Householder's approximants and continued fraction expansion of quadratic irrationals

Vinko Petričević
vpetrice@math.hr

Department of Mathematics, University of Zagreb, Croatia

$$
\text { June 26, } 2012 .
$$

Let α be arbitrary quadratic irrationality $(\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}, d>0$ and d is not a square of a rational number). It is well known that regular continued fraction expansion of α is periodic, i.e. has the form $\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}, \overline{a_{k+1}, a_{k+2}, \ldots, a_{k+\ell}}\right]$. Here $\ell=\ell(\alpha)$ denotes the length of the shortest period in the expansion of α.

Let α be arbitrary quadratic irrationality $(\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}, d>0$ and d is not a square of a rational number). It is well known that regular continued fraction expansion of α is periodic, i.e. has the form $\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}, \overline{a_{k+1}, a_{k+2}, \ldots, a_{k+\ell}}\right]$. Here $\ell=\ell(\alpha)$ denotes the length of the shortest period in the expansion of α.
Continued fractions give good rational approximations of arbitrary $\alpha \in \mathbb{R}$. Newton's iterative method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

for solving nonlinear equations $f(x)=0$ is another approximation method.

Let α be arbitrary quadratic irrationality $(\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}, d>0$ and d is not a square of a rational number). It is well known that regular continued fraction expansion of α is periodic, i.e. has the form $\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}, \overline{a_{k+1}, a_{k+2}, \ldots, a_{k+\ell}}\right]$. Here $\ell=\ell(\alpha)$ denotes the length of the shortest period in the expansion of α.
Continued fractions give good rational approximations of arbitrary $\alpha \in \mathbb{R}$. Newton's iterative method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

for solving nonlinear equations $f(x)=0$ is another approximation method. Connections between these two approximation methods were discussed by several authors. Let $\frac{p_{n}}{q_{n}}$ be the nth convergent of α. The principal question is: Let $f(x)=(x-\alpha)\left(x-\alpha^{\prime}\right)$, where $\alpha^{\prime}=c-\sqrt{d}$ and $x_{0}=\frac{p_{n}}{q_{n}}$, is x_{1} also a convergent of α ?

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 . \tag{1.1}
\end{equation*}
$$

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 \tag{1.1}
\end{equation*}
$$

It was proved by Mikusiński [Mik1954] that if $\ell=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.2}
\end{equation*}
$$

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 \tag{1.1}
\end{equation*}
$$

It was proved by Mikusiński [Mik1954] that if $\ell=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.2}
\end{equation*}
$$

These results imply that if $\ell(\sqrt{d}) \leq 2$, then all approximants R_{n} are convergents of \sqrt{d}. Dujella [Duje2001] proved the converse of this result. Namely, if $\ell(\sqrt{d})>2$, we know that some of approximants R_{n} are not convergents. He showed that being again a convergent is a periodic and a palindromic property.

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 \tag{1.1}
\end{equation*}
$$

It was proved by Mikusiński [Mik1954] that if $\ell=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.2}
\end{equation*}
$$

These results imply that if $\ell(\sqrt{d}) \leq 2$, then all approximants R_{n} are convergents of \sqrt{d}. Dujella [Duje2001] proved the converse of this result. Namely, if $\ell(\sqrt{d})>2$, we know that some of approximants R_{n} are not convergents. He showed that being again a convergent is a periodic and a palindromic property. Formulas (1.1) and (1.2) suggest that R_{n} should be convergent whose index is twice as large when it is a good approximant.

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 . \tag{1.1}
\end{equation*}
$$

It was proved by Mikusiński [Mik1954] that if $\ell=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.2}
\end{equation*}
$$

These results imply that if $\ell(\sqrt{d}) \leq 2$, then all approximants R_{n} are convergents of \sqrt{d}. Dujella [Duje2001] proved the converse of this result. Namely, if $\ell(\sqrt{d})>2$, we know that some of approximants R_{n} are not convergents. He showed that being again a convergent is a periodic and a palindromic property. Formulas (1.1) and (1.2) suggest that R_{n} should be convergent whose index is twice as large when it is a good approximant. However, this is not always true. Dujella defined the number $j(\sqrt{d})$ as a distance from two times larger index, and pointed out that $j(\sqrt{d})$ is unbounded.

It is well known that for $\alpha=\sqrt{d}, d \in \mathbb{N}, d \neq \square$, and the corresponding Newton's approximant $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ it follows that

$$
\begin{equation*}
R_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}, \quad \text { for } k \geq 1 . \tag{1.1}
\end{equation*}
$$

It was proved by Mikusiński [Mik1954] that if $\ell=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.2}
\end{equation*}
$$

These results imply that if $\ell(\sqrt{d}) \leq 2$, then all approximants R_{n} are convergents of \sqrt{d}. Dujella [Duje2001] proved the converse of this result. Namely, if $\ell(\sqrt{d})>2$, we know that some of approximants R_{n} are not convergents. He showed that being again a convergent is a periodic and a palindromic property. Formulas (1.1) and (1.2) suggest that R_{n} should be convergent whose index is twice as large when it is a good approximant. However, this is not always true. Dujella defined the number $j(\sqrt{d})$ as a distance from two times larger index, and pointed out that $j(\sqrt{d})$ is unbounded.
In 2011, P. [Pet1.2011] proved the analogous results for $\alpha=\frac{1+\sqrt{d}}{2}, d \in \mathbb{N}$, $d \neq \square$ and $d \equiv 1(\bmod 4)$.

Sharma [Sha1959] observed arbitrary quadratic surd $\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}$, $d>0, d$ is not a square of a rational number, whose period begins with a_{1}. He showed that for every such α and the corresponding Newton's approximant $N_{n}=\frac{p_{n}^{2}-\alpha \alpha^{\prime} q_{n}^{2}}{2 q_{n}\left(p_{n}-c q_{n}\right)}$ it holds $N_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}$, for $k \geq 1$, and when $\ell=2 t$ and the period is palindromic then it holds $N_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad$ for $k \geq 1$.

Sharma [Sha1959] observed arbitrary quadratic surd $\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}$, $d>0, d$ is not a square of a rational number, whose period begins with a_{1}. He showed that for every such α and the corresponding Newton's approximant $N_{n}=\frac{p_{n}^{2}-\alpha \alpha^{\prime} q_{n}^{2}}{2 q_{n}\left(p_{n}-c q_{n}\right)}$ it holds $N_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}$, for $k \geq 1$, and when $\ell=2 t$ and the period is palindromic then it holds $N_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}$, for $k \geq 1$. Frank and Sharma [F-S1965] discussed generalization of Newton's formula. They showed that for every α, whose period begins with a_{1}, for $k, n \in \mathbb{N}$ it holds

$$
\begin{equation*}
\frac{p_{n k \ell-1}}{q_{n k \ell-1}}=\frac{\alpha\left(p_{k \ell-1}-\alpha^{\prime} q_{k \ell-1}\right)^{n}-\alpha^{\prime}\left(p_{k \ell-1}-\alpha q_{k \ell-1}\right)^{n}}{\left(p_{k \ell-1}-\alpha^{\prime} q_{k \ell-1}\right)^{n}-\left(p_{k \ell-1}-\alpha q_{k \ell-1}\right)^{n}} \tag{1.3}
\end{equation*}
$$

Sharma [Sha1959] observed arbitrary quadratic surd $\alpha=c+\sqrt{d}, c, d \in \mathbb{Q}$, $d>0, d$ is not a square of a rational number, whose period begins with a_{1}. He showed that for every such α and the corresponding Newton's approximant $N_{n}=\frac{p_{n}^{2}-\alpha \alpha^{\prime} q_{n}^{2}}{2 q_{n}\left(p_{n}-c q_{n}\right)}$ it holds $N_{k \ell-1}=\frac{p_{2 k \ell-1}}{q_{2 k \ell-1}}$, for $k \geq 1$, and when $\ell=2 t$ and the period is palindromic then it holds $N_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad$ for $k \geq 1$. Frank and Sharma [F-S1965] discussed generalization of Newton's formula. They showed that for every α, whose period begins with a_{1}, for $k, n \in \mathbb{N}$ it holds

$$
\begin{equation*}
\frac{p_{n k \ell-1}}{q_{n k \ell-1}}=\frac{\alpha\left(p_{k \ell-1}-\alpha^{\prime} q_{k \ell-1}\right)^{n}-\alpha^{\prime}\left(p_{k \ell-1}-\alpha q_{k \ell-1}\right)^{n}}{\left(p_{k \ell-1}-\alpha^{\prime} q_{k \ell-1}\right)^{n}-\left(p_{k \ell-1}-\alpha q_{k \ell-1}\right)^{n}} \tag{1.3}
\end{equation*}
$$

and when $\ell=2 t$ and the period is palindromic then for $k, n \in \mathbb{N}$ it holds

$$
\begin{equation*}
\frac{p_{n k t-1}}{q_{n k t-1}}=\frac{\alpha\left(p_{k t-1}-\alpha^{\prime} q_{k t-1}\right)^{n}-\alpha^{\prime}\left(p_{k t-1}-\alpha q_{k t-1}\right)^{n}}{\left(p_{k t-1}-\alpha^{\prime} q_{k t-1}\right)^{n}-\left(p_{k t-1}-\alpha q_{k t-1}\right)^{n}} . \tag{1.4}
\end{equation*}
$$

Householder's iterative method (see e.g. [Hous1970, §4.4]) of order p for rootsolving: $x_{n+1}=H^{(p)}\left(x_{n}\right)=x_{n}+p \cdot \frac{(1 / f)^{(p-1)}\left(x_{n}\right)}{(1 / f)^{(p)}\left(x_{n}\right)}$, where $(1 / f)^{(p)}$ denotes p-th derivation of $1 / f$. Householder's method of order 1 is just Newton's method. For Householder's method of order 2 one gets Halley's method, and Householder's method of order p has rate of convergence $p+1$.

Householder's iterative method (see e.g. [Hous1970, §4.4]) of order p for rootsolving: $x_{n+1}=H^{(p)}\left(x_{n}\right)=x_{n}+p \cdot \frac{(1 / f)^{(p-1)}\left(x_{n}\right)}{(1 / f)^{(p)}\left(x_{n}\right)}$, where $(1 / f)^{(p)}$ denotes p-th derivation of $1 / f$. Householder's method of order 1 is just Newton's method. For Householder's method of order 2 one gets Halley's method, and Householder's method of order p has rate of convergence $p+1$.
It is not hard to show that for $f(x)=(x-\alpha)\left(x-\alpha^{\prime}\right)$ it holds:

$$
\begin{equation*}
H^{(m+1)}(x)=\frac{x H^{(m)}(x)-\alpha \alpha^{\prime}}{H^{(m)}(x)+x-\alpha-\alpha^{\prime}}, \quad \text { for } m \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Householder's iterative method (see e.g. [Hous1970, §4.4]) of order p for rootsolving: $x_{n+1}=H^{(p)}\left(x_{n}\right)=x_{n}+p \cdot \frac{(1 / f)^{(p-1)}\left(x_{n}\right)}{(1 / f)^{(p)}\left(x_{n}\right)}$, where $(1 / f)^{(p)}$ denotes p-th derivation of $1 / f$. Householder's method of order 1 is just Newton's method. For Householder's method of order 2 one gets Halley's method, and Householder's method of order p has rate of convergence $p+1$. It is not hard to show that for $f(x)=(x-\alpha)\left(x-\alpha^{\prime}\right)$ it holds:

$$
\begin{equation*}
H^{(m+1)}(x)=\frac{x H^{(m)}(x)-\alpha \alpha^{\prime}}{H^{(m)}(x)+x-\alpha-\alpha^{\prime}}, \quad \text { for } m \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Let us define $R_{n}^{(1)} \stackrel{\text { def }}{=} \frac{p_{n}}{q_{n}}$ and for $m>1 R_{n}^{(m)} \stackrel{\text { def }}{=} H^{(m-1)}\left(\frac{p_{n}}{q_{n}}\right)$. We will say that $R_{n}^{(m)}$ is good approximation, if it is a convergent of α.

Householder's iterative method (see e.g. [Hous1970, §4.4]) of order p for rootsolving: $x_{n+1}=H^{(p)}\left(x_{n}\right)=x_{n}+p \cdot \frac{(1 / f)^{(p-1)}\left(x_{n}\right)}{(1 / f)^{(p)}\left(x_{n}\right)}$, where $(1 / f)^{(p)}$ denotes p-th derivation of $1 / f$. Householder's method of order 1 is just Newton's method. For Householder's method of order 2 one gets Halley's method, and Householder's method of order p has rate of convergence $p+1$.
It is not hard to show that for $f(x)=(x-\alpha)\left(x-\alpha^{\prime}\right)$ it holds:

$$
\begin{equation*}
H^{(m+1)}(x)=\frac{x H^{(m)}(x)-\alpha \alpha^{\prime}}{H^{(m)}(x)+x-\alpha-\alpha^{\prime}}, \quad \text { for } m \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Let us define $R_{n}^{(1)} \stackrel{\text { def }}{=} \frac{p_{n}}{q_{n}}$ and for $m>1 R_{n}^{(m)} \stackrel{\text { def }}{=} H^{(m-1)}\left(\frac{p_{n}}{q_{n}}\right)$. We will say that $R_{n}^{(m)}$ is good approximation, if it is a convergent of α.
Formula (1.3) shows that for arbitrary quadratic surd, whose period begins with a_{1} and $k, m \in \mathbb{N}$, it holds

$$
\begin{equation*}
R_{k \ell-1}^{(m)}=\frac{p_{m k \ell-1}}{q_{m k \ell-1}} \tag{2.2}
\end{equation*}
$$

and when $\ell=2 t$ and period is periodic, from (1.4) it follows

$$
R_{k t-1}^{(m)}=\frac{p_{m k t-1}}{q_{m k t-1}}
$$

Formula [Sha1959, (8)] says: For $k \in \mathbb{N}$ it holds

$$
\begin{align*}
& \left(a_{\ell}-a_{0}\right) p_{k \ell-1}+p_{k \ell-2}=q_{k \ell-1}\left(d-c^{2}\right), \tag{2.3}\\
& \left(a_{\ell}-a_{0}\right) q_{k \ell-1}+q_{k \ell-2}=p_{k \ell-1}-2 c q_{k \ell-1}, \tag{2.4}
\end{align*}
$$

and formula (2.1) says

$$
\begin{equation*}
R_{n}^{(m+1)}=\frac{R_{n}^{(1)} R_{n}^{(m)}-\alpha \alpha^{\prime}}{R_{n}^{(1)}+R_{n}^{(m)}-2 c}, \quad \text { for } m \in \mathbb{N}, n=0,1, \ldots \tag{2.5}
\end{equation*}
$$

Formula [Sha1959, (8)] says: For $k \in \mathbb{N}$ it holds

$$
\begin{align*}
& \left(a_{\ell}-a_{0}\right) p_{k \ell-1}+p_{k \ell-2}=q_{k \ell-1}\left(d-c^{2}\right), \tag{2.3}\\
& \left(a_{\ell}-a_{0}\right) q_{k \ell-1}+q_{k \ell-2}=p_{k \ell-1}-2 c q_{k \ell-1}, \tag{2.4}
\end{align*}
$$

and formula (2.1) says

$$
\begin{equation*}
R_{n}^{(m+1)}=\frac{R_{n}^{(1)} R_{n}^{(m)}-\alpha \alpha^{\prime}}{R_{n}^{(1)}+R_{n}^{(m)}-2 c}, \quad \text { for } m \in \mathbb{N}, n=0,1, \ldots \tag{2.5}
\end{equation*}
$$

Lemma 2.1

For $m, k \in \mathbb{N}$ and $i=1,2, \ldots, \ell$, when the period begins with a_{1}, it holds $R_{k \ell+i-1}^{(m)}=\frac{R_{k \ell-1}^{(m)} R_{i-1}^{(m)}-\alpha \alpha^{\prime}}{R_{k \ell-1}^{(m)}+R_{i-1}^{(m)}-2 c}$.

Formula [Sha1959, (8)] says: For $k \in \mathbb{N}$ it holds

$$
\begin{align*}
& \left(a_{\ell}-a_{0}\right) p_{k \ell-1}+p_{k \ell-2}=q_{k \ell-1}\left(d-c^{2}\right) \tag{2.3}\\
& \left(a_{\ell}-a_{0}\right) q_{k \ell-1}+q_{k \ell-2}=p_{k \ell-1}-2 c q_{k \ell-1}, \tag{2.4}
\end{align*}
$$

and formula (2.1) says

$$
\begin{equation*}
R_{n}^{(m+1)}=\frac{R_{n}^{(1)} R_{n}^{(m)}-\alpha \alpha^{\prime}}{R_{n}^{(1)}+R_{n}^{(m)}-2 c}, \quad \text { for } m \in \mathbb{N}, n=0,1, \ldots \tag{2.5}
\end{equation*}
$$

Lemma 2.1

For $m, k \in \mathbb{N}$ and $i=1,2, \ldots, \ell$, when the period begins with a_{1}, it holds $R_{k \ell+i-1}^{(m)}=\frac{R_{k \ell-1}^{(m)} R_{i-1}^{(m)}-\alpha \alpha^{\prime}}{R_{k \ell-1}^{(m)}+R_{i-1}^{(m)}-2 c}$.

Proof.

For $m=1$, statement of the lemma is proven in [Frank1962, Thm. 2.1]. Using mathematical induction and (2.5) it is not hard to show that the statement of the lemma holds too.

When period is palindromic and begins with a_{1}, formulas (2.3) and (2.4) become

$$
\begin{align*}
& a_{0} p_{k \ell-1}+p_{k \ell-2}=2 c p_{k \ell-1}+q_{k \ell-1}\left(d-c^{2}\right), \tag{2.6}\\
& a_{0} q_{k \ell-1}+q_{k \ell-2}=p_{k \ell-1} . \tag{2.7}
\end{align*}
$$

When period is palindromic and begins with a_{1}, formulas (2.3) and (2.4) become

$$
\begin{align*}
& a_{0} p_{k \ell-1}+p_{k \ell-2}=2 c p_{k \ell-1}+q_{k \ell-1}\left(d-c^{2}\right) \tag{2.6}\\
& a_{0} q_{k \ell-1}+q_{k \ell-2}=p_{k \ell-1} . \tag{2.7}
\end{align*}
$$

Lemma 2.2

For $m, k \in \mathbb{N}$ and $i=1,2, \ldots, \ell-1$, when period is palindromic and begins with a_{1}, it holds $R_{k \ell-i-1}^{(m)}=\frac{R_{k \ell-1}^{(m)}\left(R_{i-1}^{(m)}-2 c\right)+\alpha \alpha^{\prime}}{R_{i-1}^{(m)}-R_{k \ell-1}^{(m)}}$.

Proof.

For $m=1$ we have:

$$
\begin{aligned}
& R_{k \ell-i-1}^{(1)}=\frac{p_{k \ell-i-1}}{q_{k \ell-i-1}}=\frac{0 \cdot p_{k \ell-i}+p_{k \ell-i-1}}{0 \cdot q_{k \ell-i}+q_{k \ell-i-1}}=\left[a_{0}, \ldots, a_{k \ell-i}, 0\right] \\
& =\left[a_{0}, \ldots, a_{k \ell-i}, a_{k \ell-i-1}, \ldots, a_{k \ell-1}, a_{0}, 0,-a_{0},-a_{1}, \ldots,-a_{i-1}\right] \\
& =\left[a_{0}, \ldots, a_{k \ell-i}, a_{k \ell-i-1}, \ldots, a_{k \ell-1}, a_{0}-\frac{p_{i-1}}{q_{i-1}}\right] \\
& =\frac{p_{k \ell-1}\left(a_{0}-R_{i-1}^{(1)}\right)+p_{k \ell-2}}{q_{k \ell-1}\left(a_{0}-R_{i-1}^{(1)}\right)+q_{k \ell-2}} \stackrel{(2.6)}{(2.7)} \frac{R_{k \ell-1}^{(1)}\left(R_{i-1}^{(1)}-2 c\right)+\alpha \alpha^{\prime}}{R_{i-1}^{(1)}-R_{k \ell-1}^{(1)}} .
\end{aligned}
$$

Proof.

For $m=1$ we have:

$$
\begin{aligned}
& R_{k \ell-i-1}^{(1)}=\frac{p_{k \ell-i-1}}{q_{k \ell-i-1}}=\frac{0 \cdot p_{k \ell-i}+p_{k \ell-i-1}}{0 \cdot q_{k \ell-i}+q_{k \ell-i-1}}=\left[a_{0}, \ldots, a_{k \ell-i}, 0\right] \\
& =\left[a_{0}, \ldots, a_{k \ell-i}, a_{k \ell-i-1}, \ldots, a_{k \ell-1}, a_{0}, 0,-a_{0},-a_{1}, \ldots,-a_{i-1}\right] \\
& =\left[a_{0}, \ldots, a_{k \ell-i}, a_{k \ell-i-1}, \ldots, a_{k \ell-1}, a_{0}-\frac{p_{i-1}}{q_{i-1}}\right] \\
& =\frac{p_{k \ell-1}\left(a_{0}-R_{i-1}^{(1)}\right)+p_{k \ell-2}}{q_{k \ell-1}\left(a_{0}-R_{i-1}^{(1)}\right)+q_{k \ell-2}}{ }_{(2.7)}^{(2.6)} \frac{R_{k \ell-1}^{(1)}\left(R_{i-1}^{(1)}-2 c\right)+\alpha \alpha^{\prime}}{R_{i-1}^{(1)}-R_{k \ell-1}^{(1)}} .
\end{aligned}
$$

Using mathematical induction and (2.5) it is not hard to show that the statement of the lemma holds too.

Proposition 2.3

Let $m \in \mathbb{N}$. When period begins with a_{1}, for $i=1,2, \ldots, \ell-1$ and $\beta_{i}^{(m)}=-\frac{p_{\boldsymbol{m} i-1}-R_{i-1}^{(\boldsymbol{m})} q_{\boldsymbol{m} i-1}}{p_{\boldsymbol{m} i}-R_{i-1}^{(\boldsymbol{m})} q_{m i}}$, it holds

$$
R_{k \ell+i-1}^{(m)}=\frac{\beta_{i}^{(m)} p_{m(k \ell+i)}+p_{m(k \ell+i)-1}}{\beta_{i}^{(m)} q_{m(k \ell+i)}+q_{m(k \ell+i)-1}}, \text { for all } k \geq 0
$$

and when period is palindromic, then

$$
R_{k \ell-i-1}^{(m)}=\frac{p_{m(k \ell-i)-1}-\beta_{i}^{(m)} p_{m(k \ell-i)-2}}{q_{m(k \ell-i)-1}-\beta_{i}^{(m)} q_{m(k \ell-i)-2}}, \text { for all } k \geq 1
$$

Proof.

We have $\beta_{i}^{(m)}=\left[0,-a_{m i},-a_{m i-1}, \ldots,-a_{1},-a_{0}+R_{i-1}^{(m)}\right]$.

Proof.

We have $\beta_{i}^{(m)}=\left[0,-a_{m i},-a_{m i-1}, \ldots,-a_{1},-a_{0}+R_{i-1}^{(m)}\right]$. If $k=0$ we have

$$
\begin{aligned}
& \frac{\beta_{i}^{(m)} p_{m i}+p_{m i-1}}{\beta_{i}^{(m)} q_{m i}+}=\left[q_{m i-1}\right. \\
& \quad=\left[a_{0}, \ldots, a_{m i}, \beta_{i}^{(m)}\right] \\
& \left.\quad=a_{m i}, 0,-a_{m i},-a_{m i-1}, \ldots,-a_{1},-a_{0}+R_{i-1}^{(m)}\right]=R_{i-1}^{(m)}
\end{aligned}
$$

Proof.

We have $\beta_{i}^{(m)}=\left[0,-a_{m i},-a_{m i-1}, \ldots,-a_{1},-a_{0}+R_{i-1}^{(m)}\right]$. If $k=0$ we have

$$
\begin{aligned}
& \frac{\beta_{i}^{(m)} p_{m i}+p_{m i-1}}{\beta_{i}^{(m)} q_{m i}+q_{m i-1}}=\left[a_{0}, \ldots, a_{m i}, \beta_{i}^{(m)}\right] \\
& \quad=\left[a_{0}, \ldots, a_{m i}, 0,-a_{m i},-a_{m i-1}, \ldots,-a_{1},-a_{0}+R_{i-1}^{(m)}\right]=R_{i-1}^{(m)},
\end{aligned}
$$

and similarly if $k>0$ we have

$$
\begin{aligned}
& \frac{\beta_{i}^{(m)} p_{m(k \ell+i)}+p_{m(k \ell+i)-1}}{\beta_{i}^{(m)} q_{m(k \ell+i)}+q_{m(k \ell+i)-1}}=\left[a_{0}, \ldots, a_{m k \ell-1}, a_{m k \ell}-a_{0}+R_{i-1}^{(m)}\right] \\
&=\frac{p_{m k \ell-1}\left(a_{m k \ell}-a_{0}+R_{i-1}^{(m)}\right)+p_{m k \ell-2}}{q_{m k \ell-1}\left(a_{m k \ell}-a_{0}+R_{i-1}^{(m)}\right)+q_{m k \ell-2}} \\
& \underset{(2.3),(2.2)}{=} \frac{R_{k \ell-1}^{(m)} R_{i-1}^{(m)}+d-c^{2}}{R_{k \ell-1}^{(m)}+R_{i-1}^{(m)}-2 c} \stackrel{L_{1}}{=} \stackrel{2.1}{=} R_{k \ell+i-1}^{(m)} .
\end{aligned}
$$

Proof.

When period is palindromic we have:

$$
\begin{aligned}
& \frac{p_{m(k \ell-i)-1}-\beta_{i}^{(m)} p_{m(k \ell-i)-2}}{q_{m(k \ell-i)-1}-\beta_{i}^{(m)} q_{m(k \ell-i)-2}}=\left[a_{0}, \ldots, a_{m(k \ell-i)-1},-\frac{1}{\beta_{i}^{(m)}}\right] \\
& =\left[a_{0}, \ldots, a_{m(k \ell-i)-1}, a_{m(k \ell-i)}, a_{m(k \ell-i)+1}, \ldots, a_{m k \ell-1}, a_{0}-R_{i-1}^{(m)}\right] \\
& =\frac{p_{m k \ell-1}\left(a_{0}-R_{i-1}^{(m)}\right)+p_{m k \ell-2}}{q_{m k \ell-1}\left(a_{0}-R_{i-1}^{(m)}\right)+q_{m k \ell-2}} \underset{(2.6),(2.2)}{=} \frac{R_{k \ell-1}^{(m)}\left(R_{i-1}^{(m)}-2 c\right)+c^{2}-d}{R_{i-1}^{(m)}-R_{k \ell-1}^{(m)}}
\end{aligned}
$$

which is using Lemma 2.2 equal to the $R_{k \ell-i-1}^{(m)}$.

Analogously as in [Duje2001, Lm. 3], from Proposition 2.3 it follows:

Theorem 2.4

To be a good approximant is a periodic property, i.e. for all $r \in \mathbb{N}$ it holds

$$
R_{n}^{(m)}=\frac{p_{k}}{q_{k}} \quad \Longleftrightarrow \quad R_{r \ell+n}^{(m)}=\frac{p_{r m \ell+k}}{q_{r m \ell+k}},
$$

Analogously as in [Duje2001, Lm. 3], from Proposition 2.3 it follows:

Theorem 2.4

To be a good approximant is a periodic property, i.e. for all $r \in \mathbb{N}$ it holds

$$
R_{n}^{(m)}=\frac{p_{k}}{q_{k}} \quad \Longleftrightarrow \quad R_{r \ell+n}^{(m)}=\frac{p_{r m \ell+k}}{q_{r m \ell+k}},
$$

and when period is palindromic, it is also a palindromic property, i.e. it holds:

$$
R_{n}^{(m)}=\frac{p_{k}}{q_{k}} \quad \Longleftrightarrow \quad R_{\ell-n-2}^{(m)}=\frac{p_{m \ell-k-2}}{q_{m \ell-k-2}} .
$$

Let us define coprime positive numbers $P_{n}^{(m)}, Q_{n}^{(m)}$ by

$$
\frac{P_{n}^{(m)}}{Q_{n}^{(m)}} \stackrel{\text { def }}{=} R_{n}^{(m)} .
$$

From (2.5) it is not hard to show that it holds

$$
P_{n}^{(m)}-\alpha Q_{n}^{(m)}=\left(P_{n}^{(1)}-\alpha Q_{n}^{(1)}\right)^{m}=\left(p_{n}-\alpha q_{n}\right)^{m} .
$$

Let us define coprime positive numbers $P_{n}^{(m)}, Q_{n}^{(m)}$ by

$$
\frac{P_{n}^{(m)}}{Q_{n}^{(m)}} \stackrel{\text { def }}{=} R_{n}^{(m)}
$$

From (2.5) it is not hard to show that it holds

$$
P_{n}^{(m)}-\alpha Q_{n}^{(m)}=\left(P_{n}^{(1)}-\alpha Q_{n}^{(1)}\right)^{m}=\left(p_{n}-\alpha q_{n}\right)^{m} .
$$

Lemma 2.5

$R_{n}^{(m)}<\alpha$ if and only if n is even and m is odd. Therefore, $R_{n}^{(m)}$ can be an even convergent only if n is even and m is odd.

Let us define coprime positive numbers $P_{n}^{(m)}, Q_{n}^{(m)}$ by

$$
\frac{P_{n}^{(m)}}{Q_{n}^{(m)}} \stackrel{\text { def }}{=} R_{n}^{(m)}
$$

From (2.5) it is not hard to show that it holds

$$
P_{n}^{(m)}-\alpha Q_{n}^{(m)}=\left(P_{n}^{(1)}-\alpha Q_{n}^{(1)}\right)^{m}=\left(p_{n}-\alpha q_{n}\right)^{m} .
$$

Lemma 2.5

$R_{n}^{(m)}<\alpha$ if and only if n is even and m is odd. Therefore, $R_{n}^{(m)}$ can be an even convergent only if n is even and m is odd.

Similarly as in [Duje2001], if $R_{n}^{(m)}=\frac{p_{k}}{q_{k}}$, we can define $j^{(m)}=j^{(m)}(\alpha, n)$ as the distance from convergent with m times larger index:

$$
\begin{equation*}
j^{(m)}=\frac{k+1-m(n+1)}{2} . \tag{2.8}
\end{equation*}
$$

This is an integer, by Lemma 2.5 .

Let us define coprime positive numbers $P_{n}^{(m)}, Q_{n}^{(m)}$ by

$$
\frac{P_{n}^{(m)}}{Q_{n}^{(m)}} \stackrel{\text { def }}{=} R_{n}^{(m)}
$$

From (2.5) it is not hard to show that it holds

$$
P_{n}^{(m)}-\alpha Q_{n}^{(m)}=\left(P_{n}^{(1)}-\alpha Q_{n}^{(1)}\right)^{m}=\left(p_{n}-\alpha q_{n}\right)^{m}
$$

Lemma 2.5

$R_{n}^{(m)}<\alpha$ if and only if n is even and m is odd. Therefore, $R_{n}^{(m)}$ can be an even convergent only if n is even and m is odd.

Similarly as in [Duje2001], if $R_{n}^{(m)}=\frac{p_{k}}{q_{k}}$, we can define $j^{(m)}=j^{(m)}(\alpha, n)$ as the distance from convergent with m times larger index:

$$
\begin{equation*}
j^{(m)}=\frac{k+1-m(n+1)}{2} \tag{2.8}
\end{equation*}
$$

This is an integer, by Lemma 2.5. Using Theorem 2.4 we have $j^{(m)}(\alpha, n)=j^{(m)}(\alpha, k \ell+n)$, and in palindromic case:
$j^{(m)}(\alpha, n)=-j^{(m)}(\alpha, \ell-n-2)$.

From now on, let us observe only quadratic irrationals of the form $\alpha=\sqrt{d}$, $d \in \mathbb{N}, d \neq \square$. It is well known that period of such α is palindromic and begins with a_{1}.

From now on, let us observe only quadratic irrationals of the form $\alpha=\sqrt{d}$, $d \in \mathbb{N}, d \neq \square$. It is well known that period of such α is palindromic and begins with a_{1}.

Theorem 2.6 (for proof see [Pet2.2012])
$\left|R_{n+1}^{(m)}-\sqrt{d}\right|<\left|R_{n}^{(m)}-\sqrt{d}\right|$.

From now on, let us observe only quadratic irrationals of the form $\alpha=\sqrt{d}$, $d \in \mathbb{N}, d \neq \square$. It is well known that period of such α is palindromic and begins with a_{1}.

Theorem 2.6 (for proof see [Pet2.2012])
$\left|R_{n+1}^{(m)}-\sqrt{d}\right|<\left|R_{n}^{(m)}-\sqrt{d}\right|$.

Proposition 2.7 (for proof see [Pet2.2012])

When $d \neq \square$, for $n \geq 0$ we have $\left|j^{(m)}(\sqrt{d}, n)\right|<\frac{m(\ell / 2-1)}{2}$.

Theorem 2.8 (Euler, see $\S 26$ in [Perron1954])

Let $\ell \in \mathbb{N}$ and $a_{1}, \ldots, a_{\ell-1} \in \mathbb{N}$ such that $a_{1}=a_{\ell-1}, a_{2}=a_{\ell-2}, \ldots$. The number $\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{\ell-1}, 2 a_{0}}\right]$ is of the form $\sqrt{d}, d \in \mathbb{N}$ if and only if

$$
\begin{equation*}
2 a_{0} \equiv(-1)^{\ell-1} p_{\ell-2}^{\prime} q_{\ell-2}^{\prime} \quad\left(\bmod p_{\ell-1}^{\prime}\right), \tag{2.9}
\end{equation*}
$$

where $\frac{p_{n}^{\prime}}{q_{n}^{\prime}}$ are convergents of the number $\left[a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right]$. Then it holds:

$$
\begin{equation*}
d=a_{0}^{2}+\frac{2 a_{0} p_{\ell-2}^{\prime}+q_{\ell-2}^{\prime}}{p_{\ell-1}^{\prime}} \tag{2.10}
\end{equation*}
$$

Theorem 2.8 (Euler, see §26 in [Perron1954])

Let $\ell \in \mathbb{N}$ and $a_{1}, \ldots, a_{\ell-1} \in \mathbb{N}$ such that $a_{1}=a_{\ell-1}, a_{2}=a_{\ell-2}, \ldots$ The number $\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{\ell-1}, 2 a_{0}}\right]$ is of the form $\sqrt{d}, d \in \mathbb{N}$ if and only if

$$
\begin{equation*}
2 a_{0} \equiv(-1)^{\ell-1} p_{\ell-2}^{\prime} q_{\ell-2}^{\prime} \quad\left(\bmod p_{\ell-1}^{\prime}\right), \tag{2.9}
\end{equation*}
$$

where $\frac{p_{n}^{\prime}}{q_{n}^{\prime}}$ are convergents of the number $\left[a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right]$. Then it holds:

$$
\begin{equation*}
d=a_{0}^{2}+\frac{2 a_{0} p_{\ell-2}^{\prime}+q_{\ell-2}^{\prime}}{p_{\ell-1}^{\prime}} . \tag{2.10}
\end{equation*}
$$

Lemma 2.9

Let F_{k} denote the k-th Fibonacci number. Let $n \in \mathbb{N}$ and $k>1, k \equiv 1,2$ $(\bmod 3)$. For $d_{k}(n)=\left(\frac{(2 n+1) F_{k}+1}{2}\right)^{2}+(2 n+1) F_{k-1}+1$ it holds
$\sqrt{d_{k}(n)}=[\frac{(2 n-1) F_{k}+1}{2}, \underbrace{\overline{1,1, \ldots, 1,1},(2 n-1) F_{k}+1}_{k-1 \text { times }}]$, and $\ell\left(\sqrt{d_{k}(n)}\right)=k$.

Proof.

From (2.9), it follows:

$$
\begin{aligned}
2 a_{0} \equiv(-1)^{k-1} F_{k-1} F_{k-2} \equiv(-1)^{k-1} F_{k-1}(& \left.F_{k}-F_{k-1}\right) \\
& \equiv(-1)^{k-1}\left(-F_{k-1}^{2}\right)\left(\bmod F_{k}\right)
\end{aligned}
$$

Now from Cassini's identity $F_{k} F_{k-2}-F_{k-1}^{2}=(-1)^{k-1}$ we have $2 a_{0} \equiv 1$ $\left(\bmod F_{k}\right)$. When $3 \mid k$, this congruence is not solvable, and if $3 \nmid k$, the solution is $a_{0} \equiv \frac{F_{k}+1}{2}\left(\bmod F_{k}\right)$, i.e.

$$
a_{0}=\frac{F_{k}+1}{2}+(n-1) F_{k}=\frac{(2 n-1) F_{k}+1}{2}, \quad n \in \mathbb{N} .
$$

From (2.10) it follows:

$$
\begin{aligned}
d & =\left(\frac{(2 n-1) F_{k}+1}{2}\right)^{2}+\frac{\left((2 n-1) F_{k}+1\right) F_{k-1}+F_{k-2}}{F_{k}} \\
& =\left(\frac{(2 n-1) F_{k}+1}{2}\right)^{2}+(2 n-1) F_{k-1}+1 .
\end{aligned}
$$

Theorem 2.10

Let F_{ℓ} denote the ℓ-th Fibonacci number. Let $\ell>3, \ell \equiv \pm 1(\bmod 6)$. Then for $d_{\ell}=\left(\frac{F_{\ell-3} F_{\ell}+1}{2}\right)^{2}+F_{\ell-3} F_{\ell-1}+1$ and $M \in \mathbb{N}$ it holds $\ell\left(\sqrt{d_{\ell}}\right)=\ell$ and

$$
j^{(3 M-1)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M+1)}\left(\sqrt{d_{\ell}}, 0\right)=\frac{\ell-3}{2} \cdot M .
$$

Theorem 2.10

Let F_{ℓ} denote the ℓ-th Fibonacci number. Let $\ell>3, \ell \equiv \pm 1(\bmod 6)$. Then for $d_{\ell}=\left(\frac{F_{\ell-3} F_{\ell}+1}{2}\right)^{2}+F_{\ell-3} F_{\ell-1}+1$ and $M \in \mathbb{N}$ it holds $\ell\left(\sqrt{d_{\ell}}\right)=\ell$ and

$$
j^{(3 M-1)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M+1)}\left(\sqrt{d_{\ell}}, 0\right)=\frac{\ell-3}{2} \cdot M .
$$

Proof.

By (2.8), we have to prove

$$
R_{0}^{(3 M-1)}=\frac{p_{M \ell-2}}{q_{M \ell-2}}, \quad R_{0}^{(3 M)}=\frac{p_{M \ell-1}}{q_{M \ell-1}}, \quad R_{0}^{(3 M+1)}=\frac{p_{M \ell}}{q_{M \ell}} .
$$

Theorem 2.10

Let F_{ℓ} denote the ℓ-th Fibonacci number. Let $\ell>3, \ell \equiv \pm 1(\bmod 6)$. Then for $d_{\ell}=\left(\frac{F_{\ell-3} F_{\ell}+1}{2}\right)^{2}+F_{\ell-3} F_{\ell-1}+1$ and $M \in \mathbb{N}$ it holds $\ell\left(\sqrt{d_{\ell}}\right)=\ell$ and

$$
j^{(3 M-1)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M)}\left(\sqrt{d_{\ell}}, 0\right)=j^{(3 M+1)}\left(\sqrt{d_{\ell}}, 0\right)=\frac{\ell-3}{2} \cdot M .
$$

Proof.

By (2.8), we have to prove

$$
R_{0}^{(3 M-1)}=\frac{p_{M \ell-2}}{q_{M \ell-2}}, \quad R_{0}^{(3 M)}=\frac{p_{M \ell-1}}{q_{M \ell-1}}, \quad R_{0}^{(3 M+1)}=\frac{p_{M \ell}}{q_{M \ell}} .
$$

We have $a_{0}=\frac{F_{\ell-3} F_{\ell+1}}{2}$, and by Lemma 2.9 it holds $\sqrt{d_{\ell}}=[a_{0}, \underbrace{\overline{1,1, \ldots, 1,1}, 2 a_{0}}_{\ell-1 \text { times }}]$. From Cassini's identity, it follows

$$
R_{0}^{(1)}=\frac{p_{0}}{q_{0}}=a_{0}, \quad R_{0}^{(2)}=a_{0}+\frac{F_{\ell-2}}{F_{\ell-1}}=\frac{p_{\ell-2}}{q_{\ell-2}},
$$

Proof.

$$
\begin{equation*}
R_{0}^{(3)}=a_{0}+\frac{F_{\ell-1} F_{\ell-2}^{3}}{F_{\ell-1}^{2} F_{\ell-2}^{2}+F_{\ell-2}^{2}}=a_{0}+\frac{F_{\ell-1}}{F_{\ell}}=\frac{p_{\ell-1}}{q_{\ell-1}} \tag{2.11}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
R_{0}^{(3)}=a_{0}+\frac{F_{\ell-1} F_{\ell-2}^{3}}{F_{\ell-1}^{2} F_{\ell-2}^{2}+F_{\ell-2}^{2}}=a_{0}+\frac{F_{\ell-1}}{F_{\ell}}=\frac{p_{\ell-1}}{q_{\ell-1}} \tag{2.11}
\end{equation*}
$$

Let us prove the theorem using induction on M. For proving the inductive step, first observe that from (2.5) for $m \geq 3$ we have:

$$
\begin{equation*}
R_{k}^{(m)}=\frac{R_{k}^{(2)} R_{k}^{(m-2)}+d}{R_{k}^{(2)}+R_{k}^{(m-2)}}, \quad R_{k}^{(m)}=\frac{R_{k}^{(3)} R_{k}^{(m-3)}+d}{R_{k}^{(3)}+R_{k}^{(m-3)}} \tag{2.12}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
R_{0}^{(3)}=a_{0}+\frac{F_{\ell-1} F_{\ell-2}^{3}}{F_{\ell-1}^{2} F_{\ell-2}^{2}+F_{\ell-2}^{2}}=a_{0}+\frac{F_{\ell-1}}{F_{\ell}}=\frac{p_{\ell-1}}{q_{\ell-1}} \tag{2.11}
\end{equation*}
$$

Let us prove the theorem using induction on M. For proving the inductive step, first observe that from (2.5) for $m \geq 3$ we have:

$$
\begin{equation*}
R_{k}^{(m)}=\frac{R_{k}^{(2)} R_{k}^{(m-2)}+d}{R_{k}^{(2)}+R_{k}^{(m-2)}}, \quad R_{k}^{(m)}=\frac{R_{k}^{(3)} R_{k}^{(m-3)}+d}{R_{k}^{(3)}+R_{k}^{(m-3)}} \tag{2.12}
\end{equation*}
$$

Suppose that for some $i \in\{0, \ell-2, \ell-1\}$ it holds $\frac{p_{(M-1) \ell+i}}{q_{(M-1) \ell+i}}=R_{0}^{(m-3)}$. We have:

$$
\begin{aligned}
& \frac{p_{M \ell+i}}{q_{M \ell+i}}=[a_{0}, \underbrace{1,1, \ldots, 1,1}_{\ell-1 \text { times }}, a_{0}+R_{0}^{(m-3)}]= \\
& (2.6) \\
& \stackrel{(2.7)}{=} \frac{p_{\ell-1} R_{0}^{(m-3)}+d q_{\ell-1}}{q_{\ell-1} R_{0}^{(m-3)}+p_{\ell-1}} \stackrel{(2.11)}{=} \frac{R_{0}^{(3)} R_{0}^{(m-3)}+d}{R_{0}^{(3)}+R_{0}^{(m-3)}} \stackrel{(2.12)}{=} R_{0}^{(m)} .
\end{aligned}
$$

Corollary 2.11

For each $m \geq 2$ it holds

$$
\sup \left\{\left|j^{(m)}(\sqrt{d}, n)\right|\right\}=+\infty
$$

Corollary 2.11

For each $m \geq 2$ it holds

$$
\begin{gathered}
\sup \left\{\left|j^{(m)}(\sqrt{d}, n)\right|\right\}=+\infty \\
\lim \sup \left\{\frac{\left|j^{(m)}(\sqrt{d}, n)\right|}{\ell(\sqrt{d})}\right\} \geq \frac{m}{6} .
\end{gathered}
$$

References

[Duje2001] A. Dujella, Newton's formula and continued fraction expansion of \sqrt{d}, Experiment. Math. 10 (2001), 125-131.
[Frank1962] E. Frank, On continued fraction expansions for binomial quadratic surds, Numer. Math. 4 (1962) 85-95
[F-S1965] E. Frank, A. Sharma, Continued fraction expansions and iterations of Newton's formula, J. Reine Angew. Math. 219 (1965) 62-66.
[Hous1970] A. S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.
[Mik1954] J. Mikusiński, Sur la méthode d'approximation de Newton, Ann. Polon. Math. 1 (1954), 184-194.
[Perron1954] O. Perron, Die Lehre von den Kettenbrüchen I, Dritte ed., B.G.Teubner Verlagsgesellschaft m.b.H., Stuttgart, 1954.
[Pet1.2011] V. Petričević, Newton's approximants and continued fraction expansion of $\frac{1+\sqrt{d}}{2}$, Math. Commun., to appear
[Pet2.2012] V. Petričević, Householder's approximants and continued fraction expansion of quadratic irrationals, preprint, 2011. http://web.math.hr/~vpetrice/radovi/hous.pdf
[Sha1959] A. Sharma, On Newton's method of approximation, Ann. Polon. Math. 6 (1959) 295-300.

Thanks

