SQUARE ROOTS WITH MANY GOOD APPROXIMANTS

Andrej Dujella ${ }^{1}$
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia duje@math.hr

Vinko Petričević
Dinarski put 1i, 10000 Zagreb, Croatia
vinko@vip.hr

Abstract

Let d be a positive integer that is not a perfect square. It was proved by Mikusiński in 1954 that if the period $s(d)$ of the continued fraction expansion of \sqrt{d} satisfies $s(d) \leq 2$, then all Newton's approximants $R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)$ are convergents of \sqrt{d}. If R_{n} is a convergent of \sqrt{d}, then we say that R_{n} is a good approximant. Let $b(d)$ denote the number of good approximants among the numbers $R_{n}, n=0,1, \ldots, s(d)-1$. In this paper we show that the quantity $b(d)$ can be arbitrary large. Moreover, we construct families of examples which show that for every positive integer b there exist a positive integer d such that $b(d)=b$ and $b(d)>s(d) / 2$.

1 Introduction

Let d be a positive integer that is not a perfect square. Then the simple continued fraction expansion of \sqrt{d} has the form

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{s-1}, 2 a_{0}}\right] .
$$

Here $s=s(d)$ denotes the length of the shortest period in the expansion of \sqrt{d}. Moreover, the sequence a_{1}, \ldots, a_{s-1} is palindromic, i.e. $a_{i}=a_{s-i}$ for $i=1, \ldots, s-1$. The expansion can be obtained by the following algorithm:

$$
\begin{gather*}
a_{0}=\lfloor\sqrt{d}\rfloor, \quad s_{1}=a_{0}, \quad t_{1}=d-a_{0}^{2}, \\
a_{n-1}=\left\lfloor\frac{s_{n-1}+a_{0}}{t_{n-1}}\right\rfloor, \quad s_{n}=a_{n-1} t_{n-1}-s_{n-1}, \quad t_{n}=\frac{d-s_{n}^{2}}{t_{n-1}} \quad \text { for } n \geq 2 \tag{1.1}
\end{gather*}
$$

(see e.g. [15, p. 319]).

[^0]Let $\frac{p_{n}}{q_{n}}$ denote the nth convergent of \sqrt{d}. Then

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\left|\sqrt{d}-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} q_{n}^{2}} \tag{1.2}
\end{equation*}
$$

(see e.g. [14, p. 23]). In particular, $\left|\sqrt{d}-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}}$. Furthermore, by Legendre's theorem (see [14, Theorem 5C, p. 18]), if a rational number $\frac{p}{q}$ with $q \geq 1$ satisfies

$$
\begin{equation*}
\left|\sqrt{d}-\frac{p}{q}\right|<\frac{1}{2 q^{2}}, \tag{1.3}
\end{equation*}
$$

then $\frac{p}{q}$ is a convergent of \sqrt{d}.
Continued fractions provide one method for obtaining "good" rational approximations to \sqrt{d}. Another method for the approximation is by Newton's iterative method for solving nonlinear equations. Applying this method to the equation $f(x)=x^{2}-d=0$, we obtain the Newton's formula

$$
\begin{equation*}
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{d}{x_{k}}\right) . \tag{1.4}
\end{equation*}
$$

We are interested in connections between these two methods of approximation. The main question is: if we assume that x_{0} is a convergent of \sqrt{d}, is x_{1} also a convergent of \sqrt{d}, i.e. if $x_{0}=\frac{p_{n}}{q_{n}}$, we are asking whether

$$
R_{n}:=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)
$$

is also a convergent of \sqrt{d} ?
This question has been discussed by several authors. It is well known (see e.g. [2, p. 468]) that

$$
\begin{equation*}
R_{k s-1}=\frac{p_{2 k s-1}}{q_{2 k s-1}}, \quad \text { for } k \geq 1 \tag{1.5}
\end{equation*}
$$

It was proved by Mikusiński [11] that if $s=2 t$, then

$$
\begin{equation*}
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}, \quad \text { for } k \geq 1 \tag{1.6}
\end{equation*}
$$

These results imply that if $s(d) \leq 2$, then all approximants R_{n} are convergents of \sqrt{d}. In 2001, Dujella [3] proved the converse of this result. Namely, if all approximants R_{n} are convergents of \sqrt{d}, then $s(d) \leq 2$.

Thus, if $s(d)>2$, we know that some of the approximants R_{n} are convergents and some of them are not convergents. So we may ask how often we can obtain convergents. This question will be discussed in this paper.

2 Good approximants

The properties of continued fractions listed in the introduction (formulas (1.2) and (1.3)) will give us necessary and sufficient conditions for R_{n} to be a convergent. The conditions involve the greatest common divisor of the numerator and denominator of $R_{n}=\frac{p_{n}^{2}+d q_{n}^{2}}{2 p_{n} q_{n}}$. Thus, in the next lemma we give some useful information about this quantity.

Lemma 1 Let $g:=\operatorname{gcd}\left(p_{n}^{2}+d q_{n}^{2}, 2 p_{n} q_{n}\right)$. Then g divides $\operatorname{gcd}\left(2 d, t_{n+1}, 2 s_{n+1}, 2 s_{n+2}\right)$.

Proof. Since $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$, we have that g divides $2 p_{n}$ and $2 d$. Now, the formulas

$$
p_{n}^{2}-d q_{n}^{2}=(-1)^{n+1} t_{n+1}
$$

and

$$
p_{n} p_{n-1}-d q_{n} q_{n-1}=(-1)^{n} s_{n+1}
$$

(see e.g. [13, p. 92] and [4, Lemma 1]) imply that g divides also $t_{n+1}, 2 s_{n+1}$ and $2 s_{n+2}$.
Now we obtain the following result, which is an improvement of [3, Proposition 2].

Proposition 1 (i) If $a_{n+1}>\frac{2}{g} \sqrt{\sqrt{d}+1}$, then R_{n} is a convergent of \sqrt{d}.
(ii) Assume that $a_{i} \neq 2$ for all $i \geq 1$. If $a_{n+1}>\frac{1}{g} \sqrt{3(\sqrt{d}+1)}$, then R_{n} is a convergent of \sqrt{d}.

Proof. (i) Let $R_{n}=\frac{u}{v}, \operatorname{gcd}(u, v)=1$. Then $v=2 p_{n} q_{n} / g$. From [3, Lemma 2.1] and (1.2) we have

$$
\begin{aligned}
\left|R_{n}-\sqrt{d}\right| & =\frac{q_{n}}{2 p_{n}}\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right)^{2}< \\
\quad \frac{1}{2 p_{n} q_{n}^{3} a_{n+1}^{2}} & =\frac{2}{v^{2} g^{2}} \cdot \frac{p_{n}}{q_{n} a_{n+1}^{2}}<\frac{1}{2 v^{2}} \cdot \frac{4}{g^{2} a_{n+1}^{2}} \cdot(\sqrt{d}+1)<\frac{1}{2 v^{2}},
\end{aligned}
$$

which proves part (i) of the proposition.
(ii) We use a result of Koksma [8, p. 102] which says that if $a_{i} \neq 2$ for all $i \geq 1$ and

$$
\left|\sqrt{d}-\frac{p}{q}\right|<\frac{1}{\frac{3}{2} q^{2}}
$$

then p / q is a convergent of \sqrt{d}. Using the result just stated, the proof is completely analogous to the proof of part (i).

Proposition 2 If $a_{n+1}<\frac{1}{g} \sqrt{2(\sqrt{d}-1)}-2$, then R_{n} is not a convergent of \sqrt{d}.
Proof. We have

$$
\begin{aligned}
& \left|R_{n}-\sqrt{d}\right|> \\
& \quad \frac{1}{2 p_{n} q_{n}^{3}\left(a_{n+1}+2\right)^{2}}=\frac{2}{v^{2} g^{2}} \cdot \frac{p_{n}}{q_{n}\left(a_{n+1}+2\right)^{2}}>\frac{1}{v^{2}} \cdot \frac{2}{g^{2}\left(a_{n+1}+2\right)^{2}} \cdot(\sqrt{d}-1)>\frac{1}{v^{2}},
\end{aligned}
$$

which proves the proposition.
If R_{n} is a convergent of \sqrt{d}, then we say that R_{n} is a good approximant. Let

$$
b(d)=\mid\left\{n: 0 \leq n \leq s(d)-1 \text { and } R_{n} \text { is a good approximant }\right\} \mid .
$$

By [3, Theorem 3.2], if $s(d)>2$ then $b(d)<s(d)$ (in fact, by [3, Lemma 2.4], $b(d) \leq$ $s(d)-2$). Komatsu [9] proved that if $d=(2 n+1)^{2}+4$ then $b(d)=3, s(d)=5$ (see also [5]) and if $d=(2 n+3)^{2}-4$ then $b(d)=4, s(d)=6$, while Dujella [3] proved that if $d=16 n^{4}-16 n^{3}-12 n^{2}+16 n-4$, where $n \geq 2$, then $s(d)=8$ and $b(d)=6$.

Let

$$
s_{b}=\min \{s: \text { there exists } d \text { such that } s(d)=s \text { and } b(d)=b\} .
$$

Only five exact values of s_{b} are known: $s_{1}=1, s_{2}=2, s_{3}=5, s_{4}=6$ and $s_{6}=8$. In Table 1 we list upper bounds for s_{b} obtained by experiments with $d<2 \cdot 10^{9}$. (The bold values indicate precise values instead of upper bounds.) This table extends [3, Table 2], which - like this one - was also obtained by experiments. These tables give raise to the following questions (which the first author already asked in [3]).

Questions:

1) Is it true that $\inf \left\{s_{b} / b: b \geq 3\right\}=\frac{4}{3}$?
2) What can be said about $\sup \left\{s_{b} / b: b \geq 1\right\}$?

Trivially, we have

$$
1 \leq \inf \left\{\frac{s_{b}}{b}: b \geq 3\right\} \leq \frac{4}{3}
$$

since $s_{b}>b$ for $b \geq 3$ and there is a b with $s_{b} / b=4 / 3$, namely $b=6$. For the second question we have, by considering $b=3$, that

$$
\frac{5}{3} \leq \sup \left\{\frac{s_{b}}{b}: b \geq 1\right\}
$$

In the next section, we will present some results concerning the second question. Our theoretical results will significantly improve some of the entries in Table 1. This will be done by considering sequences of d 's which are given by exponential functions in n instead of polynomials in n as above or expressions obtained from the Fibonacci sequence as in [3]. The conditions from Propositions 1 and 2 will enable us to get our results.

b	$s_{b} \leq$	d	$s_{b} / b \leq$	b	$s_{b} \leq$	d	$s_{b} / b \leq$
3	5	13	1.66667	27	75	398641237	2.77778
4	6	21	1.50000	28	56	227136	2.00000
5	9	1450	1.80000	29	87	1978205	3.00000
6	8	108	1.33334	30	58	88452	1.93333
7	11	36125	1.57143	31	99	1381250	3.19354
8	12	76	1.50000	32	68	1946880	2.12500
9	17	280865	1.88889	33	127	49691210	3.84848
10	14	500	1.40000	34	78	76208384	2.29412
11	23	123370	2.09091	35	129	48946825	3.68571
12	18	141456	1.50000	36	80	1332144	2.22222
13	27	166634	2.07692	37	137	479833250	3.70270
14	22	5800	1.57143	38	92	8472240	2.42105
15	39	74356325	2.60000	39	133	929305	3.41026
16	22	94382820	1.37500	40	90	184548	2.25000
17	43	308125	2.52941	41	155	1724645	3.78049
18	32	52272	1.77778	42	98	690034333	2.33333
19	41	60125	2.15789	43	151	406445	3.51163
20	32	3201660	1.60000	44	112	35010157	2.54545
21	41	21125	1.95238	45	175	6331625	3.88889
22	40	2151864	1.81818	46	106	5491827	2.30435
23	65	97674013	2.82609	47	155	5415605	3.29788
24	38	53508	1.58333	48	104	1383840	2.16667
25	69	253045	2.76000	49	195	269131250	3.97959
26	50	29403	1.92308	50	124	5410080	2.48000

Table 1: upper bounds for s_{b}

3 Sequences with many good approximants

Our first aim is to prove that the quantity $b(d)$ can be arbitrary large, i.e.

$$
\sup \{b(d): d \text { is a positive non-square integer }\}=+\infty
$$

Moreover, we would like to derive good general estimates for s_{b} / b. If we want $b(d)$ to be large, then we need that $s(d)$ is large. In the papers of Hendy [7], Bernstein [1], Williams [16, 17], Levesque [10], Halter-Koch [6] and Mollin [12] (among others), one can find many examples of families of positive integers d with large $s(d)$. More precisely, in these examples d is an exponential functions in an integer parameter n, while $s(d)$ is a linear function in n. E.g., in [16], it was proved that for

$$
\begin{equation*}
d=\left(q(4 q k-1)^{n}-k\right)^{2}+(4 q k-1)^{n} \tag{3.1}
\end{equation*}
$$

it holds that $s(d)=3 n+1$.
According to Proposition 1, we are particularly interested in those examples in which there are many large partial quotients a_{i}.

Proposition 3 If $d_{n}=3^{2 n}-3^{n}+1$ for $n \geq 1$, then $s\left(d_{n}\right)=3 n+1$ and $b\left(d_{n}\right)=n+1$.

Proof. Inserting $q=k=1$ in (3.1), we obtain $d=d_{n}$. Therefore, the above mentioned result from [16] implies that $s\left(d_{n}\right)=3 n+1$. Alternatively, we can insert $l=q=c=\tau=\mu=-\lambda=1$ in the main result of [6]. In both papers, we can also find information on partial quotients a_{i} and quantities s_{i}, t_{i} from the algorithm (1.1). We have $a_{0}=3^{n}-1$,

$$
\begin{aligned}
& s_{3 k+1}=3^{n}-1, \quad t_{3 k+1}=3^{n-k}, \quad a_{3 k+1}=2 \cdot 3^{k}-1 \\
& s_{3 k+2}=3^{n}-3^{n-k}+1, \quad t_{3 k+2}=2 \cdot 3^{n}-3^{n-k}-3^{k+1}+2, \quad a_{3 k+2}=1 \\
& s_{3 k+3}=3^{n}-3^{k+1}+1, \quad t_{3 k+3}=3^{k+1}, \quad a_{3 k+3}=2 \cdot 3^{n-k-1}-1,
\end{aligned}
$$

for $k=0,1, \ldots, n-1$.
By direct computation, we can check the statement of the proposition for $n=1,2,3$. Therefore, we may assume that $n \geq 4$.

Let us first consider approximants of the form $R_{3 k}$. From $g \mid 2 d_{n}$ and $g \mid t_{n+1}$ we find that $g=1$. We may apply Proposition 1 (ii), and we obtain that $R_{3 k}$ is a good approximant if

$$
\begin{equation*}
2 \cdot 3^{k}-1>\sqrt{3(\sqrt{d}+1)} \tag{3.2}
\end{equation*}
$$

For $k>1$ we have $2 \cdot 3^{k}-1 \geq \frac{17}{9} \cdot 3^{k}$ and $\sqrt{3(\sqrt{d}+1)}<\sqrt{3\left(3^{n}+1\right)}<\frac{7}{4} \cdot 3^{n / 2}<\frac{17}{9} \cdot 3^{n / 2}$. Thus, condition (3.2) is clearly satisfied for $k \geq \frac{n}{2}$. Applying Proposition 2, we find that
$R_{3 k}$ is not a good approximant if

$$
\begin{equation*}
2 \cdot 3^{k}+1<\sqrt{2(\sqrt{d}-1)} \tag{3.3}
\end{equation*}
$$

This implies that R_{0} and R_{3} are not good approximants, and we may assume that $k \geq 2$. Since $2 \cdot 3^{k}+1 \leq 3^{k+0.7}$ and $\sqrt{2(\sqrt{d}-1)}>\sqrt{2 \cdot 3^{n}-3}>3^{n / 2+0.3}$, we conclude that $R_{3 k}$ is not a good approximant if $k \leq \frac{n-1}{2}$. Hence, if $n=2 l$, then good approximants are exactly those $R_{3 k}$ for which $k=l, l+1, \ldots, 2 l$, and if $n=2 l+1$, then good approximants are exactly those $R_{3 k}$ for which $k=l+1, l+2, \ldots, 2 l+1$.

By [3, Lemma 2.4], the approximant $R_{3 k+2}$ is good if and only if the approximant $R_{s-(3 k+2)-2}=R_{3(n-k-1)}$ is good. From what we have already proved, it follows that if $n=2 l$, then good approximants are exactly those $R_{3 k+2}$ for which $k=0,1, \ldots, l-1$, and if $n=2 l+1$, then good approximants are exactly those $R_{3 k+2}$ for which $k=0,1, \ldots, l-1$.

Finally, let us consider approximants of the form $R_{3 k+1}$. If $n=2 k+1$, then by the general result of Mikusiński (1.6), we have that $R_{3 k+1}=R_{s / 2-1}$ is a good approximant. Assume that $n \neq 2 k+1$. For $g=\operatorname{gcd}\left(p_{3 k+1}^{2}+d_{n} q_{3 k+1}^{2}, 2 p_{3 k+1} q_{3 k+1}\right)$, by Lemma 1, we have $g \mid 2\left(3^{n}-3^{n-k}+1\right)$ and $g \mid 2\left(3^{n}-3^{k+1}+1\right)$. Let us assume that $k<\frac{n-1}{2}$. The case $k \geq \frac{n}{2}$ can be treated in the same way (or we may apply [3, Lemma 2.4]). We obtain that g divides $2\left(3^{n-2 k-1}-1\right)$, and by our assumption, this number is not zero. Also, $g \mid 2\left(3^{2 k+1}-3^{k+1}+1\right)$ and hence $4 \nmid g$. Therefore, $g \leq 3^{n-2 k-1}-1$ and if n is odd, then $g \leq \frac{1}{4}\left(3^{n-2 k-1}-1\right)$. On the other hand, if $R_{3 k+1}$ is a good approximant, since $a_{3 k+2}=1$ we get by Proposition 2 that $g \geq \frac{1}{3} \sqrt{2(\sqrt{d}-1)}-2>3^{n / 2-0.7}$. But, $3^{n-2 k-1}-1>3^{n / 2-0.7}$ implies $n-4 k>1$ (if n is odd, we obtain $n-4 k>3$), while $2\left(3^{2 k+1}-3^{k+1}+1\right)>3^{n / 2-0.7}$ implies $n-4 k \leq 4$. Therefore, the only possibilities are $n=4 k+2$ and $n=4 k+4$. Assume that $n=4 k+2$. Now we have that g divides $2\left(3^{2 k+1}-1\right)$ and $2\left(3^{2 k+1}-3^{k+1}+1\right)$. For $k=1$ we obtain $g \leq 2$, while for $k \geq 2$ we have $g \leq 2\left(3^{k+1}-2\right)<6 \cdot 3^{(n-2) / 4}<3^{n / 4+1.14} \leq 3^{n / 2-0.7}$, a contradiction. Assume now that $n=4 k+4$. Then g divides $2\left(3^{2 k+3}-1\right)$ and $2\left(3^{2 k+3}-3^{k+3}+9\right)$. For $k \leq 2$ we obtain $g \leq 2$, while for $k \geq 3$ we have $g \leq 2\left(3^{k+3}-10\right)<3^{n / 4+2.64} \leq 3^{n / 2-0.7}$, a contradiction.

Putting these three cases together, we conclude that for $n=2 l$ the number of good approximants is $(l+1)+l+0=2 l+1=n+1$, and for $n=2 l+1$ this number is $(l+1)+l+1=2 l+2=n+1$. Thus, we proved that $b\left(d_{n}\right)=n+1$.

Proposition 3 shows that

$$
\sup \{b(d): d \text { is a positive non-square integer }\}=+\infty
$$

Moreover, it implies that

$$
\sup \left\{\frac{s_{b}}{b}: b \geq 1\right\} \leq 3
$$

Now, we will improve the last result. We were not able to do it by considering a single sequence, so we will consider two sequences corresponding to even and odd b 's, respectively.

First we handle the case of even b 's.

Proposition 4 If $d_{n}=\left(12 \cdot 9^{n}+1\right)^{2}+6 \cdot 9^{n}$ for $n \geq 1$, then $s\left(d_{n}\right)=4 n+6$.

Proof. We claim that $a_{0}=12 \cdot 9^{n}+1$,

$$
\begin{aligned}
s_{2 k} & =12 \cdot 9^{n}-1, \quad t_{2 k}=9^{k}, \quad a_{2 k}=24 \cdot 9^{n-k}, \quad \text { for } k=1,2, \ldots, n \\
s_{2 k+1} & =12 \cdot 9^{n}+1, \quad t_{2 k+1}=6 \cdot 9^{n-k}, \quad a_{2 k+1}=4 \cdot 9^{k}, \quad \text { for } k=0,1, \ldots, n
\end{aligned}
$$

Since $\left(12 \cdot 9^{n}+2\right)^{2}>d_{n}$, we have $a_{0}=\left\lfloor\sqrt{d_{n}}\right\rfloor=12 \cdot 9^{n}+1$. The algorithm (1.1) gives

$$
s_{1}=12 \cdot 9^{n}+1, \quad t_{1}=6 \cdot 9^{n}, \quad a_{1}=4
$$

Now we will prove our claim by induction. We have checked that the claim is valid for $k=0$. Assume that it is valid for $0,1,2, \ldots, k-1$, where $k \leq n$. Then

$$
\begin{aligned}
s_{2 k} & =a_{2 k-1} t_{2 k-1}-s_{2 k-1}=\left(4 \cdot 9^{k-1}\right)\left(6 \cdot 9^{n-k+1}\right)-\left(12 \cdot 9^{n}+1\right)=12 \cdot 9^{n}-1 \\
t_{2 k} & =\frac{d_{n}-s_{2 k-1}^{2}}{t_{2 k-1}}=\frac{54 \cdot 9^{n}}{6 \cdot 9^{n-k+1}}=9^{k} \\
a_{2 k} & =\left\lfloor\frac{s_{2 k}+a_{0}}{t_{2 k}}\right\rfloor=\frac{24 \cdot 9^{n}}{9^{k}}=24 \cdot 9^{n-k}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{2 k+1} & =\left(24 \cdot 9^{n-k}\right) \cdot 9^{k}-\left(12 \cdot 9^{n}-1\right)=12 \cdot 9^{n}+1 \\
t_{2 k+1} & =\frac{6 \cdot 9^{n}}{9^{k}}=6 \cdot 9^{n-k} \\
a_{2 k+1} & =\left\lfloor\frac{24 \cdot 9^{n}+2}{6 \cdot 9^{n-k}}\right\rfloor=4 \cdot 9^{k}
\end{aligned}
$$

which completes the proof of our claim.
Furthermore, we have

$$
\begin{aligned}
& s_{2 n+2}= 12 \cdot 9^{n}-1, \quad t_{2 n+2}=9^{n+1}, \quad a_{2 n+2}=\left\lfloor\frac{24 \cdot 9^{n}}{9^{n+1}}\right\rfloor=2 \\
& s_{2 n+3}=2 \cdot 9^{n+1}-\left(12 \cdot 9^{n}-1\right)=6 \cdot 9^{n}+1 \\
& t_{2 n+3}=\frac{d_{n}-s_{2 n+3}^{2}}{t_{2 n+2}}=\frac{18 \cdot 9^{n}\left(6 \cdot 9^{n}+1\right)}{9^{n+1}}=2\left(6 \cdot 9^{n}+1\right) \\
& a_{2 n+3}=\left\lfloor\frac{18 \cdot 9^{n}+2}{12 \cdot 9^{n}+2}\right\rfloor=1
\end{aligned}
$$

$$
\begin{aligned}
& s_{2 n+4}=2\left(6 \cdot 9^{n}+1\right)-\left(6 \cdot 9^{n}+1\right)=6 \cdot 9^{n}+1 \\
& t_{2 n+4}=\frac{18 \cdot 9^{n}\left(6 \cdot 9^{n}+1\right)}{2\left(6 \cdot 9^{n}+1\right)}=9^{n+1} \\
& a_{2 n+4}=\left\lfloor\frac{18 \cdot 9^{n}+2}{9^{n+1}}\right\rfloor=2
\end{aligned}
$$

We see that $s_{2 n+3}=s_{2 n+4}$ and, by [13, Chapter 24, Satz 3.10], it holds $s\left(d_{n}\right)=2(2 n+3)=$ $4 n+6$.

Remark 1 Proposition 4 can be considered as a special case of the general result of Williams [17]. In [17], numbers of the form $d=\left(\sigma\left(q r a^{m}+\mu\left(a^{k}+\lambda\right) / q\right) / 2\right)^{2}-\sigma^{2} \mu \lambda a^{m} r$, with $\mu, \lambda=\{-1,1\}, q r \mid a^{k}+l, \operatorname{gcd}(m, k)=1, m>k \geq 1$, and $\sigma=1$ if $2 \mid r q a^{m}+\mu\left(a^{k}+\right.$ $\lambda) / q$, while $\sigma=2$ otherwise, were studied. For $\mu=1, \lambda=-1, r=2, q=4, a=3$, $k=2$ and $\sigma=1$ we get $d=\left(4 \cdot 3^{m}+1\right)^{2}+2 \cdot 3^{m}$ and, since $\operatorname{gcd}(m, k)=1, m$ has to be odd. From the general result on the periods of numbers of such form, it follows that $s(d)=2 m+4$. For $m=2 n+1$, we obtain $s\left(d_{n}\right)=2 n+6$. However, since in the main result of [17] there are many cases to be considered and complete proofs are not given of each of them, we prefer to include the complete proof of Proposition 4 in our paper.

Next we calculate also $b\left(d_{n}\right)$ for the sequence d_{n} defined in the previous proposition, but before we can do so we need another lemma.

Lemma 2 Let $d_{n}=\left(12 \cdot 9^{n}+1\right)^{2}+6 \cdot 9^{n}$ and $g_{k}=\operatorname{gcd}\left(p_{k}^{2}+d_{n} q_{k}^{2}, 2 p_{k} q_{k}\right)$. Then $g_{2 l}=2$ and $g_{2 l+1}=1$ for $l=0,1, \ldots, n$.

Proof. By Lemma 1, we have that $g_{k} \mid \operatorname{gcd}\left(2 d_{n}, t_{k+1}, 2 s_{k+1}, 2 s_{k+2}\right)$. Since d_{n} is odd, g_{k} is not divisible by 4 . Furthermore, $a_{0}=12 \cdot 9^{n}+1, p_{0}=a_{0}$ and $q_{0}=1$ are odd. Since all $a_{i}, i=1, \ldots 2 n+2$ are even, we conclude that all p_{i} are odd, while q_{i} is odd for even i, and q_{i} is even for odd i.

For $k=2 l$ the quantity $p_{k}^{2}+d_{n} q_{k}^{2}$ is even and therefore $2 \mid g_{k}$. Moreover, we have $g_{k} \mid\left(2 s_{k+1}-2 s_{k+2}\right)=4$, which implies that $g_{k}=2$.

For $k=2 l+1, l<n$, we also have $g_{k} \mid 4$, and since in this case g_{k} is odd, we conclude that $g_{k}=1$.

For $k=2 n+1$, we have $g_{k} \mid\left(4 s_{2 n+3}-2 s_{2 n+2}\right)=6$. It is clear that g_{k} is odd and not divisible by 3 . Thus, $g_{k}=1$.

Proposition 5 Let $d_{n}=\left(12 \cdot 9^{n}+1\right)^{2}+6 \cdot 9^{n}$. Then $b\left(d_{n}\right)=2 n+4$.

Proof. By (1.5) and (1.6), we know that $R_{2 n+2}$ and $R_{4 n+5}$ are good approximants. By [3, Lemma 2.4], it suffices to check the approximants $R_{0}, R_{1}, \ldots R_{2 n+1}$. From Propositions

1 and 2, it follows that R_{k} is a good approximant if $a_{k+1} \geq \frac{2 \sqrt{12 \cdot 9^{n}+2}}{g_{k}}$, while R_{k} is not good if $a_{k+1} \leq \frac{\sqrt{24 \cdot 9^{n}}}{g_{k}}-2$.

Consider first the case $k=2 l, l=0,1, \ldots, n$. Then $g_{k}=2$, and R_{k} is a good approximant if

$$
4 \cdot 9^{l} \geq 2 \sqrt{3 \cdot 9^{n}+\frac{1}{2}}
$$

We have $2 \cdot 9^{l}>3^{2 l+0.6}$ and $\sqrt{3 \cdot 9^{n}+\frac{1}{2}}<\sqrt{3^{2 n+1+0.2}}=3^{n+0.6}$. It follows that $R_{2 l}$ is a good approximant if $l \geq \frac{n}{2}$. On the other hand, R_{k} is not a good approximant if

$$
4 \cdot 9^{l} \leq \sqrt{6} \cdot 3^{n}-2
$$

Since $3^{n+\frac{1}{2}} \sqrt{\frac{1}{2}}-1>3^{n-0.3}$, we get the condition $3^{2 l+0.7} \leq 3^{n-0.3}$, which implies that $R_{2 l}$ is not a good approximant if $l \leq \frac{n-1}{2}$. Hence, the number of good approximants in this case is $\left\lfloor\frac{n}{2}\right\rfloor+1$.

Let us consider now the case $k=2 l-1, l=1, \ldots, n$. Now we have $g_{k}=1$ and, accordingly, R_{k} is a good approximant if

$$
24 \cdot 9^{n-l} \geq 4 \sqrt{3 \cdot 9^{n}+\frac{1}{2}}
$$

Since $6 \cdot 9^{n-l}>3^{2 n-2 l+1+0.6}$ and $\sqrt{3 \cdot 9^{n}+\frac{1}{2}}<3^{n+0.6}$ we obtain the condition $3^{2 n-2 l+1.6} \geq$ $3^{n+0.6}$, which implies that $R_{2 l-1}$ is a good approximant if $l \leq \frac{n+1}{2}$. Similarly, we have that R_{k} is not a good approximant if

$$
24 \cdot 9^{n-l} \leq 2 \sqrt{6} \cdot 3^{n}-2
$$

From $24 \cdot 9^{n-l}<4 \cdot 3^{2 n-2 l+1+0.7}$ and $3^{n} \sqrt{\frac{3}{2}}-\frac{1}{2}>3^{n-0.3}$, we conclude that $R_{2 l-1}$ is not a good approximant if $l \geq \frac{n+2}{2}$. Hence, the number of good approximants in this case is $\left\lfloor\frac{n+1}{2}\right\rfloor$.

Finally, from $g_{2 n+1}=1$ and $a_{2 n+2}=2$ we see that $R_{2 n+1}$ is not a good approximant.
Therefore, among the approximants $R_{0}, R_{1}, \ldots, R_{2 n+1}$ there are exactly $\left\lfloor\frac{n}{2}\right\rfloor+1+$ $\left\lfloor\frac{n+1}{2}\right\rfloor=n+1$ good approximants. Then, by [3, Lemma 2.4], we have also $n+1$ good approximants among $R_{2 n+3}, R_{2 n+4}, \ldots, R_{4 n+4}$. Taking into account that $R_{2 n+2}$ and $R_{4 n+5}$ are good approximants, we find that the total number of good approximants is $2 n+4$.

Propositions 4 and 5 together give the following corollary.

Corollary 1 For $d_{n}=\left(12 \cdot 9^{n}+1\right)^{2}+6 \cdot 9^{n}$ it holds $s\left(d_{n}\right)=4 n+6, b\left(d_{n}\right)=2 n+4$. Therefore, for every even positive integer b there exist a non-square positive integer d such that $b(d)=b$ and $b(d)>s(d) / 2$.

Next we study the case for odd b and to this extent we consider the sequence $d_{n}=$ $\left(2 \cdot 9^{n}+1\right)^{2}+9^{n}$.

Lemma 3 Let $d_{n}=\left(2 \cdot 9^{n}+1\right)^{2}+9^{n}$. Then $s\left(d_{n}\right)=2 n+1$. Furthermore, it holds

$$
\begin{aligned}
a_{0} & =2 \cdot 9^{n}+1, \\
s_{2 k} & =2 \cdot 9^{n}-1, \quad t_{2 k}=9^{k}, \quad a_{2 k}=4 \cdot 9^{n-k} \quad \text { for } k=1,2, \ldots, n, \\
s_{2 k+1} & =2 \cdot 9^{n}+1, \quad t_{2 k+1}=9^{n-k}, \quad a_{2 k+1}=4 \cdot 9^{k} \quad \text { for } k=0,1, \ldots, n-1 .
\end{aligned}
$$

Proof. See [7, Section 4].

Lemma 4 Let $d_{n}=\left(2 \cdot 9^{n}+1\right)^{2}+9^{n}$. Then $g_{k}=\operatorname{gcd}\left(p_{k}^{2}+d_{n} q_{k}^{2}, 2 p_{k} q_{k}\right)=1$.

Proof. From $g_{k} \mid 2 s_{k+1}$ and $g_{k} \mid 2 s_{k+2}$ it follows that $g_{k} \mid 4$, while from $g_{k} \mid t_{k+1}$ we have that g_{k} is odd. Hence, $g_{k}=1$.

Proposition 6 Let $d_{n}=\left(2 \cdot 9^{2 n}+1\right)^{2}+9^{2 n}$. Then $b\left(d_{n}\right)=2 n+1$.

Proof. By Proposition 1, R_{k} is a good approximant if $a_{k+1} \geq \frac{2 \sqrt{2 \cdot 9^{2 n}+2}}{g_{k}}$. We have $2 \sqrt{2 \cdot 9^{2 n}+2}<2 \sqrt{2 \cdot 9^{2 n+0.1}}<2 \sqrt{3^{4 n+0.2+0.7}}=2 \cdot 3^{2 n+0.45}$.

By Proposition 2, the approximant R_{k} is not good if $a_{k+1} \leq \frac{\sqrt{2 \cdot 2 \cdot 9^{2 n}}}{g_{k}}-2$. We have $\sqrt{2 \cdot 2 \cdot 9^{2 n}}-2=2 \cdot\left(3^{2 n}-1\right)>2 \cdot 3^{2 n-0.2}$.

Assume now that $k=2 l, l=0,1, \ldots, 2 n-1$. Then $a_{2 l+1} / 2=2 \cdot 9^{l} \geq 3^{2 n+0.45}$ and we obtain the following condition for good approximants: $3^{2 l+0.6} \geq 3^{2 n+0.45}$. Therefore, $R_{2 l}$ is a good approximant if $l \geq n$.

Since $a_{2 l+1}=4 \cdot 9^{l} \leq 2 \cdot 3^{2 n-0.2}$, it follows that if $3^{2 l+0.7} \leq 3^{2 n-0.2}$, i.e. if $l \leq n-1$, then $R_{2 l}$ is not a good approximant. Hence, the number of good approximants in this case is n.

By [3, Lemma 2.4], the approximant R_{k} is good if and only if the approximant R_{s-k-2} is good. Since the period $s\left(d_{n}\right)$ is odd, this fact implies that the number of good approximants among the numbers $R_{2 l+1}, l=0,1, \ldots, 2 n-1$ is also equal to n. Finally, by (1.5), we know that $R_{s-1}=R_{4 n}$ is a good approximant.

Thus, we proved that among the numbers $R_{0}, R_{1}, \ldots, R_{4 n}$ there are exactly $2 n+1$ good approximants.

By Lemma 4 and Proposition 6 we get the following:

Corollary 2 For $d_{n}=\left(2 \cdot 9^{2 n}+1\right)^{2}+9^{2 n}$ it holds $s\left(d_{n}\right)=4 n+1$ and $b\left(d_{n}\right)=2 n+1$. Therefore, for every odd positive integer b there exist a non-square positive integer d such that $b(d)=b$ and $b(d)>s(d) / 2$.

From Corollaries 1 and 2, we immediately obtain the following result.

Corollary 3

$$
\sup \left\{\frac{s_{b}}{b}: b \geq 1\right\} \leq 2
$$

Acknowledgments. The authors would like to thank the referee for valuable comments on the first version of the manuscript.

References

[1] L. Bernstein, Fundamental units and cycles, J. Number Theory 8 (1976), 446-491.
[2] G. Chrystal, Algebra, Part II, Chelsea, New York, 1964.
[3] A. Dujella, Newton's formula and continued fraction expansion of \sqrt{d}, Experiment. Math. 10 (2001), 125-131.
[4] A. Dujella and B. Jadrijević, A family of quartic Thue inequalities, Acta Arith. 111 (2004), 61-76.
[5] N. Elezović, A note on continued fractions of quadratic irrationals, Math. Commun. 2 (1997), 27-33.
[6] F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnung, Abh. Math. Sem. Univ. Hamburg 59 (1989), 157-169.
[7] M. D. Hendy, Applications of a continued fraction algorithm to some class number problems, Math. Comp. 28 (1974), 267-277.
[8] J. F. Koksma, On continued fraction, Simon Stevin 29 (1951/52), 96-102.
[9] T. Komatsu, Continued fractions and Newton's approximants, Math. Commun. 4 (1999), 167-176.
[10] C. Levesque, Continued fraction expansions and fundamental units, J. Math. Phys. Sci. 22 (1988), 11-44.
[11] J. Mikusiński, Sur la méthode d'approximation de Newton, Ann. Polon. Math. 1 (1954), 184-194.
[12] R. A. Mollin, Construction of families of long continued fractions revisited, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 19 (2003), 175-181.
[13] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Stuttgart, 1954.
[14] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, SpringerVerlag, Berlin, 1980.
[15] W. Sierpiński, Elementary Theory of Numbers, PWN, Warszawa; North-Holland, Amsterdam, 1987.
[16] H. C. Williams, A note on the period length of the continued fraction expansion of certain \sqrt{D}, Utilitas Math. 28 (1985), 201-209.
[17] H. C. Williams, Some generalizations of the S_{n} sequence of Shanks, Acta Arith. 69 (1995), 199-215.

[^0]: ${ }^{1}$ The first author was supported by the Ministry of Science, Education and Sports, Republic of Croatia, grant 0037110.

