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Newton’s method and continued fractions
Householder’s iterative methods

√
d , d ∈ N, d 6= �√
d , d ∈ N, d 6= �, and 1+

√
d

2 , d ≡ 1 (mod 4)
c +
√

d , c, d ∈ Q, d > 0, d 6= �

Let α be arbitrary quadratic irrationality (α = c +
√

d , c , d ∈ Q, d > 0 and d is
not a square of a rational number). It is well known that regular continued
fraction expansion of α is periodic, i.e. has the form
α = [ a0, a1, . . . , ak , ak+1, ak+2, . . . , ak+` ]. Here ` = `(α) denotes the length of
the shortest period in the expansion of α.

Continued fractions give good rational approximations of arbitrary α ∈ R.
Newton’s iterative method

xk+1 = xk −
f (xk)

f ′(xk)

for solving nonlinear equations f (x) = 0 is another approximation method.
Connections between these two approximation methods were discussed by
several authors. Let pn

qn
be the nth convergent of α. The principal question is:

Let f (x) = (x − α)(x − α′), where α′ = c −
√

d and x0 = pn
qn
, is x1 also a

convergent of α?
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d , d ∈ N, d 6= �, and 1+

√
d

2 , d ≡ 1 (mod 4)
c +
√
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It is well known that for α =
√

d , d ∈ N, d 6= �, and the corresponding
Newton’s approximant Rn = 1

2

( pn
qn

+ dqn
pn

)
it follows that

Rk`−1 =
p2k`−1

q2k`−1
, for k ≥ 1. (1.1)

It was proved by Mikusiński [Mik1954] that if ` = 2t, then

Rkt−1 =
p2kt−1

q2kt−1
, for k ≥ 1. (1.2)

These results imply that if `(
√

d) ≤ 2, then all approximants Rn are convergents
of
√

d . Dujella [Duje2001] proved the converse of this result. Namely, if
`(
√

d) > 2, we know that some of approximants Rn are not convergents. He
showed that being again a convergent is a periodic and a palindromic property.
Formulas (1.1) and (1.2) suggest that Rn should be convergent whose index is
twice as large when it is a good approximant. However, this is not always true.
Dujella defined the number j(

√
d) as a distance from two times larger index,

and pointed out that j(
√

d) is unbounded.
In 2011, P. [Pet1.2011] proved the analogous results for α = 1+

√
d

2 , d ∈ N,
d 6= � and d ≡ 1 (mod 4).
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√
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√
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Sharma [Sha1959] observed arbitrary quadratic surd α = c +
√

d , c , d ∈ Q,
d > 0, d is not a square of a rational number, whose period begins with a1. He
showed that for every such α and the corresponding Newton’s approximant
Nn =

p2
n−αα

′q2
n

2qn(pn−cqn)
it holds Nk`−1 =

p2k`−1
q2k`−1

, for k ≥ 1, and when ` = 2t and the

period is palindromic then it holds Nkt−1 =
p2kt−1
q2kt−1

, for k ≥ 1.

Frank and
Sharma [F-S1965] discussed generalization of Newton’s formula. They showed
that for every α, whose period begins with a1, for k, n ∈ N it holds

pnk`−1

qnk`−1
=
α(pk`−1 − α′qk`−1)

n − α′(pk`−1 − αqk`−1)
n

(pk`−1 − α′qk`−1)n − (pk`−1 − αqk`−1)n
, (1.3)

and when ` = 2t and the period is palindromic then for k, n ∈ N it holds

pnkt−1

qnkt−1
=
α(pkt−1 − α′qkt−1)

n − α′(pkt−1 − αqkt−1)
n

(pkt−1 − α′qkt−1)n − (pkt−1 − αqkt−1)n
. (1.4)
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Good approximants are periodic and palindromic
Which convergents may appear?

Householder’s iterative method (see e.g. [Hous1970, §4.4]) of order p for
rootsolving: xn+1 = H(p)(xn) = xn + p · (1/f )

(p−1)(xn)
(1/f )(p)(xn)

, where (1/f )(p) denotes
p-th derivation of 1/f . Householder’s method of order 1 is just Newton’s
method. For Householder’s method of order 2 one gets Halley’s method, and
Householder’s method of order p has rate of convergence p + 1.

It is not hard to show that for f (x) = (x − α)(x − α′) it holds:

H(m+1)(x) =
xH(m)(x)− αα′

H(m)(x) + x − α− α′
, for m ∈ N. (2.1)

Let us define R(1)
n

def
= pn

qn
and for m > 1 R(m)

n
def
= H(m−1)

(
pn
qn

)
. We will say that

R(m)
n is good approximation, if it is a convergent of α.

Formula (1.3) shows that for arbitrary quadratic surd, whose period begins with
a1 and k,m ∈ N, it holds

R(m)
k`−1 =

pmk`−1

qmk`−1
, (2.2)

and when ` = 2t and period is periodic, from (1.4) it follows

R(m)
kt−1 =

pmkt−1

qmkt−1
.
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Formula (1.3) shows that for arbitrary quadratic surd, whose period begins with
a1 and k,m ∈ N, it holds

R(m)
k`−1 =

pmk`−1

qmk`−1
, (2.2)

and when ` = 2t and period is periodic, from (1.4) it follows

R(m)
kt−1 =

pmkt−1

qmkt−1
.
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Newton’s method and continued fractions
Householder’s iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?

Formula [Sha1959, (8)] says: For k ∈ N it holds

(a` − a0)pk`−1 + pk`−2 = qk`−1(d − c2), (2.3)
(a` − a0)qk`−1 + qk`−2 = pk`−1 − 2cqk`−1, (2.4)

and formula (2.1) says

R(m+1)
n =

R(1)
n R(m)

n − αα′

R(1)
n + R(m)

n − 2c
, for m ∈ N, n = 0, 1, . . . . (2.5)

Lemma 2.1

For m, k ∈ N and i = 1, 2, . . . , `, when the period begins with a1, it holds

R(m)
k`+i−1 =

R(m)

k`−1R
(m)
i−1−αα

′

R(m)

k`−1+R(m)
i−1−2c

.

Proof.

For m = 1, statement of the lemma is proven in [Frank1962, Thm. 2.1]. Using
mathematical induction and (2.5) it is not hard to show that the statement of
the lemma holds too.
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Newton’s method and continued fractions
Householder’s iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?

When period is palindromic and begins with a1, formulas (2.3) and (2.4) become

a0pk`−1 + pk`−2 = 2cpk`−1 + qk`−1(d − c2), (2.6)
a0qk`−1 + qk`−2 = pk`−1. (2.7)

Lemma 2.2

For m, k ∈ N and i = 1, 2, . . . , `− 1, when period is palindromic and begins

with a1, it holds R(m)
k`−i−1 =

R(m)

k`−1(R
(m)
i−1−2c)+αα′

R(m)
i−1−R(m)

k`−1

.
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Proof.
For m = 1 we have:

R(1)
k`−i−1 =

pk`−i−1

qk`−i−1
=

0 · pk`−i + pk`−i−1

0 · qk`−i + qk`−i−1
= [ a0, . . . , ak`−i , 0 ]

= [ a0, . . . , ak`−i , ak`−i−1, . . . , ak`−1, a0, 0,−a0,−a1, . . . ,−ai−1 ]

=
[
a0, . . . , ak`−i , ak`−i−1, . . . , ak`−1, a0 −

pi−1

qi−1

]
=

pk`−1
(
a0 − R(1)

i−1

)
+ pk`−2

qk`−1
(
a0 − R(1)

i−1

)
+ qk`−2

(2.6)
=

(2.7)

R(1)
k`−1

(
R(1)

i−1 − 2c
)
+ αα′

R(1)
i−1 − R(1)

k`−1

.

Using mathematical induction and (2.5) it is not hard to show that the
statement of the lemma holds too.
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Newton’s method and continued fractions
Householder’s iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?

Proposition 2.3

Let m ∈ N. When period begins with a1, for i = 1, 2, . . . , `− 1 and

β
(m)
i = −pmi−1−R(m)

i−1qmi−1

pmi−R(m)
i−1qmi

, it holds

R(m)
k`+i−1 =

β
(m)
i pm(k`+i) + pm(k`+i)−1

β
(m)
i qm(k`+i) + qm(k`+i)−1

, for all k ≥ 0,

and when period is palindromic, then

R(m)
k`−i−1 =

pm(k`−i)−1 − β
(m)
i pm(k`−i)−2

qm(k`−i)−1 − β
(m)
i qm(k`−i)−2

, for all k ≥ 1.
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Good approximants are periodic and palindromic
Which convergents may appear?

Proof.

We have β(m)
i =

[
0,−ami ,−ami−1, . . . ,−a1,−a0 + R(m)

i−1

]
.

If k = 0 we have

β
(m)
i pmi + pmi−1

β
(m)
i qmi + qmi−1

=
[
a0, . . . , ami , β

(m)
i

]
=
[
a0, . . . , ami , 0,−ami ,−ami−1, . . . ,−a1,−a0 + R(m)

i−1

]
= R(m)

i−1,

and similarly if k > 0 we have

β
(m)
i pm(k`+i) + pm(k`+i)−1

β
(m)
i qm(k`+i) + qm(k`+i)−1

=
[
a0, . . . , amk`−1, amk` − a0 + R(m)

i−1

]
=

pmk`−1
(
amk` − a0 + R(m)

i−1

)
+ pmk`−2

qmk`−1
(
amk` − a0 + R(m)

i−1

)
+ qmk`−2

(2.3),(2.2)
=

(2.4)

R(m)
k`−1R

(m)
i−1 + d − c2

R(m)
k`−1 + R(m)

i−1 − 2c
Lm. 2.1
= R(m)

k`+i−1.
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=
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Good approximants are periodic and palindromic
Which convergents may appear?

Proof.
When period is palindromic we have:

pm(k`−i)−1 − β
(m)
i pm(k`−i)−2

qm(k`−i)−1 − β
(m)
i qm(k`−i)−2

=

[
a0, . . . , am(k`−i)−1,−

1

β
(m)
i

]
=
[
a0, . . . , am(k`−i)−1, am(k`−i), am(k`−i)+1, . . . , amk`−1, a0 − R(m)

i−1

]
=

pmk`−1
(
a0 − R(m)

i−1

)
+ pmk`−2

qmk`−1
(
a0 − R(m)

i−1

)
+ qmk`−2

(2.6),(2.2)
=

(2.7)

R(m)
k`−1(R

(m)
i−1 − 2c) + c2 − d

R(m)
i−1 − R(m)

k`−1

,

which is using Lemma 2.2 equal to the R(m)
k`−i−1.
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Good approximants are periodic and palindromic
Which convergents may appear?

Analogously as in [Duje2001, Lm. 3], from Proposition 2.3 it follows:

Theorem 2.4

To be a good approximant is a periodic property, i.e. for all r ∈ N it holds

R(m)
n =

pk

qk
⇐⇒ R(m)

r`+n =
prm`+k

qrm`+k
,

and when period is palindromic, it is also a palindromic property, i.e. it holds:

R(m)
n =

pk

qk
⇐⇒ R(m)

`−n−2 =
pm`−k−2

qm`−k−2
.
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Householder’s iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?

Let us define coprime positive numbers P(m)
n , Q(m)

n by

P(m)
n

Q(m)
n

def
= R(m)

n .

From (2.5) it is not hard to show that it holds

P(m)
n − αQ(m)

n =
(
P(1)

n − αQ(1)
n
)m

= (pn − αqn)
m.

Lemma 2.5

R(m)
n < α if and only if n is even and m is odd. Therefore, R(m)

n can be an even
convergent only if n is even and m is odd.

Similarly as in [Duje2001], if R(m)
n = pk

qk
, we can define j (m) = j (m)(α, n) as the

distance from convergent with m times larger index:

j (m) =
k + 1−m(n + 1)

2
. (2.8)

This is an integer, by Lemma 2.5. Using Theorem 2.4 we have
j (m)(α, n) = j (m)(α, k`+ n), and in palindromic case:
j (m)(α, n) = −j (m)(α, `− n − 2).
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From now on, let us observe only quadratic irrationals of the form α =
√

d ,
d ∈ N, d 6= �. It is well known that period of such α is palindromic and begins
with a1.

Theorem 2.6 (for proof see [Pet2.2012])∣∣R(m)
n+1 −

√
d
∣∣ < ∣∣R(m)

n −
√

d
∣∣.

Proposition 2.7 (for proof see [Pet2.2012])

When d 6= �, for n ≥ 0 we have
∣∣j (m)(

√
d , n)

∣∣ < m(`/2−1)
2 .
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with a1.

Theorem 2.6 (for proof see [Pet2.2012])∣∣R(m)
n+1 −

√
d
∣∣ < ∣∣R(m)

n −
√

d
∣∣.

Proposition 2.7 (for proof see [Pet2.2012])

When d 6= �, for n ≥ 0 we have
∣∣j (m)(

√
d , n)

∣∣ < m(`/2−1)
2 .
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Theorem 2.8 (Euler, see §26 in [Perron1954])

Let ` ∈ N and a1, . . . , a`−1 ∈ N such that a1 = a`−1, a2 = a`−2, . . . . The
number [ a0, a1, a2, . . . , a`−1, 2a0 ] is of the form

√
d, d ∈ N if and only if

2a0 ≡ (−1)`−1p′`−2q
′
`−2 (mod p′`−1), (2.9)

where p′n
q′n

are convergents of the number [ a1, a2, . . . , an−1, an ]. Then it holds:

d = a2
0 +

2a0p′`−2 + q′`−2

p′`−1
. (2.10)

Lemma 2.9

Let Fk denote the k-th Fibonacci number. Let n ∈ N and k > 1, k ≡ 1, 2

(mod 3). For dk(n) =
(

(2n+1)Fk+1
2

)2
+ (2n + 1)Fk−1 + 1 it holds√

dk(n) =
[

(2n−1)Fk+1
2 , 1, 1, . . . , 1, 1︸ ︷︷ ︸

k−1 times

, (2n − 1)Fk + 1
]
, and `

(√
dk(n)

)
= k.
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Proof.

From (2.9), it follows:

2a0 ≡ (−1)k−1Fk−1Fk−2 ≡ (−1)k−1Fk−1(Fk − Fk−1)

≡ (−1)k−1(−F 2
k−1) (mod Fk).

Now from Cassini’s identity FkFk−2 − F 2
k−1 = (−1)k−1 we have 2a0 ≡ 1

(mod Fk). When 3 | k , this congruence is not solvable, and if 3 - k, the solution
is a0 ≡ Fk+1

2 (mod Fk), i.e.

a0 =
Fk + 1

2
+ (n − 1)Fk =

(2n − 1)Fk + 1
2

, n ∈ N.

From (2.10) it follows:

d =
( (2n − 1)Fk + 1

2

)2
+

(
(2n − 1)Fk + 1

)
Fk−1 + Fk−2

Fk

=
( (2n − 1)Fk + 1

2

)2
+ (2n − 1)Fk−1 + 1.
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Theorem 2.10

Let F` denote the `-th Fibonacci number. Let ` > 3, ` ≡ ±1 (mod 6). Then for

d` =
(

F`−3F`+1
2

)2
+ F`−3F`−1 + 1 and M ∈ N it holds `

(√
d`
)
= ` and

j (3M−1)(
√

d`, 0) = j (3M)(
√

d`, 0) = j (3M+1)(
√

d`, 0) = `−3
2 ·M.

Proof.

By (2.8), we have to prove

R(3M−1)
0 =

pM`−2

qM`−2
, R(3M)

0 =
pM`−1

qM`−1
, R(3M+1)

0 =
pM`

qM`
.

We have a0 = F`−3F`+1
2 , and by Lemma 2.9 it holds√

d` =
[
a0, 1, 1, . . . , 1, 1︸ ︷︷ ︸

`−1 times

, 2a0
]
. From Cassini’s identity, it follows

R(1)
0 =

p0

q0
= a0, R(2)

0 = a0 +
F`−2

F`−1
=

p`−2

q`−2
,
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Proof.

R(3)
0 = a0 +

F`−1F 3
`−2

F 2
`−1F

2
`−2 + F 2

`−2
= a0 +

F`−1

F`
=

p`−1

q`−1
. (2.11)

Let us prove the theorem using induction on M. For proving the inductive step,
first observe that from (2.5) for m ≥ 3 we have:

R(m)
k =

R(2)
k R(m−2)

k + d

R(2)
k + R(m−2)

k

, R(m)
k =

R(3)
k R(m−3)

k + d

R(3)
k + R(m−3)

k

. (2.12)

Suppose that for some i ∈ {0, `− 2, `− 1} it holds p(M−1)`+i
q(M−1)`+i

= R(m−3)
0 . We have:

pM`+i

qM`+i
=
[
a0, 1, 1, . . . , 1, 1︸ ︷︷ ︸

`−1 times

, a0 + R(m−3)
0

]
=

(2.6)
=

(2.7)

p`−1R
(m−3)
0 + dq`−1

q`−1R
(m−3)
0 + p`−1

(2.11)
=

R(3)
0 R(m−3)

0 + d

R(3)
0 + R(m−3)

0

(2.12)
= R(m)

0 .
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Corollary 2.11

For each m ≥ 2 it holds

sup
{
|j (m)(

√
d , n)|

}
= +∞,

lim sup
{
|j (m)(

√
d , n)|

`
(√

d
) }

≥ m
6
.
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