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Department of Mathematics, Department of Mathematics,
University of Zagreb, Croatia University of Zagreb, Croatia

e-mail: duje@math.hr e-mail: vpetrice@math.hr

URL: http://web.math.hr/∼duje/ URL: http://web.math.hr/∼vpetrice/

Diophantine m-tuples

A set {a1, a2, ... , am} of m non-zero integers (rationals) is called a (ra-
tional) Diophantine m-tuple if ai · aj + 1 is a perfect square for all
1 ≤ i < j ≤ m. Diophantus of Alexandria found a rational Diophan-

tine quadruple
{

1
16,

33
16,

17
4 , 105

16

}

, while the first Diophantine quadruple

in integers, the set {1, 3, 8, 120}, was found by Fermat. Euler was able
to add the fifth positive rational, 777480/8288641, to the Fermat’s set.
Euler’s construction has been generalized in [2], where it was shown that
every rational Diophantine quadruple, the product of whose elements
is not equal to 1, can be extended to a rational Diophantine quintu-
ple. Recently, Gibbs [6] found several examples of rational Diophantine
sextuples. The first one was

{

11

192
,

35

192
,

155

27
,

512

27
,

1235

48
,
180873

16

}

.

A famous conjecture is that there does not exist a Diophantine quintu-
ple (in non-zero integers) (see e.g. [7]). In 1969, Baker and Davenport
[1] proved that the Fermat’s set {1, 3, 8, 120} cannot be extended to a
Diophantine quintuple. In 1998, Dujella and Pethő [4] proved that the
pair {1, 3} cannot be extended to a Diophantine quintuple. Recently,
the first author proved in [3] that there does not exist a Diophantine
sextuple and there are only finitely many Diophantine quintuples.

Strong Diophantine m-tuples

Note that in the definition of (rational) Diophantine m-tuples we ex-
clude i = j , i.e. the condition a2

i + 1 is a square. It is obvious that for
integers, such condition has no sense.

Definition 1 A set of m nonzero rationals {a1, a2, ... , am} is called
a strong Diophantine m-tuple if ai · aj + 1 is a perfect square for all
i , j = 1, ... , m.

It seems to be very hard to find an absolute upper bound for the size
of strong (rational) Diophantine tuples. The first strong Diophantine
triple, the set

{

1976

5607
,

3780

1691
,

14596

1197

}

was found by the first author in 2000. No example of a strong Dio-
phantine quadruple is known. The problem of extension of given strong
Diophantine triple {a1, a2, a3} to a quadruple {a1, a2, a3, x}, leads to
the hyperelliptic curve

y2 = (x2 + 1)(a1x + 1)(a2x + 1)(a3x + 1)

of genus g = 2. Although the examples from last section might suggest
that the discovering of strong Diophantine quadruples is not unrealistic,
the existence of a strong Diophantine quintuple is very unlikely.

We have performed a search for more examples of strong Diophantine
triples in various regions. We have found more that 50 such triples with
at least two elements with relatively small numerators and denomina-
tors. The analysis of the special properties of some of these examples
leads us to the following theorem.

Theorem 1 There exist infinitely many strong Diophantine triples of
positive rational numbers.

We have found two different proofs of Theorem 1, i.e. two different con-
structions of infinitely many strong Diophantine triples (and we show
that moreover infinitely many of them have positive elements). Both
constructions are based on some elliptic curves over Q with positive
rank.

Associated elliptic curves

To a non-zero rational a, we associate the elliptic curve

Ea : y2 = (x2 + 1)(ax + 1). (1)

It has a rational point T = [−1/a, 0], which is the torsion point of
order 2, and another rational point P = [0, 1], which is (in general) a
point of infinite order. Indeed, by considering the coordinates of the
point

3P =

[

8a(a2 + 4)

(a2 − 4)2
,

(3a2 + 4)(a4 + 24a2 + 16)

(a2 − 4)3

]

,

using Lutz-Nagell theorem, it is easy to check that P has infinite order,
except for a = ±2, when it has order 3. Note that P+T = [a,−a2−1].

We may consider the elliptic surface E associated with the family of
curves Ea. Using Shioda’s formula [8], we find that rank E(C(a)) = 1.
Since we already know that [0, 1] is a point of infinite order on E(Q(a)),
we conclude that also rank E(Q(a)) = 1.

Strong Diophantine pairs

Assume now that a2 + 1 is a perfect square. Then all points of the
form mP or mP + T satisfy the additional condition that the both
factors of the cubic polynomial in (1) are perfect squares (it suffices to
check that this condition is fulfilled for T , P and P + T ). Therefore,
the first coordinates of these points induce pairs {a, b} that are strong
Diophantine pairs. If we parametrize a by a = 2t/(t2 − 1), then we
may take e.g.

b =
−(t2+t−1)(t2−t−1)

2t(t2−1)
, b = t6−1

2t3 ,

b =
4t(t2−1)(t4−t2+1)

(t2+t−1)2(t2−t−1)2 , b =
2t(3t4−t8−1)

(t2−1)(t4+t2+1)2 ,

which are respectively the first coordinates of the points 2P , 2P + T ,
3P , 3P + T .

Strong Diophantine triples

Assume now that {a, b, c} is an arbitrary strong Diophantine triple.
Then the points with the first coordinates b and c also belong to Ea(Q).
Denote these points by B and C . Let e and f be the first coordinates
of the points B +T and C +T , respectively, i.e. e = a−b

ab+1, f = a−c
ac+1.

It is easy to verify that {a, e, f } is also a strong Diophantine triple.
We can interchange the role of a, b, c in the above construction. In that
way, starting with one strong Diophantine triple {a, b, c}, we obtain (in
general) another three strong Diophantine triples:

{

a, a−b
ab+1,

a−c
ac+1

}

,
{

b, b−a
ab+1,

b−c
bc+1

}

,
{

c , c−a
ac+1,

c−b
bc+1

}

.

Note that among these four triples exactly two have all positive ele-
ments.

Example 1 Starting with the triple
{

140

51
,

187

84
, −

427

1836

}

,

we obtain three new strong Diophantine triples:
{

140
51 , 2223

30464,
278817
33856

}

,
{

187
84 , − 2223

30464,
15168
2975

}

,
{

427
1836,

278817
33856 , 15168

2975

}

.

However, it should be observed that the four strong Diophantine triples
obtained with the above construction are not always necessarily distinct.

Example 2 If we start with the triple
{

1976

5607
,

3780

1691
,

14596

1197

}

,

then the only new triple obtained with the above construction is
{

1976

5607
, −

19853044

16950717
, −

3780

1691

}

.

Note that the strong Diophantine pair {a, b} = {1976/5607, 3780/1691}
has the additional property that a · (−b) + 1 is also a perfect square.

Lemma 1 Each strong Diophantine pair {a, b} with the property that
1 − ab is a perfect square can be extended to a strong Diophantine
triple.

Proof. We take c = a+b
1−ab, and we claim that {a, b, c} is a strong

Diophantine triple. Indeed, ac + 1 = a2+1
1−ab, bc + 1 = b2+1

1−ab and

c2 + 1 =
(a2+1)(b2+1)

(1−ab)2 are perfect squares.

Note that if c = a+b
1−ab, then c−a

ac+1 = b and c−b
bc+1 = a, and therefore we

obtain only two different triples with our construction. In terms of the
elliptic curve Ec , in this case the addition of the 2-torsion point just
interchange the points with the first coordinates a and b.

We can show that there exist infinitely many strong Diophantine pairs
{a, b} with the additional property that 1− ab is also a perfect square.
Hence, we want to find non-zero rationals a, b such that

a2 + 1, b2 + 1, ab + 1, 1 − ab (2)

are perfect squares.
Thus, the question is how we can fulfill the four conditions from (2).
Let us fix α := a · b such that 1 + α and 1 − α are perfect squares.
The condition b2+1 = � has the parametric solution b = 2t/(t2−1).
Inserting this into the condition a2 + 1 = �, we obtain the condition

α2(t2 − 1)2 + (2t)2 = s2. (3)

The quartic (3) can be transformed in the standard way into an elliptic
curve in Weierstrass form. If such curve has positive rank, we will obtain
infinitely many pairs {a, b} with desired property. Let us use the pairs
from Example 2. For α = 1617/10744 · 15168/2975 = 5544/7225, we
obtain the curve

y2 + xy = x3 − 43024332146390x − 32779590846716529900.

Using the specialized programs, like MWRANK or APECS, we can
compute the rank of this curve. We obtain that the rank is equal
to 1 (with the generator [−802370,−1106521940], and the torsion
group isomophic to Z/2Z × Z/4Z). Therefore, we proved the follow-
ing lemma.

Lemma 2 There exist infinitely many strong Diophantine pairs {a, b}
with the property that 1 − ab is a perfect square.

Lemmas 1 and 2 imply that there exist infinitely many strong Dio-
phantine triples, and by the remark after Lemma 1 we also know that
there exist infinitely many such triples with positive elements. Thus,
we actually proved Theorem 1.

We list some of the triples obtained with this construction

{

54619093071
22098986000,

544519015040
1753879766391,

107828640285956516216761
9017829641758970738160

}

,
{

54619093071
22098986000, −

544519015040
1753879766391,

83762004105751017336761
68500099164556988313840

}

,
{

1447635586012047235857910848
927754486218138903868576025 , 504261850156211968926214263

1025408540091866792066020184,

1161361740957008922125901324903233342330112123673647
131671608758009932651459660743253005341982491486296

}

.

Example 3 Consider the strong Diophantine triple

{

364

627
,

475

132
, −

132

475

}

.

It has the form {a, b,−1/b}. Our construction gives now only one

new triple
{

364
627, −

297
304,

304
297

}

(of the same form). In general, we obtain

one new triple {a, a−b
ab+1,

1+ab
b−a } (and no triples with positive elements).

In terms of the elliptic curve Eb, the point with the first coordinate
c = −1/b is the 2-torsion point, so in this case the addition of the
2-torsion point gives the point at infinity.

We can show that there exist infinitely many strong Diophantine triples
of the form {a, b,−1/b}, and that from every such triple we can obtain
a triple with positive elements. This gives the second proof of Theorem
1 (see [5] for details).

“Almost” strong Diophantine
quadruples

It is not known whether there exists any strong Diophantine quadruple.
Such a set has to satisfy 10 conditions of the form xy + 1 is a square.
However, we were able to find quadruples (with relatively small numer-
ators and denominators) satisfying 9 of these 10 conditions. In Exam-

ple 1, we considered the strong Diophantine triple
{

140
51 , 187

84 , − 427
1836

}

.

Perhaps surprisingly, we were able to find another extension of the pair
{140/51, 187/84} to a strong Diophantine triple, namely the triple
{

140
51 , 187

84 , − 7200
20111

}

. Therefore, we obtained an “almost” strong Dio-

phantine quadruple

{

140

51
,

187

84
, −

427

1836
, −

7200

20111

}

,

which satisfies almost all conditions for a strong Diophantine quadru-
ple. The only missing condition is that (− 427

1836) · (−
7200
20111) + 1 is not a

perfect square.
Using the construction described before Example 1, we can find another
example with the same property (and with positive elements):

{

140

51
,

2223

30464
,

278817

33856
,

3182740

17661

}

.

In this case, the only missing condition is that 278817
33856 · 3182740

17661 + 1 is
not a perfect square.
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