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Newton's method and continued fractions
Householder's iterative methods

p
d , d 2 N, d 6= �p
d , d 2 N, d 6= �, and 1+

p
d

2 , d � 1 (mod 4)
c +

p
d , c; d 2 Q, d > 0, d 6= �

Let � be arbitrary quadratic irrationality (� = c +
p
d , c; d 2 Q, d > 0 and d is

not a square of a rational number). It is well known that regular continued
fraction expansion of � is periodic, i.e. has the form
� = [ a0; a1; : : : ; ak ; ak+1; ak+2; : : : ; ak+` ]: Here ` = `(�) denotes the length of
the shortest period in the expansion of �.

Continued fractions give good rational approximations of arbitrary � 2 R.
Newton's iterative method

xk+1 = xk � f (xk)

f 0(xk)

for solving nonlinear equations f (x) = 0 is another approximation method.
Connections between these two approximation methods were discussed by
several authors. Let pn

qn
be the nth convergent of �. The principal question is:

Let f (x) = (x � �)(x � �0), where �0 = c �
p
d and x0 = pn

qn
, is x1 also a

convergent of �?
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p
d , d 2 N, d 6= �p
d , d 2 N, d 6= �, and 1+

p
d

2 , d � 1 (mod 4)
c +

p
d , c; d 2 Q, d > 0, d 6= �

It is well known that for � =
p
d , d 2 N, d 6= �, and the corresponding

Newton's approximant Rn = 1
2

�
pn
qn

+ dqn
pn

�
it follows that

Rk`�1 =
p2k`�1

q2k`�1
; for k � 1. (1.1)

It was proved by Mikusi«ski [Mik1954] that if ` = 2t, then

Rkt�1 =
p2kt�1

q2kt�1
; for k � 1. (1.2)

These results imply that if `(
p
d) � 2, then all approximants Rn are convergents

of
p
d . Dujella [Duje2001] proved the converse of this result. Namely, if

`(
p
d) > 2, we know that some of approximants Rn are not convergents.

Example 1.1

If d = 16x4 � 16x3 � 12x2 + 16x � 4, where x � 2, then `(
p
d) = 8 andp

d = [ (2x + 1)(2x � 2); x ; 1; 1; 2x2� x � 2; 1; 1; x ; 2(2x + 1)(2x � 2) ].

R0 = p3
q3
; R1 = p5

q5
; R3 = p7

q7
;

R5 = p9
q9
; R6 = p11

q11
; R7 = p15

q15
:
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p
d , d 2 N, d 6= �p
d , d 2 N, d 6= �, and 1+

p
d

2 , d � 1 (mod 4)
c +

p
d , c; d 2 Q, d > 0, d 6= �

Dujella showed that being again a convergent is a periodic and a palindromic
property.

Formulas (1.1) and (1.2) suggest that Rn should be convergent whose
index is twice as large when it is a good approximant. However, this is not
always true. Dujella de�ned the number j(

p
d) as a distance from two times

larger index Rn =
p2n+1+2j
q2n+1+2j

.

Theorem 1.2

If d is a square-free positive integer such that `(
p
d) > 2, then jj(d ; n)j � `�3

2
for all n � 0.

He also and pointed out that j(
p
d) is unbounded.

Theorem 1.3

Let t � 1 and m � 5 be integers such that m � �1 (mod 6) and let

d = F 2
m�2[(2Fm�2t � Fm�4)

2 + 4]=4. Then
p
d =h

1
2Fm�2(2Fm�2t�Fm�4); 2t � 1; 1; 1; : : : ; 1; 1| {z }

m�3 times

; 2t � 1;Fm�2(2Fm�2t � Fm�4)
i
:

Therefore, `(
p
d) = m. Furthermore, R0 = pm�2

qm�2
and hence j(d ; 0) = m�3

2 ,

j(d ; km) = m�3
2 and j(d ; km � 2) = �m�3

2 for k � 1.
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p
d , d 2 N, d 6= �p
d , d 2 N, d 6= �, and 1+

p
d

2 , d � 1 (mod 4)
c +

p
d , c; d 2 Q, d > 0, d 6= �

Let b(d) denote the number of good approximants among the numbers
Rn; n = 0; 1; : : : ; `� 1. In [DujPet2005], Dujella and P. showed that the
quantity b(d) can be arbitrary large. Moreover, we construct families of
examples which show that for every positive integer b there exist a positive
integer d such that b(d) = b and b(d) > `(

p
d)=2.

Proposition 1.4

Let g := gcd(p2n + dq2n; 2pnqn. If an+1 >
2
g

pp
d + 1 , then Rn is a convergent

of
p
d . If an+1 <

1
g

q
2(
p
d � 1)� 2, then Rn is not a convergent of

p
d .

Theorem 1.5

For n � 1:
If dn = (12 � 9n + 1)2 + 6 � 9n, then `(

p
dn) = 4n + 6 and b(dn) = 2n + 4.

If dn = (2 � 9n + 1)2 + 9n, then `(
p
dn) = 2n + 1 and b(dn) = 2n + 1.
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In 2012, P. [Pet1.2012] proved the analogous results for � = 1+
p
d

2 , d 2 N,
d 6= � and d � 1 (mod 4).
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p
d , d 2 N, d 6= �p
d , d 2 N, d 6= �, and 1+

p
d

2 , d � 1 (mod 4)
c +

p
d , c; d 2 Q, d > 0, d 6= �

Sharma [Sha1959] observed arbitrary quadratic surd � = c +
p
d , c; d 2 Q,

d > 0, d is not a square of a rational number, whose period begins with a1. He
showed that for every such � and the corresponding Newton's approximant

Nn =
p2n���0q2n

2qn(pn�cqn)
it holds Nk`�1 =

p2k`�1

q2k`�1
; for k � 1, and when ` = 2t and the

period is palindromic then it holds Nkt�1 =
p2kt�1

q2kt�1
; for k � 1.
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Newton's method and continued fractions
Householder's iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?
Number of good approximants

Iterative methods obtained by Taylor expansion of higher order does not give
good approximations.

Frank and Sharma [F-S1965] discussed generalization of Newton's formula.
They showed that for every �, whose period begins with a1, for k; n 2 N it holds

pnk`�1

qnk`�1
=

�(pk`�1 � �0qk`�1)
n � �0(pk`�1 � �qk`�1)

n

(pk`�1 � �0qk`�1)n � (pk`�1 � �qk`�1)n
; (2.1)

and when ` = 2t and the period is palindromic then for k; n 2 N it holds

pnkt�1

qnkt�1
=

�(pkt�1 � �0qkt�1)
n � �0(pkt�1 � �qkt�1)

n

(pkt�1 � �0qkt�1)n � (pkt�1 � �qkt�1)n
: (2.2)
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Frank and Sharma [F-S1965] discussed generalization of Newton's formula.
They showed that for every �, whose period begins with a1, for k; n 2 N it holds

pnk`�1

qnk`�1
=

�(pk`�1 � �0qk`�1)
n � �0(pk`�1 � �qk`�1)

n

(pk`�1 � �0qk`�1)n � (pk`�1 � �qk`�1)n
; (2.1)

and when ` = 2t and the period is palindromic then for k; n 2 N it holds

pnkt�1

qnkt�1
=

�(pkt�1 � �0qkt�1)
n � �0(pkt�1 � �qkt�1)

n

(pkt�1 � �0qkt�1)n � (pkt�1 � �qkt�1)n
: (2.2)
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Householder's iterative method (see e.g. [Hous1970, �4.4]) of order p for

rootsolving: xn+1 = H(p)(xn) = xn + p � (1=f )(p�1)(xn)
(1=f )(p)(xn)

; where (1=f )(p) denotes

p-th derivation of 1=f . Householder's method of order 1 is just Newton's
method. For Householder's method of order 2 one gets Halley's method, and
Householder's method of order p has rate of convergence p + 1.

It is not hard to show that for f (x) = (x � �)(x � �0) it holds:

H(m+1)(x) =
xH(m)(x)� ��0

H(m)(x) + x � �� �0
; for m 2 N. (2.3)

Let us de�ne R
(1)
n

def
= pn

qn
and for m > 1 R

(m)
n

def
= H(m�1)

�
pn
qn

�
: We will say that

R
(m)
n is good approximation, if it is a convergent of �.

Formula (2.1) shows that for arbitrary quadratic surd, whose period begins with
a1 and k;m 2 N, it holds

R
(m)
k`�1 =

pmk`�1

qmk`�1
; (2.4)

and when ` = 2t and period is periodic, from (2.2) it follows

R
(m)
kt�1 =

pmkt�1

qmkt�1
: (2.5)
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Formula [Sha1959, (8)] says: For k 2 N it holds

(a` � a0)pk`�1 + pk`�2 = qk`�1(d � c2); (2.6)

(a` � a0)qk`�1 + qk`�2 = pk`�1 � 2cqk`�1; (2.7)

and formula (2.3) says

R(m+1)
n =

R
(1)
n R

(m)
n � ��0

R
(1)
n + R

(m)
n � 2c

; for m 2 N, n = 0; 1; : : : . (2.8)

Lemma 2.1

For m; k 2 N and i = 1; 2; : : : ; `, when the period begins with a1, it holds

R
(m)
k`+i�1 =

R
(m)

k`�1
R
(m)
i�1���0

R
(m)

k`�1
+R

(m)
i�1�2c

:

Proof.

For m = 1, statement of the lemma is proven in [Frank1962, Thm. 2.1]. Using
mathematical induction and (2.8) it is not hard to show that the statement of
the lemma holds too.
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When period is palindromic and begins with a1, formulas (2.6) and (2.7) become

a0pk`�1 + pk`�2 = 2cpk`�1 + qk`�1(d � c2); (2.9)

a0qk`�1 + qk`�2 = pk`�1: (2.10)

Lemma 2.2

For m; k 2 N and i = 1; 2; : : : ; `� 1, when period is palindromic and begins

with a1, it holds R
(m)
k`�i�1 =

R
(m)

k`�1
(R

(m)
i�1�2c)+��0

R
(m)
i�1�R

(m)

k`�1

:
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Proof.

For m = 1 we have:

R
(1)
k`�i�1 =

pk`�i�1

qk`�i�1
=

0 � pk`�i + pk`�i�1

0 � qk`�i + qk`�i�1
= [ a0; : : : ; ak`�i ; 0 ]

= [ a0; : : : ; ak`�i ; ak`�i�1; : : : ; ak`�1; a0; 0;�a0;�a1; : : : ;�ai�1 ]

=
h
a0; : : : ; ak`�i ; ak`�i�1; : : : ; ak`�1; a0 � pi�1

qi�1

i

=
pk`�1

�
a0 � R

(1)
i�1

�
+ pk`�2

qk`�1

�
a0 � R

(1)
i�1

�
+ qk`�2

(2.9)
=

(2.10)

R
(1)
k`�1

�
R
(1)
i�1 � 2c

�
+ ��0

R
(1)
i�1 � R

(1)
k`�1

:

Using mathematical induction and (2.8) it is not hard to show that the
statement of the lemma holds too.
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�
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�
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�
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R
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�
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+ ��0

R
(1)
i�1 � R

(1)
k`�1

:

Using mathematical induction and (2.8) it is not hard to show that the
statement of the lemma holds too.

Vinko Petri£evi¢ vpetrice@math.hr Householder's approximants & CF of quadratic irrationals

vpetrice@math.hr


Newton's method and continued fractions
Householder's iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?
Number of good approximants

Proposition 2.3

Let m 2 N. When period begins with a1, for i = 1; 2; : : : ; `� 1 and

�
(m)
i = �pmi�1�R

(m)
i�1qmi�1

pmi�R
(m)
i�1qmi

, it holds

R
(m)
k`+i�1 =

�
(m)
i pm(k`+i) + pm(k`+i)�1

�
(m)
i qm(k`+i) + qm(k`+i)�1

; for all k � 0,

and when period is palindromic, then

R
(m)
k`�i�1 =

pm(k`�i)�1 � �
(m)
i pm(k`�i)�2

qm(k`�i)�1 � �
(m)
i qm(k`�i)�2

; for all k � 1.
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Proof.

We have �
(m)
i =

�
0;�ami ;�ami�1; : : : ;�a1;�a0 + R

(m)
i�1

�
:

If k = 0 we have

�
(m)
i pmi + pmi�1

�
(m)
i qmi + qmi�1

=
�
a0; : : : ; ami ; �

(m)
i

�
=
�
a0; : : : ; ami ; 0;�ami ;�ami�1; : : : ;�a1;�a0 + R

(m)
i�1

�
= R

(m)
i�1;

and similarly if k > 0 we have

�
(m)
i pm(k`+i) + pm(k`+i)�1

�
(m)
i qm(k`+i) + qm(k`+i)�1

=
�
a0; : : : ; amk`�1; amk` � a0 + R

(m)
i�1

�

=
pmk`�1

�
amk` � a0 + R

(m)
i�1

�
+ pmk`�2

qmk`�1

�
amk` � a0 + R

(m)
i�1

�
+ qmk`�2

(2.6);(2.4)
=

(2.7)

R
(m)
k`�1R

(m)
i�1 + d � c2

R
(m)
k`�1 + R

(m)
i�1 � 2c

Lm: 2:1
= R

(m)
k`+i�1:
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Proof.

When period is palindromic we have:

pm(k`�i)�1 � �
(m)
i pm(k`�i)�2

qm(k`�i)�1 � �
(m)
i qm(k`�i)�2

=

�
a0; : : : ; am(k`�i)�1;�

1

�
(m)
i

�

=
�
a0; : : : ; am(k`�i)�1; am(k`�i); am(k`�i)+1; : : : ; amk`�1; a0 � R

(m)
i�1

�
=

pmk`�1

�
a0 � R

(m)
i�1

�
+ pmk`�2

qmk`�1

�
a0 � R

(m)
i�1

�
+ qmk`�2

(2.9);(2.4)
=

(2.10)

R
(m)
k`�1(R

(m)
i�1 � 2c) + c2 � d

R
(m)
i�1 � R

(m)
k`�1

;

which is using Lemma 2.2 equal to the R
(m)
k`�i�1:
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Analogously as in [Duje2001, Lm. 3], from Proposition 2.3 it follows:

Theorem 2.4

To be a good approximant is a periodic property, i.e. for all r 2 N it holds

R(m)
n =

pk

qk
() R

(m)
r`+n =

prm`+k

qrm`+k

;

and when period is palindromic, it is also a palindromic property, i.e. it holds:

R(m)
n =

pk

qk
() R

(m)
`�n�2 =

pm`�k�2

qm`�k�2
:
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Let us show how Theorem 2.4 can be applied. The �rst example shows
palindromic situation, the second is not palindromic (but we accidentally get
good approximation in the half of the period), and the third shows that good
approximants do depend on m.

Example 2.5

Let us observe
p
44 = [ 6; 1; 1; 1; 2; 1; 1; 1; 12 ]. The period is palindromic and we

have ` = 8. Let us consider e.g. the case m = 5. We have:

R
(5)
n =

p5n+440p3nq
2
n+9680pnq

4
n

5p4nqn+440p2nq
3
n+1936q5n

:

From (2.4) and (2.5) we have R
(5)
3 = p19

q19
= 3 160 100

476 403 ,

R
(5)
7 = p39

q39
= 4 993 116 004 999

752 740 560 150 , R
(5)
11 = p59

q59
, R

(5)
15 = p79

q79
, . . . , R

(5)
4k�1 =

p20k�1

q20k�1
.

R
(5)
0 = p8

q8
= 2514

379 . From Theorem 2.4 we have R
(5)
6 = p30

q30
= 7944493914

1197677521 , and also

R
(5)
8k =

p40k+8
q40k+8

and R
(5)
8k�2 =

p40k�10

q40k�10
.

R
(5)
1 = 235 487

35 501 is not a convergent of
p
44, so neither R

(5)
8k+1 nor R

(5)
8k�3 will be.

R
(5)
2 = 6 251 453

942 442 is not a convergent of
p
44, so neither R

(5)
8k+2 nor R

(5)
8k�4 will be.

Vinko Petri£evi¢ vpetrice@math.hr Householder's approximants & CF of quadratic irrationals

vpetrice@math.hr


Newton's method and continued fractions
Householder's iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?
Number of good approximants

Let us show how Theorem 2.4 can be applied. The �rst example shows
palindromic situation, the second is not palindromic (but we accidentally get
good approximation in the half of the period), and the third shows that good
approximants do depend on m.

Example 2.5

Let us observe
p
44 = [ 6; 1; 1; 1; 2; 1; 1; 1; 12 ]. The period is palindromic and we

have ` = 8. Let us consider e.g. the case m = 5. We have:

R
(5)
n =

p5n+440p3nq
2
n+9680pnq

4
n

5p4nqn+440p2nq
3
n+1936q5n

:

From (2.4) and (2.5) we have R
(5)
3 = p19

q19
= 3 160 100

476 403 ,

R
(5)
7 = p39

q39
= 4 993 116 004 999

752 740 560 150 , R
(5)
11 = p59

q59
, R

(5)
15 = p79

q79
, . . . , R

(5)
4k�1 =

p20k�1

q20k�1
.

R
(5)
0 = p8

q8
= 2514

379 . From Theorem 2.4 we have R
(5)
6 = p30

q30
= 7944493914

1197677521 , and also

R
(5)
8k =

p40k+8
q40k+8

and R
(5)
8k�2 =

p40k�10

q40k�10
.

R
(5)
1 = 235 487

35 501 is not a convergent of
p
44, so neither R

(5)
8k+1 nor R

(5)
8k�3 will be.

R
(5)
2 = 6 251 453

942 442 is not a convergent of
p
44, so neither R

(5)
8k+2 nor R

(5)
8k�4 will be.

Vinko Petri£evi¢ vpetrice@math.hr Householder's approximants & CF of quadratic irrationals

vpetrice@math.hr


Newton's method and continued fractions
Householder's iterative methods

Good approximants are periodic and palindromic
Which convergents may appear?
Number of good approximants

Example 2.6

Let us observe � = 5+
p
21

3 = [ 9; 5; 6; 1; 2 ] and m = 3, we have:

R
(3)
m =

37p3n�4572pnq
2
n+23368q3n

81p2nqn�1242pnq2n+4824q3n
:

We have R
(3)
3 = p11

q11
= 4 4004 659

435 564 , and so on R
(3)
4k�1 =

p12k�1

q12k�1
. The period is not

palindromic, and accidentally we have R
(3)
1 = p7

q7
= 36 409

3960 (in palindromic case

would be p5
q5
), and so on R

(3)
4k+1 =

p12k+7
q12k+7

.

Example 2.7

Let us observe � = 7+
p
11

5 = [ 2; 15; 1; 3; 1; 3; 1 ]. For m = 3 we have:

R
(3)
6k�1 =

p18k�1

q18k�1
; R

(3)
1 = p7

q7
and R

(3)
6k+1 =

p18k+7
q18k+7

:

For m = 4 we have: R
(4)
6k�1 =

p24k�1

q24k�1
; R

(4)
0 = p5

q5
and R

(4)
6k =

p24k+5
q24k+5

; R
(4)
1 = p11

q11

and R
(4)
6k+1 =

p24k+11
q24k+11

; R
(4)
3 = p17

q17
and R

(4)
6k+3 =

p24k+17
q24k+17

.
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Let us de�ne coprime positive numbers P
(m)
n , Q

(m)
n by

P
(m)
n

Q
(m)
n

def
= R(m)

n :

From (2.8) it is not hard to show that it holds

P(m)
n � �Q(m)

n =
�
P(1)
n � �Q(1)

n

�m
= (pn � �qn)

m:

Lemma 2.8

R
(m)
n < � if and only if n is even and m is odd. Therefore, R

(m)
n can be an even

convergent only if n is even and m is odd.

Similarly as in [Duje2001], if R
(m)
n = pk

qk
; we can de�ne j (m) = j (m)(�; n) as the

distance from convergent with m times larger index:

j (m) =
k + 1�m(n + 1)

2
: (2.11)

This is an integer, by Lemma 2.8. Using Theorem 2.4 we have
j (m)(�; n) = j (m)(�; k`+ n); and in palindromic case:
j (m)(�; n) = �j (m)(�; `� n � 2):
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From now on, let us observe only quadratic irrationals of the form � =
p
d ,

d 2 N, d 6= �. It is well known that period of such � is palindromic and begins
with a1.

Theorem 2.9 (for proof see [Pet2.2013])��R(m)
n+1 �

p
d
�� < ��R(m)

n �
p
d
��:

Proposition 2.10 (for proof see [Pet2.2013])

When d 6= �, for n � 0 we have
��j (m)(

p
d ; n)

�� < m(`=2�1)
2 :
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Theorem 2.11 (Euler, see �26 in [Perron1954])

Let ` 2 N and a1; : : : ; a`�1 2 N such that a1 = a`�1, a2 = a`�2, . . . . The

number [ a0; a1; a2; : : : ; a`�1; 2a0 ] is of the form
p
d, d 2 N if and only if

2a0 � (�1)`�1p0`�2q
0
`�2 (mod p0`�1); (2.12)

where
p0n
q0n

are convergents of the number [ a1; a2; : : : ; an�1; an ]. Then it holds:

d = a20 +
2a0p

0
`�2 + q0`�2

p0`�1

: (2.13)

Lemma 2.12

Let Fk denote the k-th Fibonacci number. Let n 2 N and k > 1; k � 1; 2

(mod 3). For dk(n) =
�
(2n�1)Fk+1

2

�2
+ (2n � 1)Fk�1 + 1 it holdsp

dk(n) =
h
(2n�1)Fk+1

2 ; 1; 1; : : : ; 1; 1| {z }
k�1 times

; (2n � 1)Fk + 1
i
; and `

�p
dk(n)

�
= k.
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Proof.

From (2.12), it follows:

2a0 � (�1)k�1Fk�1Fk�2 � (�1)k�1Fk�1(Fk � Fk�1)

� (�1)k�1(�F 2
k�1) (mod Fk):

Now from Cassini's identity FkFk�2 � F 2
k�1 = (�1)k�1 we have 2a0 � 1

(mod Fk). When 3 j k, this congruence is not solvable, and if 3 - k, the solution

is a0 � Fk+1
2 (mod Fk), i.e.

a0 =
Fk + 1

2
+ (n � 1)Fk =

(2n � 1)Fk + 1

2
; n 2 N:

From (2.13) it follows:

d =
� (2n � 1)Fk + 1

2

�2
+

�
(2n � 1)Fk + 1

�
Fk�1 + Fk�2

Fk

=
� (2n � 1)Fk + 1

2

�2
+ (2n � 1)Fk�1 + 1:
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Theorem 2.13

Let F` denote the `-th Fibonacci number. Let ` > 3; ` � �1 (mod 6). Then for

d` =
�
F`�3F`+1

2

�2
+ F`�3F`�1 + 1 and M 2 N it holds `

�p
d`
�
= ` and

j (3M�1)(
p
d`; 0) = j (3M)(

p
d`; 0) = j (3M+1)(

p
d`; 0) =

`�3
2 �M:

Proof.

By (2.11), we have to prove

R
(3M�1)
0 =

pM`�2

qM`�2
; R

(3M)
0 =

pM`�1

qM`�1
; R

(3M+1)
0 =

pM`

qM`
:

We have a0 = F`�3F`+1
2 , and by Lemma 2.12 it holdsp

d` =
�
a0; 1; 1; : : : ; 1; 1| {z }

`�1 times

; 2a0
�
: From Cassini's identity, it follows

R
(1)
0 =

p0

q0
= a0; R

(2)
0 = a0 +

F`�2

F`�1
=

p`�2

q`�2
;
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d`
�
= ` and

j (3M�1)(
p
d`; 0) = j (3M)(

p
d`; 0) = j (3M+1)(

p
d`; 0) =

`�3
2 �M:

Proof.

By (2.11), we have to prove

R
(3M�1)
0 =

pM`�2

qM`�2
; R

(3M)
0 =

pM`�1

qM`�1
; R

(3M+1)
0 =

pM`

qM`
:

We have a0 = F`�3F`+1
2 , and by Lemma 2.12 it holdsp

d` =
�
a0; 1; 1; : : : ; 1; 1| {z }

`�1 times

; 2a0
�
: From Cassini's identity, it follows

R
(1)
0 =

p0

q0
= a0; R

(2)
0 = a0 +

F`�2

F`�1
=

p`�2

q`�2
;
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Proof.

R
(3)
0 = a0 +

F`�1F
3
`�2

F 2
`�1F

2
`�2 + F 2

`�2

= a0 +
F`�1

F`
=

p`�1

q`�1
: (2.14)

Let us prove the theorem using induction on M. For proving the inductive step,
�rst observe that from (2.8) for m � 3 we have:

R
(m)
k =

R
(2)
k R

(m�2)
k + d

R
(2)
k + R

(m�2)
k

; R
(m)
k =

R
(3)
k R

(m�3)
k + d

R
(3)
k + R

(m�3)
k

: (2.15)

Suppose that for some i 2 f0; `� 2; `� 1g it holds p(M�1)`+i

q(M�1)`+i
= R

(m�3)
0 . We have:

pM`+i

qM`+i

=
h
a0; 1; 1; : : : ; 1; 1| {z }

`�1 times

; a0 + R
(m�3)
0

i
=

(2.9)
=

(2.10)

p`�1R
(m�3)
0 + dq`�1

q`�1R
(m�3)
0 + p`�1

(2.14)
=

R
(3)
0 R

(m�3)
0 + d

R
(3)
0 + R

(m�3)
0

(2.15)
= R

(m)
0 :
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Corollary 2.14

For each m � 2 it holds

sup
�jj (m)(

p
d ; n)j	 = +1;

lim sup

� jj (m)(
p
d ; n)j

`
�p

d
� �

� m

6
:
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Analogously as before, let us de�ne

b(m)(�) =
��fn : 0 � n � `� 1;R(m)

n is a convergent of �g��:
For arbitrary m experimental results suggest that similar properties could hold as
for m = 2. But b(m)(�) is not a monotonic function in m. And there are some
di�erences, as the following example shows.

Example 2.15

We have `
�p

45
�
= 6 and

b(m)(
p
45) =

(
4; if m � 2 (mod 4);

6; if m 6� 2 (mod 4):
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