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Abstract

We describe fusion rules 1n the category of weight modules for the Weyl vertex algebra and explicitly
construct their intertwining operators. This way, we confirm a Verlinde type conjecture. We present
a connection between irreducible weight modules for the Weyl vertex algebra and for the affine Lie
superalgebra gl(1|1).

Introduction

In the theory of vertex algebras and conformal field theory, determination of fusion rules i1s one of
the most important problems. By a result of Y. Z. Huang [7] for a rational vertex algebra, fusion
rules can be determined by using the Verlinde formula. However, although there are certain versions
of Verlinde formula for a broad class of non-rational vertex algebras, so far there 1s no proof that it
holds.

In this paper, we study the case of the Weyl vertex algebra (mathematical literature), or 5 — 7y sys-
tem (physical literature). Its Verlinde type conjecture for fusion rules was given by S. Wood and D.
Ridout in [2]. We explicitly construct the associated intertwining operators and therefore confirm this
conjecture.

Let M be the Weyl vertex algebra, p the so called spectral flow automorphism and let K be the
category of weight M —modules such that the operators 3(n), n > 1, act locally nilpotent on each
module N in /C. Our main result is the following theorem:

Theorem. Assume that \, 1, A + € C\ Z. Then we have:
(l) pgl(M) X ng(M) — /O€1—|—€2(M>7
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(ii) po, (M) X pg,(U(N)) = pp,+0,(U(N)),

(iii) pg, (U(N) % poy (U (1)) = pe,e, U+ 1))+ ppr vty 1 (U ).

Here we will prove the statement (i:z) of our theorem and for this purpose it is sufficient and neces-
sary to prove the following:

(i)dim]( /@EO/DN> <1
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(ii)dim]( /\pjﬁU(A) N>1 < A=A+ X, s =51+ S9,
Ps1(U(A1)) psy(U(A2))

Or A=A+ Aoy, s =851+ s9 — 1.

Therefore, we will have to construct the intertwining operators arising from our fusion rule, and
then also prove that these are the only ones possible.

Construction of intertwining operators

Using a proposal of Verlinde formula for non-rational VOAs, these fusion rules were also obtained
by S. Wood and D. Ridout [2], so we proved the Verlinde type of conjecture for fusion rules.
We construct the intertwining operators using the lattice VOA. Let L be the lattice

L=%a+1B, {a,a)=—{(B,8) =1, (a,p)=0,

and Vi, = M, 3(1) ® C[L] the associated lattice vertex superalgebra, where M, (1) is the Heisen-
berg vertex algebra generated by fields a(z) and 3(z) and C|L] is the group algebra of L. We have its
vertex subalgebra

[1(0) = M, 5(1) ® C[Z(a + B)] C VL.

Then M is embedded in I1(0) via the injective vertex algebra homomorphism f : M — II(0) such
that
fa) = e, fla*) = —a(-1)e™* "

Let us consider irreducible I1(0)-modules
[1,(\) = I1(0).e"BHAats)

Using lattice VOA results [1], we have an intertwining operator of type

()

for the vertex algebra I1(0), and we consider its restriction to M.
We have proved that:

Wity + 10\ o 7 [ P —1(U@)
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so we have constructed an intertwining operator in the category of weight M —modules. By using the
Weyl vertex algebra automorphism ¢ which maps a — —a™, a® + a, on this intertwining operator
we get the second intertwining operator
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Vertex algebra Vi (gl(1]1))
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For the calculation of our fusion rules we will use the affine Lie superalgebra g = gl(1]|1) =
g ® Clt, t_l] ¢ CK with the commutation relations

z(n), y(m)] = [z, yl(n +m) +nopmolzly) K,

and its associated simple affine vertex algebra V7(gl(1|1)), because the fusion rules are known for
the latter [4].
Let V) s be the Verma module for the Lie superalgebra g generated by the vector v, s such that

Nuvp s = rvps, Bvp s = svrs. Let lA/T, s denote the Verma module of level 1 induced from the irre-
ducible gi(1|1)-module V; .
Proposition. Let 71,79, 51,50 € C, 51, 59,81 + s9 & Z. Then
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Y
dim](/\ 197 )gl.
V"“1781 VT2,52

Assume that there is a non-trivial intertwining operator (A 5 in the category of Vi(g)-

Y

1,51
modules. Then s5 = s1+ soandrq =11+ 19, or 3 =11 +1r9 — 1.
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Let F' be the Clifford vertex algebra. We define the following vertex superalgebra:
ST1(0) =11(0) ® F C V7,
and 1ts 1rreducible modules
STL(\) = II,(\) @ F = STI(0).e"PTAle+A),
Letd = M ® F. Then U is a g—-module of level 1 and we have the following gradation:
U=@Pu', E0); ="1d

Proposition. [6] We have:
Vi(g) = U" = Kery o pE(0).

Calculation of fusion rules

Theorem. Assume that v € 7, A € C\ Z. Then we have:
(i) SI1,(A) is an irreducible M ® F—-module,

A

(ii) SI1,(\) is a completely reducible gl(1|1)-module:

ST, = QUi P 2 DY
=/ SEe/ 2 |

By using the following natural isomorphism of the spaces of intertwining operators:
IM®F< STlry(A3) > ~ IM< [Ty (A3) > |
SH?‘lO\l) SHTQ()‘Q) Hﬁ()‘l) HT2(>‘2)

and the previous theorem, we obtain the fusion rules result in the category of modules for the Weyl
vertex algebra M.
Corrolary. Assume that \{, Ao, \{ + Ay € C\ Z, 11, 19,13 € Z. There exists a non-trivial intertwining
operator of type (Hrl(ir)go\ﬂil(&)) in the category of M—modules if and only if A3 = A\ + Ay and
rao=171+1r90rry=r7r1+19 — L

The fusion rules in the category of weight M—modules are given by

Hp (A1) X IIpy(A2) = Tlppy (A1 + A2) @ 1y ) -1 (A1 4 A2).

Forthcoming and Related Research

In our future work we would like to consider generalized weight modules such that their weight
spaces are all co—dimensional and extend our work to gl(n|m). We will also try to include Whittaker
modules into the fusion category.

Some related research includes [3] and [5].
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