Dlophantme m-tuples

A set {a1, ap, ..., am} of m non-zero mtegers (rationals) is called a (ra-
tional) Dlophantlne m-tuple if a; - a; + 1 is a perfect square for all

1 < i < j < m. Diophantus of Alexandria found a rational Diophan-

tine quadruple {116' ?g 147, 11065}’

in integers, the set {1, 3,8,120}, was found by Fermat. Euler was able
to add the fifth positive rational, 777480/8288641, to the Fermat's set.
Euler's construction has been generalized in [2], where it was shown that
every rational Diophantine quadruple, the product of whose elements
Is not equal to 1, can be extended to a rational Diophantine quintu-
ple. Recently, Gibbs [6] found several examples of rational Diophantine
sextuples. The first one was

while the first Diophantine quadruple

11 35 155 512 1235 180873
{192' 192" 27" 27" 48 ' 16 }

A famous conjecture is that there does not exist a Diophantine quintu-

ple (in non-zero integers) (see e.g. [7]). In 1969, Baker and Davenport

[1] proved that the Fermat's set {1, 3,8, 120} cannot be extended to a

Diophantine quintuple. In 1998, Dujella and Peth6 [4] proved that the

pair {1,3} cannot be extended to a Diophantine quintuple. Recently,

the first author proved in [3] that there does not exist a Diophantine
sextuple and there are only finitely many Diophantine quintuples.

Strong Diophantine m-tuples

Note that in the definition of (rational) Diophantine m-tuples we ex-
clude i =, i.e. the condition al2 + 1 is a square. It is obvious that for
integers, such condition has no sense.

Definition 1 A set of m nonzero rationals {a1, as, ..., am} is called
a strong Diophantine m-tuple if a; - a; + 1 is a perfect square for all
Lj=1..,m

It seems to be very hard to find an absolute upper bound for the size
of strong (rational) Diophantine tuples. The first strong Diophantine
triple, the set

1976 3780 14596
5607 1691° 1197

was found by the first author in 2000. No example of a strong Dio-
phantine quadruple is known. The problem of extension of given strong
Diophantine triple {aj, ay, a3} to a quadruple {a1, ap, a3, x}, leads to
the hyperelliptic curve

y? = (x* +1)(arx + 1)(apx + 1)(azx + 1)
of genus g = 2. Although the examples from last section might suggest

that the discovering of strong Diophantine quadruples is not unrealistic,
the existence of a strong Diophantine quintuple is very unlikely.

We have performed a search for more examples of strong Diophantine
triples in various regions. We have found more that 50 such triples with
at least two elements with relatively small numerators and denomina-
tors. The analysis of the special properties of some of these examples
leads us to the following theorem.

Theorem 1 There exist infinitely many strong Diophantine triples of
positive rational numbers.

We have found two different proofs of Theorem 1, i.e. two different con-
structions of infinitely many strong Diophantine triples (and we show
that moreover infinitely many of them have positive elements). Both
constructions are based on some elliptic curves over (Q with positive

rank.
Associated elliptic curves

To a non-zero rational a, we associate the elliptic curve
. 2 (.2
Ey: y°=(x"+1)(ax+1). (1)

It has a rational point T = [—1/a, 0], which is the torsion point of
order 2, and another rational point P = [0, 1], which is (in general) a
point of infinite order. Indeed, by considering the coordinates of the
point ] )
8a(a® +4) (3a% + 4)(a* + 24a° + 16)

R e A R N |

using Lutz-Nagell theorem, it is easy to check that P has infinite order,
except for a = +2, when it has order 3. Note that P+ T = [a, —a®—1].

We may consider the elliptic surface £ associated with the family of
curves E;. Using Shioda’s formula [8], we find that rank £(C(a)) = 1.
Since we already know that [0, 1] is a point of infinite order on £(Q(a)),
we conclude that also rank £(Q(a)) = 1.
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STRONG DIOPHANTINE TRIPLES

Andrej Dujella

Strong Diophantine pairs

Assume now that a® + 1 is a perfect square. Then all points of the
form mP or mP + T satisfy the additional condition that the both
factors of the cubic polynomial in (1) are perfect squares (it suffices to
check that this condition is fulfilled for T, P and P + T). Therefore,
the first coordinates of these points induce pairs {a, b} that are strong
Diophantine pairs. If we parametrize a by a = 2¢/(t%> — 1), then we
may take e.g.

b— —(t2+t—1)(t2—t—1) o =1
o 2t(t°—1) ! o 2t3 !
b— 4t(t2—1)(t*—t>+1) b — 2t(3t*—t5—1)

(P t—1)2(—t—1)2" (=) (T 2+1)

which are respectively the first coordinates of the points 2P, 2P + T,
3P, 3P+ T.

Strong Diophantine triples

Assume now that {a, b, c} is an arbitrary strong Diophantine triple.
Then the points with the first coordinates b and ¢ also belong to E;(Q).
Denote these points by B and C. Let e and f be the first coordinates
of the points B+ T and C + T, respectively, i.e. e = ab+l’1, f = aC+C1
It is easy to verify that {a, e, f} is also a strong Diophantine triple.

We can interchange the role of a, b, ¢ in the above construction. In that
way, starting with one strong Diophantine triple {a, b, c}, we obtain (in

general) another three strong Diophantine triples:

aa—b a—c bba b—c c £—a c—b

" ab+1'" ac+1 [ ab+1' bc+1 " ac+1'" bc+l1 |-
Note that among these four triples exactly two have all positive ele-
ments.

Example 1 Starting with the triple
140 187 427
{ 51" 84 _ﬁ}’
we obtain three new strong Diophantine triples:

140 2223 278817 187 2223 15168 427 278817 15168
51 * 30464' 33856 84 ' 30464' 2975 1836' 33856 ' 2975 (-

However, it should be observed that the four strong Diophantine triples
obtained with the above construction are not always necessarily distinct.

Example 2 /f we start with the triple
{1976 3780 14596}

5607 1691 1197
then the only new triple obtained with the above construction is

1976 19853044 3780
5607 16950717 1691 )

Note that the strong Diophantine pair{a, b} = {1976/5607,3780/1691}
has the additional property that a- (—b) + 1 is also a perfect square.

Lemma 1 Each strong Diophantine pair {a, b} with the property that
1 — ab is a perfect square can be extended to a strong Diophantine
triple.

PROOF. We take ¢ = fjbb, and we claim that {a, b, ¢} is a strong

2
Diophantine triple. Indeed, ac + 1 = a+1 bc +1 = f_E}D and

1—
2 2
c?+1= (2 (Jil_)(i);rl) are perfect squares. 0

atb _ c—b
Note that if ¢ = 125 then < ac+1 b and v .a, and therefore we
obtain only two different triples with our construction. In terms of the
elliptic curve E., in this case the addition of the 2-torsion point just
interchange the points with the first coordinates a and b.

We can show that there exist infinitely many strong Diophantine pairs
{a, b} with the additional property that 1 — ab is also a perfect square.
Hence, we want to find non-zero rationals a, b such that

a>+1, b°+1, ab+1 1—ab (2)

are perfect squares.

Thus, the question is how we can fulfill the four conditions from (2).
Let us fix o := a- b such that 1 + a and 1 — « are perfect squares.
The condition b%+1 = [J has the parametric solution b = 2t /(%> —1).
Inserting this into the condition P2 +1= [ 1 we obtain the condition

a?(t? —1)% + (2t)% = 5%, (3)

The quartic (3) can be transformed in the standard way into an elliptic
curve in Weierstrass form. If such curve has positive rank, we will obtain
infinitely many pairs {a, b} with desired property. Let us use the pairs
from Example 2. For o = 1617/10744 - 15168/2975 = 5544 /7225, we

obtain the curve
y2 + xy = x> — 43024332146390x — 32779590846716529900.

Using the specialized programs, like MWRANK or APECS, we can
compute the rank of this curve. We obtain that the rank is equal
to 1 (with the generator [—802370, —1106521940], and the torsion
group isomophic to Z /27 x 7Z/47). Therefore, we proved the follow-
ing lemma.
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Lemma 2 There exist infinitely many strong Diophantine pairs {a, b}
with the property that 1 — ab is a perfect square.

Lemmas 1 and 2 imply that there exist infinitely many strong Dio-
phantine triples, and by the remark after Lemma 1 we also know that
there exist infinitely many such triples with positive elements. Thus,
we actually proved Theorem 1. 0

We list some of the triples obtained with this construction

22098986000 1753879766391' 901/829641/58970738160
{54619093071 544519015040 83762004105/51017336761

22098986000 1753879766391’ 68500099164556988313840

144763558601204 7235857910848 504261850156211968926214263
927754486218138903868576025 ' 1025408540091866792066020184"

1161361740957008922125901324903233342330112123673647 }

{54619093071 544519015040 107828640285956516216761}

1316/1608758009932651459660743253005341982491486296

Example 3 Consider the strong Diophantine triple

364 475 132
627 132" 475)

It has the form {a, b, —1/b}. QOur construction gives now only one

new triple {g% —%%71, %} (of the same form). In general, we obtain
a—b 1+ab

one new triple {a, 27, 3=} (and no triples with positive elements).
In terms of the elliptic curve Ep, the point with the first coordinate
c = —1/b is the 2-torsion point, so in this case the addition of the
2-torsion point gives the point at infinity.

We can show that there exist infinitely many strong Diophantine triples
of the form {a, b, —1/b}, and that from every such triple we can obtain
a triple with positive elements. This gives the second proof of Theorem
1 (see [5] for details).

“Almost” strong Diophantine

qguadruples

It is not known whether there exists any strong Diophantine quadruple.
Such a set has to satisfy 10 conditions of the form xy + 1 is a square.
However, we were able to find quadruples (with relatively small numer-

ators and denominators) satisfying 9 of these 10 conditions. In Exam-

- - L 140 187 427
ple 1, we considered the strong Diophantine triple { 51 o —m}.

Perhaps surprisingly, we were able to find another extension of the pair

{140/51, 187/84} to a strong Diophantine triple, namely the triple

%' % ——270210101}. Therefore, we obtained an “almost” strong Dio-

phantine quadruple

51" 84" 1836° 20111

{140 187 427 7200}

which satisfies almost all conditions for a strong Diophantine quadru-
ple. The only missing condition is that (—%) (— 270210101) +1is not a
perfect square.

Using the construction described before Example 1, we can find another

example with the same property (and with positive elements):

140 2223 2738817 3182740
51" 30464 33856 17661 |

In this case, the only missing condition is that 23738885167 : 3%%%‘110 + 1is

not a perfect square.
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