R_0^{(m-3)} + d}{R_0^{(3)} + R_0^{(m-3)}} \stackrel{\text{(14)}}{=} R_0^{(m)}. \quad \square$$

Corollary 1 For each $m \ge 2$ it holds

$$\sup\left\{\left|j^{(m)}(\sqrt{d},n)\right|\right\} = +\infty,$$

$$\limsup\left\{\frac{\left|j^{(m)}(\sqrt{d},n)\right|}{\ell(\sqrt{d})}\right\} \geq \frac{m}{6}.$$

References

- [1] A. Dujella, Newton's formula and continued fraction expansion of \sqrt{d} , Experiment. Math. **10** (2001), 125–131.
- [2] E. Frank, On continued fraction expansions for binomial quadratic surds, Numer. Math. **4** (1962) 85–95.
- [3] E. Frank, A. Sharma, Continued fraction expansions and iterations of Newton's formula, J. Reine Angew. Math. **219** (1965) 62–66.
- [4] A. S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.
- [5] J. Mikusiński, Sur la méthode d'approximation de Newton, Ann. Polon. Math. 1 (1954), 184–194.
 [6] V. Petričević, Newton's approximants and continued fraction expansion of ^{1+√d}/₂,
- Math. Commun., to appear

 [7] V. Petričević, Householder's approximants and continued fraction expansion of
 - quadratic irrationals, preprint, 2011.

 http://web.math.hr/~vpetrice/radovi/hous.pdf
- [8] A. Sharma, On Newton's method of approximation, Ann. Polon. Math. **6** (1959) 295–300.