NEWTON’S APPROXIMANTS AND CONTINUED FRACTION
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VINKO PETRICEVIC

ABSTRACT. Let d be a positive integer such that d = 1 (mod 4) and d is not

a perfect square. It is well known that the continued fraction expansion of

1+Vvd

5~ is periodic and symmetric, and if it has the period length ¢ < 2, then all

d—1 2

2
+7

PnT T A are convergents of 14v4d 414 then
an (2pn—an) 2

it holds Ry, = Z;’% for all n > 0. We say that R,, is good approximant if Ry,

Newton’s approximants R, =

is a convergent of % When ¢ > 2 then there is a good approximant in the
half and at the end of the period. In this paper we prove that being a good
approximant is a palindromic and a periodic property. We show that when
£ > 2, there are Ry’s, which are not good approximants. Further, we define
the numbers j = j(d,n) by R, = % if R, is a good approximant;
and b = b(d) = [{n : 0 < n < ¢—1and R, is a good approximant}|. We
construct sequences which show that |j| and b are unbounded.

1. INTRODUCTION

Let d = 1 (mod 4) be a positive integer which is not a perfect square. The
simple continued fraction expansion of 1+—2‘/3 has the form

1+d

9 :[ao,al,ag,...,a5_1,2ao71].
Here ¢ = E(#) denotes the length of the shortest period in the expansion of
1+—2‘/3. Tt is well known (see e.g. [9, §30]) that the sequence a1, ...,ap—1 is palin-
dromic, i.e. a; = ay—; for i = 1,...,¢ — 1. This expansion can be obtained using
the following algorithm: ag = L1+2\/EJ ,S0 =19 =1,
d—s? ; d
Si+1 = QGJZ'ti — Si, ti+1 = 714_1, Qi1 = M 5 for ¢ 2 0. (1)
4t; 2t
The numbers s; and ¢; are also palindromic ([9, Satz 3.32]):
Sit1 = Se—i, (2)
ti = te—i,

fori=0,1,...,f/ — 1, and when we get:

(i) s; = Siy1, then £ = 23,
(ii) t; = tiy1, then {=2i+1.
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See [9, Satz 3.33].
Let % be the nth convergent of % Then

1 1+vVd p, 1
5 < - < 5
(an-i-l + Z)Qn 2 dn Gn+19;,
In particular,
1++d _ Pn < 1 3)
2 an| @2
Furthermore, if a rational number % with ¢ > 1 satisfies
1 d 1
+Vd_p <3 (4)
2 q|  2¢?

then £ equals one of the convergents of 1+2\/E (for the proof see e.g. [9, §13]).

Newton’s iterative method for solving nonlinear equations

f(xr)

TR T i )

is another approximation method. Applying this method to the equation f(z) =

2 -z — % = 0, which has a root 1+2\/E7 we obtain
22+ dll
Th+1 = 1
T 2 1
We are interested in connections between these two approximation methods. The

main question is: if we assume that x( is a convergent of 1+2\/E, is 21 also a conver-

gent of %? If 29 = B, we are asking whether

def pa+ S
Qn(2pn - Qn)

mn
is a convergent of %.

The same question was discussed by several authors for v/d and R/, = %(p—" +
%)‘ It is well known (see e.g. [1, p. 468]) that

= P2 o k> 1 (5)

7

q2ke—1

It was proved by Mikusinski [7] (see also Elezovié¢ [4], Sharma [10]) that if £ = 2t,
then
I - S S A
q2kt—1

These results imply that if ¢(d) < 2, then all approximants R, are convergents
of v/d. In 2001, Dujella [2] proved the converse of this result. Namely, if all R/,
approximants are convergents of v/d, then ¢(d) < 2. Thus, if £(d) > 2, we know
that some of approximants R, are convergents and some of them are not. Using a
result of Komatsu [6] from 1999, Dujella showed that being a good approximant is
a periodic and a palindromic property, so he defined the number b as the number
of good approximants in the period. Formula (5) suggests that R] should be
convergent whose index is twice as large when it is a good approximant. However,
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this is not always true, and Dujella defined the number j as a distance from two
times larger index. Dujella also pointed out that j is unbounded. In 2005, Dujella
and the author [3] proved that b is unbounded, too.

Moreover, Sharma [10] observed arbitrary quadratic surd o = ¢+ Vd, e,d € Q,
d > 0, d is not a square of a rational number, whose period begins with a;, and
f(x) = 2% + Az + B, such that f(a) =0 (A = —2¢, B = ¢®> — d). He showed that

2 2
for every such « and the corresponding Newton’s approximant N,, = #ﬁ%
it holds
Nk€—1 = p2k€—1’ for k Z 1, (6)
q2ke—1

and when ¢ = 2t and the period is symmetric (except for the last term) then it
holds

Npi_1 = —, for k> 1. (7)

In this paper, we show that analogous results hold in the case of the approxima-

tion of 1"’2—‘/3. We show that every approximant is good if and only if £ < 2. We
give much an easier way to prove that to be a good approximant is a palindromic
and a periodic property; we construct a sequence that shows that j could be ar-
bitrary large, and we prove that for every b there exists d such that b(d) = b and
b(d) > ¢(d)/2.

2. WHICH CONVERGENTS MAY APPEAR?

Sometimes good approximants can be found in places other than the half and
the end of the period.

Example 1. Let d = 324n% +108n — 27, n € N. Then we have £ = 6 and R, = ’;—2
and Rg = z—:. Using algorithm (1) it is straightforward to check that

1 d
+2\[ =[In+1,1, 2n—1, 3, 2n—1, 1, 18n+1].
Now the direct computation shows that
8
Ry=9 2 —
R T
3 D3
Ry =9 2 — =,
! ne 6n +1 qs
6n+1 D5
= 9 - '- _ 5
Itz = On 12n2 +4n g5’
108n2 + 36n D7
Rs =9 2 — =—,
3 nt 216n3 + 108n2 +6n—1 g7
1296n* — 432n3 — 216n% + 60n + 5
Ry=9n+2— ,
2592n5 — 432n* — 648n3 4 84n2 + 34n — 1
1296n* 4n3 + 108n? — 12 1
Re—On+2— 96n* 4 864n°> + 108n n + _ pu

2592n5 4 216004 + 432n3 — 23n2 — 8n qq1
Theorem 1. If R, = %, then k is odd.
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Proof.
4<R_1+\/E>:(2pn_Qn_\/g>+(dQn_\/E)
" 2 dn 2py — qn
2pn —dqn Qn\/a 2pn —4n dn 2pn —qn 2
( In f) 2pn, — qn( In f) 2pn — qn( In f)
Since d > 5, we have
pl>1+ﬁ_i> 1t
n 2 g2 a 2

except if ¢, = 1. But if ¢, = 1, then we also have 2p,, > 2 > q,. Anyway 2p, > qn,
so R, > 1+—2‘/3. Since fl’—: > 1+—2‘/3 if and only if & is odd, from R, = z—: we conclude

that k£ is odd. O
1+vd
2

In the same way as in [2], when R, is the convergent of we can write

Pon+1+25
Rn_ n+1+2j

q2n+1+42j

for an integer j = j(d,n). From (6) and (7) we have j = 0 when E(HT‘/E) < 2.
In Example 1, j always equals 0. This suggests that Newton’s method converges
exactly twice faster, and it gives the convergent with a double index. However, this
is not always true.

Example 2. Let d = 4n* + 160> + 28n? + 28n + 13, n € N. We have {(d) = 7,

Ry = z—g and Ry = Z—z. Using algorithm (1) it is straightforward to check that

1+Vd
-

Now the direct computation shows that:

(2 4+2n+2,2n+2, n, 1, 1, n, 2n+2, 2n2 +4n + 3].

n+1
Ro :”2+2”+2+72n2+zn+3 = 2—2’7
and 4+ 1202 +12n+5
8n4 + 32n3 + 52n2 + 44n + 16’
An® +12n* +16n3 + 13n2 +5n+1
8nb + 32n° + 60nt + 68n3 + 46n2 + 18n + 3’
4n® 4 20n* 4 44n3 4+ 53n% + 35n + 10
(2n? + 4n + 3)(4n* + 1613 + 28n2 + 26n + 11)’
16n° + 64n* + 11603 + 120n2 + 68n + 17
4(2n2 4 3n + 2)(4n* + 14n3 + 22n2 + 190+ 7)°
) 1617 + 80n8 + 192n° + 284n* + 272n% + 16802 +61n+ 10  pg
Rs=n*+2n+2+ ==,
(4n3 + 8n? 4 8n + 3)(8n® + 32n* + 60n3 + 6612 + 40n +11) ¢
Rg =n?+2n+2+
64n° + 448n% + 1536n" + 3344n°5 + 5040n° + 5424n* + 4152n3 + 2176n? + 708n + 109
8(4nt + 12n3 + 18n2 + 14n + 5)(4nS 4+ 20n5 + 48nt + 70n3 + 64n? + 35n + 9)
_ b3
B a3

Ri=n*+2n+2+

Ro=n’4+2n+2+

Ry=n>+2n+2+

Ri=n’+4+2n+2+
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In Example 2, we have shown that j could be £1 (R = £ and Rs = £2). We

shall prove (Theorem 3) that |j| can be arbitrary large. Let us first show some
other interesting details. Let us show that being a good approximant is a periodic
and a palindromic property. Le. j(d,n) = —j(d,{ — n — 2).

3. GOOD APPROXIMANTS ARE PERIODIC AND SYMMETRIC
Formula [10, (8)] says: For n € N it holds
aoqne—1 = Pne—1 — qne-2; (8)
(a0 — Dppe—1 = Frane—1 — pno—o. 9)
Lemma 1. For k € N and ¢ > 0 it holds

Rip—1Ri—q + 4

Rppyi1 = 4_
Wb S R TR
Proof. We have
elti—
Phevict _ [ao,ar,...,axe—1,a0 — 1 +ag,a,...,a;—2,a; 1]
ke+i—1
|y st Pre-1(a0 =1+ 2=2) + pros
= ap,Aiy...,Ape—1,00 — = i
¢i—1 Gre—1(a0 — 1+ 2=2) + qre—o
i— d—1 —
© Pre-1g o + ke B Pre—1Pi-1 + S qre—1¢i—1
®) qu—l(ix: 1) +pre—1 Ge—1(Pic1 — ¢i-1/2) + Gi—1(Pre—1 — qre—1/2)

(10)
Now we have

(Rie—1Ri—1 4+ %) - qre—1(2pke—1 — Qre—1)qi-1(2pic1 — qie1) =

= (pro—1 + T ate )i + 1) + S are—1(2pke—1 — qhe—1)qi—1(2pi—1 — Gi—1)
— _ 2

= (pre—1Pi-1 + Frare—16i-1)" + G2 (qre—1(pim1 — @i-1/2) + qi—1(Pre—1 — are-1/2))",

(11)

(Rre—1+ Ric1 — 1) - qre—1(2pre—1 — Qre—1)qi-1(2pi—1 — qi—1) =
= Pre—1 + G0 1)ai—1(2pi-1 — qic1) + (D71 + G071 dre—1 (2Pke—1 — Qre—1)
— Qre—1(2Pre—1 — Qre—1)qi-1(2pi—1 — qi—1)
= (qee—1(Pi-1 — 4i-1/2) + qim1(Pre—1 — Qre—1/2))-
) (21?1@2711%71 + %%hl%q — qre—1(Pi-1 — ¢i-1/2) — qi—1(pre—1 — kaf1/2)),
(12)
and the quotient of (11) and (12) is, by (10), equal to Rgsti—1- O

Lemma 2. For k € N and i > 0 it holds

Rieo1(1—Rimq) + 424
Ryo—1 — Ry '

Rip—i1 =
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s EpatPa1 _ _ _ )
Proof. Using em= = [ag,a1,...,an_1,an,x] for x =0, n = kf — i, we have
Pre—i—1 0 Dre—i +Pre—i—1
- - [a07a17"')akl—l’—17ak£—i70]
re—i—1 0 qre—i + qre—i—1
= lao,a1,. .., 0ke—i; Qpo—i—1,0, —ape—i—1]
= [a0;a1;~--aaké—i7ak€—i—1a~-~aak£—1ya0707 —aop, _ak£—17~-~;_ak€—i—1]
= lao,a1,...,ke—i, Qpo—i—1,- .., 0re—1,00,0,—ag, —a,...,—a;_1]
_ Pi—-1
= 1a0,01y.-,0kL—iy Akl—i—1y-+ -, AkL—1,00 —
qi—1
;Dz 1 Pi—1 d—1
_ Pre- 1(ao — ) + Dre—2 (©) Pre— (1= 7H) + ke
PL Pi—1
 qre—1(a0 — 1) + Gre—2 () Pre—1 = Qre—1g.—,

_ Pre—1(qi—1 —pi—1) + TQké—IQi—l
Pre—149i—1 — qke—1Pi—1 '

(13)

Now we have
(Ree—1(1 — Riz1) + 1) - qre—1(20k0—1 — Qre—1)Gi—1(2pi—1 — Gi—1) =
= (Pho—1 + Frare1) (i-12pimy — qi1) — iy — Fra7 1)+
+ L o1 (2Pke—1 — Qre—1)Gi—1(2pi—1 — Gi—1)

_ 2
- [(pkl—l(%'—l —pi—1) + TQk£—1Qi—1) 4 (‘pkz—l%—l - Qké—lpi—l) },
(14)

(Rre—1 — Ri—1) - qre—1(2Pke—1 — qre—1)Gi—1(2pi—1 — %-1) =
= (Pro—1 + Frare—1)ai-12pim1 — gi—1) — (07—1 + a7 1) qre—1(2Pre—1 — Qre—1)
—(Pre—14i—1 — Qre—1Di—1)-
- (2pre-1(gi—1 — pi—1) + Frare—10i-1 — Pre—1Gi—1 + qre—1pi-1), (15)
and the quotient of (14) and (15) is, by (13), equal to Rp¢—;—1. O

Lemma 3. For arbitrary ag, a1,. .., ap and o we have

Pkt agg
[ak,ak—1,...,a1,00 + @] = —————.
Pk—1 + 0qr—1
Proof. Using [ag, ak—1,...,a1,a0 + ] = [abak,l,...,ahao,é} we get
ap 1 ap—1 1 a; 1 ag 1 él_pkpk,lTil
10 1 0 1 0/\1 0/\10/) \a qer 10)
so we have
1
Lo+
[ap, an_1,...,a1,a0 +a] = L L P+ aqi

Ipki+a1 e tageer
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Theorem 2. Fori=0,...,|¢/2] and
_%Fﬂ%fﬁq +p7 1) =P 121 — i 1)qi1 _ P2i-1 — Qi1 R

P = =

qm(%qg—l +p?71) —P2i(2pi—1 — qi—1)qi—1 P2i — q2ilti 1
(16)
it holds
o i + i
Rké+z‘—1 _ iP2ke+2i T P2ke+4-2i 17 for all k>0, and
Qi q2ke+2; + q2Ke4+-2i—1
0—2i—1 — Qy i
Rkl—i—l _ DP2ke—2i—1 iD2k0—2i 2’ fO?” all k > 1.

q2ke—2i—1 — OGQ2kL—2i—2

Proof. Let us first consider the continued fraction expansion of «;.

oy = — 0

p2i — Ri—1g2i Lm.3
) - _[
P2i—1 — Li—1q2i—1
= [0, —ag;, —agi—1,...,—ai, —ap + Ri_1].
If kK =0 we have
a;ip2; + P2i—1
Q;q2; + g2i—1
=lap,ai,...,a2i—1,02i,0, —a2;, —A2;—1,...,—a1,—ao + Ri_1] = Ri_1,

0,a2,02—1,...,01,a0 — R;i_1]

=[ap,a1,...,a2i—1,02;, ;]

and if £ > 0 we have
Q;P2ke+2i + P2ke+2i—1
Qiq2ke+2i + Q2ke+2i—1

=[ap,ai,...,a2k0—1,00 — 1 + ag, a1, ...,a2_1, a2, o |

_ pake—1(a0 — 1+ Ri—1) + poke—2
Goke—1(ap — 1+ Ri—1) + qake—2
© Ppore—1Ri1+ L goke—1 ©) Rre—1Ri—1+ a1 Lm. 1

=lap,q1,...,02%0-1,00 — 1+ R;_1]

= = Rieyi-1,
(8) qare—1(Ri—1 — 1) + page—1 Ri1 — 14 Ry
D2ke—2i—1 — O4D2ke—2i—2 1
= [ @0, Q155 Q2(ke—i)—1, —
Q2k0—2i—1 — QiQ2Ke—2i—2 %

=lag,a1,...,03040—-1)-1,0,0,a24, a2i_1,...,a1,a0 — Ri_1]

= [G/Oa A1y -y Q(k0—i)—1) A2(kL—i)> A2(kl—i)4+1) - - - » A2k6—1, A0 — Riq]

 pake—1 (ag — Ri—1) + pore—a (9) pare—1(1— Ri1) + Fhqore s
" qore—1 (a0 — Ri—1) + qare—2 (8) Pare—1 — Ri—1qare—1

©) Rree—1(1—Ri1) + 9% Lo Rev .

B Ryg—1— R o ke

O

Remark. Theorem 2 could be proved using the same ideas as in [6], but the ideas
in the proof of Theorem 2 can also be used to prove [6, Tm. 1] in an easier way.

The following Corollary reduces our problem to the half-periods.

Corollary 1. Forn=0,...,[¢/2] and k>0
Pa(ke+n j
Rk@+n — w — R(k+1)€—n—2 — ,
q2(ke+n)+1+2; Q2((k+1)—n—2)+1-2j

or in other words: j(d,kl+n) = j(d,n) = —j(d,{ —n —2).

P2((k+1)6—n—2)+1-25
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Proof. Same as [2, Lemma 3]. O

4. HOW LARGE CAN j BE?

Lemma 4.

Rpy1 < R (17)
Proof. Using R, = 1 (3n=1» Pr=dn 4 pdq_”q +2), the statement of the lemma is equivalent
to

(—=1)"(dgndn+1 = (2P0 = ¢n)(2Pn41 — Gns1)) > 0. (18)
If n is even, then 2= < ‘fH and Z”E > \/3+1 . Furthermore, since p“j:i - @ <
—‘/32“ Bu | we have 2P';7 Wy 2pnzi+;1n+l < 2\[ Therefore
2
2P0 —Gn 2Pnt1 — Gnia < [<2pn —n 2pnt1 — Qn+1)/2:| “d
qn n+1 dn n+1
and (18) holds. If n is odd, the proof is completely analogous. (Il
Proposition 1. When 6(%) > 2, then for all n > 0 we have
l— 3
(d,n)| < ——
ji(d.n)] < —

Proof. Let R, = B22t142i = According to Corollary 1 it suffices to consider the case

_ q2n+1+2;
j>0and n < /.
Assume first that £ is even, say £ = 2m. Then R,,_1 = I;j—: and Ry_q, = ](Zj L

If n < m — 1, using (17) we have 2n +1+2j < ¢ —2, and 25 < £ — 3. Since ¢

is even, we have j < £ .Forn:m—landnz@—lwehavej:O,andfor
—1<n<f—1wehave2n—|—1+2j§2€—2and2j§2£—3—2n§€—3. Thus
we have j < &4 again.
Assume now that ¢ is odd, say ¢ = 2m + 1. If for some n,0 < n < m we

got j > %7 ie. j > m, we would have 2n + 1+ 2j > ¢. By Corollary 1, we

have Ry_,_p = 22U=n=24122i qnd 2(f —n —2) +1 —2j < £ — 2. Now from

q2(L—n—2)4+1-2j5

21 > ’;z > p5 > ... it follows that R, > Ry_,_>. However Lemma 4 implies that
this is not p0551b1e since { —mn—2 > m. For m —1 < n < {—1, the proof is

completely analogous to the even case. O

Let us show now that the Proposition 1 estimate is sharp. If we want that
j = j(d,n) is large, the continued fraction expansion should have many small a;’s
following a,,. Let us first see for fixed a;’s what property ag should satisfy, in order

to get the continued fraction expansion of a number of the form 1+T\/3, deNd=1
(mod 4).

Proposition 2. Let ¢/ € N and ay,az,...,a¢_1 such that a1 = ay_1,a2 = ag_o,....
Then the number [ag,a1,az,...,a0-1,2a0 — 1] is of the form H‘—Q\/E,d eNd=1
(mod 4) if and only if

200 =1- (*1)4172—2(]2—2 (mod py_,), (19)
where 2—% are convergents of the number [a1,as,...,a;]. Then it holds:

i

(20)

2a9 — 1 +
d:1+4(a(2)—a0—|—( 0= Dppy 41 2)

Doy
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Proof. Let a = 1+—2‘/E = [ag,a1,az,...,a2,a1,2a9 — 1]. Since ag,a; € N, we have
«a > 1. Let us observe:

B=ap—1+a=[2a)—1,a1,a2,...,a2,a1] = [bo,b1,b2,...,bp_2,b,_1].

Since ( is purely periodic, 5 is reduced, so we have (% are convergents of 3):

pe—1 — qe—2 £ \/(pe—1 — Qe—2)* + 4qe—1pe—2

8,6 = S0

We then have

B =[bo,b1,ba,....be—2,bi—1] and —1/B=[by_1,be_2,...,b2,b1,bg],

i.e. because the expansion is palindromic we have

B:[bOab17b27"'7bQ7b17b0]:[b()vﬁl] and 7B:[Oablaan"'vbzvbl?bO]:[0751}'
We see that 2ag — 1 = by = 8 + 5. Now we have:

4= (20— 1 = (28— 20+ 1) = (5 - Pt = Bt 2] H ey

From
pi =(2a0 — 1)p; + q;, ¢ = p;,

we get

2
(2a0 = )pl1 + ¢4 1 — P s (200 — )pp_5+¢5
d e 7 + 4 7 .
Py_q Prq
Because the expansion is palindromic, p;_, = ¢;_;, so we have
(200 — )pp_5 + 445
Py

d=(2a0 —1)*+4 (=20)

It is clear that (2ap — 1) =1 (mod 4), so d will be an integer congruent to 1 mod
4, if and only if pj_; | (2a0 — 1)p)_o + qy_o, i.e.
(2a0 — 1)pyp_o = —qp_o  (mod pj_;).
From p,—1gn — pngn—1 = (—1)" follows p, ,q, ; = (=1)* (mod p}_,), so we have
(2a0 — 1) = _(—l)e%—zf]éq (mod pj_;).
and we get (19) because the expansion is palindromic, i.e. p,_, = q)_;. ([l

Lemma 5. Let Fy, denote the k-th Fibonacci number, and F_o = —1,F_1 =1, Fy =
0. For m € N or 2m € N when k | 3, and d(m) =4((m~Fk—|—1)2+m~Fk_3) +1
it holds

1++/d
%k(m):[m~Fk+l,1,1,...,l,l, 2m - Fp + 1],

k—1 times

and ¢(FVF) — g,
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Proof. From (19), it follows:
200 = 1—(—1)*F_1F_ o = 1—(—1)*F 1 (Fy—Fi_1) = 1+(-1)*F?_, (mod Fy).
Now from Cassini’s identity FyFy_o — F2_; = (—1)k~! we have:
2a9 =2 (mod Fy),
or
_J1+m-Fy, meN, when3{k,
ao{l—&—’;-Fk, m €N, when 3| k.
From (20) it follows:

2m'Fk+21)Fk_1+Fk_2)
+1
Fy

=4((m-Fy+1)*+m-F, —2m - Fy_5) + 1 =4((m- Fy +1)> + m- Fy_3) + 1,

d4<(m.Fk+1)2m-Fk1+(

and when k=0 (mod 3),

2
d4<(rg-Fk+1> +T;~Fk_3>+1.

]

For arbitrary k, we find m, such that for di(m) it holds Ry = 222, We have

qk—2

Pk—2 __ Fr_2 : _ . _
o — e+ p—- On the other hand, using a9 = 1 4+ myiF we have: Ry =
2 2
agt+meFe) +meFi—3 _ ag+myFy_3 _ Pe-2 .

San T = a0 + — g1 So we get Ry = P if and only if
Fr_2 __ apt+tmgFir_3
Fk,1 - 2(10—1 ) or

F—1— Fy—2 Fy_3
mp

C 2FFyo— Fy 1 Fy — Fy1Fy—s  FpFy_y— Fp1Fj_3
It remains to see when my is an integer, or half of on integer if 3 | k. Using Binet’s

formula F,, = W’ we have

Fy 3
2. (=1)k-1"
So if k is odd, my is greater than 0, and when 3 t k, then Fj_3 has to be even,

but this is not possible. So, k has to be of the form 6n + 3,n € N. Thus, we just
proved:

Theorem 3. Let k= 6n+3,n € N. Fordy = (FFy_3+2)? + 2F,€2_3 + 1 it holds
Ry = 2e=2, O

dk—2

mp =

Remark 1. From Corollary 1 and (6) we get Ri_o = 2 and Ry, = 221

dk q2k—1
respectively. So these are the only three good approzimants.

Corollary 2.
sup {]j(d, n)|} = +oo,

pmanp {4} 1
() o
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It remains the question how large can be j compared with d. Let
d(j) = min{d | there exists n such that j(d,n) > j}.

In Table 1 we list d(j) values for 1 < j < 104 such that d(j) > d(j') for j' < j. We
also give corresponding n and k values such that R, = 2& = P2n4142j

qk 2n+41+42;5
. 14vd , Ind(j) d(j) j(d,n)
46) JEESE) | ) ki) BT | Tam | e
57 6 0 3 1 7.549834 | 0.166667
193 15 2 9 2 7.592457 6.946222 | 0.133333
721 36 6 19 3 5.989956 8.950481 |0.0833333
1121 28 6 21 4 5.0652853 | 8.370335 |0.142857
2521 85 22 55 5 4.866551 |10.0419122 0.0588235
2641 82 23 59 6 4.397305 8.56511 0.0731707
4201 105 32 79 7 4.287494 9.259303 | 0.0666667
5401 120 16 49 8 4.133004 9.186437 |0.0666667
10 369 161 63 | 109 9 4.208298 [ 11.314254 | 0.0559006
12241 167 37 | 97 11 13.925337 | 10.0580957 | 0.0658683
24 841 231 62 | 151 13 13.945595 |[12.123868 |0.0562771
33121 340 124 | 277 14 13.943803 |[12.999411 |0.0411765
38 689 310 79 | 189 15 13.900707 |[13.113013 |0.0483871
46729 406 163 | 293 17 13.795027 | 12.715819 |0.0418719
52201 345 88 | 217 20 |3.626111 |11.423769 |0.057971
66 721 413 123 | 295 24 |3.495307 |10.76267 |0.0581114
121 369 513 109 | 271 26 |3.593077 |13.399252 |0.0506823
139921 559 158 | 373 28 |3.555854 |13.359291 |0.0500894
203 449 879 280 | 631 35 [3.437967 | 12.887235 |0.039818
212881 907 309 | 691 36 ]3.423587 |12.816397 |0.0396913
311761 962 300 | 685 42 13.38446 13.294181 |0.043659
430081 1389 436 | 961 44 13.427875 | 14.904673 |0.0316775
503 881 1438 500 | 907 47 13.410284 |15.103101 |0.0326843
606 481 1266 407 | 915 50 |3.403719 |15.575378 |0.0394945
706 729 1815 539 | 1181 51 |3.425483 |16.48376 |0.0280992
760 369 1802 559 | 1231 56 |3.364069 |15.571275 |0.0310766
795409 1180 346 | 807 57 13.360485 | 15.646615 |0.0483051
990721 1840 569 | 1267 64 |3.319687 |15.552339 |0.0347826
1132609 | 2256 681 | 1507 | 72 |3.259556 |14.781126 |0.0319149
1157641 | 2441 727 1603 | T4 |3.243886 |14.539693 |0.0303154
1318249 | 2607 808 | 1773 | 78 |3.234509 |14.719875 |0.0299194
1700689 | 2856 892 | 1951 83 |3.246676 |15.712105 |0.0290616
1912681 | 2921 838 | 1845| 84 |3.264413 |16.464251 |0.0287573
2058001 | 3190 983 |2155| 94 |3.199714 |15.26142 0.0294671
2357569 | 3224 |1044(2297| 104 |3.159325 |14.763824 |0.0322581

TABLE 1. d(j) for 1 < j < 104.
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5. NUMBER OF GOOD APPROXIMANTS

Theorem 4. R, is a convergent of 1+—2‘/E for all n > 0 if and only ifﬁ(“rzﬁ) <2.

Proof. Formulas (6) and (7) implies that if £ < 2, then all R,, are convergents of
Vd+1
5

Assume now that R, _1 is a convergent of @ for all n € N. Then by The-

orems 1, 4 and (6), we must have R, 1 = Zi"ij for all n € N, so every a,, in
Theorem 2 has to be 0. Thus, for n = 1, we should have Ry = %, i.e. oy = 0. So
let d =1+4(a% —ap+t). Then 1"'2—‘/3 = [ag,a1,as,...,a¢—1,2a9 — 1]. Hence, from

(16) it follows:

d—1
0=aq (qu +p§) —p1(2p0 — q0)q0 =
=ay(a2 —ap+t+ad) — (1+ apay)(2ap — 1)

= a1t —2ag9 + 1,

that is

2&0—1

ay

It is well known [9, p. 107] that E(HQ\/E) < 2, when d = 1+ 4(ad — ao + t) and

t]2ag—1. O
Let
b(d) = {n |0 <n<{¢-—1,R, is a convergent of ! +2\/&}‘.
Theorem 4 shows that % > 1 when ¢ > 2 and % =1, for ¢ < 2. In Example 1

we showed that for d = 324n? + 108n — 27 we have b(d) = 4 and ¢(d) = 6, and in
Example 2 we showed that for d = 4n* + 16n3 4 28n? + 28n + 13 we have b(d) = 3
and ¢(d) = T.

Let

£, = min { £ | there exists d such that £(15/7) = ¢ and b = b(d) }.
According to Theorem 4 we have ¢; = 1, £ = 2 and ¢, > b for b > 2. From
Example 2 follows that ¢3 < 7. From Corollary 1, (6) and (7) it follows that ¢, and
b have the same parity, when ¢, < +o0o0. From Example 1, it follows that /4, = 6.
Let us show that /3 = 5.

Example 3. Let d = 16n* + 1613 + 12n? —4n + 1, n € N. Then £(d) = 5 and
b(d) = 3. Using algorithm (1) it is straightforward to check that

1 d
+2\[: [2n2 +n,1, 2n, 2n, 1, 4n2 + 2n — 1].
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Now the direct computation shows:

2n —1

Ry = 2n -2

o= e
2n D3

Ry = 21 L

! neAn n?24+2n+1 g3’
Snd4+8n24+2n—1 D5

Ro=2n>+n+1-

b

16nd+24n3 1602 +2n—1 g5
2n(16n* + 16n® + 12n2 + 2n + 1)
(4n? + 2n + 1)(16n* + 16n3 + 12n2 + 1)’
320% + 64n + 64n® + 2802 +4n— 1 py

Ry =2n? 1— ==,
AT L 80D + 20nt + 260% + 182 + T+ 1) g

Ry=2n*+n+1-

In Table 2, we list the upper bounds for ¢;,, 3 < b < 100, obtained by experiments.
It is not hard to check that sequences of numbers such that b = 5 and £ = 9 or
b =6 and ¢ = 10 exists, but the number 945 is the only one found which shows
that £19 < 14 (and we tested all numbers < 221-5). Also, contrary to v/d, where it

holds ¢ = 8 [2, Exam. 1], for 1+2\/E we were not able to find such d.

In this section, we find some sequences which will significantly improve some of
the entries in Table 2.

6. SEQUENCES WITH MANY GOOD APPROXIMANTS
Let us first prove some lemmas.

Proposition 3. Let d, s, tn, Dn, gn be as in Algorithm (1). Then forn > —1 it
holds

(2P0 — gn)* — dgp = (=1)" "4t 11,
(2Pn = @) (2Pn—1 — @n—1) — dGngn—1 = (=1)"2sn41.
Proof. Similarly as in [9, §20, III], since v/d is irrational, from
Snt1t+Vd

1+Vd spirtvVd]  2ten Pn T Pno1
5 = 1ap,01,.-.,0p, T = Y
i dn t dn—1
_ Pn(Vd + $ng1) + 2tng1pn_1
qn(\/& + Sn-‘rl) + 2tn+1Qn—1 ,
we get
2pp — qn = qnSn+1 + 2tn+1‘1n—1 (21)
dQn = 2(pn5n+1 + 2tn+1pn71) - (annJrl + 2tn+1qn71)~ (22)
Multiplying (21) with 2p,, — ¢, and (22) with g,, by substraction we get:

<2pn - Qn)2 - dqz = 4tn+1(q'n71pn - pnfl(In) = 4tn+1(_1)n+17

and multiplying (21) with 2p,_1 — g,—1 and (22) with ¢,_1, by substraction we
get:
(zpn - Qn)(2pn—1 - Qn—l) - dQnQn—l - 25n+1(ann—1 - ann—l) - 25n+1(*1)n-
[l
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b |, < d G/b< || b |4y < d ly/b <
3 5 41 1.66667 52 | 180 (2414425 | 3.46154
4 6 57 1.5 53 | 429 [2328625| 8.09434
5 9 353 1.8 54 | 176 | 554625 | 3.25926
6| 10 129 1.66667 55 | 397 [1004809| 7.21819
71 13 4481 1.85714 56 | 180 [ 1839825 | 3.21429
8| 14 873 1.75 57 | 471 [1977625| 8.26316
91 17 67073 | 1.88889 58 | 232 | 365625 4.26316
10| 14 945 1.4 59 | 499 [2601625| 8.45763
11| 21 |1054721|1.9091 60 | 210 [|1388625| 3.5

12| 20 2625 1.66667 61 | 607 [2739601| 9.9509
13| 33 | 204425 | 2.53847 62 | 246 [2660065| 3.96775
14| 22 | 215985 | 1.57143 63 | 527 (2229625 | 8.36508
15| 45 127465 | 3.57143 64 | 226 [2544993| 3.5313
16| 28 28665 | 1.75 65 | 387 [1665625| 5.95385
17| 31 | 244205 | 1.82353 66 | 260 [2165625| 3.9394
18| 34 87057 | 1.88889 67 | 625 [2944201| 9.32836
19| 53 2483125 2.78948 68 | 266 [2237625| 3.91177
20 38 |1588457(1.9 69 | 679 [2586625| 9.8406
211 69 [1007165]| 3.28572 70 | 340 | 1517697 | 4.85715
221 44 13434331 2.28572 71 | 763 |2193241(10.74648
231 91 |2720801 | 3.95653 72 | 298 |2721705| 4.13889
241 50 | 770133 |2.083334 | 73 | 961 [2792425|13.16439
25| 87 12193425 3.48 74 | 310 | 408969 | 4.18919
26| 64 | 190125 | 2.46154 75 | 985 | 1783825(13.13334
271 95 2632825 3.51852 76 | 390 | 1083537 | 5.13158
28| 60 | 182457 | 2.14286 77 | 993 |2751625|12.89611
291 113 | 1286305 | 3.89656 78 | 400 | 2768985 | 5.12821
30 76 |2837097|2.53334 79 (1083 | 1859425 |13.70887
31| 99 | 1503125/ 3.19355 80 | 356 | 639009 4.45

32| 8 | 235305 | 2.6875 81 [1075|2188825|13.27161
331 129 | 186745 | 3.9091 82 | 356 [1105425| 4.34147
34| 94 | 133353 | 2.76471 83 111312394625 |13.62651
351 153 | 1512745 | 4.37143 84 | 398 | 610929 4.7381
36| 94 | 174097 | 2.61112 85 [ 11872602825 |13.96471
371 147 2263105 | 3.973 86 | 462 (2967289 | 5.3721
381 112 | 57321 |2.94737 87 11105 |2889625|12.70115
391 173 | 614125 | 4.4359 88 | 462 [1112697| 5.25

40| 96 2033361 2.4 89 11259 | 2558425 |14.14607
41| 227 | 2526625 | 5.53659 90 | 386 [1157625| 4.28889
42| 122 | 677457 | 2.90477 91 {1409 | 2766625 |15.48352
43| 309 | 680425 | 7.18605 92 | 672 [2100249| 7.30435
44| 142 | 2512705 | 3.22728 93 113952402425 |15.30435
45| 243 | 1743625 | 5.4 94 | 592 [1796977| 6.29788
46| 128 | 2754297 | 2.78261 95 [ 17172056609 | 18.073685
471 273 | 2815625 | 5.80852 96 | 518 [2739625| 5.39584
48| 166 | 1962873 | 3.45834 97 2013|2903 209 | 20.75258
49| 353 | 2796 625 | 7.20409 98 | 530 [2268945| 5.40817
50| 142 2411937 | 2.84 99 | 3495 (2869441 | 35.3031
51| 245 [ 1540625 | 4.80393 || 100 | 746 [2718441| 7.46

TABLE 2. Upper bounds for ¢, for 3 < b < 100.
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Let gn < ged (p2 + 45262, 4n (2 — an)).-
Lemma 6. g, divides ged(d, tpi1, Snt1, Snt2)-
Proof. Assume first that ¢, is odd. Then g, is odd as well, and we have:
gn = ged (0 + 145 n (200 — qn))
= ged (407 + 47 47) — 240 (2P0 — ), 4 (200 — Gn))
= ged (20 — 4n)® + daiy, 4n (2P0 — Gn)).-

Since ¢, is odd and ged(pn, gn) = 1, it follows that ged(2p,, — gn, gn) = 1. Thus g,
divides 2p,, — ¢, and d.

If ¢, is even, then p, is odd, and since d = 1 (mod 4), g, is also odd. So we
have:
gn = ged (P + 47140, 2qn (P — %)) = ged (05 + 47200 — 4a(Pn — %), an(pn — %))

d 2 n
= ng ((pn - %)2 + %a Qn(pn - %))
Since ¢, is odd and ged(pn, ¢n) = 1 it follows that ged(2p, — Gn,qn) = 2. So gy,
divides 2p,, — ¢, and d.

Proposition 3 implies that ¢,,| ged(tn1, Snt1, Snt2)- O
Proposition 4. i): Ifant > Tﬂ Vd +2, then R, is a convergent of 1+2‘/E,
ii): if apq1 < ﬁ\/\/&i— — 2, then R, is not a convergent of 1+T‘/E.

Proof. Let R, = %, ged(u,v) = 1. Then v = 22(2Pn=0s)

v’ 9n

i) Let ap41 > g—\/f\/\/&—i—l We have
C1+Vd o qa <pn_ 1+\/3)2

Ry,

2 2pn —qn \qn 2

dn 1 _ 1 2 Pn
S a9 \2, 1
2pn —dn an+1qn 2v gnan+1 qn

LI <2<1+ﬁ+1>—1>=1222 (\/Zi+2)<i2.

202 g%a%+1 2 202 g2az 20

From (4), we see that R, is a convergent.

ii) Let ant1 < 2=V/v/d—2—2. Then
14+ Vd g <pnl+\/§)2> In 1
— >

2 2Pn — qn \ Gn 2 n — 4n (a’n+1 + 2)2(1;11

1 1 N 1 1 1+Vd
T 242 2(2107_1)>722 2 2( +\f—1)_1
v gn(an-‘rl + 2) qn v gn(an—i-l + 2) 2

= e (VA 2) >

V2 G (ans + 2)2

Now (3) proves (ii) of the proposition. O

R,

There are many quadruples (e, f, g, h) such that experimental results show that
d, = (e f"+g)? + h- f should have many good approximants (numbers of this
form sometimes have a very interesting continued fraction expansion; see e.g. [5],
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[8], [11]). But it is not easy to show that either (i) or (ii) from Proposition 4 holds
for every n. However, we found some for which that holds.

Proposition 5. If

dp = (24-9" +1)* + 129, (23)
then for n € N we have E(%) =4n +6 and
1+ /d,
+2 [12 9" +1, 8 24-97-1, 8.9, 24-9"-2, 8.92 ...

.24-9,8.-97-1 24 8-97, 2, 1, 2, 8-97, 24, §-97~1 24.9 ...

T8-9%, 24972, 8.9L, 24.9n-1, g, 24.9n+1]
Proof. Let sg =ty =1, and we have ag = 12-9™ 4+ 1.

51 =12-9" +1, ty =3-9", ap =8,
§9=12-9" — 1, to =9, ag = 249771,

For 1 <k <n, from
p=12-9" -1, tor, = 9F, Qg = 24 - 9"k,

using (1) we have:

_ 24 -9 +1
Sopp1 = 129"+ 1, topyr =3-9"F, A2k+1 = {WJ =89,
24 . 9"
Sokio =12-9" — 1,  topyo = 9FFL Q2k+2 = LngJ

For k < n we have:

agppo = 24 - 9"~ FFD),
and for k = n:
aont2 = 2,
Somis =12-9" 41, tonis =12-9" 41,  agnys = Ei g: j: ;J 1,
Somaq =12-9" 41,
and since $o,43 = Sa,4+4 We have £ = 2(2n + 3) = 4n + 6. O

Lemma 7. For the sequence (23) and gr = ged (p? + d 2 ak(2pK — ), for

k=0,1,...,2n+1,2n+3, ..., 4n+ 4 we have g = 1.

Proof. From (2) it follows Sant+6 = S1,S4n+5 = S2,...,tan+s = t1,..., and using
Lemma 6, for k = 0,1,...,2n+1,2n+3,...2n+4 we have g, | ged(Sk41, Sk42,tht1) =
1. U

Theorem 5. For the sequence d,, = (24-9" +1)% +12-9" we have b(d,,) = 2n +4.
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Proof. Using Proposition 5, we have ¢ = 4n + 6. Using (7) and (6), Ra,42 and
Ryn45 are good approximants. By Corollary 1, it suffices to check approximants
Ry, k=0,1,...,2n + 1. By Lemma 7, we have g = 1. By Proposition 4 (i) Ry is
a good approximant if

af, >48-9" 48 =2(24-9" +4) > 2(Vd + 2), (24)

and by Proposition 4 (i) Ry is not good approximant if

api1 < V249" F3-2<\/Vd—-2-2. (25)

For i = 2k, k = 0,1,...,n using Proposition 5 we have a1 = 8- 9%, so let us
see when (24) holds.

(8-9%)2 =64-9%% > 48.9" +8
holds when 2k > n, ie. k > L”THJ Thus RQL%J’ RZL%H?’ ..., Roy, are good
approximants. For 2k <n—1,i.e. k < {"T_lJ, (25) holds, thus Ry, Ra, ..., RQLWT_”
are not good approximants.

Fori=2k—1,k=1,2,...,n we have as; = 24 - 9" % and ay, 2 = 2, so (24)
holds when 2k < n+1, ie. k < L”THJ Thus Ry, Rs, ..., RZL"T“J—l are good
approximants. For 2k > n+2 ie. k > L"THJ, (25) holds, so RQULTHJH, R2L"T+1J+3’
..., Rop—1 are not good approximants.

Therefore there are exactly 2+2(n+1— |28 |+ |25 ) = 242(n+1) = 2n+4
good approximants. (Il

Corollary 3. For the sequence (23) we have £(d,) = 4n + 6 and b(d,,) = 2n + 4
for every n € N. So for every even positive integer b there exists d € N, d = 1

£(d
(mod 4), d # O, such that b(d) = b and b(d) > “&.

Proof. For b = 2 we have £ = 2, and for b = 4, in Table 2 we have the number 57,
which has £ = 6, and for other even b’s we use sequence (23). O

Proposition 6. Let
dp = (3-16™ +1)% +4-16". (26)

Then for n € N it holds E(%) =4n+1 and

1+ Vd,
7+2 = [%-16"4—1, 3, 3-42n-1 3.41 3.42n-2 3.42

., 3.4nTTL 3.4n-1 3.4n 3.4n, 3.4n-1, 3.4nt1

SO R LR P T A PR INE Y RN [
Proof. Let s =ty =1, and we have ay = %-16"4—1.
51 =3-16"+1, t, = 42", a; = 3-4°.
For 0 <k <2n —1 we get

Sokp1 =3+ 16" + 1, toppr =47"7F, g1 = 3- 4%,
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and we have:

3. 42n B
Sopt2 =3 16™ — 1, topyo = 4FTL Aok = {MHJ =3 .42~ (k+D)

342" 41 bt
a2k+3 = \‘427‘_(’“+1)J =3-4 >

so when k = n — 1, we have top 1o = togts, thus £ =22n—2+2)+1=4n+1. O

Sokts =3 16" + 1, topyg = 47T

Lemma 8. For the sequence (26) and g = ged (pi + ‘Jlnzflq,%,qk(Qp;~C — qk)), for

k > 0 we have g = 1.

Proof. From (2) it follows that s4p—1 = Sant1 = Sant+s = 3 - 16" + 1 and s4p,—2 =
S4n = Sant2 = 3+ 16™ — 1. Using Lemma 6, we have g | ged(Sg+1, Sp42) = 1, for
every k > 0. O

Theorem 6. For the sequence d,, = (3-16™ +1)? +4-16™ we have b(d,,) = 2n+ 1.

Proof. By Proposition 6, we have £ = 4n + 1. Thus, by (6), Ry, is good approxi-
mant. By Lemma 8 we have g, = 1. Using Proposition 4 (i) (divided by 3) Ry is
good approximant if

Q41
3

2 2
> 4" > §~16”+%:g~ 3'16”+4>%~ Vd+2, (27)

and by Proposition 4 (ii) Ry is not a good approximant if
% <arlcy/iaaen -1 - 2=1.306n —1-2< iy/Vd-2-2. (28)

For k = 2t +1, 7 = 0,1,2,...,2n — 1, by Proposition 6, we have ag;+1 =
3-4% thus for i = 0,1,2,...,n — 1 (28) holds, so Ry, R, ..., Ra,_2 are not good
approximants, and for i = n,n+1,...,2n—1 (27) holds, thus Ra,, Ront2,. .., Ran—2
are good approximants. For k of the form 2i, using Corollary 1, it follows that
Ry, R3, ..., Ro,_1 are good approximants, and the others are not.

Therefore there are exactly 2n + 1 good approximants. O

Corollary 4. For the sequence (26) we have £(d,,) = 4n + 1 and b(d,)) = 2n + 1
for every n € N. Thus for every odd positive integer b there exists d € N, d = 1
(mod 4), d # O, such that b(d) = b and b(d) > “&. O

From Corollaries 3 and 4, we immediately obtain the following result.
Corollary 5.

/
sup{zb:bzl}gz
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