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Abstract

Let d be a positive integer that is not a perfect square. It was proved by Mikusiński in
1954 that if the period s(d) of the continued fraction expansion of

√
d satisfies s(d) ≤ 2,

then all Newton’s approximants Rn = 1
2
(pn

qn
+ dqn

pn
) are convergents of

√
d. If Rn is a

convergent of
√

d, then we say that Rn is a good approximant. Let b(d) denote the
number of good approximants among the numbers Rn, n = 0, 1, . . . , s(d) − 1. In this
paper we show that the quantity b(d) can be arbitrary large. Moreover, we construct
families of examples which show that for every positive integer b there exist a positive
integer d such that b(d) = b and b(d) > s(d)/2.

1 Introduction

Let d be a positive integer that is not a perfect square. Then the simple continued
fraction expansion of

√
d has the form

√
d = [a0; a1, a2, . . . , as−1, 2a0].

Here s = s(d) denotes the length of the shortest period in the expansion of
√

d. Moreover,
the sequence a1, . . . , as−1 is palindromic, i.e. ai = as−i for i = 1, . . . , s−1. The expansion
can be obtained by the following algorithm:

a0 = b
√

dc, s1 = a0, t1 = d− a2
0,

an−1 =
⌊

sn−1+a0

tn−1

⌋
, sn = an−1tn−1 − sn−1, tn = d−s2

n

tn−1
for n ≥ 2

(1.1)

(see e.g. [15, p. 319]).

1The first author was supported by the Ministry of Science, Education and Sports, Republic of
Croatia, grant 0037110.
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Let pn

qn
denote the nth convergent of

√
d. Then

1

(an+1 + 2)q2
n

<

∣∣∣∣√d− pn

qn

∣∣∣∣ <
1

an+1q2
n

(1.2)

(see e.g. [14, p. 23]). In particular, |
√

d− pn

qn
| < 1

q2
n
. Furthermore, by Legendre’s theorem

(see [14, Theorem 5C, p. 18]), if a rational number p
q

with q ≥ 1 satisfies∣∣∣∣√d− p

q

∣∣∣∣ <
1

2q2
, (1.3)

then p
q

is a convergent of
√

d.

Continued fractions provide one method for obtaining ”good” rational approximations
to
√

d. Another method for the approximation is by Newton’s iterative method for solving
nonlinear equations. Applying this method to the equation f(x) = x2−d = 0, we obtain
the Newton’s formula

xk+1 =
1

2

(
xk +

d

xk

)
. (1.4)

We are interested in connections between these two methods of approximation. The
main question is: if we assume that x0 is a convergent of

√
d, is x1 also a convergent of√

d, i.e. if x0 = pn

qn
, we are asking whether

Rn :=
1

2

(
pn

qn

+
dqn

pn

)
is also a convergent of

√
d?

This question has been discussed by several authors. It is well known (see e.g. [2,
p. 468]) that

Rks−1 =
p2ks−1

q2ks−1

, for k ≥ 1. (1.5)

It was proved by Mikusiński [11] that if s = 2t, then

Rkt−1 =
p2kt−1

q2kt−1

, for k ≥ 1. (1.6)

These results imply that if s(d) ≤ 2, then all approximants Rn are convergents of
√

d. In
2001, Dujella [3] proved the converse of this result. Namely, if all approximants Rn are
convergents of

√
d, then s(d) ≤ 2.

Thus, if s(d) > 2, we know that some of the approximants Rn are convergents and
some of them are not convergents. So we may ask how often we can obtain convergents.
This question will be discussed in this paper.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3

2 Good approximants

The properties of continued fractions listed in the introduction (formulas (1.2) and (1.3))
will give us necessary and sufficient conditions for Rn to be a convergent. The conditions
involve the greatest common divisor of the numerator and denominator of Rn = p2

n+dq2
n

2pnqn
.

Thus, in the next lemma we give some useful information about this quantity.

Lemma 1 Let g := gcd(p2
n + dq2

n, 2pnqn). Then g divides gcd(2d, tn+1, 2sn+1, 2sn+2).

Proof. Since gcd(pn, qn) = 1, we have that g divides 2pn and 2d. Now, the formulas

p2
n − dq2

n = (−1)n+1tn+1

and
pnpn−1 − dqnqn−1 = (−1)nsn+1

(see e.g. [13, p. 92] and [4, Lemma 1]) imply that g divides also tn+1, 2sn+1 and 2sn+2.

Now we obtain the following result, which is an improvement of [3, Proposition 2].

Proposition 1 (i) If an+1 > 2
g

√√
d + 1, then Rn is a convergent of

√
d.

(ii) Assume that ai 6= 2 for all i ≥ 1. If an+1 > 1
g

√
3(
√

d + 1), then Rn is a convergent

of
√

d.

Proof. (i) Let Rn = u
v
, gcd(u, v) = 1. Then v = 2pnqn/g. From [3, Lemma 2.1] and

(1.2) we have∣∣∣Rn −
√

d
∣∣∣ =

qn

2pn

(
pn

qn

−
√

d

)2

<

1

2pnq3
na

2
n+1

=
2

v2g2
· pn

qna2
n+1

<
1

2v2
· 4

g2a2
n+1

· (
√

d + 1) <
1

2v2
,

which proves part (i) of the proposition.

(ii) We use a result of Koksma [8, p. 102] which says that if ai 6= 2 for all i ≥ 1 and∣∣∣∣√d− p

q

∣∣∣∣ <
1

3
2
q2

,

then p/q is a convergent of
√

d. Using the result just stated, the proof is completely
analogous to the proof of part (i).
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Proposition 2 If an+1 < 1
g

√
2(
√

d− 1)− 2, then Rn is not a convergent of
√

d.

Proof. We have∣∣∣Rn −
√

d
∣∣∣ >

1

2pnq3
n(an+1 + 2)2

=
2

v2g2
· pn

qn(an+1 + 2)2
>

1

v2
· 2

g2(an+1 + 2)2
· (
√

d− 1) >
1

v2
,

which proves the proposition.

If Rn is a convergent of
√

d, then we say that Rn is a good approximant. Let

b(d) = |{n : 0 ≤ n ≤ s(d)− 1 and Rn is a good approximant}|.

By [3, Theorem 3.2], if s(d) > 2 then b(d) < s(d) (in fact, by [3, Lemma 2.4], b(d) ≤
s(d)− 2). Komatsu [9] proved that if d = (2n + 1)2 + 4 then b(d) = 3, s(d) = 5 (see also
[5]) and if d = (2n + 3)2 − 4 then b(d) = 4, s(d) = 6, while Dujella [3] proved that if
d = 16n4 − 16n3 − 12n2 + 16n− 4, where n ≥ 2, then s(d) = 8 and b(d) = 6.

Let
sb = min{s : there exists d such that s(d) = s and b(d) = b}.

Only five exact values of sb are known: s1 = 1, s2 = 2, s3 = 5, s4 = 6 and s6 = 8. In
Table 1 we list upper bounds for sb obtained by experiments with d < 2 · 109. (The bold
values indicate precise values instead of upper bounds.) This table extends [3, Table 2],
which - like this one - was also obtained by experiments. These tables give raise to the
following questions (which the first author already asked in [3]).

Questions:

1) Is it true that inf{sb/b : b ≥ 3} = 4
3
?

2) What can be said about sup{sb/b : b ≥ 1}?

Trivially, we have

1 ≤ inf{sb

b
: b ≥ 3} ≤ 4

3
,

since sb > b for b ≥ 3 and there is a b with sb/b = 4/3, namely b = 6. For the second
question we have, by considering b = 3, that

5

3
≤ sup{sb

b
: b ≥ 1} .

In the next section, we will present some results concerning the second question. Our
theoretical results will significantly improve some of the entries in Table 1. This will
be done by considering sequences of d’s which are given by exponential functions in n

instead of polynomials in n as above or expressions obtained from the Fibonacci sequence
as in [3]. The conditions from Propositions 1 and 2 will enable us to get our results.
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b sb ≤ d sb/b ≤ b sb ≤ d sb/b ≤

3 5 13 1.66667 27 75 398641237 2.77778

4 6 21 1.50000 28 56 227136 2.00000

5 9 1450 1.80000 29 87 1978205 3.00000

6 8 108 1.33334 30 58 88452 1.93333

7 11 36125 1.57143 31 99 1381250 3.19354

8 12 76 1.50000 32 68 1946880 2.12500

9 17 280865 1.88889 33 127 49691210 3.84848

10 14 500 1.40000 34 78 76208384 2.29412

11 23 123370 2.09091 35 129 48946825 3.68571

12 18 141456 1.50000 36 80 1332144 2.22222

13 27 166634 2.07692 37 137 479833250 3.70270

14 22 5800 1.57143 38 92 8472240 2.42105

15 39 74356325 2.60000 39 133 929305 3.41026

16 22 94382820 1.37500 40 90 184548 2.25000

17 43 308125 2.52941 41 155 1724645 3.78049

18 32 52272 1.77778 42 98 690034333 2.33333

19 41 60125 2.15789 43 151 406445 3.51163

20 32 3201660 1.60000 44 112 35010157 2.54545

21 41 21125 1.95238 45 175 6331625 3.88889

22 40 2151864 1.81818 46 106 5491827 2.30435

23 65 97674013 2.82609 47 155 5415605 3.29788

24 38 53508 1.58333 48 104 1383840 2.16667

25 69 253045 2.76000 49 195 269131250 3.97959

26 50 29403 1.92308 50 124 5410080 2.48000

Table 1: upper bounds for sb
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3 Sequences with many good approximants

Our first aim is to prove that the quantity b(d) can be arbitrary large, i.e.

sup{b(d) : d is a positive non-square integer} = +∞.

Moreover, we would like to derive good general estimates for sb/b. If we want b(d) to be
large, then we need that s(d) is large. In the papers of Hendy [7], Bernstein [1], Williams
[16, 17], Levesque [10], Halter-Koch [6] and Mollin [12] (among others), one can find
many examples of families of positive integers d with large s(d). More precisely, in these
examples d is an exponential functions in an integer parameter n, while s(d) is a linear
function in n. E.g., in [16], it was proved that for

d = (q(4qk − 1)n − k)2 + (4qk − 1)n (3.1)

it holds that s(d) = 3n + 1.

According to Proposition 1, we are particularly interested in those examples in which
there are many large partial quotients ai.

Proposition 3 If dn = 32n − 3n + 1 for n ≥ 1, then s(dn) = 3n + 1 and b(dn) = n + 1.

Proof. Inserting q = k = 1 in (3.1), we obtain d = dn. Therefore, the above
mentioned result from [16] implies that s(dn) = 3n + 1. Alternatively, we can insert
l = q = c = τ = µ = −λ = 1 in the main result of [6]. In both papers, we can also find
information on partial quotients ai and quantities si, ti from the algorithm (1.1). We
have a0 = 3n − 1,

s3k+1 = 3n − 1, t3k+1 = 3n−k, a3k+1 = 2 · 3k − 1

s3k+2 = 3n − 3n−k + 1, t3k+2 = 2 · 3n − 3n−k − 3k+1 + 2, a3k+2 = 1

s3k+3 = 3n − 3k+1 + 1, t3k+3 = 3k+1, a3k+3 = 2 · 3n−k−1 − 1,

for k = 0, 1, . . . , n− 1.

By direct computation, we can check the statement of the proposition for n = 1, 2, 3.
Therefore, we may assume that n ≥ 4.

Let us first consider approximants of the form R3k. From g | 2dn and g | tn+1 we
find that g = 1. We may apply Proposition 1 (ii), and we obtain that R3k is a good
approximant if

2 · 3k − 1 >

√
3(
√

d + 1). (3.2)

For k > 1 we have 2 ·3k−1 ≥ 17
9
·3k and

√
3(
√

d + 1) <
√

3(3n + 1) < 7
4
·3n/2 < 17

9
·3n/2.

Thus, condition (3.2) is clearly satisfied for k ≥ n
2
. Applying Proposition 2, we find that
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R3k is not a good approximant if

2 · 3k + 1 <

√
2(
√

d− 1). (3.3)

This implies that R0 and R3 are not good approximants, and we may assume that k ≥ 2.

Since 2 · 3k + 1 ≤ 3k+0.7 and
√

2(
√

d− 1) >
√

2 · 3n − 3 > 3n/2+0.3, we conclude that R3k

is not a good approximant if k ≤ n−1
2

. Hence, if n = 2l, then good approximants are
exactly those R3k for which k = l, l+1, . . . , 2l, and if n = 2l+1, then good approximants
are exactly those R3k for which k = l + 1, l + 2, . . . , 2l + 1.

By [3, Lemma 2.4], the approximant R3k+2 is good if and only if the approximant
Rs−(3k+2)−2 = R3(n−k−1) is good. From what we have already proved, it follows that if
n = 2l, then good approximants are exactly those R3k+2 for which k = 0, 1, . . . , l−1, and
if n = 2l+1, then good approximants are exactly those R3k+2 for which k = 0, 1, . . . , l−1.

Finally, let us consider approximants of the form R3k+1. If n = 2k + 1, then by the
general result of Mikusiński (1.6), we have that R3k+1 = Rs/2−1 is a good approximant.
Assume that n 6= 2k + 1. For g = gcd(p2

3k+1 + dnq
2
3k+1, 2p3k+1q3k+1), by Lemma 1, we

have g | 2(3n − 3n−k + 1) and g | 2(3n − 3k+1 + 1). Let us assume that k < n−1
2

. The
case k ≥ n

2
can be treated in the same way (or we may apply [3, Lemma 2.4]). We

obtain that g divides 2(3n−2k−1 − 1), and by our assumption, this number is not zero.
Also, g | 2(32k+1 − 3k+1 + 1) and hence 4 - g. Therefore, g ≤ 3n−2k−1 − 1 and if n is
odd, then g ≤ 1

4
(3n−2k−1 − 1). On the other hand, if R3k+1 is a good approximant,

since a3k+2 = 1 we get by Proposition 2 that g ≥ 1
3

√
2(
√

d− 1) − 2 > 3n/2−0.7. But,

3n−2k−1 − 1 > 3n/2−0.7 implies n − 4k > 1 (if n is odd, we obtain n − 4k > 3), while
2(32k+1 − 3k+1 + 1) > 3n/2−0.7 implies n − 4k ≤ 4. Therefore, the only possibilities are
n = 4k + 2 and n = 4k + 4. Assume that n = 4k + 2. Now we have that g divides
2(32k+1 − 1) and 2(32k+1 − 3k+1 + 1). For k = 1 we obtain g ≤ 2, while for k ≥ 2 we have
g ≤ 2(3k+1 − 2) < 6 · 3(n−2)/4 < 3n/4+1.14 ≤ 3n/2−0.7, a contradiction. Assume now that
n = 4k + 4. Then g divides 2(32k+3 − 1) and 2(32k+3 − 3k+3 + 9). For k ≤ 2 we obtain
g ≤ 2, while for k ≥ 3 we have g ≤ 2(3k+3 − 10) < 3n/4+2.64 ≤ 3n/2−0.7, a contradiction.

Putting these three cases together, we conclude that for n = 2l the number of good
approximants is (l + 1) + l + 0 = 2l + 1 = n + 1, and for n = 2l + 1 this number is
(l + 1) + l + 1 = 2l + 2 = n + 1. Thus, we proved that b(dn) = n + 1.

Proposition 3 shows that

sup{b(d) : d is a positive non-square integer} = +∞.

Moreover, it implies that

sup{sb

b
: b ≥ 1} ≤ 3.

Now, we will improve the last result. We were not able to do it by considering a single
sequence, so we will consider two sequences corresponding to even and odd b’s, respec-
tively.
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First we handle the case of even b’s.

Proposition 4 If dn = (12 · 9n + 1)2 + 6 · 9n for n ≥ 1, then s(dn) = 4n + 6.

Proof. We claim that a0 = 12 · 9n + 1,

s2k = 12 · 9n − 1, t2k = 9k, a2k = 24 · 9n−k, for k = 1, 2, . . . , n,

s2k+1 = 12 · 9n + 1, t2k+1 = 6 · 9n−k, a2k+1 = 4 · 9k, for k = 0, 1, . . . , n.

Since (12 · 9n +2)2 > dn, we have a0 = b
√

dnc = 12 · 9n +1. The algorithm (1.1) gives

s1 = 12 · 9n + 1, t1 = 6 · 9n, a1 = 4.

Now we will prove our claim by induction. We have checked that the claim is valid for
k = 0. Assume that it is valid for 0, 1, 2, . . . , k − 1, where k ≤ n. Then

s2k = a2k−1t2k−1 − s2k−1 = (4 · 9k−1)(6 · 9n−k+1)− (12 · 9n + 1) = 12 · 9n − 1,

t2k =
dn − s2

2k−1

t2k−1

=
54 · 9n

6 · 9n−k+1
= 9k,

a2k =

⌊
s2k + a0

t2k

⌋
=

24 · 9n

9k
= 24 · 9n−k,

and

s2k+1 = (24 · 9n−k) · 9k − (12 · 9n − 1) = 12 · 9n + 1,

t2k+1 =
6 · 9n

9k
= 6 · 9n−k,

a2k+1 =

⌊
24 · 9n + 2

6 · 9n−k

⌋
= 4 · 9k,

which completes the proof of our claim.

Furthermore, we have

s2n+2 = 12 · 9n − 1, t2n+2 = 9n+1, a2n+2 =

⌊
24 · 9n

9n+1

⌋
= 2,

s2n+3 = 2 · 9n+1 − (12 · 9n − 1) = 6 · 9n + 1,

t2n+3 =
dn − s2

2n+3

t2n+2

=
18 · 9n(6 · 9n + 1)

9n+1
= 2(6 · 9n + 1),

a2n+3 =

⌊
18 · 9n + 2

12 · 9n + 2

⌋
= 1,
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s2n+4 = 2(6 · 9n + 1)− (6 · 9n + 1) = 6 · 9n + 1,

t2n+4 =
18 · 9n(6 · 9n + 1)

2(6 · 9n + 1)
= 9n+1,

a2n+4 =

⌊
18 · 9n + 2

9n+1

⌋
= 2.

We see that s2n+3 = s2n+4 and, by [13, Chapter 24, Satz 3.10], it holds s(dn) = 2(2n+3) =
4n + 6.

Remark 1 Proposition 4 can be considered as a special case of the general result of
Williams [17]. In [17], numbers of the form d = (σ(qram + µ(ak + λ)/q)/2)2 − σ2µλamr,
with µ, λ = {−1, 1}, qr | ak + l, gcd(m, k) = 1, m > k ≥ 1, and σ = 1 if 2 | rqam + µ(ak +
λ)/q, while σ = 2 otherwise, were studied. For µ = 1, λ = −1, r = 2, q = 4, a = 3,
k = 2 and σ = 1 we get d = (4 · 3m + 1)2 + 2 · 3m and, since gcd(m, k) = 1, m has to
be odd. From the general result on the periods of numbers of such form, it follows that
s(d) = 2m + 4. For m = 2n + 1, we obtain s(dn) = 2n + 6. However, since in the main
result of [17] there are many cases to be considered and complete proofs are not given of
each of them, we prefer to include the complete proof of Proposition 4 in our paper.

Next we calculate also b(dn) for the sequence dn defined in the previous proposition,
but before we can do so we need another lemma.

Lemma 2 Let dn = (12 · 9n + 1)2 + 6 · 9n and gk = gcd(p2
k + dnq

2
k, 2pkqk). Then g2l = 2

and g2l+1 = 1 for l = 0, 1, . . . , n.

Proof. By Lemma 1, we have that gk | gcd(2dn, tk+1, 2sk+1, 2sk+2). Since dn is odd,
gk is not divisible by 4. Furthermore, a0 = 12 · 9n + 1, p0 = a0 and q0 = 1 are odd. Since
all ai, i = 1, . . . 2n + 2 are even, we conclude that all pi are odd, while qi is odd for even
i, and qi is even for odd i.

For k = 2l the quantity p2
k + dnq

2
k is even and therefore 2 | gk. Moreover, we have

gk | (2sk+1 − 2sk+2) = 4, which implies that gk = 2.

For k = 2l +1, l < n, we also have gk | 4, and since in this case gk is odd, we conclude
that gk = 1.

For k = 2n + 1, we have gk | (4s2n+3 − 2s2n+2) = 6. It is clear that gk is odd and not
divisible by 3. Thus, gk = 1.

Proposition 5 Let dn = (12 · 9n + 1)2 + 6 · 9n. Then b(dn) = 2n + 4.

Proof. By (1.5) and (1.6), we know that R2n+2 and R4n+5 are good approximants. By
[3, Lemma 2.4], it suffices to check the approximants R0, R1, . . . R2n+1. From Propositions
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1 and 2, it follows that Rk is a good approximant if ak+1 ≥ 2
√

12·9n+2
gk

, while Rk is not

good if ak+1 ≤
√

24·9n

gk
− 2.

Consider first the case k = 2l, l = 0, 1, . . . , n. Then gk = 2, and Rk is a good
approximant if

4 · 9l ≥ 2

√
3 · 9n +

1

2
.

We have 2 · 9l > 32l+0.6 and
√

3 · 9n + 1
2

<
√

32n+1+0.2 = 3n+0.6. It follows that R2l is a

good approximant if l ≥ n
2
. On the other hand, Rk is not a good approximant if

4 · 9l ≤
√

6 · 3n − 2.

Since 3n+ 1
2

√
1
2
− 1 > 3n−0.3, we get the condition 32l+0.7 ≤ 3n−0.3, which implies that R2l

is not a good approximant if l ≤ n−1
2

. Hence, the number of good approximants in this
case is

⌊
n
2

⌋
+ 1.

Let us consider now the case k = 2l − 1, l = 1, . . . , n. Now we have gk = 1 and,
accordingly, Rk is a good approximant if

24 · 9n−l ≥ 4

√
3 · 9n +

1

2

Since 6 ·9n−l > 32n−2l+1+0.6 and
√

3 · 9n + 1
2

< 3n+0.6 we obtain the condition 32n−2l+1.6 ≥
3n+0.6, which implies that R2l−1 is a good approximant if l ≤ n+1

2
. Similarly, we have

that Rk is not a good approximant if

24 · 9n−l ≤ 2
√

6 · 3n − 2.

From 24 · 9n−l < 4 · 32n−2l+1+0.7 and 3n
√

3
2
− 1

2
> 3n−0.3, we conclude that R2l−1 is not a

good approximant if l ≥ n+2
2

. Hence, the number of good approximants in this case is⌊
n+1

2

⌋
.

Finally, from g2n+1 = 1 and a2n+2 = 2 we see that R2n+1 is not a good approximant.

Therefore, among the approximants R0, R1, . . . , R2n+1 there are exactly
⌊

n
2

⌋
+ 1 +⌊

n+1
2

⌋
= n + 1 good approximants. Then, by [3, Lemma 2.4], we have also n + 1 good

approximants among R2n+3, R2n+4, . . . , R4n+4. Taking into account that R2n+2 and R4n+5

are good approximants, we find that the total number of good approximants is 2n + 4.

Propositions 4 and 5 together give the following corollary.

Corollary 1 For dn = (12 · 9n + 1)2 + 6 · 9n it holds s(dn) = 4n + 6, b(dn) = 2n + 4.
Therefore, for every even positive integer b there exist a non-square positive integer d
such that b(d) = b and b(d) > s(d)/2.
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Next we study the case for odd b and to this extent we consider the sequence dn =
(2 · 9n + 1)2 + 9n.

Lemma 3 Let dn = (2 · 9n + 1)2 + 9n. Then s(dn) = 2n + 1. Furthermore, it holds

a0 = 2 · 9n + 1,

s2k = 2 · 9n − 1, t2k = 9k, a2k = 4 · 9n−k for k = 1, 2, . . . , n,

s2k+1 = 2 · 9n + 1, t2k+1 = 9n−k, a2k+1 = 4 · 9k for k = 0, 1, . . . , n− 1.

Proof. See [7, Section 4].

Lemma 4 Let dn = (2 · 9n + 1)2 + 9n. Then gk = gcd(p2
k + dnq

2
k, 2pkqk) = 1.

Proof. From gk | 2sk+1 and gk | 2sk+2 it follows that gk | 4, while from gk | tk+1 we have
that gk is odd. Hence, gk = 1.

Proposition 6 Let dn = (2 · 92n + 1)2 + 92n. Then b(dn) = 2n + 1.

Proof. By Proposition 1, Rk is a good approximant if ak+1 ≥ 2
√

2·92n+2
gk

. We have

2
√

2 · 92n + 2 < 2
√

2 · 92n+0.1 < 2
√

34n+0.2+0.7 = 2 · 32n+0.45.

By Proposition 2, the approximant Rk is not good if ak+1 ≤
√

2·2·92n

gk
− 2. We have√

2 · 2 · 92n − 2 = 2 · (32n − 1) > 2 · 32n−0.2.

Assume now that k = 2l, l = 0, 1, . . . , 2n− 1. Then a2l+1/2 = 2 · 9l ≥ 32n+0.45 and we
obtain the following condition for good approximants: 32l+0.6 ≥ 32n+0.45. Therefore, R2l

is a good approximant if l ≥ n.

Since a2l+1 = 4 · 9l ≤ 2 · 32n−0.2, it follows that if 32l+0.7 ≤ 32n−0.2, i.e. if l ≤ n − 1,
then R2l is not a good approximant. Hence, the number of good approximants in this
case is n.

By [3, Lemma 2.4], the approximant Rk is good if and only if the approximant Rs−k−2

is good. Since the period s(dn) is odd, this fact implies that the number of good approxi-
mants among the numbers R2l+1, l = 0, 1, . . . , 2n− 1 is also equal to n. Finally, by (1.5),
we know that Rs−1 = R4n is a good approximant.

Thus, we proved that among the numbers R0, R1, . . . , R4n there are exactly 2n + 1
good approximants.

By Lemma 4 and Proposition 6 we get the following:
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Corollary 2 For dn = (2 · 92n + 1)2 + 92n it holds s(dn) = 4n + 1 and b(dn) = 2n + 1.
Therefore, for every odd positive integer b there exist a non-square positive integer d such
that b(d) = b and b(d) > s(d)/2.

From Corollaries 1 and 2, we immediately obtain the following result.

Corollary 3

sup{sb

b
: b ≥ 1} ≤ 2.

Acknowledgments. The authors would like to thank the referee for valuable com-
ments on the first version of the manuscript.
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