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Abstract. The goal of this work is to develop a general theory for non-local singular operators
of the type

LB
αf(x) = lim

ϵ→0

∫
D, |y−x|>ϵ

(
f(y)− f(x)

)
B(x, y)|x− y|−d−α dy,

and
Lf(x) = LB

αf(x)− κ(x)f(x),

in case D is a C1,1 open set in Rd, d ≥ 2. The function B(x, y) above may vanish at the
boundary of D, and the killing potential κ may be subcritical or critical.

From a probabilistic point of view we study the reflected process on the closure D with
infinitesimal generator LB

α, and its part process on D obtained by either killing at the boundary
∂D, or by killing via the killing potential κ(x). The general theory developed in this work
(i) contains subordinate killed stable processes in C1,1 open sets as a special case, (ii) covers
the case when B(x, y) is bounded between two positive constants and is well approximated by
certain Hölder continuous functions, and (iii) extends the main results known for the half-space
in Rd. The main results of the work are the boundary Harnack principle and its possible failure,
and sharp two-sided Green function estimates. Our results on the boundary Harnack principle
completely cover the corresponding earlier results in the case of half-space. Our Green function
estimates extend the corresponding earlier estimates in the case of half-space to bounded C1,1

open sets.
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1. Introduction

The fractional Laplacian ∆α/2 := −(−∆)α/2, α ∈ (0, 2), is one of the most important and
most studied non-local operators. It appears in various branches of mathematics – partial
differential equations (see [13, 61] for extensive surveys), probability theory ([7, 65]), potential
theory ([10, 57]), harmonic analysis ([70]), semigroup theory ([71]), numerical analysis ([58]), as
well as in applications involving long range dependence. One of its several equivalent definitions,
see [56], is the singular integral definition: The fractional Laplacian in Rd, d ≥ 1, is the principal
value integral

∆α/2f(x) = p.v.

∫
Rd

cd,−α
(
f(y)− f(x)

)
|x− y|−d−αdy(1.1)

= lim
ε→0

∫
Rd, |y−x|>ε

cd,−α
(
f(y)− f(x)

)
|x− y|−d−αdy,

where cd,β = 2−βπ−d/2Γ((d−β)/2)/|Γ(β/2)|. The fractional Laplacian is the infinitesimal gener-

ator of the isotropic α-stable Lévy process in Rd, which is a prototype of a purely discontinuous
Markov process. For probabilists, the singular kernel j(x, y) = cd,−α|x−y|−d−α, x, y ∈ Rd, serves
as the jump kernel of the α-stable process. Both the fractional Laplacian and the isotropic stable
process have been studied for a long time.

Of more recent interest is the investigation of fractional Laplacians in a (proper) open subset
D of Rd. One possible definition is obtained from (1.1) by taking f|Rd\D = 0, leading to the
operator

(1.2) Lf(x) = p.v.

∫
D
cd,−α(f(y)− f(x))|x− y|−d−α dy − κ(x)f(x), x ∈ D,

where κ(x) = cd,−α
∫
Dc |x − y|−d−αdy is the (critical) killing potential. In the PDE literature

the operator L is usually called the restricted fractional Laplacian. For probabilists, it is the
infinitesimal generator of the part of the α-stable process in D (that is, of the α-stable process
killed upon first exit from D). By removing the killing part κ from the operator L, one obtains
the so-called censored (or regional) fractional Laplacian. The corresponding Markov process
– the censored stable process – was introduced and thoroughly studied in [9]. Note that on
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account of (1.2), the restricted fractional Laplacian can be viewed as a (critical) Schrödinger
perturbation of the censored fractional Laplacian. By changing this perturbation, one gets a
different operator, and may hope to see different potential-theoretic behaviors. Such line of
reasoning was employed in [28], and will be important in this work as well.

Two of the most important potential-theoretic results related to the fractional Laplacian and
its variants in proper open sets are the boundary Harnack principle and the Green function
estimates.

The boundary Harnack principle (BHP) is the result roughly stating that all non-negative
harmonic functions vanishing at a common part of the boundary of an open subset in Rd decay
at the same rate. The first such result for α-harmonic functions (functions harmonic with
respect to the isotropic α-stable process) in Lipschitz domains was proved in [8] in 1997. The
extension to the so-called κ-open sets was given two years later in [69], and all restrictions on
the boundary were removed in [11]. By use of an extension method, another proof in case of
Lipschitz domains was given in [14]. A stronger form of BHP is the BHP with exact decay
rate, which requires a certain smoothness of the boundary – typically C1,1 smoothness. For
the fractional Laplacian, the exact decay rat is δD(x)

α/2, which means that all non-negative
α-harmonic functions vanishing at a part of the boundary of a C1,1 open set D decay at the
rate of δD(x)

α/2. Here δD(x) denotes the distance of the point x to the boundary ∂D. For
the censored α-stable process in C1,1 open set and α ∈ (1, 2), it was proved in [9] that the
BHP with exact decay rate δD(x)

α−1 holds. The paper [28] studied how perturbations of the
censored fractional Laplacian by critical killings affect the exact decay rates of the corresponding
harmonic functions.

For d > α, the potential of the fractional Laplacian in Rd is the Riesz potential:

Gf(x) =

∫
Rd

cd,αf(y)|x− y|−d+αdy.

It is (at least formally) the inverse operator of the fractional Laplacian ∆α/2. The Riesz kernel
G(x, y) = cd,α|x − y|−d+α is for probabilists the density of the occupation time measure of
the α-stable process. For the restricted, respectively censored, fractional Laplacian, there is
no explicit formula for the density of the occupation time measure of the killed, respectively
censored, α-stable process in an open set D. The best one can hope for is sharp two-sided
estimates. Investigation of the Green function GD(x, y) of the part of the (isotropic) α-stable
process in a C1,1 open set D also started in the late 1990’s. The sharp two-sided estimates of
the Green function GD(x, y), independently obtained in [25] and [55], state that when d > α,

(1.3) GD(x, y) ≍
(
δD(x)

|x− y|
∧ 1

)α/2( δD(y)

|x− y|
∧ 1

)α/2
|x− y|α−d, x, y ∈ D.

Here a ≍ b means that the ratio a/b is bounded between two positive constants. For the censored
process and α ∈ (1, 2), [16] established the sharp two-sided Green function estimates of the form
(1.3) with the power α/2 replaced by α− 1.

The jump kernel of the part of the process is inherited from its parent process in Rd, and is for
x, y ∈ D still equal to cd,−α|x−y|−d−α. The same is also true for the censored stable process. This
obvious fact highly facilitates the analysis of both the part process and the censored process.
The jump kernel of the stable process in Rd is spatially homogeneous, hence the fractional
Laplacian can be viewed as an operator with constant coefficients. This property is inherited by
the censored fractional Laplacian and is also true for the integral part of the restricted Laplacian.
One possibility to introduce non-constant coefficients versions of the fractional Laplacian is to
define the kernel J(x, y) := c(x, y)|x − y|−d−α (with x, y in the appropriate state space), with
the function c(x, y) bounded between two positive constants. Such operators can be thought as
non-local counterparts of uniformly elliptic differential operators. The pioneering work in this
direction is [21] (on metric measure spaces), which has led to many subsequent developments
(see, for instance, [3, 17, 18, 20, 22, 23, 24, 54]). In the case of Euclidean space, a non-constant
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coefficients version of the regional fractional Laplacian (and the related reflected process) were
studied in [20, 41, 42, 43]. In particular, under certain regularity conditions on the function
c(x, y), [42] proved a boundary Harnack principle and and [20] established its Green and heat
kernel estimates.

We now describe another, quite natural, way of introducing non-constant coefficients into the
fractional Laplacian. Let D ⊂ Rd be a C1,1 open set, and let XD denote the part of an isotropic
γ-stable process in D, γ ∈ (0, 2] (for γ = 2, XD is a Brownian motion killed upon exiting D).
Let S = (St)t≥0 be an independent (of XD) β-stable subordinator. The subordinate process
Y D
t := XD

St
is called a subordinate killed stable process. It is worth mentioning that, unlike

the part of a stable process in D, the process Y D is not part of a larger process in Rd, and
is intrinsically connected with its state space D. In case γ = 2 (subordinate killed Brownian
motion), its infinitesimal generator is the spectral fractional Laplacian −(−∆|D)

β – the β-power
of the Dirichlet Laplacian. This operator has been intensively studied in the PDE literature
([1, 2, 12, 40, 67]). Similarly, in case γ ∈ (0, 2), the infinitesimal generator is the β-power of the
restricted γ-Laplacian. By setting α := γβ ∈ (0, 2), we can regard these operators as versions of
the α-fractional Laplacian in the open set D. They are non-local integral operators of the form

(1.4) p.v.

∫
D
(f(y)− f(x))JD(x, y) dy − κD(x)f(x), x ∈ D,

where κD(x) ≍ δD(x)
−α, and the singular kernel JD(x, y) enjoys the following sharp two-sided

estimates (see [48] and [49] for more general results, and [50] for a version pertinent to this
setting): For γ = 2,

(1.5) JD(x, y) ≍
(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
|x− y|−d−α

and for γ ∈ (0, 2),

JD(x, y) ≍

(
δD(x)∧δD(y)

|x−y| ∧ 1
)γ(1−β)

|x− y|−d−α if β ∈ (1/2, 1),(
δD(x)∧δD(y)

|x−y| ∧ 1
)γ/2

log
(
1 + (δD(x)∨δD(y))∧|x−y|

δD(x)∧δD(y)∧|x−y|

)
|x− y|−d−α if β = 1/2,(

δD(x)∧δD(y)
|x−y| ∧ 1

)γ/2 (
δD(x)∨δD(y)

|x−y| ∧ 1
)(γ/2)(1−β/2)

|x− y|−d−α if β ∈ (0, 1/2).

(1.6)

Thus we see that the kernel JD(x, y) depends not only on the distance between x and y, but
also on the distance of these points to the boundary. By defining B(x, y) = JD(x, y)|x− y|d+α,
we can write the jump kernel of Y D in the form JD(x, y) = B(x, y)|x− y|−d−α. It is clear from
(1.5) and (1.6) that B(x, y) decays to 0 as δD(x) → 0 or δD(y) → 0, hence it is not bounded
between two positive constants. As a consequence, the infinitesimal generator of a subordinate
killed Lévy process is degenerate near the boundary and is not “uniformly elliptic”. In case
of local operators, partial differential equations degenerate at the boundary have been studied
intensively in the PDE literature; see, for instance, [31, 35, 47], and the references therein.

An interesting and important feature of the estimates (1.6) is that there is a phase transition
at β = 1/2 which is responsible for qualitatively different, and quite unexpected, potential-
theoretic properties. It turned out, cf. [49], that when γ ∈ (0, 2), the scale invariant BHP with

exact decay rate δD(x)
γ/2 holds when β ∈ (1/2, 1), while even the non-scale invariant BHP fails

when β ∈ (0, 1/2] (the scale invariant BHP holds for γ = 2 regardless of the value of β, see [48]).
As mentioned earlier, the subordinate killed Brownian motion is the probabilistic counterpart

of the spectral fractional Laplacian. The subordinate killed Brownian motion and, more gener-
ally, subordinate killed Lévy processes are natural and important, and there are many papers
in the literature on these. They can be viewed as prototypes of singular non-local integral op-
erators degenerate at the boundary. Thus, it is very important, both theoretically and from an
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application point of view, to build a general framework for singular operators degenerate at the
boundary of the type (1.4) with or without killing potential.

The first step in this direction was taken in [50, 51, 52] where such operators were studied
for the open half-space H = {x = (x̃, xd) : x̃ ∈ Rd−1, xd > 0} ⊂ Rd under the assumptions
that the underlying singular operator (and consequently, the related process) is invariant under
horizontal translations and appropriate scaling.

The goal of this work is to develop a general theory for singular non-local operators of the
type

(1.7) LB
αf(x) = lim

ε↓0

∫
D, |y−x|>ε

(
f(y)− f(x)

)
B(x, y)|x− y|−d−α dy,

and

(1.8) Lf(x) = LB
αf(x)− κ(x)f(x),

in case D is a C1,1 open set, the function B(x, y) may decay at the boundary of D, and the
killing potential κ is subcritical or critical. As (very) special cases, such type of singular operators
contain spectral, restricted and censored fractional Laplacian. From a probabilistic point of view
we will study the reflected process on the closure D with infinitesimal generator LB

α, and its part
process on D obtained by either killing at the boundary ∂D (this happens only when α ∈ (1, 2)
and the obtained process is an analog of the censored process), or by killing via the killing
potential κ(x). This general theory should (i) include as a special case subordinate killed stable
processes in C1,1 open sets; (ii) cover the case when B(x, y) is bounded between two positive
constants and is well approximated by certain Hölder continuous functions (thus extending main
result in [42]), and (iii) contain as a special case the main results obtained in [50, 51, 52] for the
half-space. The key ingredient in developing such a general theory is to find good and reasonable
assumptions on the functions B and κ.

There are two major obstacles towards this goal. The first one is that the flattening the
boundary method does not work, hence one cannot use the half-space results to get results for
regular smooth open sets. Flattening the boundary of D is a common way of proving certain
results for non-local operators (or part processes) in C1,1 open sets, and amounts to setting up an
orthonormal coordinate system at a boundary point of the C1,1 opens set, and ingeniously using
the results known for the half-space in the local coordinate system, see e.g. [62]. What makes
this method work in the nondegenerate case is that the kernels for D and for the half-space are
the same – namely cd,−α|x− y|−d−α. In the axiomatic framework we intend to build, the kernel

for D is intrinsically connected to the set itself – it is B(x, y)|x − y|−α−d, where the function
B(x, y) is defined only on D × D (and will usually decay at the boundary). The flattening of
the boundary method does not work directly – the function B (and thus the jump kernel) is
intrinsically connected with distances of the points to the boundary of D, while its counterpart
in the case of the half-space H should be defined in terms of the distances of the points to the
boundary of H. When one flattens the boundary of D, distance to the boundary changes. Thus,
flattening destroys the structure of the function B in terms of distances to the boundary, and
one cannot make connections with the half-space case directly.

The first and foremost challenge is to find an appropriate condition on B that somehow
circumvents and replaces the flattening of the boundary method. We address this challenge by
introducing the assumption (B5) and use the whole Section 11 for its justification.

The second obstacle in developing the theory is the lack of scaling in general C1,1 open sets.
In the half-space case, the operator (1.7) (with D = H), denoted by LBH

α , is invariant under
horizontal translations and scaling. By using scaling and horizontal translation invariance in a
fundamental way, one can calculate the action of the operator LBH

α on the powers of the distance
function to the boundary. More precisely, for a parameter p in a certain range, one gets that

(1.9) LBH
α xpd = C(α, p,B)xp−αd ,
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with a semi-explicit constant C(α, p,BH). For general D, there is no hope for such a formula.
A substitute for such a result is a good estimate of the action of LB

α on the so-called barrier
functions. The key Proposition 6.9 contains such an estimate on the power of the cutoff distance
function 1V (x)δD(x)

q with V a Borel subset of D, and relies on the assumption (B5) in a crucial
way.

The form of the function B(x, y) is motivated by the estimates (1.5) and (1.6) – we assume
that it is comparable to the product

(1.10) Φ1

(
δD(x) ∧ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
ℓ

(
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)
,

where Φ1, Φ2 and ℓ are functions satisfying certain weak scaling conditions (with some param-
eters) – see the assumption (B4-c) for the precise definition.

Our main results are the boundary Harnack principle with exact decay rate, and the sharp two-
sided Green function estimates. We prove that the BHP holds for certain values of a parameter
p related to the killing potential κ and the parameters entering the functions Φ1 and Φ2 in
(1.10) (and it may fail for the other values). In fact, when Φ1 and Φ2 are power functions, and
ℓ is a slowly varying function, we completely determine the region of the parameters where the
boundary Harnack principle holds. Moreover, we also completely cover the boundary Harnack
principle results of [51].

We establish sharp two-sided estimates on the Green functions of these processes for all
admissible values of the parameters involved. The sharp two-sided Green function estimates are
in terms of the quantity on the right-hand side of (1.3) (with the decay rate parameter p replacing
α/2) multiplied by an integral involving functions Φ1 and Φ2. Depending on the parameters in
these functions, these estimates may exhibit an anomalous behavior, see Corollary 2.6. Recently
in [51], such anomalous behavior of Green function in the half-space has been proved under
stronger assumptions on the function B. Our work on Green function estimates extends the
results in [51] to bounded C1,1 open sets under weaker assumption on B.

Examples are an integral part of this paper. They serve as a justification of our assumptions
on B and κ, and at the same time show the versatility of the theory. The last section is fully
devoted to several types of examples. Besides covering subordinate killed stable processes and
their variants, we provide an example extending the setting in [42].

Organization of the work: In the next section we give a detailed overview of the work. We
provide the set-up and gradually introduce the assumptions on the functions B(x, y) and κ(x).
We explain and justify these assumptions, and show what type of results they imply. Sections 3–5
employ only some of the assumptions, and partly use some known results from the literature. For
finer results we need stronger assumptions that supersede the ones already introduced. Starting
from Section 6 the presentation is mostly self-contained and does not rely on the half-space
results from [50, 51, 52].

We end this section with a few words on notation. Throughout this work, we use “:=” to
denote a definition, which is read as “is defined to be”. We use the notation a∧b := min{a, b} and
a∨ b := max{a, b}. N denotes the set of natural number and N0 denotes the set of non-negative
integers. The notation C = C(a, b, . . .) indicates that the constant C depends on a, b, . . .. The

dependence on d, α, the localization characteristics R̂, Λ0 and Λ (see Definition 3.1), and the
constants in conditions (B) and (K) (see Section 2) may not be mentioned explicitly. Upper
case letters Ci, i ∈ N, with subscripts denote strictly positive constants whose values are fixed
throughout this work. A lower case letter c without subscript denotes a strictly positive constant
whose value is unimportant and which may change even within a line, while the values of ci,
i ∈ N0, are fixed in each statement and proof, and the labeling of these constants starts anew in
each proof. We denote x ∈ Rd as x = (x̃, xd) with x̃ ∈ Rd−1. We use md to denote the Lebesgue
measure on Rd. For a Borel subset A ⊂ Rd, δA(x) denotes the Euclidean distance between x
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and ∂A. For a subset A ⊂ Rd, we define

BA(x, r) := A ∩B(x, r), x ∈ Rd, r > 0.

For a given function f defined on (0,∞), we set f(∞) := limr→∞ f(r), if the limit exists. For a
Borel set A ⊂ Rd and a Borel function f defined on A×A \ {(x, x) : x ∈ A}, the principal value
integral is defined by

p.v.

∫
A
f(x, y)dy = lim

ε↓0

∫
A, |x−y|>ε

f(x, y)dy, x ∈ A.

We adopt the convention c/0 = ∞ for c > 0.

2. Set-up and main results

In this work, we study some analytic and potential-theoretic properties of Markov processes
in proper open subsets D of Rd, d ≥ 2, defined through their jump kernels and killing potentials.

The jump kernels are of the form B(x, y)|x − y|−d−α, α ∈ (0, 2), with a positive function
B on D × D which is allowed to decay to zero at the boundary of D. The killing potentials
κ : D → [0,∞) are either critical or sub-critical. It is clear that the properties of the underlying
Markov process depend on the assumptions imposed on B and κ. In this section we gradually
introduce these assumptions and explain the type of results that follow. The assumptions
pertaining to the function B will be denoted as (B), while those related to κ will have the letter
(K).

We will always assume that D is a Lipschitz open set. For our main results, we need further
regularity of the boundary of D. Starting from Section 6, we assume that D is a C1,1 open set.

2.1. Construction and some properties of the processes. We begin with the construction
of three processes – the conservative process Y in the closure D of D, the process Y 0 in D, and
Y κ obtained by killing Y 0 via the killing potential κ. The construction of these processes is
carried through Dirichlet form theory and is quite standard.

Let D ⊂ Rd, d ≥ 2, be a Lipschitz open set (see Definition 3.1 in Section 3 for the precise
definition). Denote by D the closure of D, and by δD(x) the Euclidean distance between x ∈ Rd
and the boundary ∂D. We will assume that the jump measure of the process Y which we
will construct is absolutely continuous with respect to the Lebesgue measure on D. Since D is
Lipschitz, the Lebesgue measure of D is zero and the value of the jump kernel on ∂D does not
matter. For α ∈ (0, 2) we consider the bilinear form

E0(u, v) :=
1

2

∫∫
D×D

(u(x)− u(y))(v(x)− v(y))
B(x, y)

|x− y|d+α
dxdy,

where B : D ×D → (0,∞) is a Borel function satisfying the following assumptions:

(B1) B(x, y) = B(y, x) for all x, y ∈ D.

(B2-a) There exists a constant C1 > 0 such that B(x, y) ≤ C1 for all x, y ∈ D.

(B2-b) For any a ∈ (0, 1], there exists a constant C2 = C2(a) > 0 such that

B(x, y) ≥ C2 for all x, y ∈ D with δD(x) ∧ δD(y) ≥ a|x− y|.

Assumptions (B1), (B2-a) and (B2-b) will be in force throughout this work except in Section
11.

Assumption (B1) is natural as it ensures the symmetry of the form E0. Note that (B2-a)
implies

sup
x∈D

∫
D
(1 ∧ |x− y|2) B(x, y)

|x− y|d+α
dy <∞.(2.1)
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Moreover, (B2-a) and (B2-b) imply that for C2 = C2(1),

C2 ≤ B(x, x) ≤ C1 for all x ∈ D.(2.2)

Observe that assumptions (B1), (B2-a) and (B2-b) do not specify the behavior of B at the
boundary of D.

For a Borel set A ⊂ Rd and p ∈ [1,∞], we denote by Lp(A) the Lp-space Lp(A,md), and by
Lipc(A) the family of all Lipschitz functions on A with compact support. It follows from (2.1)
that E0(u, u) < ∞ for any u ∈ Lipc(D). Let F be the closure of Lipc(D) in L2(D) = L2(D)

under the norm (E0
1 )

1/2 where E0
1 := E0 + ∥·∥2L2(D). Then (E0,F) is a regular Dirichlet form

on L2(D), see [36, Chapter 1]. Since B(x, y) > 0 for all x, y ∈ D, using [36, Theorem 1.6.1],
one can easily see that the Dirichlet form (E0,F) is irreducible. Moreover, since the form
(E0,F) has no killing and satisfies (2.1), it is conservative by [38, Theorem 1.3] or [60, Theorem
1.1]. Associated with the regular Dirichlet form (E0,F), there is a conservative Hunt process
Y = (Y t, t ≥ 0;Px, x ∈ D \ N ′). Here N ′ is an exceptional set for Y .

Let F0 be the closure of Lipc(D) in L2(D) under E0
1 . Then (E0,F0) is a regular Dirichlet

form. Let Y 0 = (Y 0
t , t ≥ 0;Px, x ∈ D \N0) be the Hunt process associated with (E0,F0), where

N0 is an exceptional set for Y 0.
The third process is obtained by killing Y 0 via a killing potential κ. We assume that κ is a

non-negative Borel function on D satisfying the following assumption:

(K1) There exists a constant C3 > 0 such that

κ(x) ≤ C3(δD(x) ∧ 1)−α.

If α ≤ 1, then we also assume that κ is non-trivial, namely,

(2.3) md({x ∈ D : κ(x) > 0}) > 0.

Assumption (K1) says that the killing through κ is sub-critical or critical. Note that κ can be
identically zero when α > 1. If α ≤ 1 and κ ≡ 0, then Y 0 = Y κ = Y so it is conservative. The
additional assumption (2.3) in (K1) guarantees that Y κ is not conservative (see Proposition
4.20).

Assumption (K1) will be in force throughout this work except in Section 11.

We consider a symmetric form (Eκ,Fκ) defined by

Eκ(u, v) = E0(u, v) +

∫
D
u(x)v(x)κ(x)dx,

Fκ = F̃0 ∩ L2(D,κ(x)dx),

where F̃0 is the family of all E0
1 -quasi-continuous functions in F0. Then (Eκ,Fκ) is a regular

Dirichlet form on L2(D) with Lipc(D) as a special standard core, see [36, Theorems 6.1.1 and
6.1.2]. Let Y κ = (Y κ

t , t ≥ 0;Px, x ∈ D \Nκ) be the Hunt process associated with (Eκ,Fκ) where
Nκ is an exceptional set for Y κ. We denote by ζκ the lifetime of Y κ, and define Y κ

t = ∂ for
t ≥ ζκ, where ∂ is a cemetery point added to the state space D. Note that Y κ includes Y 0,
when α ∈ (1, 2), as a special case.

In Section 4 we establish several important properties of the processes Y , Y 0 and Y κ. In
Subsection 4.1 we first look at Y , establish a Nash-type inequality (Proposition 4.1) which leads
to the existence and some preliminary upper bound of the transition densities (Proposition
4.2). An important preliminary lower bound of the transition densities of Y killed upon exiting
D∩B(x0, r) is given in Proposition 4.5. Relying on methods from [23, 24] we then establish joint
Hölder continuity of bounded caloric functions (parabolic Hölder regularity). As a consequence
we get that Y can be refined to be a strongly Feller process starting from every point in D
(hence the exceptional set N ′ can be taken to be empty set). Finally, we show that the parabolic
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Harnack inequality holds true for non-negative caloric functions for Y . For this property, we
need the following additional assumption on B:
(UBS) There exists C > 0 such that for a.e. x, y ∈ D,

B(x, y) ≤ C

rd

∫
D∩B(x,r)

B(z, y)dz whenever 0 < r ≤ 1

2
(|x− y| ∧ R̂).(2.4)

Here R̂ is the localization radius of the Lipschitz open set D, see Definition 3.1 for details.
Assumption (UBS) implies the usual (UJS) condition, see e.g. [23, Definition 1.16].

In Subsection 4.2 we analyze properties of Y 0 and Y κ. We first establish that F0 = F if
and only if α ≤ 1 (Proposition 4.14). This implies that Y 0 = Y when α ≤ 1, while in case
α ∈ (1, 2), Y 0 can be regarded as the part process of Y in D with a.s. finite lifetime ζ0 such that
Y 0
ζ0− ∈ ∂D. Similarly, the process Y κ can be regarded as the part process of Y killed at the

a.s. finite lifetime ζκ. In this case we have that Y κ
ζκ− ∈ D. As a consequence of the fact that Y κ

is a part process of Y , we conclude that the exceptional set Nκ can be taken to be an empty set.
In the remaining part of the subsection we establish the existence and an upper bound of the
transition densities of Y κ, a lower bound similar to the one described above, parabolic Hölder
regularity, and parabolic Harnack inequality for non-negative caloric functions of Y κ. In order
to get uniform large time estimates (Proposition 4.26), we introduce the following assumption
for κ:

(K2) If α ≤ 1, then there exist constants r̂ ∈ (0, R̂) and C4 > 0 such that for every bounded
connected component D0 of D,

κ(x) ≥ C4 for all x ∈ D0 with δD0(x) < r̂.

Note that when α ≤ 1, without extra condition for κ, the assertion of Proposition 4.26 does
not hold, as demonstrated in Example 4.24. For the parabolic Harnack inequality, we need the

assumption (IUBS) on B saying that (2.4) holds when 0 < r ≤ 1
2(|x− y| ∧ δD(x) ∧ R̂).

By using the upper and lower bounds on the transition densities of Y κ, in Subsection 4.3
we establish (interior) estimates on the Green function Gκ(x, y) of the process Y κ. In case of
bounded D, we see that Gκ(x, y) ≤ C|x− y|−d+α for all x, y ∈ D, and the same lower bound is
valid if x and y are away from the boundary (see Corollary 4.34 for the precise statement).

2.2. The operator LB
α. In order to study finer properties of the process Y κ we need additional

assumptions on the function B that we now describe. We still assume that D is a Lipschitz
open set. The following assumption is needed to make sure that C1

c (D), the space of continuous
functions with compact support in D, is contained in the domain of definition of the operator
LB
α introduced below.

(B3) If α ≥ 1, then there exist constants θ0 > α− 1 and C5 > 0 such that

|B(x, x)− B(x, y)| ≤ C5

(
|x− y|

δD(x) ∧ δD(y) ∧ R̂

)θ0
for all x, y ∈ D.(2.5)

Consider a non-local operator (LB
α,D(LB

α)) of the form

LB
αf(x) = p.v.

∫
D
(f(y)− f(x))

B(x, y)
|x− y|d+α

dy, x ∈ D,(2.6)

where D(LB
α) consists of all functions f : D → R for which the above principal value integral

makes sense. Note that if f ∈ C1
c (D), the integral above is absolutely convergent for α ∈ (0, 1).

In case α ≥ 1, principal value is needed to make sense of the integral. When B(x, y) is a constant,
a symmetry argument guarantees that the principal value integral is well defined for f ∈ C1

c (D).
When B is not a constant, the symmetry argument breaks down, but (B3) guarantees that LB

αf
is well defined for f ∈ C1

c (D).
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Recall that κ is a non-negative Borel function on D satisfying (K1). We define an operator
(Lκ,D(LB

α)) by

Lκf(x) = LB
αf(x)− κ(x)f(x), x ∈ D.(2.7)

Let (Aκ,D(Aκ)) be the L2-generator of (Eκ,Fκ). Under the assumptions (B1), (B2-a), (B2-b)
and (B3), we will establish in Proposition 5.1 that Aκf = Lκf for all f in an appropriate class of
functions, showing that Lκ is the infinitesimal generator of the semigroup corresponding to Y κ.
Additionally, we will prove a Dynkin-type formula for not necessarily smooth and compactly
supported functions, see Corollary 5.4.

Let Φ0 be a Borel function on (0,∞) such that Φ0(r) = 1 for r ≥ 1 and

cL

(
r

s

)β
0

≤ Φ0(r)

Φ0(s)
≤ cU

(
r

s

)β0

for all 0 < s ≤ r ≤ 1,(2.8)

for some constants β0 ≥ β
0
≥ 0 and cL, cU > 0. Let β0 be the lower Matuszewska index of Φ0

(see [6, pp. 68–71]):

(2.9) β0 = sup
{
β : ∃ a > 0 s. t. Φ0(r)/Φ0(s) ≥ a(r/s)β for 0 < s ≤ r ≤ 1

}
.

Typical examples of such a function Φ0 include Φ0(r) = (r ∧ 1)β for β ≥ 0. In this case, the
lower Matuszewska index of Φ0 is equal to β. The property (2.8) of Φ0 is usually referred to
as a weak scaling condition at zero. It clearly implies that Φ0 is almost increasing, namely, for
all 0 ≤ s ≤ r < ∞, cLΦ0(s) ≤ Φ0(r). The precise value of β0 will appear in our results, while
the precise value of the upper scaling index β0 remains insignificant for most of the content
presented in this work.

We next consider the following two assumptions on B:

(B4-a) There exists a constant C6 > 0 such that

B(x, y) ≤ C6Φ0

(
δD(x) ∧ δD(y)

|x− y|

)
for all x, y ∈ D.

(B4-b) There exists a constant C7 > 0 such that

B(x, y) ≥ C7Φ0

(
δD(x) ∧ δD(y)

|x− y|

)
for all x, y ∈ D with δD(x) ∨ δD(y) ≥

|x− y|
2

.

Assumptions (B4-a) and (B4-b) are inspired by (1.6) – instead of the explicit function there,
we use the function Φ0. Clearly, (B4-a) implies that the jump kernel B(x, y)|x − y|−d−α may
decay to zero at the boundary. Note that (B4-a) implies (B2-a).

In the remainder of this section, we assume that

B satisfies (B1), (B2-b), (B3), (B4-a) and (B4-b).

A usual way to estimate exit probabilities of a Markov process is to construct appropriate
functions, called barriers, which are either superharmonic or subharmonic for the infinitesimal
generator (and may have some additional desired properties). Applying a Dynkin-type formula
to such barriers provides useful information on the exit probabilities. In Subsection 5.2 we
construct a family of such barriers, ψ(r), and in Proposition 5.6 give an upper bound on LB

αψ
(r)

in terms of the function Φ0. In case when D is a half-space, a similar barrier is constructed
in [50, Section 8] – this was the key technical result of that paper. The construction and the
estimate given here are simpler, and independent of the half-space result in [50]. It is worth
mentioning that all subsequent results of this work are independent of the results proved in
[50, 53] in case of the half-space, thus making this work essentially self-sufficient.



MARKOV PROCESSES WITH JUMP KERNELS DECAYING AT THE BOUNDARY 11

2.3. Key assumptions on B and κ. We first give the definition of a C1,1 open set. The
description of additional assumptions on B will be given in local coordinates.

Definition 2.1. We say that D is a C1,1 open set with characteristics (R̂,Λ), if for each Q ∈ ∂D,
there exist a C1,1 function Ψ = ΨQ : Rd−1 → R with

Ψ(0̃) = |∇Ψ(0̃)| = 0 and |∇Ψ(ỹ)−∇Ψ(z̃)| ≤ Λ|ỹ − z̃| for all ỹ, z̃ ∈ Rd−1,(2.10)

and an orthonormal coordinate system CSQ with origin at Q such that

BD(Q, R̂) =
{
y = (ỹ, yd) ∈ B(0, R̂) in CSQ : yd > Ψ(ỹ)

}
.(2.11)

From now on we assume that D ⊂ Rd is a C1,1 open set with characteristics (R̂,Λ). Without

loss of generality, we assume that R̂ ≤ 1 ∧ (1/(2Λ)).

For Q ∈ ∂D, ν ∈ (0, 1] and r ∈ (0, R̂/4], we introduce the set

EQν (r) =
{
y = (ỹ, yd) in CSQ : |ỹ| < r/4, 4r−ν |ỹ|1+ν < yd < r/2

}
.(2.12)

Here is our key assumption on the killing potential κ:

(K3) There exist constants η0 > 0 and C8, C9 ≥ 0 such that for all x ∈ D,{
|κ(x)− C9B(x, x)δD(x)−α| ≤ C8δD(x)

−α+η0 if δD(x) < 1,

κ(x) ≤ C8 if δD(x) ≥ 1.
(2.13)

When α ≤ 1, we further assume that C9 > 0.

We note that assumption (K3) implies (K1) and (K2). Observe that when C9 > 0, the
killing potential κ(x) is comparable to δD(x)

−α near the boundary, so we have critical killing.
In case C9 = 0 (which by assumption is allowed only when 1 < α < 2), we see that κ(x) ≤
C8δD(x)

−α+η0 , hence the killing is subcritical (which includes the case of no killing at all). In
the next assumption on B we will discuss these two cases separately.

For a ∈ R, let Ha = {(ỹ, yd) ∈ Rd : yd > a}, and denote H0 by H. Let further ed = (0̃, 1) ∈ Rd
be the unit vector in the vertical direction.

2.3.1. Case C9 > 0 – critical killing. The assumption that we are going to introduce may be
viewed as a substitute for the flattening of the boundary method which, as described in the
introduction, does not work in the current setting. In order to motivate the assumption, we
look at the process Y H obtained by subordinating a γ-stable process killed upon exiting the
half-space H, via an independent β-stable subordinator (non-decreasing Lévy process), where
γ ∈ (0, 2) and β ∈ (0, 1). Set α = γβ. Let JH(x, y), x, y ∈ H, denote the jump kernel of Y H. It
can be written in the form JH(x, y) = BH(x, y)|x − y|−d−α, with BH(x, x) = cd,−α. Due to the

scale and horizontal translation invariance of Y H, the function BH(x, y) satisfies for all a > 0
and all z̃ ∈ Rd−1,

BH(x, y) = BH(ax, ay) = BH(x+ (z̃, 0), y + (z̃, 0)).

If we define F γ,β0 : H−1 → [0,∞) by F γ,β0 (z) = c−1
d,−αB

H(ed, ed + z), then it is straightforward

that (see Lemma 11.1)

(2.14) BH(x, y) = cd,−αF
γ,β
0

(
y − x

xd

)
, x, y ∈ H,

and, by the symmetry of BH(x, y),

(2.15) F γ,β0 (z) = F γ,β0 (−z/(1 + zd)), z ∈ H−1.

For a C1,1 open set D with characteristics (R̂,Λ), let Y D be a process constructed analogously
to Y H – we subordinate a γ-stable process killed upon exiting D by an independent β-stable
subordinator. Its jump kernel can be written as JD(x, y) = BD(x, y)|x−y|−d−α with BD(x, x) =
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cd,−α. Fix a point Q ∈ ∂D and consider the orthonormal coordinate system CSQ with origin at

Q (as in Definition 2.1) and recall that EQν (r) is defined in (2.12). Then, under the assumption
that D is either (1) bounded or (2) the domain above the graph of a bounded C1,1 function in
Rd−1, one can show (see Lemma 11.6) that there exists C > 0 such that for all ν ∈ (0, 1) and

x, y ∈ EQν (R̂/8),

|JD(x, y)− JH(x, y)| ≤ C

(
δD(x) ∨ δD(y)

R̂

)(1−β)(1−ν)γ/(2+2ν) 1

(δD(x) ∨ δD(y))d+α
.

Taking into account that JH(x, y) = BH(x, y)|x − y|−d−α, JD(x, y) = BD(x, y)|x − y|−d−α and

(2.14), we get that for all ν ∈ (0, 1) and x, y ∈ EQν (R̂/8),∣∣∣BD(x, y)− BD(x, x)F γ,β0 ((y − x)/xd)
∣∣∣

=
∣∣∣BD(x, y)− cd,−αF

γ,β
0 ((y − x)/xd)

∣∣∣
≤ c

(
|x− y|

δD(x) ∨ δD(y)

)d+α(δD(x) ∨ δD(y)
R̂

)(1−β)(1−ν)γ/(2+2ν)

≤ c

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)d+α(δD(x) ∨ δD(y) ∨ |x− y|
R̂

)(1−β)(1−ν)γ/(2+2ν)

,

where the constant c > 0 depends only on d and γ. This calculation serves as one motivation
for the following assumption:

(B5-I) There exist constants ν ∈ (0, 1], θ1, θ2, C10 > 0, and a non-negative Borel function F0

on H−1 such that for any Q ∈ ∂D and x, y ∈ EQν (R̂/8) with x = (x̃, xd) in CSQ,∣∣B(x, y)− B(x, x)F0((y − x)/xd)
∣∣+ ∣∣B(x, y)− B(y, y)F0((y − x)/xd)

∣∣
≤ C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .(2.16)

We allow that constants above depend on R̂.

Under condition (B5-I), we define a function F on H−1 by

F(y) =
F0(y) + F0(−y/(1 + yd))

2
, y = (ỹ, yd) ∈ H−1.(2.17)

We will see in Lemma 6.2 that F is a bounded function. Moreover, we observe that

F(y) = F(−y/(1 + yd)) for all y ∈ H−1.(2.18)

This property is in a crucial way related to the symmetry of B, see (2.15). With the function F
above and q ∈ [(α− 1)+, α+ β0), we associate a constant C(α, q,F) defined by

C(α, q,F)(2.19)

=

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

0

(sq − 1)(1− sα−1−q)

(1− s)1+α
F
(
((s− 1)ũ, s− 1)

)
ds dũ.

We additionally assume that

C9 < lim
q→α+β0

C(α, q,F).(2.20)

We will show in Lemma 6.3 that q 7→ C(α, q,F) is a well-defined strictly increasing continuous
function on [(α − 1)+, α + β0) and C(α, (α − 1)+,F) = 0. Therefore, under (2.20), there exists
a unique constant p ∈ ((α− 1)+, α+ β0) such that

C9 = C(α, p,F).(2.21)
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The one-to-one correspondence between the positive constants C9 in (2.13) that multiply B(x, x)δD(x)−α,
and the parameters p ∈ ((α− 1)+, α+ β0) plays a fundamental role in this work.

The process Y D described above is a prime example of a process satisfying (B5-I), (K3) and
(2.20) (as well as the other assumptions on B introduced before). This is shown in Subsection
11.1, which also contains two other examples satisfying all our assumptions.

2.3.2. Case C9 = 0 – subcritical killing. In this case, we assume the constant C9 is zero. In this
case, instead of (B5-I), we will introduce a weaker assumption (B5-II). The motivation for this
assumption comes from the following example.

Example 2.2. Assume that α ∈ (1, 2) and

C−1 ≤ B(x, y) = B(y, x) ≤ C for all x, y ∈ D(2.22)

for some C ≥ 1. When B(x, y) ≡ c is a constant, the operator LB
α in (2.6) is called the regional

(or censored) fractional Laplacian in D and the process Y 0 corresponding to LB
α is called the

censored α-stable process on D.

Let θ ∈ (α− 1, 1). Since R̂ ≤ 1∧ (1/(2Λ)), for all y ∈ D with δD(y) < R̂/8, there is a unique

Qy ∈ ∂D such that δD(y) = |y −Qy|, see Lemma 3.7(ii). For y ∈ D with δD(y) < R̂/8, let y be
the reflection of y with respect to ∂D, that is, y = 2Qy − y.

Suppose that there exist C > 0 and θ-Hölder continuous functions h1 : D × D → [0,∞),
h2 : D × D → [0,∞), and Θ : [0,∞) → [0,∞) such that supx∈D h2(x, x) < ∞ and for all
x, y ∈ D,

|B(x, x)− B(x, y)| ≤ C|x− y|θ if δD(x) ∧ δD(y) > R̂/16,∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣ ≤ C|x− y|θ if δD(x) ∨ δD(y) < R̂/8.
(2.23)

In case Θ(r) = rd+α and h1, h2 ∈ C1(D × D), such a condition was considered in [42] to
establish a unified framework that incorporates both the regional fractional Laplacian and the
formal generator of subordinate reflected Brownian motions on D. The main result of that paper
was the boundary Harnack principle for non-negative harmonic functions with respect to LB

α.
From (2.23), one can see that one function F0 is not enough to approximate B(x, y) as in

(2.16), and that we need two functions. Indeed, by setting µ1(x) = h1(x, x) and µ
2(x) = h2(x, x)

for x ∈ D, and

F 1
0 (z) = 1 and F 2

0 (z) = Θ(|z|/|(z̃,−zd − 2)|) for z ∈ H−1,

we show in Example 11.15 that if Q ∈ ∂D and x, y ∈ EQ1/2(R̂/8), then∣∣∣∣B(x, y)− 2∑
i=1

µi(x)F i0((y − x)/xd)

∣∣∣∣+ ∣∣∣∣B(x, y)− 2∑
i=1

µi(y)F i0((y − x)/xd)

∣∣∣∣
≤ c

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)2θ(
δD(x) ∨ δD(y) ∨ |x− y|

)θ/3
.

This example motivates the following assumption:

(B5-II) There exist constants ν ∈ (0, 1], θ1, θ2, C10 > 0, C11 > 1, i0 ∈ N, and non-negative
Borel functions Fi0 : H−1 → [0,∞) and µi : D → (0,∞), 1 ≤ i ≤ i0, such that

C−1
11 ≤ µi(x) ≤ C11 for all x ∈ D,(2.24)
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and for any Q ∈ ∂D and x, y ∈ EQν (R̂/8) with x = (x̃, xd) in CSQ,∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi0((y − x)/xd)

∣∣∣∣+ ∣∣∣∣B(x, y)− i0∑
i=1

µi(y)Fi0((y − x)/xd)

∣∣∣∣
≤ C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .
(2.25)

For each 1 ≤ i ≤ i0, we define Fi(y) := (Fi0(y) + Fi0(−y/(1 + yd)))/2 and C(α, q,Fi) for
q ∈ [(α− 1)+, α+ β0) analogously to (2.19).

Note that if (B5-I) holds, then also (B5-II) holds with i0 = 1, F1
0 = F0 and µ1(x) = B(x, x).

We combine the assumptions (B5-I) and (B5-II) in the assumption

(B5) If C9 > 0, then (B5-I) and (2.20) hold, and if C9 = 0, then (B5-II) holds.

Also, we treat (B5-I) as a special case of (B5-II) with i0 = 1. In the remainder of this
section, we assume that

κ satisfies (K3);

B satisfies (B1), (B2-b), (B3), (B4-a), (B4-b) and (B5).

We explain now the key result that follows from the assumption (B5). Recall from the
introduction that in case of the half-space one can calculate the action of the operator LBα on
the power of the distance function - see (1.9). This calculation uses the scaling properties of
the associated process in an essential way. Instead of such an exact formula, assumption (B5)

allows for a weaker, but sufficient, substitute. For Q ∈ ∂D and a, b ∈ (0, R̂/2), let

UQ(a, b) =
{
x ∈ D : x = (x̃, xd) in CSQ with |x̃| < a, 0 < ρD(x) < b

}
denote the box of width a and height b based at Q. Here ρD(x) = ρQD(x) = xd − Ψ(x̃) is the
“vertical distance” of the point x to the boundary in the local coordinate system CSQ with C1,1

function Ψ. (See (2.11).) We denote UQ(r, r) as UQ(r). For r < R̂/8, let V be a Borel set

satisfying UQ(3r) ⊂ V ⊂ BD(Q, R̂). Let hq,V (y) = 1V (y)δD(y)
q be the q-th power of the cutoff

distance function where q ∈ [(α− 1)+, α+ β0) ∩ (0,∞). Then for any x ∈ UQ(r/4),

∣∣LB
αhq,V (x)−

i0∑
i=1

µi(x)C(α, q,Fi)δD(x)
q−α∣∣ ≤ C(δD(x)/r)

η1δD(x)
q−α,(2.26)

with constants C > 0 and η1 > 0 independent of Q, r and V , see Proposition 6.9. This shows
that the operator LB

α essentially acts on the power of the cutoff distance function by decreasing
the power by α (up to a lower order term).

In Subsection 7.1 we construct more refined barrier functions by using combinations of cutoff
functions of the type hq,U(r)(y) = 1U(r)(y)δD(y)

q and the already constructed barrier ψ(r).
Estimates of the action of the operator Lκ (and a related operator) on these barriers are based on
the estimate (2.26). Combined with the Dynkin-type formula in Corollary 5.4, these estimates
lead in Subsection 7.2 to various exit probability estimates and decay rates of some special
harmonic functions. Before describing these estimates, let us recall that a non-negative Borel
function f on D is said to be harmonic in an open set V ⊂ D with respect to the process Y κ if
for every open U ⊂ U ⊂ V ,

f(x) = Ex[f(Y κ
τU
)], for all x ∈ U,

where τU := inf{t > 0 : Y κ
t /∈ U}. Important examples of non-negative harmonic functions are

x 7→ Px(Y κ
τU(ϵ2r)

∈ U(r) \ U(r, r/2)) and x 7→ Px(Y κ
τU(ϵ2r)

∈ D).
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Here ϵ2 is some small constant, and r ∈ (0, R̂/24). These two harmonic functions continuously
decay to zero at the boundary of D. The key result of Subsection 7.2 is Theorem 7.4 stating
that their decay rates are comparable to (δD(x)/r)

p. Here p ∈ [(α−1)+, α+β0) is the parameter
corresponding to C9 through (2.21) if C9 > 0, and p = α− 1 if C9 = 0.

The exact decay rate of these two special harmonic functions is used in Section 8 to establish
the Green function estimates of the process Y κ killed upon exitingD∩B(x0, R0) with x0 ∈ D and
R0 > 0. These estimates improve the ones from Subsection 4.3 in the sense that the preliminary
boundary decay is now included. The main result of the section is Proposition 8.6 which gives
sharp estimates of the Green potentials of powers of distance functions. To be more precise, for

any Q ∈ ∂D, any R ∈ (0, R̂/24), and any Borel set A satisfying D ∩B(Q,R/4) ⊂ A ⊂ B(Q,R),
we establish sharp bounds of

∫
AG

A(x, y)δD(y)
γ dy for γ > −p−1. Here GA is the Green function

of Y κ killed upon exiting A.

2.4. Final assumption and main results. Our final assumption (B4-c) below replaces (B4-
a) and (B4-b), and gives precise upper and lower bounds on the decay rate of B.

Let Φ1 and Φ2 be Borel functions on (0,∞) such that Φ1(r) = Φ2(r) = 1 for r ≥ 1 and that

c′L

(
r

s

)β
1

≤ Φ1(r)

Φ1(s)
≤ c′U

(
r

s

)β1

for all 0 < s ≤ r ≤ 1,(2.27)

and

c′′L

(
r

s

)β
2

≤ Φ2(r)

Φ2(s)
≤ c′′U

(
r

s

)β2

for all 0 < s ≤ r ≤ 1(2.28)

for some β1 ≥ β
1
≥ 0, β2 ≥ β

2
≥ 0 and c′L, c

′
U , c

′′
L, c

′′
U > 0. Let β1 and β2 be the lower

Matuszewska indices of Φ1 and Φ2 respectively.
Let ℓ be a Borel function on (0,∞) with the following properties: (i) ℓ(r) = 1 for r ≥ 1, and

(ii) for every ε > 0, there exists a constant c(ε) > 1 such that

c(ε)−1

(
r

s

)−ε∧β1
≤ ℓ(r)

ℓ(s)
≤ c(ε)

(
r

s

)ε∧β2
for all 0 < s ≤ r ≤ 1.(2.29)

Note that ℓ is almost increasing if β1 = 0, and ℓ is almost decreasing if β2 = 0.
We consider the following assumption which should be compared with (1.6) and an analogous

assumption in the half-space case, see [51, (1.2)] and Remark 9.1 below.

(B4-c) There exist comparison constants such that for all x, y ∈ D,

B(x, y) ≍ Φ1

(
δD(x) ∧ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
ℓ

(
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)
.

Define a function Φ0 on (0,∞) by

Φ0(r) := Φ1(r)ℓ(r), r > 0.(2.30)

By (2.27), (2.29) and the definition of the lower Matuszewska index, since both Φ1 and ℓ are
almost increasing if β1 = 0, we see that for any ε > 0, there exists c̃(ε) > 1 such that

c̃(ε)−1

(
r

s

)β1−ε∧β1
≤ Φ0(r)

Φ0(s)
≤ c̃(ε)

(
r

s

)β1+ε∧β2
for all 0 < s ≤ r ≤ 1.(2.31)

Hence, the function Φ0 defined in (2.30) satisfies (2.8) and is thus almost increasing. We em-
phasize that by (2.29),

the lower Matuszewska index of Φ0 equals to β1,

which is the lower Matuszewska index of Φ1.
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As will be proved in Lemma 9.2, assumption (B4-c) implies (B2-a), (B2-b), (UBS) and
(B4-a)–(B4-b) (with function Φ0 defined in (2.30)). Hence, in the remainder of this section,
we assume that

B satisfies (B1), (B3), (B4-c) and (B5) and κ satisfies (K3),

and that Φ0 will be the function defined in (2.30) and so

β0 = β1.

Under these assumptions we first prove Carleson’s estimate, see Theorem 9.3, which is used
in the proof of our first main result – the boundary Harnack principle.

Recall that the constant p ∈ [(α− 1)+, α+ β1)∩ (0,∞) denotes the constant satisfying (2.21)
if C9 > 0 and p = α− 1 if C9 = 0 where C9 is the constant in (K3).

Theorem 2.3. (Boundary Harnack principle) Suppose that D is a C1,1 open set and that (B1),
(B3), (B4-c), (K3) and (B5) hold. Suppose also that p < α+(β1∧β2). Then for any Q ∈ ∂D,

0 < r ≤ R̂, and any non-negative Borel function f in D which is harmonic in D ∩B(Q, r) with
respect to Y κ and vanishes continuously on ∂D ∩B(Q, r), we have

(2.32)
f(x)

δD(x)p
≍ f(y)

δD(y)p
for x, y ∈ D ∩B(Q, r/2),

where the comparison constants are independent of Q, r and f .

Proof of Theorem 2.3 uses the Harnack inequality, Carleson’s estimate, some exit time esti-
mates, Theorem 7.4 on the decay rate of some special harmonic functions, upper estimates of
killed potentials from Proposition 8.6, and some delicate estimates of the jump kernel obtained
in Lemma 9.5.

Under the setting of Theorem 2.3, there exists C > 0 such that the following holds: For any

Q ∈ ∂D and 0 < r ≤ R̂, if two Borel functions f, g in D are harmonic in BD(Q, r) with respect
to Y κ and vanish continuously on ∂D ∩B(Q, r), then

f(x)

f(y)
≤ C

g(x)

g(y)
for all x, y ∈ BD(Q, r/2).(2.33)

The inequality (2.33) is referred to as the scale-invariant boundary Harnack principle for Y κ.
We say that the inhomogeneous non-scale-invariant boundary Harnack principle holds for

Y κ, if there is a constant r0 ∈ (0, R̂] such that for any Q ∈ ∂D and 0 < r ≤ r0, there exists a
constant C = C(Q, r) ≥ 1 such that (2.33) holds for any two Borel functions f, g in D which
are harmonic in BD(Q, r) with respect to Y and vanish continuously on ∂D ∩B(Q, r).

Note that Theorem 2.3 is stated for p < α+(β1∧β2) only. In particular, if β1 ≤ β2, then BHP
holds for all admissible values of the parameter p, while if β2 < β1, it holds when p < α + β2.
We will show that without this extra condition, even inhomogeneous non-scale-invariant BHP
may not hold for Y κ. Consider the following condition:

(F) For any 0 < r ≤ R̂, there exists a constant C = C(r) such that

lim inf
s→0

Φ2(b/r)ℓ(s/b)

ℓ(s)
≥ Cbp−α for all 0 < b ≤ r.(2.34)

Theorem 2.4. Suppose that D is a C1,1 open set and that (B1), (B3), (B4-c), (K3) and
(B5) hold. Suppose also that (F) holds. Then the inhomogeneous non-scale-invariant boundary
Harnack principle fails for Y κ.

We will see in Remark 9.7 that (F) implies that p ≥ α + β2. Conversely, (F) holds if (i)
p > α + β2, or (ii) p = α + β2, ℓ is slowly varying at zero, and there exists c0 > 0 such that
Φ2(r) ≥ c0Φ2(1)r

β2 for all 0 < r ≤ 1, see Lemma 9.8. These two sufficient conditions for



MARKOV PROCESSES WITH JUMP KERNELS DECAYING AT THE BOUNDARY 17

(F) together with Remark 9.1 show that Theorems 2.3 and 2.4 completely cover the boundary
Harnack principle results of [51].

Suppose that Φ2 is regularly varying with index β2. If either (1) p > α+β2, or (2) p = α+β2
and the right-hand side inequality of (2.28) holds with β2, then (F) holds true. Hence, in this
case we can completely determine the region of the parameters β1, β2 and p for which BHP
holds true. If Φ2 is not regularly varying at zero, i.e., β2 < β∗2 (where β∗2 denotes the upper
Matuszewska index), the oscillation of Φ2 near zero is an obstacle to completely determining
when the BHP holds.

The second main result is about sharp Green function estimates. We first introduce a positive
function Υ on (0,∞) by

(2.35) Υ(t) :=

∫ 2

t∧ 1
u2α−2p−1Φ1(u)Φ2(u) du.

Theorem 2.5. Suppose that D is a bounded C1,1 open set and that (B1), (B3), (B4-c), (K3)
and (B5) hold. Let p ∈ [(α−1)+, α+β1)∩(0,∞) denote the constant satisfying (2.21) if C9 > 0
and let p = α− 1 if C9 = 0 where C9 is the constant in (K3). Then for all x, y ∈ D,

Gκ(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)p
×Υ

(
δD(x) ∨ δD(y)

|x− y|

)
1

|x− y|d−α
.

Theorem 2.5 covers all admissible values of the parameters involved so clearly it includes the
region of the parameters where the boundary Harnack principle may fail. We note that the
sharp bounds above involve the function Υ defined through an integral. For certain regions of
the involved parameters, the integral can be estimated, leading to the following corollary.

Corollary 2.6. Under the setting of Theorem 10.1, the following statements hold true.
(i) Suppose that p < α+ (β1 + β2)/2. Then for all x, y ∈ D,

Gκ(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)p 1

|x− y|d−α
.

(ii) Suppose that α+ (β1 + β2)/2 < p < α+ β1. Then for all x, y ∈ D,

Gκ(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)2α−p

× Φ1

(
δD(x) ∨ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
1

|x− y|d−α
.

Examples form an important part of this work. We have already explained in Subsection
2.3 that a subordinate killed stable process, i.e. the process with generator −((−∆)γ/2|D)β,
is one natural example satisfying all of the introduced assumptions. An independent sum of
such processes is another example. To be more precise, let α ∈ (0, 2), m ≥ 2 and 0 < γ1 <

· · · < γm ≤ 2. Set βi := α/γi for 1 ≤ i ≤ m. Consider a process Ỹ corresponding to the

generator L =
∑m

i=1−((−∆)γi/2|D)βi . We show in Example 11.7 that all assumptions are
satisfied. Example 11.8 gives another modification in which the Lévy measure of the subordinator
behaves near zero as that of the β-subordinator, but may decay at infinity at a faster rate
than polynomial. This family of subordinators contains relativistic β-stable subordinators. By
subordinating the killed γ-stable process, and letting βγ = α, we again arrive at a process
satisfying all the assumptions. Another example that we have discussed in Subsection 2.3 is the
censored process.
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In Subsection 11.2 we describe a different family of examples motivated by assumption (B4-
c). Suppose that the function B is defined by

B(x, y) = a(x, y)Φ1

(
δD(x) ∧ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
(2.36)

× ℓ

(
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)
,

where a : D ×D → (0,∞) satisfies certain assumptions. For the time being, it suffices to note

that these assumptions hold true provided that a is the restriction to D ×D of a Cθ
′
0(D ×D)

symmetric function bounded above and below by positive constants, where θ′0 > (α−1)+. Then
B satisfies (B1), (B3), (B4-c) and (B5).

3. On Lipschitz and C1,1 open sets

Throughout this work we will need various, mostly elementary, properties of Lipschitz and
C1,1 opens sets, and their subsets. In this section we collect these properties. The reader may
wish to skip the details and come back to them later when needed. We begin with the definition.

Definition 3.1. Let D ⊂ Rd be an open set and let R̂,Λ0 and Λ be positive constants.

(i) We say that D is a Lipschitz open set with localization radius R̂ and Lipschitz constant Λ0,

if for each Q ∈ ∂D, there exist a Lipschitz function Ψ = ΨQ : Rd−1 → R with Ψ(0̃) = 0 and
|Ψ(ỹ)−Ψ(z̃)| ≤ Λ0|ỹ − z̃| for all ỹ, z̃ ∈ Rd−1, and an orthonormal coordinate system CSQ with
origin at Q such that

BD(Q, R̂) =
{
y = (ỹ, yd) ∈ B(0, R̂) in CSQ : yd > Ψ(ỹ)

}
.(3.1)

When D is additionally assumed to be connected, then D is called a Lipschitz domain.

(ii) We say that D is a C1,1 open set with characteristics (R̂,Λ), if for each Q ∈ ∂D, there exist
a C1,1 function Ψ = ΨQ : Rd−1 → R with

Ψ(0̃) = |∇Ψ(0̃)| = 0 and |∇Ψ(ỹ)−∇Ψ(z̃)| ≤ Λ|ỹ − z̃| for all ỹ, z̃ ∈ Rd−1,(3.2)

and an orthonormal coordinate system CSQ with origin at Q such that (3.1) holds.

3.1. Lipschitz open sets. In this subsection, we assume that D ⊂ Rd is a Lipschitz open set

with localization radius R̂ and Lipschitz constant Λ0. It is known that D satisfies the measure
density condition, that is, there exists C > 0 depending only on d and Λ0 such that

md(BD(x0, r)) ≥ Crd for all x0 ∈ D, 0 < r ≤ R̂.(3.3)

For Q ∈ ∂D and x = (x̃, xd) ∈ BD(Q, R̂) in CSQ, we define

ρD(x) = ρQD(x) := xd −Ψ(x̃),

where Ψ = ΨQ is the function in (3.1). For a, b ∈ (0, R̂/(2 + Λ0)] and Q ∈ ∂D, we let

UQ(a, b) :=
{
x ∈ D : x = (x̃, xd) in CSQ with |x̃| < a, 0 < ρD(x) < b

}
,(3.4)

and refer to UQ(a, b) as the box based at Q of width a and height b, see Figure 1. For the half
space, the box is simply

UH(a, b) :=
{
y = (ỹ, yd) ∈ H : |ỹ| < a, 0 < yd < b

}
.(3.5)

We write UH(a) for UH(a, a) and U
Q(a) for UQ(a, a).

When we work with a fixed Q ∈ ∂D, we will sometimes write U(a, b) for UQ(a, b), and U(a)
for UQ(a).
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Figure 1. The set UQ(a, b)

Lemma 3.2. Let Q ∈ ∂D. The following statements hold.

(i) For any 0 < r ≤ R̂/(2 + Λ0),

BD(Q, (1 + Λ0)
−1r) ⊂ U(r) ⊂ BD(Q, (

√
2 + Λ0)r).

(ii) Set Λ1 := Λ0 ∨ (1/2). For any x ∈ U(R̂/(6 + 4Λ0)),

(1 + Λ2
1)

−1/2ρD(x) ≤ δD(x) ≤ ρD(x).

Proof. (i) For any x = (x̃, xd) ∈ BD(Q, (1 + Λ0)
−1r) in CSQ, we have |x̃| ≤ |x| < r and

ρD(x) ≤ |xd|+ |Ψ(x̃)| ≤ |xd|+Λ0|x̃| ≤ (1 + Λ0)|x| < r. Hence, BD(Q, (1 + Λ0)
−1r) ⊂ U(r). On

the other hand, for any x = (x̃,Ψ(x̃) + ρD(x)) ∈ U(r), it holds that

|x|2 ≤ |x̃|2 + (Λ0|x̃|+ ρD(x))
2 < r2 + (1 + Λ0)

2r2 < (
√
2 + Λ0)

2r2.

Thus U(r) ⊂ BD(Q, (
√
2 + Λ0)r).

(ii) Let x = (x̃,Ψ(x̃) + ρD(x)) ∈ U(R̂/(6 + 4Λ0)) in CSQ. It is clear that δD(x) ≤ ρD(x). To
prove the other inequality, we define

A = {(x̃+ z̃, zd) : Λ1|z̃| < zd −Ψ(x̃) < R̂/4}.

We claim that A ⊂ D. Indeed, for any (x̃ + z̃, zd) ∈ A, since |z̃| ≤ Λ−1
1 R̂/4 ≤ R̂/2 and

|Ψ(x̃)| ≤ Λ0|x̃|, we have

|(x̃+ z̃, zd)| ≤ |x̃|+ |z̃|+ |zd −Ψ(x̃)|+ |Ψ(x̃)|

< ((6 + 4Λ0)
−1 + 1/2 + 1/4 + Λ0(6 + 4Λ0)

−1)R̂ < R̂

and Ψ(x̃+ z̃) ≤ Ψ(x̃) + Λ0|z̃| < zd. Therefore, (x̃+ z̃, zd) ∈ D and the claim holds true. Using

the claim, we obtain δD(x) ≥ δA(x) = (1 + Λ2
1)

−1/2ρD(x). 2

For Q ∈ ∂D and r ∈ (0, R̂/(6 + 3Λ0)], we define f (r) = f
(r)
Q : UH(3) → U(3r) by

(3.6) f (r)(v) = f (r)(ṽ, vd) := (rṽ, rvd +Ψ(rṽ)).

Then f (r) is a diffeomorphism from UH(3) onto U(3r) with Jacobian |Df (r)(v)| = rd for every

v ∈ UH(3). Moreover, ρD(f
(r)(v)) = rvd for all v ∈ UH(3).

Lemma 3.3. Let Q ∈ ∂D and 0 < r ≤ R̂/(6 + 3Λ0). For any v, w ∈ UH(3),

(3.7) (1 + Λ0)
−1r|v − w| ≤ |f (r)(v)− f (r)(w)| ≤ (1 + Λ0)r|v − w|.
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Proof. Let v, w ∈ UH(3). Using the Lipschitz property of Ψ, we have

|f (r)(v)− f (r)(w)| ≤ r|v − w|+ |Ψ(rṽ)−Ψ(rw̃)|
≤ r|v − w|+ rΛ0|ṽ − w̃| ≤ r(1 + Λ0)|v − w|,

which proves the second inequality in (3.7). For the first inequality in (3.7), we note that if
|ṽ − w̃| ≥ |v − w|/(1 + Λ0), then

|f (r)(v)− f (r)(w)| ≥ r|ṽ − w̃| ≥ r|v − w|/(1 + Λ0)

and if |ṽ − w̃| < |v − w|/(1 + Λ0), then

|f (r)(v)− f (r)(w)| ≥ r|v − w| − |Ψ(rṽ)−Ψ(rw̃)|
≥ r|v − w| − rΛ0|ṽ − w̃| ≥ r|v − w|/(1 + Λ0).

The proof is complete. 2

A connected open set A ⊂ Rd is called a c0-John domain, c0 ≥ 1, if any x, y ∈ A can be
joined by a rectifiable curve g : [0, l] → A parameterized by arc length such that δA(g(s)) ≥
(s ∧ (l − s))/c0 for all s ∈ [0, l].

Lemma 3.4. For any x0 ∈ D and 0 < r ≤ (2 + Λ0)
−2R̂/3, there is a 2(1 + Λ0)

4-John domain
A such that BD(x0, r) ⊂ A ⊂ BD(x0, 2(2 + Λ0)

2r).

Proof. When δD(x0) ≥ r, one can simply take A := B(x0, r) = BD(x0, r), which is 1-John
domain.

Now, we assume that δD(x0) < r. Let Qx0 ∈ ∂D be such that δD(x0) = |x0 −Qx0 |. Set

r′ := (1 + Λ0)r ∈ (0, R̂/(6 + 3Λ0)] and A := UQx0 (2r′).

Then A ⊂ BD(Qx0 , 2(
√
2 + Λ0)r

′) ⊂ BD(x0, 2(2 + Λ0)
2r) and A ⊃ BD(Qx0 , 2r) ⊃ BD(x0, r) by

Lemma 3.2(i).

Let x ∈ A and v := (f (r
′))−1(x) ∈ UH(2), where f

(r′) is the function defined in (3.6). For
every u ∈ [0, 1], by the convexity of UH(2), we see that (1−u)v+ued ∈ UH(2). Define a function
ĝx : [0, 1] → A by

ĝx(u) = f (r
′)((1− u)v + ued).

Let gx(s) = ĝx(hx(s)), s ∈ [0, lx], be the reparametrization of ĝx by arc length. Note that
gx(0) = ĝx(0) = x and gx(lx) = ĝx(1) = ed. Moreover, by Lemma 3.3,

sup
u∈[0,1]

|∇ĝx(u)| ≤ (1 + Λ0)|v − ed| r′ ≤ 2(1 + Λ0)
2r.

Hence, we have

inf
s∈(0,lx)

h′x(s) ≥
(

sup
u∈[0,1]

|∇ĝx(u)|
)−1

≥ 2−1(1 + Λ0)
−2r−1|v − v0|−1,

which yields that hx(s) ≥ 2−1(1 + Λ0)
−2r−1s for all s ∈ [0, lx]. Using this and Lemma 3.3, we

get that for all s ∈ (0, lx),

δA(gx(s)) = inf
{
|gx(s)− f (r

′)(w)| : w ∈ ∂UH(2)
}

(3.8)

= inf
{
|f (r′)((1− hx(s))v + hx(s)ed)− f (r

′)(w)| : w ∈ ∂UH(2)
}

≥ r

(1 + Λ0)2
inf

{
|(1− hx(s))v + hx(s)ed − w| : w ∈ ∂UH(2)

}
=

r

(1 + Λ0)2

[(
2− (1− hx(s))|ṽ|

)
∧
(
2− (1− hx(s))vd − hx(s)

)
∧
(
(1− hx(s))vd + hx(s)

)]
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≥ r

(1 + Λ0)2
[
(2hx(s)) ∧ hx(s) ∧ hx(s)

]
≥ 2−1(1 + Λ0)

−4s.

Pick any x, y ∈ A. Define g : [0, lx + ly] → A by g(s) = gx(s) if s ∈ [0, lx] and g(s) =
gy(lx + ly − s) if s ∈ [lx, lx + ly]. By (3.8), we have δA(g(s)) ≥ 2−1(1 + Λ0)

−4(s ∧ (lx + ly − s))
for all s ∈ [0, lx + ly]. Thus, A is a 2(1 + Λ0)

4-John domain. The proof is complete. 2

Lemma 3.5. There exists a family {Ai : i ≥ 1} of 2(1 + Λ0)
4-John domains satisfying the

following properties:

c1R̂
d ≤ md(Ai) ≤ c2R̂

d for all i ≥ 1,(3.9)

{x ∈ D : δD(x) < (2 + Λ0)
−2R̂/18} ⊂ ∪i≥1Ai ⊂ {x ∈ D : δD(x) < 2R̂/3},(3.10) ∑

i≥1

1Ai ≤ c3 on D,(3.11)

where c1, c2, c3 > 0 are constants depending only on d and Λ0.

Proof. Let r0 := (2+Λ0)
−2R̂/18. By the Vitali covering lemma, there exists a family of disjoint

open balls {B(Qi, r0) : i ≥ 1} with Qi ∈ ∂D for all i ≥ 1 such that ∂D ⊂ ∪i≥1B(Qi, 5r0). For
each i ≥ 1, by Lemma 3.4, there exists a 2(1 + Λ0)

4-John domain Ai such that BD(Qi, 6r0) ⊂
Ai ⊂ BD(Qi, 12(2 + Λ0)

2r0).
(3.9) follows from (3.3). We have ∪i≥1Ai ⊂ {x ∈ D : δD(x) < 12(2 + Λ0)

2r0}. Let x ∈ D be
such that δD(x) < r0 and Qx ∈ ∂D be such that |x−Qx| = δD(x). Since ∂D ⊂ ∪i≥1B(Qi, 5r0),
Qx ∈ B(Qi, 5r0) for some i ≥ 1. Then x ∈ BD(Qi, 6r0) ⊂ Ai so that (3.10) holds. For
(3.11), suppose that y ∈ D is in N of the sets Ai, i ≥ 1. Then y is in at least N of the sets
BD(Qi, 12(2 + Λ0)

2r0). Consequently, B(y, (12(2 + Λ0)
2 + 1)r0) contains at least N of the sets

BD(Qi, r0). Since BD(Qi, r0), i ≥ 1, are disjoint, using (3.3), we get that

c3Nr
d
0 ≤

∑
i:y∈Ai

md(BD(Qi, r0)) ≤ md(B(y, (12(2 + Λ0)
2 + 1)r0)) ≤ c4r

d
0 .

Hence N ≤ c4/c3, proving that (3.11) holds. 2

Lemma 3.6. There exists a family {Bi : i ≥ 1} of open balls of radius (2+Λ0)
−2R̂/36 satisfying

the following properties:

{x ∈ D : δD(x) ≥ (2 + Λ0)
−2R̂/36} ⊂ ∪i≥1Bi ⊂ D,(3.12) ∑

i≥1

1Bi ≤ c1 on D,(3.13)

where c1 > 0 is a constant depending only on d and Λ0.

Proof. Let r0 := (2 + Λ0)
−2R̂/18 and D0 := {x ∈ D : δD(x) ≥ r0/2}. By the Vitali covering

lemma, there exists a family of disjoint open balls {B(xi, r0/10) : i ≥ 1} with xi ∈ D0 for all
i ≥ 1 such that D0 ⊂ ∪i≥1B(xi, r0/2). Let Bi := B(xi, r0/2) for i ≥ 1. Then (3.12) holds.
Moreover, by repeating the argument for (3.11) in the proof of Lemma 3.5, we deduce that
(3.13) holds. 2

3.2. C1,1 open sets. In this subsection, we assume that D ⊂ Rd is a C1,1 open set with

characteristics (R̂,Λ) such that R̂ ≤ 1 ∧ (1/(2Λ)). See Definition 2.1. Note that

the Lipschitz constant Λ0 of ∂D is at most ΛR̂ ≤ 1/2.(3.14)

It follows from Lemma 3.2 that for any Q ∈ ∂D and 0 < r ≤ R̂/8,

BD(Q, 2r/3) ⊂ UQ(r) ⊂ BD(Q, 2r)(3.15)
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and

(2/
√
5)ρD(x) ≤ δD(x) ≤ ρD(x) for all x ∈ UQ(R̂/8).(3.16)

Let Q ∈ ∂D. Let Ψ = ΨQ : Rd−1 → R be a C1,1 function and CSQ be an orthonormal
coordinate system with origin at Q such that (3.1) and (3.2) hold. Note that |∇Ψ(ỹ)| ≤ Λ|ỹ| ≤
|ỹ|/R̂ for any ỹ ∈ Rd−1. Hence, we have

|Ψ(ỹ)| ≤ |ỹ| sup
|z̃|≤|ỹ|

|∇Ψ(z̃)| ≤ R̂−1|ỹ|2 for all ỹ ∈ Rd−1.(3.17)

Let ν ∈ (0, 1]. We define for r ∈ (0, R̂/4],

EQν (r) :=
{
y = (ỹ, yd) in CSQ : |ỹ| < r/4, 4r−ν |ỹ|1+ν < yd < r/2

}
,

ẼQν (r) :=
{
y = (ỹ, yd) in CSQ : |ỹ| < r/4, 4r−ν |ỹ|1+ν < −yd < r/2

}
,

SQ(r) :=
{
y = (ỹ, yd) in CSQ : |(ỹ, yd)− red| < r

}
,

S̃Q(r) :=
{
y = (ỹ, yd) in CSQ : |(ỹ, yd) + red| < r

}
,

(3.18)

see Figure 2. For any 0 < ν ≤ ν ′ ≤ 1, r ∈ (0, R̂/4] and ỹ ∈ Rd−1 with |ỹ| < r/4, by (3.17),

4r−ν |ỹ|1+ν ≥ 4r−ν
′ |ỹ|1+ν′ ≥ 4r−1|ỹ|2 ≥ |Ψ(ỹ)|.

Hence, we have

EQν (r) ⊂ EQν′(r) ⊂ EQ1 (r) ⊂ D.(3.19)

When we work with a fixed Q ∈ ∂D, we write Eν(r), Ẽν(r), S(r) and S̃(r) instead of EQν (r),

ẼQν (r), SQ(r) and S̃Q(r) respectively.

Figure 2. The set EQ
ν (r). Left ν = 0.2; Right ν = 0.8.

Lemma 3.7. Let Q ∈ ∂D, ν ∈ (0, 1] and r ∈ (0, R̂/4]. The following statements hold in the
coordinate system CSQ.

(i) For any y = (ỹ, yd) ∈ BD(Q, R̂), we have δD(y) ≤ yd + R̂−1|ỹ|2.
(ii) Eν(r) ⊂ S(r) ⊂ D and Ẽν(r) ⊂ S̃(r) ⊂ Rd \D.
(iii) For any y = (ỹ, yd) ∈ Eν(r), we have

3yd/4 ≤ yd − r−1|ỹ|2 ≤ δS(r)(y) ≤ δD(y) ≤ 2yd.

In particular,
δD(y) ≍ δS(r)(y) ≍ yd for y ∈ Eν(r).
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Proof. (i) Since δD(y) ≤ yd+ |Ψ(ỹ)| for all y = (ỹ, yd) ∈ BD(Q, R̂), we get the result from (3.17).
(ii) For any y ∈ Eν(r), since 2r−1(r − yd) ≥ 1, we have

δS(r)(y) = r −
√
|ỹ|2 + (r − yd)2 ≥ r −

√
(r − yd + r−1|ỹ|2)2

= yd − r−1|ỹ|2 ≥ yd − r−ν |ỹ|1+ν ≥ 3yd/4 > 0.

Hence, Eν(r) ⊂ S(r). Besides, by (3.17), we see that for any ỹ ∈ Rd−1 with |ỹ| < r,

r −
√
r2 − |ỹ|2 ≥ r −

√
(r − r−1|ỹ|2/2)2 = r−1|ỹ|2/2 ≥ 2R̂−1|ỹ|2 ≥ |Ψ(ỹ)|.

Hence, Eν(r) ⊂ S(r) ⊂ D. Since Rd \D is also a C1,1 open set with characteristics (R̂,Λ), we

also get that Ẽν(r) ⊂ S̃(r) ⊂ Rd \D.

(iii) For y ∈ Eν(r), we have R̂−1|ỹ|2 ≤ 4r−1|ỹ|2 ≤ 4r−ν |ỹ|1+ν < yd. Now we get the result
from (i) and (ii). 2

4. Properties of processes Y and Y κ

The following are our standing assumptions on B(x, y) in Sections 4 through 10 of this work:

(B1) B(x, y) = B(y, x) for all x, y ∈ D.

(B2-a) There exists a constant C1 > 0 such that B(x, y) ≤ C1 for all x, y ∈ D.

(B2-b) For any a ∈ (0, 1], there exists a constant C2 = C2(a) > 0 such that

B(x, y) ≥ C2 for all x, y ∈ D with δD(x) ∧ δD(y) ≥ a|x− y|.

In this section we assume that D ⊂ Rd is a Lipschitz open set with localization radius R̂ and
Lipschitz constant Λ0 and we study the processes Y and Y κ in D.

For the process Y κ, we introduce the conditions (K1) and (K2) on the killing potential κ and
work under these conditions. The main goal is to establish the parabolic Hölder regularity and
parabolic Harnack inequality for these processes, and interior estimates of the Green function
of Y κ.

4.1. Analysis and properties of Y . Recall from Section 2 that Y is a Hunt process in D
associated with the regular Dirichlet form (E0,F) and the exceptional set N ′. Since the jump
kernel B(x, y)|x − y|−d−αdxdy of (E0,F) is absolutely continuous with respect to md ⊗md, by
using [36, (5.3.15)] and repeating the arguments in [21, p. 40], one sees that Y satisfies the
following Lévy system formula: For any x ∈ D, any non-negative Borel function f on D × D
vanishing on the diagonal, and any stopping time τ ,

Ex
[∑
s≤τ

f(Y s−, Y s)

]
= Ex

[∫ τ

0

∫
D

f(Y s, y)B(Y s, y)

|Y s − y|d+α
dy ds

]
.(4.1)

For each ρ > 0, define a bilinear form (E0,(ρ),F) by

E0,(ρ)(u, v) =
1

2

∫∫
D×D, |x−y|<ρ

(u(x)− u(y))(v(x)− v(y))
B(x, y)

|x− y|d+α
dxdy.(4.2)

By (B2-a), for all ρ > 0 and u ∈ F , we have

E0(u, u)− E0,(ρ)(u, u) ≤ C1

∫
D
u(x)2

∫
D, |x−y|≥ρ

dy

|x− y|d+α
dx ≤ c1

ρα
∥u∥2L2(D).(4.3)

In particular, we have,

E0,(ρ)
1 (u, u) ≤ E0

1 (u, u) ≤ (1 + c1ρ
−α)E0,(ρ)

1 (u, u),

implying that E0 and E0,(ρ) have same sets of capacity zero, and therefore, by [36, Theorem
4.2.1(ii)], same exceptional sets.
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For a Borel set A ⊂ Rd with md(A) ∈ (0,∞) and u ∈ L1(A), we let

uA :=
1

md(A)

∫
A
u dx.

In the following two propositions we establish a Nash-type inequality and, consequently, the
existence and a preliminary upper bound of the transition densities of Y (or the heat kernel of
the corresponding semigroup).

Proposition 4.1. There exists C > 0 depending only on d, α, R̂ and Λ0 such that

(4.4) ∥u∥2+2α/d
L2(D)

≤ CE0
1 (u, u) for all u ∈ F with ∥u∥L1(D) = 1.

Proof. By Lemma 3.5, there exists a family {Ai : i ≥ 1} of 2(1 + Λ0)
4-John domains satisfying

(3.9)–(3.11), and by Lemma 3.6, there exists a family {Bi : i ≥ 1} of open balls of radius

(2 + Λ0)
−2R̂/36 satisfying (3.12) and (3.13). Write {Di : i ≥ 1} := {Ai : i ≥ 1} ∪ {Bi : i ≥ 1}.

Then {Di : i ≥ 1} is an open covering of D, and by (3.11) and (3.13),∑
i≥1

1Di ≤ c1 on D.(4.5)

Moreover, since every open ball in Rd is a 1-John domain, Di are 2(1 + Λ0)
4-John domains.

Let u ∈ F be such that ∥u∥L1(D) = 1. By (3.10), for all i ≥ 1 and z ∈ Di, we have

δDi(z)/2 < R̂. Hence, by using (B2-b) and (4.5), we see that

E0,(R̂)(u, u) ≥ C2

2

∫
D

∫
B(z,(δD(z)/2)∧R̂)

(u(z)− u(y))2

|z − y|d+α
dydz

≥ c2

∞∑
i=1

∫
Di

∫
B(z,(δD(z)/2)∧R̂)

(u(z)− u(y))2

|z − y|d+α
dydz

≥ c2

∞∑
i=1

∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz.

(4.6)

Observe that

∥u∥2L2(D) ≤
∞∑
i=1

∥u∥2L2(Di)
≤ 2

∞∑
i=1

(uDi)
2md(Di) + 2

∞∑
i=1

∥u− uDi∥2L2(Di)
.(4.7)

By (4.5), for all i ≥ 1,

∥u∥L1(Di) ≤
∞∑
j=1

∥u∥L1(Dj) ≤ c1∥u∥L1(D) = c1.(4.8)

Using Hölder’s inequality in the second line below, and (4.8) in the third, we get

∞∑
i=1

(uDi)
2md(Di) ≤

∞∑
i=1

md(Di)
−1∥u∥2L1(Di)

≤

[ ∞∑
i=1

md(Di)
−(d+α)/d∥u∥(2d+α)/d

L1(Di)

]d/(d+α) [ ∞∑
i=1

∥u∥L1(Di)

]α/(d+α)

≤ c1

[ ∞∑
i=1

md(Di)
−(d+α)/d∥u∥2L1(Di)

]d/(d+α)

≤ c1

[ ∞∑
i=1

md(Di)
−α/d∥u∥2L2(Di)

]d/(d+α)
.

(4.9)
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By (3.9) and since Bi are open balls of radius (2 + Λ0)
−2R̂/36, we have md(Di) ≥ c3R̂

d for all
i ≥ 1. Hence, it follows from (4.9) that

∞∑
i=1

(uDi)
2md(Di) ≤

c1

(c3R̂d)α/(d+α)

[ ∞∑
i=1

∥u∥2L2(Di)

]d/(d+α)
≤ c4∥u∥2d/(d+α)L2(D)

,(4.10)

where we used (4.5) in the second inequality above. Since Di are 2(1 + Λ0)
4-John domains, by

[45, Theorem 3.1], there exists c5 > 0 such that for all i ≥ 1,

∥u− uDi∥2L2d/(d−α)(Di)
≤ c5

∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz.(4.11)

Using Hölder’s inequality in the first and the third inequalities below, and (4.11) in the second,
we obtain

∞∑
i=1

∥u− uDi∥2L2(Di)

≤
∞∑
i=1

∥u− uDi∥
2α/(d+α)
L1(Di)

∥u− uDi∥
2d/(d+α)

L2d/(d−α)(Di)

≤ c6

∞∑
i=1

(
2∥u∥L1(Di)

)2α/(d+α)(∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

)d/(d+α)

≤ c6

[ ∞∑
i=1

(
2∥u∥L1(Di)

)2]α/(d+α) [ ∞∑
i=1

∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

]d/(d+α)
.

By (4.8),

∞∑
i=1

(
2∥u∥L1(Di)

)2 ≤ 4c1
∑
i≥1

∥u∥L1(Di) ≤ 4c21.

Therefore, it holds that

∞∑
i=1

∥u− uDi∥2L2(Di)
≤ c7

[ ∞∑
i=1

∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

]d/(d+α)
.(4.12)

Combining (4.7), (4.10), (4.12) and (4.6), and using (4.3), we arrive at

∥u∥2+2α/d
L2(D)

≤ c7

∞∑
i=1

∫
Di

∫
B(z,δDi

(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz + c7∥u∥2L2(D)

≤ c8E0,(R̂)(u, u) + c7∥u∥2L2(D) ≤ c8E0(u, u) + c9(1 + R̂−α)∥u∥2L2(D).

The proof is complete. 2

Denote by (P t)t≥0 the semigroup of Y .

Proposition 4.2. The process Y has a transition density p(t, x, y) defined on (0,∞) × (D \
N ) × (D \ N ), where N ⊃ N ′ is a properly exceptional set for Y . Moreover, for any T > 0,
there exists a constant C = C(T ) > 0 such that

(4.13) p(t, x, y) ≤ C

(
t−d/α ∧ t

|x− y|d+α

)
, 0 < t ≤ T, x, y ∈ D \ N .
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Proof. By Proposition 4.1 and [15, Theorem 2.1], there exists c1 > 0 such that for any t > 0
and f ∈ L1(D),

∥P tf∥L∞(D) ≤ c1t
−d/αet∥f∥L1(D).(4.14)

By (4.14) and [4, Theorem 3.1], one sees that Y has a transition density p(t, x, y) on (0,∞) ×
(D \ N ′′)× (D \ N ′′) for a properly exceptional set N ′′ ⊃ N ′ and

(4.15) p(t, x, y) ≤ c1t
−d/αet, t > 0, x, y ∈ D \ N ′′.

Further, p(t, ·, y) and p(t, y, ·) are quasi-continuous in D for every t > 0 and y ∈ D \ N ′′.
To obtain the off-diagonal upper bounds for p(t, x, y), we follow the arguments given in [18,

Example 5.5]. Let

δ =
α

3(d+ α)
.

By Proposition 4.1 and (4.3), there exist c2, c3 > 0 such that for all ρ ∈ δQ+ and u ∈ F with
∥u∥L1(D) ≤ 1,

(4.16) c2∥u∥2+2α/d
L2(D)

≤ E0,(ρ)(u, u) + (1 + c3ρ
−α)∥u∥2L2(D).

Using the same argument as in (4.14) and (4.15), and [36, Theorem 4.1.1], it follows from (4.16)

that there exists a properly exceptional set Nρ (with respect to both (E0,F) and (E0,(ρ),F))

contained in D such that the Hunt process associated with (E0,(ρ),F) has a transition density

p(ρ)(t, x, y) defined on (0,∞) × (D \ Nρ) × (D \ Nρ) satisfying the following estimate: There

exists c4 > 0 independent of ρ ∈ δQ+ such that, for all t > 0 and x, y ∈ D \ Nρ,

p(ρ)(t, x, y) ≤ c4t
−d/α exp

(
t+

c3t

ρα

)
.

Let

N :=

( ⋃
ρ∈δQ+

Nρ

)
∪N ′′.

Then N is a properly exceptional set. For x1, x2 ∈ D and s > 0, define

ψx1,x2s (z) :=
s

3
(|z − x1| ∧ |x1 − x2|), z ∈ D

and

Γρ[ψ](z) :=
1

2

∫
D, |z−y|<ρ

(eψ(z)−ψ(y) − 1)2
B(z, y)

|z − y|d+α
dy.

Using (B2-a) and repeating the elementary argument of [18, p. 36], we see that for all ρ ∈ δQ+,
x1, x2 ∈ D and s > 0,

Hρ(ψ
x1,x2
s ) := ∥Γρ[ψx1,x2s ]∥L∞(D) ∨ ∥Γρ[−ψx1,x2s ]∥L∞(D) ≤

c5e
sρ

ρα
.(4.17)

Hence, by (4.16) and [18, Theorem 1.2], there exists c6 > 0 independent of ρ such that, for all
t > 0 and x, y ∈ D \ N ,

p(ρ)(t, x, y) ≤ c6t
−d/α exp

(
t+

c3t

ρα
− sup

s>0

[
|ψx,ys (y)− ψx,ys (x)|+ 2tHρ(ψ

x1,x2
s )

])
≤ c6t

−d/α exp

(
t+

c3t

ρα
− sup

s>0

[
s|x− y|

3
− 2c5te

sρ

ρα

])
,

(4.18)

where we used (4.17) in the second inequality above.

Let t > 0 and x, y ∈ D \ N with |x− y| > 2t1/α. Let qx,y ∈ Q+ such that |x− y|/2 ≤ qx,y ≤
|x− y|. By taking

ρ = δqx,y and s =
1

δqx,y
log

(
qαx,y
t

)
,
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we get from (4.18) that

p(ρ)(t, x, y) ≤ c6t
−d/α exp

(
t+

c3t

δαqαx,y
− 1

3δ

|x− y|
qx,y

log

(
qαx,y
t

)
+

2c5
δα

)
≤ c6t

−d/α exp

(
t+

c3t

δαqαx,y
− 1

3δ
log

(
qαx,y
t

)
+

2c5
δα

)
≤ c6e

t+(c3+2c5)/δαt−d/α
(

t

qαx,y

)1/(3δ)

=
c7e

tt

qd+αx,y

≤ 2d+αc7e
tt

|x− y|d+α
.

(4.19)

By [5, Lemma 3.1(c)] and the quasi-continuity of p(t, x, ·), using (4.19) and (B2-a), we arrive
at

p(t, x, y) ≤ p(δqx,y)(t, x, y) + sup
z,w∈D:|z−w|>δqx,y

tB(z, w)
|z − w|d+α

≤ c8e
tt

|x− y|α
.

Combining this with (4.15), we get the desired result. 2

For an open set U ⊂ D relative to the topology on D, we let

τU := inf{t > 0 : Y t /∈ U}.

By a standard argument, since (E0,F) is conservative, we get the following result from Propo-
sition 4.2, see, e.g., the proof of [24, Lemma 2.7].

Lemma 4.3. For any T > 0, there exists C = C(T ) > 0 such that for all x0 ∈ D \ N , r > 0
and 0 < t ≤ T ,

Px0(τBD(x0,r) ≤ t) ≤ Ctr−α.

A consequence of this lemma is the following statement: For any T > 0, there exists c =
c(T ) > 0 such that for all 0 < r ≤ (T/c)1/α, Px0(τBD(x0,r) ≤ crα) ≤ 1/2.

In the next proposition, we obtain a local fractional Poincaré inequality for E0. This inequality
will be used to obtain a near diagonal lower estimate for Dirichlet heat kernels.

Recall that uA := 1
md(A)

∫
A u dx.

Proposition 4.4. Set k0 := 3(2 + Λ0)
2. There exists C > 0 such that for all x0 ∈ D, 0 < r ≤

R̂/k0 and any u ∈ F ,∫
BD(x0,r)

(u(z)− uBD(x0,r))
2dz

≤ Crα
∫∫

BD(x0,k0r)×BD(x0,k0r)
(u(z)− u(y))2

B(z, y)
|z − y|d+α

dzdy.

Proof. Let x0 ∈ D and 0 < r ≤ R̂/k0. We write B := BD(x0, r) and B′ := BD(x0, k0r). By
Lemma 3.4, there is a 2(1 + Λ0)

4-John domain A such that B ⊂ A ⊂ B′. Using (B2-b) in the
second line, [45, Theorem 3.1] in the third, Hölder’s inequality in the fifth and (3.3) in the sixth,
we get that for all u ∈ F ,∫∫

B′×B′
(u(z)− u(y))2

B(z, y)
|z − y|d+α

dzdy ≥
∫∫

A×A
(u(z)− u(y))2

B(z, y)
|z − y|d+α

dzdy

≥ C2

∫
A

∫
B(z,δA(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

≥ c1 inf
a∈R

(∫
A
|u(z)− a|2d/(d−α)dz

)(d−α)/d
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≥ c1 inf
a∈R

(∫
B
|u(z)− a|2d/(d−α)dz

)(d−α)/d

≥ c1

md(B)α/d
inf
a∈R

∫
B
|u(z)− a|2dz

≥ c2
rα

inf
a∈R

∫
B
|u(z)− a|2dz.

Since infa∈R
∫
B |u(z)− a|2dz =

∫
B(u(z)− uB)

2dz, we arrive at the result. 2

Denote by Y
U

the part of the process Y killed upon exiting U . By Proposition 4.1 and [4,

Theorem 3.1], Y
U
has a transition density pU (t, x, y) with respect to the Lebesgue measure on

U .
Now we establish a near diagonal lower estimate on pB(x0,r) for x0 ∈ D and 0 < r ≤ R0. This

estimate plays a crucial role in the probabilistic arguments for establishing parabolic Hölder
regularity and parabolic Harnack inequality.

Proposition 4.5. Let R0 > 0 and b ∈ (0, 1). There exists C = C(R0, b) > 0 such that for any
x0 ∈ D, 0 < r ≤ R0 and 0 < t ≤ (br)α, it holds that

pBD(x0,r)(t, z, y) ≥ Ct−d/α for all y, z ∈ BD(x0, bt
1/α) \ N .

Proof. Using (3.3), (2.1), Proposition 4.2, [23, Remark 1.19] and [24, Theorem 1.15], we see that
a local version of the condition CSJ(ϕ) in [23] holds with ϕ(r) = rα. Proposition 4.4 says that
a local version of the Poincaré inequality PI(ϕ) in [23] holds for E0 with ϕ(r) = rα. Now using
(B2-a), the local CSJ(ϕ) condition, Proposition 4.4 and [23, Remark 1.19], we get the following
near diagonal lower estimates: There exist constants c0 > 0, c1, c2 ∈ (0, 1) such that for any

x0 ∈ D, 0 < r ≤ c1R̂ and 0 < t ≤ (c2r)
α, it holds that

pBD(x0,r)(t, z, y) ≥ c0t
−d/α for all y, z ∈ BD(x0, c2t

1/α) \ N .(4.20)

By taking c1 smaller if necessary, we assume that c1R̂ < R0.

It suffices to prove the proposition for b ∈ ((1− c1R̂/R0)
1/2, 1). Fix x0 ∈ D and 0 < r ≤ R0,

and write B := BD(x0, r). Let b ∈ ((1− c1R̂/R0)
1/2, 1), then (1− b2)r < (1− b2)R0 < c1R̂. Let

0 < t ≤ (br)α and y, z ∈ BD(x0, bt
1/α) \ N . Fix a constant N ∈ N such that

N−1/α < c2(1− b2)/b.

Using this and the fact that t ≤ (br)α, we have

BD(y, (1− b2)r) ⊂ B and (εt)1/α < brN−1/α < c2(1− b2)r(4.21)

where ε := 1/(N + 1). Set lt = c2(εt)
1/α, then by the semigroup property, (4.21), (4.20) and

(3.3), we obtain

pB(t, z, y) ≥
∫
BD(y,lt)

· · ·
∫
BD(y,lt)

pB(εt, z, w1) p
BD(y,(1−b2)r)(εt, w1, w2)×

· · · × pBD(y,(1−b2)r)(εt, wN−1, wN ) p
BD(y,(1−b2)r)(εt, wN , y) dw1 · · · dwN

≥ (c0(εt)
−d/α)Nmd(BD(y, lt))

N−1

∫
BD(y,lt)

pB(εt, z, w1)dw1

≥ c3t
−d/α

∫
BD(y,lt)

pB(εt, z, w1)dw1.
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Therefore, to obtain the desired result, it suffices to show that there exists a constant c4 > 0
independent of x0 ∈ D, 0 < r ≤ R0, 0 < t ≤ (br)α and y, z ∈ BD(x0, bt

1/α) \ N such that∫
BD(y,lt)

pB(εt, z, w1)dw1 ≥ c4.(4.22)

If |y − z| < lt, then by using (4.20) and (3.3), we get∫
BD(y,lt)

pB(εt, z, w1)dw1 ≥
∫
BD(y,lt)

pBD(y,(1−b2)r)(εt, z, w1)dw1

≥ c0(εt)
−d/αmd(BD(y, lt)) ≥ c5.

Hence, (4.22) holds true in this case.

We now assume that |y−z| ≥ lt. SinceD a Lipschitz open set, there exist y0 ∈ BD(y, 2
−2/α−2 lt)

and c6 ∈ (0, 1/4), depending only on Λ0, z0 ∈ BD(z, 2
−2/α−2 lt), such that for kt := c62

−2/α−2 lt,
it holds that

B(z0, 4kt) ∪B(y0, 4kt) ⊂ D.

Note that

B(z0, 2kt) ⊂ BD(z, 2
−2/α−1 lt) and B(y0, 2kt) ⊂ BD(y, 2

−2/α−1 lt).(4.23)

In particular, B(z0, 2kt) ∩ B(y0, 2kt) = ∅ since |y − z| ≥ lt. Set c7 := 1 ∨ C where C > 0 is the
constant in Lemma 4.3 (with T = Rα0 ) and let c8 := 2−3−2α(c2c6)

α/c7. Since c8 < 1/2, we have

2−2/α−1 lt < 2−1/α(1− c8)
1/αlt = c2(2

−1(1− c8)εt)
1/α.

Thus by (4.20), we have that, for all v ∈ B(z0, 2kt) \ N ,

pB(2−1(1− c8)εt, z, v) ≥ pBD(z,(1−b2)r)(2−1(1− c8)εt, z, v) ≥ c9t
−d/α(4.24)

and for all w,w1 ∈ B(y0, 2kt) \ N ,

pB(2−1(1− c8)εt, w,w1) ≥ pBD(y,(1−b2)r)(2−1(1− c8)εt, w,w1) ≥ c9t
−d/α.(4.25)

On the other hand, by the strong Markov property, we see that for any v ∈ B(z0, 2kt) \ N ,∫
B(y0,2kt)

pB(c8εt, v, w)dw = Pv
(
Y
B
c8εt ∈ B(y0, 2kt)

)
≥ Pv

(
Y
B
τB(v,kt)

∈ B(y0, kt), |Y B
c8εt − Y

B
τB(v,kt)

| < kt, τB(v,kt) ≤ c8εt
)

≥ Pv
(
Y
B
c8εt∧τB(v,kt)

∈ B(y0, kt)
)

inf
w∈BD(y,kt)

Pw
(
τBD(w,kt) ≥ c8εt

)
=: I1 × I2.

By Lemma 4.3, since kt = 2−2/α−2c2c6(εt)
1/α and c7c8(c2c6)

−α = 2−3−2α, we get

I2 ≥ 1− c7c8εtk
−α
t = 1− 22+2αc7c8(c2c6)

−α = 2−1.(4.26)

For I1, note that for any v ∈ B(z0, 2kt), v
′ ∈ B(v, kt) and w ∈ B(y0, kt), we have δD(v

′) ≥
δD(z0)−3kt ≥ kt, δD(w) ≥ δD(y0)−kt ≥ 3kt and |v′−w| ≤ |z0−y0|+4kt ≤ |z−y|+4kt+lt < 6t1/α.
Thus by (B2-b),

B(v′, w)|v′ − w|−d−α ≥ c|v′ − w|−d−α ≥ ct−1−d/α.

Using this and the Lévy system formula (4.1), since Y
B
s = Y

B(v,kt)
s for s < τB(v,kt), we obtain

I1 = Ev
[ ∫ c8εt∧τB(v,kt)

0

∫
B(y0,kt)

B(Y B(v,kt)
s , w)

|Y B(v,kt)
s − w|d+α

dwds

]
≥ c10t

−1−d/αkdt Ev[(c8εt) ∧ τB(v,kt)] = c11t
−1 Ev[(c8εt) ∧ τB(v,kt)].
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By Lemma 4.3 and (4.26), it holds that

Ev[(c8εt) ∧ τB(v,kt)] ≥ c8εtPv(τB(v,kt) ≥ c8εt) ≥ c8εt(1− c7c8εtk
−α
t ) = c8εt/2.

Therefore, I1 ≥ c12. Combining this with (4.26), (4.24) and (4.25), and using the semigroup
property, we arrive at∫

BD(y,lt)
pB(εt, z, w1)dw1 ≥

∫
B(y0,2kt)

∫
B(y0,2kt)

∫
B(z0,2kt)

pB(2−1(1− c8)εt, z, v)

× pB(c8εt, v, w) p
B(2−1(1− c8)εt, w,w1)dv dw dw1

≥ (c9t
−d/α)2md(B(y0, 2kt))

∫
B(y0,2kt)

∫
B(z0,2kt)

pB(c8εt, v, w)dv dw

≥ 2−1c12(c9t
−d/α)2md(B(y0, 2kt))md(B(z0, 2kt)) = c13,

which proves (4.22). The proof is complete. 2

By using (3.3) and Proposition 4.5, one can follow the proof of [23, Proposition 3.5(ii)] and
obtain the following proposition.

Proposition 4.6. For any R0 > 0, there exists C = C(R0) > 1 such that

C−1rα ≤ Ex0 [τBD(x0,r)] ≤ Crα for all x0 ∈ D \ N , 0 < r ≤ R0.(4.27)

Let Z := (Vs, Y s)s≥0 be the time-space process where Vs = V0 − s. The law of the time-space
process s 7→ Zs starting from (t, x) will be denoted by P(t,x). For an open subset U of [0,∞)×Rd,
define τZU = inf{s > 0 : Zs /∈ U}.

For x0 ∈ D and 0 ≤ a < b < ∞, a Borel function u : [0,∞)×D → R is said to be caloric in
(a, b]×BD(x0, r) with respect to Y if for every relatively compact open set U ⊂ (a, b]×BD(x0, r)
with respect to the topology on [0,∞)×D, it holds that u(t, z) = E(t,z)u(ZτZU

) for all (t, z) ∈ U

with z /∈ N .
By (2.1), (3.3) and Propositions 4.5 and 4.6, we deduce the following joint Hölder regularity

of bounded caloric functions from [23, Proposition 3.8].

Theorem 4.7. Let R0 > 0 and b ∈ (0, 1). There exist constants C = C(R0, b) > 0 and
λ = λ(R0) ∈ (0, 1] such that for all x ∈ D, 0 < r ≤ R0, t0 ≥ 0, and any bounded caloric function
u in (t0, t0 + rα]× BD(x, r) with respect to Y , there is a properly exceptional set Nu ⊃ N such
that

(4.28) |u(s, y)− u(t, z)| ≤ C

(
|s− t|1/α + |y − z|

r

)λ
ess sup

[t0,t0+rα]×D
|u|,

for all s, t ∈ (t0 + (1− bα)rα, t0 + rα] and y, z ∈ BD(x, br) \ Nu.

Corollary 4.8. Let f ∈ L1(D) and define u(t, x) = P tf(x) for t > 0 and x ∈ D \ N . Then
u has a jointly continuous version ũ in (0,∞) ×D satisfying the following estimates: For any
T > 0, there exist constants C = C(T ) > 0 and λ = λ(T ) ∈ (0, 1] such that for all 0 < t ≤ T ,

(4.29) sup
x∈D

|ũ(t, x)| ≤ Ct−d/α∥f∥L1(D)

and for any y, z ∈ D with |y − z| ≤ (t/2)1/α/2,

(4.30) |ũ(t, y)− ũ(t, z)| ≤ C

td/α

(
|y − z|
t1/α

)λ
∥f∥L1(D).
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Proof. Note that u is caloric in (0,∞)×D by the Markov property. For any T > 0, by Proposition
4.2, there exists c1 = c1(T ) > 0 such that for all t > 0,

∥u(t, ·)∥L∞(D) ≤ c1t
−d/α∥f∥L1(D).(4.31)

In particular, ∥u(t, ·)∥L∞(D) is locally bounded in (0,∞) as a function of t. Thus, by Theorem

4.7, one can deduce that u has a jointly continuous version ũ in (0,∞)×D. By (4.31), ũ satisfies

(4.29). Moreover, for each fixed T > 0 and any 0 < t ≤ T and y, z ∈ D with |y−z| ≤ (t/2)1/α/2,

by applying (4.28) with u = ũ, t0 = t/2, R0 = (T/2)1/α, r = (t/2)1/α and b = 1/2, we see from
(4.29) that (4.30) holds. 2

Remark 4.9. By Corollary 4.8, the transition density p(t, x, y) can be extended continuously to
(0,∞)×D×D by a standard argument. See the proof of [37, Lemma 5.13] (although conditions
(J) and (AB) are assumed in [37], the arguments in the proof there only use [37, (5.28) and
(5.29)] which can be replaced by (4.30) and (4.29), respectively). Consequently, Y can be refined
to be a strongly Feller process starting from every point in D and the exceptional set N in
Propositions 4.2, 4.5 and 4.6, and Lemma 4.3 can be taken to be the empty set.

For a closed subset E ⊂ D, let

σE := inf{t > 0 : Y t ∈ E}.
Lemma 4.10. Let R0 > 0 and b ∈ (0, 1). There exists C = C(R0, b) > 0 such that for all
x0 ∈ D, 0 < r ≤ R0 and any compact set K ⊂ BD(x0, br),

Px0(σK < τBD(x0,r)) ≥ Cr−dmd(K).

Proof. Using Proposition 4.5 (with b replaced by b1/2), we get that for any compact set K ⊂
BD(x0, br),

Px0(σK < τBD(x0,r)) ≥ Px0
(
Y
BD(x0,r)

(b1/2r)α
∈ K

)
=

∫
K
pBD(x0,r)((b1/2r)α, x0, y)dy ≥ c(b1/2r)−dmd(K).

2

For the next result, we need an additional assumption that implies the well-known condition
(UJS).

(UBS) There exists C > 0 such that for a.e. x, y ∈ D,

B(x, y) ≤ C

rd

∫
BD(x,r)

B(z, y)dz whenever 0 < r ≤ 1

2
(|x− y| ∧ R̂).(4.32)

Condition (UBS) implies the following local (UJS) condition: for a.e. x, y ∈ D and 0 < r ≤
2−1(|x− y| ∧ R̂),

B(x, y)
|x− y|d+α

≤ C2d+α

rd

∫
BD(x,r)

B(z, y)
|z − y|d+α

dy,(4.33)

since |z − y| ≤ |x− y|+ r < 2|x− y| for all z ∈ BD(x, r).

Theorem 4.11. Suppose that B satisfies (UBS). Let R0 > 0. There exist constants ε > 0 and
C,K ≥ 1 depending on R0 such that for all x ∈ D, 0 < r ≤ R0, t0 ≥ 0, and any non-negative
function u on (0,∞)×D which is caloric on (t0, t0+4εrα]×BD(x, r) with respect to Y , we have

sup
(t1,y1)∈Q−

u(t1, y1) ≤ C inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = [t0 + εrα, t0 + 2εrα]×BD(x, r/K) and Q+ = [t0 + 3εrα, t0 + 4εrα]×BD(x, r/K).
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Proof. Proposition 4.5 says that a local version of the condition NDL(ϕ) in [23] holds with
ϕ(r) = rα. Hence, by (3.3), the local (UJS) condition (4.33), [23, Remark 1.19], and the
equivalence between statements (1) and (4) in [23, Theorem 1.18], we immediately get our
result (see also the proof of [17, Theorem 5.2]). 2

4.2. Analysis and properties of Y κ. Let F0 be the closure of Lipc(D) in L2(D) under E0
1 .

Then (E0,F0) is a regular Dirichlet form. Let Y 0 = (Y 0
t , t ≥ 0;Px, x ∈ D \ N0) be the Hunt

process associated with (E0,F0), where N0 is an exceptional set for Y 0.

Lemma 4.12. Suppose that α > 1. There exist constants C > 0 and M0 > 1 such that for any

Q ∈ ∂D, 0 < r < R̂ and any u ∈ Cc(BD(Q, r/M0)),∫
BD(Q,r/M0)

u(z)2δD(z)
−αdz ≤ C

∫∫
BD(Q,r)×BD(Q,r)

(u(z)− u(y))2
B(z, y)

|z − y|d+α
dzdy.

Proof. Let Q ∈ ∂D and 0 < r < R̂. By [46, p.45 (4)], there exist a constantM0 > 1 independent
of Q and r, and a Lipschitz domain A such that BD(Q, r/M0) ⊂ A ⊂ BD(Q, r). Using [33,
Theorem 1.1] in the second inequality, [34, (13)] in the third and (B2-b) in the fifth, we get
that for any u ∈ Cc(BD(Q, r)),∫

BD(Q,r/M0)
u(z)2δD(z)

−αdz ≤
∫
A
u(z)2δA(z)

−αdz

≤ c1

∫
A

∫
A

(u(z)− u(y))2

|z − y|d+α
dydz

≤ c2

∫
A

∫
B(z,δA(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

≤ c2

∫
BD(Q,r)

∫
A∩B(z,δD(z)/2)

(u(z)− u(y))2

|z − y|d+α
dydz

≤ c2C
−1
2

∫
BD(Q,r)

∫
A∩B(z,δD(z)/2)

(u(z)− u(y))2
B(z, y)

|z − y|d+α
dydz

≤ c2C
−1
2

∫
BD(Q,r)

∫
BD(Q,r)

(u(z)− u(y))2
B(z, y)

|z − y|d+α
dydz.

2

Lemma 4.13. Suppose that α > 1. Let Q ∈ ∂D, 0 < r < R̂ and u ∈ Lipc(D) be such that u ≥ 1
on BD(Q, r). Then u ∈ F \ F0.

Proof. Clearly, u ∈ F since Lipc(D) ⊂ F . Suppose that u ∈ F0. Then there exists an E0
1 -

Cauchy sequence (un)n≥1 of functions in Lipc(D) such that limn→∞ E0
1 (u − un, u − un) = 0.

Since supn≥1 E0
1 (un, un) <∞, by Lemma 4.12, we have

lim sup
n→∞

∫
BD(Q,r/M0)

un(z)
2δD(z)

−αdz ≤ c1 lim sup
n→∞

E0(un, un) <∞,(4.34)

where M0 > 1 is the constant in Lemma 4.12. Note that un converges to u in L2(D). Thus,
there is a subsequence (usn)n≥1 such that limn→∞ usn(z)

2 = u(z)2 for a.e. z ∈ BD(Q, r/M0).
Using Fatou’s lemma and the facts that u ≥ 1 on BD(Q, r), D is a Lipschitz open set, and
α > 1, we obtain

lim inf
n→∞

∫
BD(Q,r/M0)

usn(z)
2δD(z)

−αdz

≥
∫
BD(Q,r/M0)

u(z)2δD(z)
−αdz ≥

∫
BD(Q,r/M0)

δD(z)
−αdz = ∞.
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This contradicts (4.34). The proof is complete. 2

Proposition 4.14. F0 = F if and only if α ≤ 1.

Proof. Suppose α ≤ 1. Define

C̃(u, v) :=
∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dxdy,

D(C̃) := closure of Lipc(D) in L2(D) under C̃ + (·, ·)L2(D).

Then (C̃,D(C̃)) is a regular Dirichlet form associated with the reflected α-stable process in D

in the sense of [9]. By (B2-a), there exists a constant c > 0 such that E0(u, u) ≤ c C̃(u, u) for

all u ∈ Lipc(D) and hence D(C̃) ⊂ F . By [9, Theorem 2.5(i) and Remark 2.2(1)], since α ≤ 1,

∂D is (C̃,D(C̃))-polar and hence is (E0,F)-polar. Therefore, when starting from D, Y will never
exit D. Hence Y and Y 0 are the same when they start from x ∈ D and F0 = F . Combining
this with Lemma 4.13, we arrive at the desired conclusion. 2

In the remainder of this work, we let κ be a non-negative Borel function on D with the
following property:

(K1) There exists a constant C3 > 0 such that

κ(x) ≤ C3(δD(x) ∧ 1)−α.

If α ≤ 1, then we also assume that κ is non-trivial, namely,

(4.35) md({x ∈ D : κ(x) > 0}) > 0.

We consider a symmetric form (Eκ,Fκ) defined by

Eκ(u, v) = E0(u, v) +

∫
D
u(x)v(x)κ(x)dx,

Fκ = F̃0 ∩ L2(D,κ(x)dx),

where F̃0 is the family of all E0
1 -quasi-continuous functions in F0. Then (Eκ,Fκ) is a regular

Dirichlet form on L2(D) with Lipc(D) as a special standard core, see [36, Theorems 6.1.1 and
6.1.2]. Let Y κ = (Y κ

t , t ≥ 0;Px, x ∈ D \ Nκ) be the Hunt process associated with (Eκ,Fκ)
where Nκ is an exceptional set for Y κ. We denote by ζκ the lifetime of Y κ. Define Y κ

t = ∂
for t ≥ ζκ, where ∂ is a cemetery point added to the state space D. Since the jump kernel
B(x, y)|x − y|−d−αdxdy and the killing measure κ(x)dx of (Eκ,Fκ) are absolutely continuous
with respect to md⊗md and md respectively, Y

κ satisfies the following Lévy system formula (cf.
(4.1)): For any x ∈ D, any non-negative Borel function f on D×D∂ vanishing on the diagonal,
and any stopping time τ ,

Ex
[∑
s≤τ

f(Y κ
s−, Y

κ
s )

]
= Ex

[∫ τ

0

(∫
D

f(Y κ
s , y)B(Y κ

s , y)

|Y κ
s − y|d+α

dy + κ(Y κ
s )f(Y

κ
s , ∂)

)
ds

]
.(4.36)

The process Y κ can be regarded as the part process of Y killed at ζκ. Hence, by Remark 4.9,
Y κ can be refined to be a Hunt process starting from every point D. Moreover, by Proposition
4.2, we obtain the following result.

Proposition 4.15. The process Y κ has a transition density pκ(t, x, y) defined on (0,∞)×D×D.
Moreover, for any T > 0, there exists a constant C = C(T ) > 0 such that

pκ(t, x, y) ≤ C

(
t−d/α ∧ t

|x− y|d+α

)
, 0 < t ≤ T, x, y ∈ D.
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For an open set U ⊂ D, we let τU := inf{t > 0 : Y κ
t /∈ U} and we denote by Y κ,U and (P κ,Ut )t≥0

the part of the process Y κ killed upon exiting U and its semigroup, respectively. We denote

(P κ,Dt )t≥0 by (P κt )t≥0. By [36, Theorem 6.1.1], the semigroup (P κ,Ut )t≥0 can be represented by

P κ,Ut f(x) = Ex
[
exp

(
−
∫ t

0
κ(Y

U
s )ds

)
f(Y

U
t )

]
.(4.37)

Denote by pκ,U (t, x, y) a transition density of Y κ,U .

Proposition 4.16. Let R0 > 0 and b ∈ (0, 1). There exists C = C(R0, b) > 0 such that for any
x0 ∈ D, 0 < r < δD(x0) ∧R0 and 0 < t ≤ (br)α, it holds that

(4.38) pκ,B(x0,r)(t, z, y) ≥ Ct−d/α for all z ∈ BD(x0, bt
1/α) and a.e. y ∈ BD(x0, bt

1/α).

Proof. Let x0 ∈ D and 0 < r < δD(x0) ∧ R0. For all x ∈ B(x0, b
1/2r), we have δD(x) ≥

δD(x0)− b1/2r > (1− b1/2)r. Thus, by (K1), we get that

κ(x) ≤ C3(1− b1/2)−α(1 +R0)
αr−α for all x ∈ B(x0, b

1/2r).(4.39)

Using (4.37), (4.39) and Proposition 4.5 with b1/2 (see Remark 4.9), we get that for all 0 < t ≤
(br)α, z ∈ B(x0, bt

1/α) ⊂ B(x0, b
1/2t1/α) and a.e. y ∈ B(x0, bt

1/α),

pκ,B(x0,r)(t, z, y) ≥ pκ,B(x0,b1/2r)(t, z, y)

≥ e−c1r
−αt pB(x0,b1/2r)(t, z, y) ≥ c2e

−c1bαt−d/α.

2

Proposition 4.17. For any R0 > 0, there exists C = C(R0) > 1 such that

C−1rα ≤ Ex0 [τB(x0,r)] ≤ Crα for all x0 ∈ D, 0 < r < δD(x0) ∧R0.(4.40)

Proof. Let x0 ∈ D and 0 < r < δD(x0)∧R0. Since τB(x0,r) ≤ τB(x0,r), the upper bound in (4.40)
follows from Proposition 4.6. On the other hand, by Lemma 4.3, there exists c1 > 0 independent
of x0 and r such that

Px0(Y
B(x0,r/2)
c1rα ∈ B(x0, r/2)) = Px0(τB(x0,r/2) > c1r

α) ≥ 1/2.(4.41)

By (4.39), κ(x) ≤ c2r
−α for all x ∈ B(x0, r/2). Using this, (4.37) and (4.41), we obtain

Px0(τB(x0,r/2) > c1r
α) = Px0(Y

κ,B(x0,r/2)
c1rα ∈ B(x0, r/2))

≥ e−c1r
α(c2r−α)Px0(Y

B(x0,r/2)
c1rα ∈ B(x0, r/2)) ≥ e−c1c2/2.

Hence, Ex0 [τB(x0,r)] ≥ c1r
αPx0(τB(x0,r/2) > c1r

α) ≥ c3r
α. 2

Using (2.1), (3.3) and Propositions 4.15, 4.16 and 4.17, one obtains the following theorem by
a standard argument. See the proof of [21, Theorem 4.14]. We emphasize that conservativeness
is not used in the proof of [21, Theorem 4.14]. Caloric functions with respect to Y κ are defined
analogously to those with respect to Y .

Theorem 4.18. Let R0 > 0 and b ∈ (0, 1). There exist constants λ ∈ (0, 1] and C = C(R0, b) >
0 such that for all x ∈ D, 0 < r < δD(x) ∧ R0, t0 ≥ 0, and any bounded caloric function u in
(t0, t0 + rα]×B(x, r) with respect to Y κ, there is a properly exceptional set Nu such that

|u(s, y)− u(t, z)| ≤ C

(
|s− t|1/α + |y − z|

r

)λ
ess sup

[t0,t0+rα]×D
|u|,

for every s, t ∈ (t0 + (1− bα)rα, t0 + rα] and y, z ∈ B(x, br) \ Nu.
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Remark 4.19. By Proposition 4.15 and Theorem 4.18, for any f ∈ L1(D), the result of Corol-
lary 4.8 holds for u(t, x) = P κt f(x). Thus, the transition density pκ(t, x, y) can be extended
continuously to (0,∞) × D × D by a standard argument (see Remark 4.9). Similarly, for any
open set A ⊂ D, the transition density pκ,A(t, x, y) can be extended continuously to (0,∞)×A×A.
Consequently, (4.38) holds for all z, y ∈ BD(x0, bt

1/α) and Y κ and Y κ,A are strongly Feller.

In the remainder of this work, we always take jointly continuous versions of pκ(t, x, y) and
pκ,A(t, x, y).

Proposition 4.20. The process Y κ is not conservative in the sense that

∥1D − P κt 1D∥L2(D) > 0 for all t > 0.

Proof. Suppose that (4.35) holds. Since Y κ is an irreducible Hunt process, by using (4.37), we
get the result in this case. Suppose that κ = 0 a.e. Then α > 1 by (K1). Since Y 0 can be
regarded as a part process of Y killed at ζ0, if Y 0 is conservative, then the process Y started
from D is equal to Y 0. By the one-to-one correspondence between regular Dirichlet forms and
symmetric Hunt processes, it follows that F = F0. By Proposition 4.14, this is a contradiction
and we conclude the desired result. 2

Lemma 4.21. For any t > 0 and x ∈ D, we have∫
D
pκ(t, x, y)dy < 1.

Proof. By Proposition 4.20 and symmetry, we see that for any t > 0,∥∥∥1D(·)− ∫
D
pκ(t/2, y, ·)dy

∥∥∥
L2(D)

=
∥∥∥1D(·)− ∫

D
pκ(t/2, ·, y)dy

∥∥∥
L2(D)

> 0.

Therefore, since pκ(t/2, ·, ·) is jointly continuous, for any t > 0, there exist x0 ∈ D and constants
r0 > 0, ε0 ∈ (0, 1) such that

sup
z∈BD(x0,r0)

∫
D
pκ(t/2, z, y)dy ≤ 1− ε0.(4.42)

Note that the semigroup (P κt )t>0 is irreducible by (B2-b). See Section 2, the paragraph below
(2.2). Hence, we have

pκ(t, x, y) > 0 for all t > 0, x, y ∈ D.(4.43)

By the semigroup property, (4.42) and (4.43), we get that for all t > 0 and x ∈ D,∫
D
pκ(t, x, y)dy =

∫
D
pκ(t/2, x, z)

∫
D
pκ(t/2, z, y)dydz

≤
∫
D
pκ(t/2, x, z)dz +

(
sup

z∈BD(x0,r0)

∫
D
pκ(t/2, z, y)dy − 1

)∫
BD(x0,r0)

pκ(t/2, x, z)dz

≤
∫
D
pκ(t/2, x, z)dz − ε0

∫
BD(x0,r0)

pκ(t/2, x, z)dz <

∫
D
pκ(t/2, x, z)dz ≤ 1.

2

Proposition 4.22. There exists C > 0 such that for any bounded open subset A of D,

(4.44) pκ,A(t, x, y) ≤ Cmd(A)e
−λ1(t−2), t ≥ 3, x, y ∈ A,

where

λ1 := inf
{
Eκ(u, u) : u ∈ Lipc(A), ∥u∥L2(A) = 1

}
.(4.45)
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Moreover, λ1 is strictly positive and there exists C ′ > 0 depending on A such that

(4.46) sup
x,y∈A

pκ,A(t, x, y) ≥ C ′e−λ1t, t > 0.

Proof. By Proposition 4.15, the semigroup (P κ,At )t>0 consists of Hilbert-Schmidt operators, and

hence compact operators in L2(A). Thus, since (P κ,At )t>0 is an L2(A)-contraction symmetric

semigroup, for each t > 0, P κ,At has discrete spectrum (e−λnt)n≥1, repeated according to their
multiplicity, where (λn)n≥1 is a non-decreasing non-negative sequence independent of t. By [36,

Theorem 4.4.3], Lipc(A) is a core of the Dirichlet form associated with the semigroup (P κ,At )t>0.
Hence, the bottom of the spectrum λ1 is equal to the right-hand side of (4.45). Let (vn)n≥1

be eigenfunctions corresponding to (λn)n≥1, constituting an orthonormal basis for L2(A). For
each t > 0 and x ∈ A, consider the eigenfunction expansion pκ,A(t, x, ·) =

∑∞
k=1 at,n(x)vn(·) in

L2(A). Since (vn)n≥1 is an orthonormal basis for L2(A), for all t > 0 and n ≥ 1, we have

at,n(·) =
∫
A
pκ,A(t, ·, y)vn(y)dy = P κ,At vn(·) = e−λntvn(·) in L2(A).(4.47)

Hence, since the map x 7→ pκ,A(t, x, y) is continuous and is bounded by Proposition 4.15, we
can assume that vn(x) = eλnt

∫
A p

κ,A(t, x, y)vn(y)dy are continuous functions on A for all n ≥ 1.
Consequently, we obtain

pκ,A(t, x, y) =

∞∑
n=1

e−λntvn(x)vn(y) for all (t, x, y) ∈ (0,∞)×A×A.(4.48)

Using the semigroup property in the first equality below, Proposition 4.15 and (4.48) in the first
inequality, Fubini’s theorem and the symmetry of pκ,A in the second equality, and the fact that
∥f∥2L2(A) =

∑∞
n=1(

∫
A f(z)vn(z)dz)

2 in the third equality, we get that for all t ≥ 3 and x, y ∈ A,

pκ,A(t, x, y) =

∫
A×A×A×A

pκ,A(1/2, x, z1) p
κ,A(1/2, z1, z2) p

κ,A(t− 2, z2, z3)

× pκ,A(1/2, z3, z4) p
κ,A(1/2, z4, y) dz1 dz2 dz3 dz4

≤ c21

∞∑
n=1

e−λn(t−2)

∫
A×A×A×A

pκ,A(1/2, z1, z2) vn(z2)vn(z3)

× pκ,A(1/2, z3, z4) dz1 dz2 dz3 dz4

= c21

∞∑
n=1

e−λn(t−2)

(∫
A
vn(z2)

∫
A
pκ,A(1/2, z2, z1) dz1 dz2

)2

≤ c21e
−λ1(t−2)

∞∑
n=1

(∫
A
vn(z2)

∫
A
pκ,A(1/2, z2, z1) dz1 dz2

)2

= c21e
−λ1(t−2)

∫
A

(∫
A
pκ,A(1/2, z2, z1) dz1

)2

dz2 ≤ c21md(A)e
−λ1(t−2).

Therefore, (4.44) holds true.
Next, we show that λ1 > 0. Suppose that λ1 = 0. Then by Hölder’s inequality, symmetry,

Fubini’s theorem and Lemma 4.21, it holds that

1 =

∫
A
v1(x)

2dx =

∫
A

(∫
A
pκ,A(1, x, y)v1(y)dy

)2

dx

≤
∫
A

(∫
A
pκ,A(1, x, y)dy

)(∫
A
pκ,A(1, y, x)v1(y)

2dy

)
dx

<

∫
A
v1(y)

2

∫
A
pκ,A(1, y, x)dxdy <

∫
D
v1(y)

2dy = 1,
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which is a contradiction. Hence, λ1 > 0.
By Krein–Rutman theorem, we can assume that the eigenfunction v1 is non-negative on A.

Then from (4.47), we obtain

sup
x,y∈A

pκ,A(t, x, y) ≥ e−λ1t
supx∈A v1(x)∫
A v1(y)dy

= c2e
−λ1t,

proving that (4.46) holds. The proof is complete. 2

Lemma 4.23. Suppose that α > 1. For every R0 > 0, there exists a constant λ0 = λ0(R0) > 0
such that if D0 is a bounded connected component of D with diam(D0) ≤ R0, then for all u ∈
Lipc(D0),

Eκ(u, u) ≥ E0(u, u) ≥ λ0∥u∥2L2(D0)
.(4.49)

Proof. The first inequality in (4.49) is evident. According to [34, (13)] and its proof, there exists

c1 > 0 depending only on d, α,Λ0, R̂ and R0 such that for all u ∈ Lipc(D0),∫
D0

∫
D0

(u(x)− u(y))2

|x− y|d+α
dydx ≤ c1

∫
D0

∫
B(x,δD0

(x)/2)

(u(x)− u(y))2

|x− y|d+α
dydx.

Thus, by (B2-b), we have

E0(u, u) ≥ 1

2

∫∫
D0×D0

(u(x)− u(y))2
B(x, y)

|x− y|d+α
dxdy

≥ C2c
−1
1

∫∫
D0×D0

(u(x)− u(y))2

|x− y|d+α
dxdy.

(4.50)

For x ∈ D0 and w ∈ Rd with |w| = 1, define

dwD0
(x) := min {|t| : x+ tw /∈ D0} and δwD0

(x) := sup {|t| : x+ tw ∈ D0} .

By [59, Theorem 1.1], we have for all u ∈ Lipc(D0),

1

2

∫∫
D0×D0

(u(x)− u(y))2

|x− y|d+α
dxdy ≥ c2

∫
D0

u(x)2

Mα(x)α
dx,(4.51)

where

c2 :=
π(d−1)/2Γ((1 + α)/2)

αΓ((d+ α)/2)

[
21−α√
π

Γ

(
2− α

2

)
Γ

(
2− α

2

)
− 1

]
and

1

Mα(x)α
:=

Γ((d+ α)/2)

2π(d−1)/2Γ((1 + α)/2)

∫
w∈Rd:|w|=1

[
1

dwD0
(x)

+
1

δwD0
(x)

]α
md−1(dw).

Note that while (4.51) is proven for u ∈ C∞
c (D0) in [59], its extension to Lipc(D0) is straight-

forward. For all x ∈ D0 and w ∈ Rd with |w| = 1, we have dwD0
(x) ≤ diam(D0) ≤ R0 so that

1/Mα(x)
α ≥ c3R

−α
0 for c3 > 0 depending only on d and α. Therefore, by (4.51), we deduce that

there exists c4 > 0 depending only on d, α and R0 such that for all u ∈ Lipc(D0),

1

2

∫∫
D0×D0

(u(x)− u(y))2

|x− y|d+α
dxdy ≥ c4∥u∥2L2(D0)

.

Combining this with (4.50), we arrive at the desired result. 2
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Example 4.24. In this example, we provide a counterexample showing that the conclusion
of Lemma 4.23 is not applicable when α ≤ 1. Suppose that α ≤ 1, D = ∪n≥4B(2ned, 2),
κ(x) = |x|−1 and B(x, y) = 1 for x, y ∈ D. By [9, Theorems 1.1 and 2.4], there exists a sequence
(fn)n≥4 in C∞

c (B(0, 2)) such that

lim
n→∞

[∫∫
B(0,2)×B(0,2)

((fn(x)− 1)− (fn(y)− 1))2

|x− y|d+α
dxdy + ∥fn − 1B(0,2)∥2L2(B(0,2))

]

= lim
n→∞

[∫∫
B(0,2)×B(0,2)

(fn(x)− fn(y))
2

|x− y|d+α
dxdy + ∥fn − 1B(0,2)∥2L2(B(0,2))

]
= 0.(4.52)

Define for n ≥ 4,

un(x) = 1 ∧ (fn(x− 2ned) ∨ 0).

Note that un ∈ Lipc(B(2ned, 2)) and by (4.52),

lim inf
n→∞

∥un∥2L2(B(2ned,2))
= lim

n→∞
∥1 ∧ (fn ∨ 0)∥2L2(B(0,2)) = md(B(0, 2)).(4.53)

Further, for all n ≥ 4, we have

Eκ(un, un) ≤
1

2

∫∫
B(2ned,2)×B(2ned,2)

(un(x)− un(y))
2

|x− y|d+α
dxdy

+

∫∫
B(2ned,2)×B(2ned,2n−1−4)c

un(x)
2

|x− y|d+α
dxdy

+

∫
B(2ned,2)

un(x)
2|x|−1dx

=: In,1 + In,2 + In,3.

Since u2n ≤ 1, we have In,2 ≤
∫
B(0,2) dx

∫
B(0,2n−1−4)c(|y|/2)

−d−αdy → 0 and In,3 ≤ (2n −
2)−1

∫
B(0,2) dx→ 0 as n→ ∞. Moreover, by using (4.52), we see that

In,1 =

∫∫
B(0,2)×B(0,2)

((1 ∧ (fn(x) ∨ 0))− (1 ∧ (fn(y) ∨ 0)))2

|x− y|d+α
dxdy

≤
∫∫

B(0,2)×B(0,2)

(fn(x)− fn(y))
2

|x− y|d+α
dxdy → 0 as n→ ∞.

Hence, limn→∞ Eκ(un, un) = 0. By combining this with (4.53), we deduce that infn≥1{Eκ(un, un)/∥un∥2L2(B(2ned,2))
} =

0, leading to the failure of the conclusion of Lemma 4.23.

In order to get a counterpart of Lemma 4.23 in case α ≤ 1, we consider the following additional
condition on κ:

(K2) If α ≤ 1, then there exist constants r̂ ∈ (0, R̂) and C4 > 0 such that for every bounded
connected component D0 of D,

κ(x) ≥ C4 for all x ∈ D0 with δD0(x) < r̂.

Lemma 4.25. Suppose that α ≤ 1 and (K2) holds. For every R0 > 0, there exists a constant
λ0 = λ0(R0) > 0 such that if D0 is a bounded connected component of D with diam(D0) ≤ R0,
then for all u ∈ Lipc(D0),

Eκ(u, u) ≥ λ0∥u∥2L2(D0)
.

Proof. Let

A0 := {x ∈ D0 : δD0(x) < r̂} ,
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where r̂ ∈ (0, R̂) is the constant in (K2). Since D0 is a bounded Lipschitz domain, md(D0) ≥
c1R̂

d and md(A0) ≥ c2r̂md−1(∂D0). Using this and the isoperimetric inequality, we get that

md(A0) ≥ c3r̂md(D0)
(d−1)/d ≥ c4r̂R̂

d−1(4.54)

for a constant c4 > 0 depending only on d and Λ0. Let x0 ∈ D be such that D0 ⊂ BD(x0, 2R0).
By Proposition 4.5 (with b = 1/2), there exists c5 > 0 depending on R0 such that for all
t ∈ [(4R0)

α, (8R0)
α] and y, z ∈ D0,

(4.55) p(t, z, y) ≥ pBD(x0,16R0)(t, z, y) ≥ c5t
−d/α.

Set t0 := (8R0)
α. By (4.37), (K2), (4.55) and (4.54), we have for all x ∈ D0,

P κ,D0
t0

1D0(x) = Ex
[
exp

(
−

∫ t0

0
κ(Y s)ds

)
: t0 < τD0

]
≤ Ex

[
exp

(
− C4

∫ t0

0
1A0(Y s)ds

)]
≤ exp

(
− C4

∫ t0

t0/2α

∫
A0

p(s, x, y)dyds

)
≤ exp

(
− (1− 2−α)C4c4c5t

1−d/α
0 r̂R̂d−1

)
=: ε ∈ (0, 1).

(4.56)

Let t > 2t0 and n ≥ 1 be such that t ∈ ((n + 1)t0, (n + 2)t0). Using the semigroup property,
Proposition 4.2 and (4.56), we get that for all x, y ∈ D0,

pκ,D0(t, x, y) =

∫
D0

· · ·
∫
D0

pκ,D0(t− nt0, x, z1)

× pκ,D0(t0, z1, z2) · · · pκ,D0(t0, zn, y) dz1 · · · dzn

≤ c6t
−d/α
0

(
sup
v∈D0

∫
D0

pκ,D0(t0, v, z)dz

)n
≤ c6t

−d/α
0 εn ≤ c6t

−d/α
0 ε−2e−| log ε| t/t0 .

Comparing this with (4.46) and letting t→ ∞, we conclude that

inf
{
Eκ(u, u) : u ∈ Lipc(D0), ∥u∥L2(D0) = 1

}
≥ | log ε|/t0,

which yields the desired result. 2

Proposition 4.26. In addition to (B1), (B2-b), (B2-b) and (K1), we assume that, when
α ≤ 1, (K2) holds. Let x0 ∈ D and R0 > 0. There exist constants C = C(R0) > 0 and
λ = λ(R0) > 0 independent of x0 such that

(4.57) pκ,BD(x0,R0)(t, x, y) ≤ Ce−λt, t ≥ 3, x, y ∈ BD(x0, R0).

In particular, when D is bounded, there exist constants C = C(diam(D)) > 0 and λ =
λ(diam(D)) > 0 such that

(4.58) pκ(t, x, y) ≤ Ce−λt, t ≥ 3, x, y ∈ D.

Proof. (4.58) directly follows from (4.57) by setting R0 = 2diam(D). We prove (4.57). Set

B := BD(x0, R0) and B
′ := BD(x0, R0 + R̂). We consider the following two cases separately.

Case 1: ∂B(x0, R0+R̂)∩D ̸= ∅. Let z0 ∈ ∂B(x0, R0+R̂)∩D. For all x ∈ B and z ∈ BD(z0, R̂),

we have |x − z| ≤ 2(R0 + R̂) =: r0. Hence, using Proposition 4.5 (with b = 1/2) and (3.3), we
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get that for all x ∈ B,∫
B
pκ,B((2r0)

α, x, z)dz ≤
∫
B
p((2r0)

α, x, z)dz

≤ 1−
∫
BD(z0,R̂)

pBD(x,4r0)((2r0)
α, x, z)dz

≤ 1− c1(2r0)
−dmd(BD(z0, R̂)) ≤ c2,

(4.59)

where c2 ∈ (0, 1) is a constant independent of x0.
Let t > 2(2r0)

α and n0 ≥ 1 be such that t/(2r0)
α ∈ [n0 + 1, n0 + 2). By using the semigroup

property, Proposition 4.15 and (4.59), we get that for all x, y ∈ B,

pκ,B(t, x, y) =

∫
B
· · ·

∫
B
pκ,B(t− n0(2r0)

α, x, z1)

× pκ,B((2r0)
α, z1, z2) · · · pκ,B((2r0)α, zn0 , y) dz1 · · · dzn0

≤ c3r
−d
0

(
sup
v∈B

∫
B
pκ,B((2r0)

α, v, z)dz

)n0

≤ c3r
−d
0 cn0

2 ≤ c4e
−| log c2| t/(2r0)α .

Since c2, c4 and r0 are independent of x0, combining this with Proposition 4.15, we arrive at the
result.

Case 2: ∂B(x0, R0 + R̂) ∩D = ∅. Since ∂B(x0, R0 + R̂) ∩D = ∅, we have B′ = ∪Ni=1Di for

some bounded connected components Di, 1 ≤ i ≤ N , of D. Note that md(Di) ≥ c5R̂
d for all

1 ≤ i ≤ N . Hence,

N ≤ md(B)

min{md(Di) : 1 ≤ i ≤ N}
≤ c6(1 +R0/R̂)

d.(4.60)

Furthermore, since we have assumed that (K2) holds if α ≤ 1, by Lemmas 4.23 and 4.25, there

exists λ0 = λ0(R0 + R̂) > 0 such that for all u ∈ Lipc(B
′),

λ0∥u∥2L2(Di)
≤ Eκ(u, u) for all 1 ≤ i ≤ N.

By (4.60), it follows that for all u ∈ Lipc(B
′),

Eκ(u, u) ≥ N−1λ0

N∑
i=1

∥u∥2L2(Di)
= N−1λ0∥u∥2L2(B′) ≥ c−1

6 (1 +R0/R̂)
−dλ0∥u∥2L2(B′).

Using this, from Proposition 4.22, we conclude that for all t ≥ 3 and x, y ∈ B,

pκ,B(t, x, y) ≤ pκ,B
′
(t, x, y) ≤ c7md(B

′)e−c
−1
6 (1+R0/R̂)−dλ0(t−2).

Since c6, c7 and λ0 are independent of x0, we get (4.57).

The proof is complete. 2

Remark 4.27. The additional assumption (K2) is only used in Case 2 in the proof of Propo-
sition 4.26, whereas Case 1 remains valid independently of it.

When D has only finitely many components, we can drop the assumption (K2) from Propo-
sition 4.26.

Proposition 4.28. Suppose that D has only finitely many components. Let x0 ∈ D and R0 > 0.
There exist constants C = C(D,R0) > 0 and λ = λ(D,R0) > 0 independent of x0 such that

(4.61) pκ,BD(x0,R0)(t, x, y) ≤ Ce−λt, t ≥ 3, x, y ∈ BD(x0, R0).
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In particular, when D is bounded, there exist constants C = C(D) > 0 and λ = λ(D) > 0 such
that

(4.62) pκ(t, x, y) ≤ Ce−λt, t ≥ 3, x, y ∈ D.

Proof. (4.62) is a direct consequence of (4.61). We prove (4.61). Set B := BD(x0, R0) and

B′ := BD(x0, R0+ R̂). If B
′ = D, then D is bounded so that the result follows from Proposition

4.22 (with A = D). If ∂B(x0, R0 + R̂) ∩D ̸= ∅, then by applying the arguments for Case 1 in
Proposition 4.26, we get the result.

Suppose that B′ ̸= D and ∂B(x0, R0 + R̂) ∩ D = ∅. Write D = ∪Ni=1Di where Di, 1 ≤
i ≤ N , are connected components of D. For each i, we either have Di ⊂ B(x0, R0 + R̂) or

Di ∩ B(x0, R0 + R̂) = ∅. Since B′ ̸= D, there exists at least one component Di0 such that

Di0 ∩B(x0, R0+ R̂) = ∅. Pick such an i0 and let z0 ∈ ∂Di0 be such that |x0−z0| = dist(x0, Di0).
Note that x0 belongs to a bounded component Di1 , i1 ̸= i0, in this case and the distance between
Di0 and Di1 is bounded above by a positive constant since D has a finite number of connected
components. Hence, there exists c1 = c1(D,R0) > 0 independent of x0 such that |x0 − z0| < c1.
Now, by repeating the arguments for Case 1 in Proposition 4.26, we obtain the desired result.
2

For the last result in this subsection, we need a weaker form of (UBS):

(IUBS) There exists C > 0 such that for a.e. x, y ∈ D,

B(x, y) ≤ C

rd

∫
B(x,r)

B(z, y)dz whenever 0 < r ≤ 1

2
(|x− y| ∧ δD(x) ∧ R̂).

Condition (IUBS) implies that (4.33) holds for a.e. x, y ∈ D and 0 < r ≤ 2−1(|x − y| ∧
δD(x)∧ R̂). Using this, (2.1), (3.3), the Lévy system formula (4.36) and Propositions 4.15, 4.16
and 4.17, one can repeat the arguments in the proof of [30, Theorem 4.3] and obtain

Theorem 4.29. Suppose that B satisfies (IUBS). For every R0 > 0, there exist constants ε > 0
and C,K ≥ 1 depending on R0 such that for all x ∈ D, 0 < r < δD(x) ∧ R0, t0 ≥ 0, and any
non-negative function u on (0,∞)×D which is caloric on (t0, t0 + 4εrα]×B(x, r) with respect
to Y κ, we have

sup
(t1,y1)∈Q−

u(t1, y1) ≤ C inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = [t0 + εrα, t0 + 2εrα]×B(x, r/K) and Q+ = [t0 + 3εrα, t0 + 4εrα]×B(x, r/K).

4.3. Interior estimates of the Green function of Y κ. For an open set A ⊂ D, we define

Gκ,A(x, y) =

∫ ∞

0
pκ,A(t, x, y)dt, x, y ∈ A.

When Gκ,A(·, ·) is not identically infinite, it is called the Green function of Y κ in A. Note that by
Propositions 4.15 and 4.22, for any bounded open subset A of D, GA(x, y) <∞ for all x, y ∈ A,
x ̸= y. We extend Gκ,A to a function on (D ∪ {∂}) × (D ∪ {∂}) by letting Gκ,A(x, y) = 0 if
x ∈ (D ∪ {∂}) \A or y ∈ (D ∪ {∂}) \A. We denote Gκ,D(x, y) by Gκ(x, y).

The proof of the next proposition uses the notion of harmonic and regular harmonic functions
so we recall these definitions.

Definition 4.30. A Borel function f : D → [0,∞] is said to be harmonic in an open set V ⊂ D
with respect to the process Y κ if f is finite on V and, for every open U ⊂ U ⊂ V ,

f(x) = Ex[f(Y κ
τU
)], for all x ∈ U.

The function f is said to be regular harmonic in V with respect to Y κ if f is finite on V and,

f(x) = Ex[f(Y κ
τV
)], for all x ∈ V.
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It follows from the strong Markov property that a regular harmonic function is harmonic.
Further, if A ⊂ D is an open set, then Gκ,A(·, y) is harmonic in A \ {y} and regular harmonic
in A \B(y, δ) for any δ > 0, see e.g. [51, Section 2, Remark 2.3].

Proposition 4.31. Let R0 > 0. For any ε ∈ (0, 1), there exists C = C(R0, ε) > 0 such that for
all x0 ∈ D, R ∈ (0, R0] and x, y ∈ BD(x0, R/8) with |x− y| ≤ ε−1(δD(x) ∧ δD(y)),

Gκ,BD(x0,R)(x, y) ≥ C|x− y|−d+α.

Proof. Let x0 ∈ D, R ∈ (0, R0] and x, y ∈ BD(x0, R/8) with |x − y| ≤ ε−1(δD(x) ∧ δD(y)).
Without loss of generality, we assume that δD(x) ≤ δD(y). Write B := BD(x0, R). We consider
two different cases separately.

Case 1: |x − y| < δD(y)/2. Since |x − y| < R0/4, using Proposition 4.16 with b = 5/6 (see
Remark 4.19), we obtain

Gκ,B(x, y) ≥ Gκ,B(y,2|x−y|)(x, y)

≥
∫ (5/3)α|x−y|α

(6/5)α|x−y|α
pκ,B(y,2|x−y|)(t, x, y)dt ≥ c1|x− y|−d+α.

Case 2: δD(y)/2 ≤ |x − y| ≤ ε−1δD(x). Then y /∈ B(x, δD(x)/4) since δD(x) ≤ δD(y). Hence
Gκ,B(·, y) is regular harmonic in B(x, δD(x)/4) and we get

Gκ,B(x, y) ≥ Ex
[
Gκ,B(Y κ

τB(x,δD(x)/4)
, y) : Y κ

τB(x,δD(x)/4)
∈ B(y, δD(y)/4)

]
(4.63)

≥ Px
(
Y κ
τB(x,δD(x)/4)

∈ B(y, δD(y)/4)
)

inf
w∈B(y,δD(y)/4)

Gκ,B(w, y).

By Case 1, we have

inf
w∈B(y,δD(y)/4)

Gκ,B(w, y) ≥ c1(δD(y)/4)
−d+α ≥ c1(|x− y|/2)−d+α.(4.64)

On the other hand, note that for any z ∈ B(x, δD(x)/4) and w ∈ B(y, δD(y)/4), we have
|z − w| < |x− y|+ (δD(x) + δD(y))/4 ≤ 2|x− y| and δD(z) ∧ δD(w) ≥ 3δD(x)/4 ≥ 3ε|x− y|/4.
Hence, by (B2-b), there exists c2 > 0 depending only on ε such that for all z ∈ B(x, δD(x)/4)
and w ∈ B(y, δD(y)/4),

B(z, w)|z − w|−d−α ≥ c2|x− y|−d−α.(4.65)

Using the Lévy system formula (4.36), (4.65) and Proposition 4.17, since δD(y) ≥ δD(x) ≥
ε|x− y|, we obtain

Px
(
Y κ
τB(x,δD(x)/4)

∈ B(y, δD(y)/4)
)

= Ex

[∫ τB(x,δD(x)/4)

0

∫
B(y,δD(y)/4)

B(Y κ
s , w)

|Y κ
s − w|d+α

dwds

]
≥ c2|x− y|−d−αmd(B(y, δD(y)/4))Ex

[
τB(x,δD(x)/4)

]
≥ c3δD(x)

αδD(y)
d|x− y|−d−α ≥ c3ε

d+α.

(4.66)

Combining (4.63) with (4.64) and (4.66), we arrive at Gκ,B(x, y) ≥ 2d−αc1c3ε
d+α|x − y|−d+α.

The proof is complete. 2

Using Propositions 4.15 and 4.26, we get

Proposition 4.32. In addition to (B1), (B2-b), (B2-b) and (K1), we assume that, when
α ≤ 1, (K2) holds. For any R0 > 0, there exists C = C(R0) > 0 such that

Gκ,BD(x0,R0)(x, y) ≤ C|x− y|−d+α for all x0 ∈ D and x, y ∈ BD(x0, R0).
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When D has only finitely many components, we obtain the following upper estimates for the
Green function, with additional dependency on D, from Propositions 4.15 and 4.28.

Proposition 4.33. Suppose that D has only finitely many components. For any R0 > 0, there
exists C = C(D,R0) > 0 such that

Gκ,BD(x0,R0)(x, y) ≤ C|x− y|−d+α for all x0 ∈ D and x, y ∈ BD(x0, R0).

When D is bounded, D has only finitely many connected components. Hence, by taking
R = R0 = 9diam(D) in Propositions 4.31, 4.32 and 4.33, we obtain the following corollary.

Corollary 4.34. Suppose that D is bounded. Then there exists C = C(D) > 0 such that for all
x, y ∈ D,

Gκ(x, y) ≤ C|x− y|−d+α,(4.67)

and for any ε ∈ (0, 1), there exists a constant C(ε) > 0 such that for all x, y ∈ D with |x− y| ≤
ε−1(δD(x) ∧ δD(y)),

Gκ(x, y) ≥ C(ε)|x− y|−d+α.
Moreover, if we assume that, in addition to (B1), (B2-b), (B2-b) and (K1), when α ≤ 1,

(K2) holds, then the constant C in (4.67) depends on D only through Λ0, R̂ and diam(D).

5. Analysis of the operators LB
α and Lκ

In this section we first analyze the operators LB
α and Lκ, and prove a Dynkin-type formula.

This analysis requires the assumption (B3). Then we introduce two new assumptions on the

function B, construct a barrier function ψ(r) and establish an upper bound on LB
αψ

(r). For the

set D we keep assuming that it is a Lipschitz open set with localization radius R̂ and Lipschitz
constant Λ0.

Consider a non-local operator (LB
α,D(LB

α)) of the form

LB
αf(x) = p.v.

∫
D
(f(y)− f(x))

B(x, y)
|x− y|d+α

dy, x ∈ D,(5.1)

where D(LB
α) consists of all functions f : D → R for which the above principal value integral

makes sense. Recall that κ is a non-negative Borel function on D satisfying (K1). We define
an operator (Lκ,D(LB

α)) by

Lκf(x) = LB
αf(x)− κ(x)f(x), x ∈ D.(5.2)

5.1. Dynkin-type formula. In this subsection, in addition to (B1), (B2-a), (B2-b), we
assume that B satisfies the following assumption:

(B3) If α ≥ 1, then there exist constants θ0 > α− 1 and C5 > 0 such that

|B(x, x)− B(x, y)| ≤ C5

(
|x− y|

δD(x) ∧ δD(y) ∧ R̂

)θ0
for all x, y ∈ D.(5.3)

For an open set U ⊂ Rd, denote by C1,1(U) the family of all locally C1,1 functions on U , and

by C1,1
c (U) the family of all functions in C1,1(U) with compact support in U . Then C1,1

c (U) is
a normed space equipped with the norm

∥u∥
C1,1

c (U)
:= ∥u∥L∞(U) + ∥∇u∥L∞(U) + sup

x,y∈U, x̸=y

|∇u(x)−∇u(y)|
|x− y|

.

For the closed set U ⊂ Rd, define

C1,1(U) :=

{
u : U → R :

There exist an open set V with U ⊂ V
and f ∈ C1,1(V ) such that u = f on U

}
.
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We also let

C1,1
c (D;Rd) :=

{
u : D → R : There exists f ∈ C1,1

c (Rd) such that u = f on D
}
.

Proposition 5.1. Let (Aκ,D(Aκ)) be the L2-generator of (Eκ,Fκ). Then C1,1
c (D;Rd) ⊂

D(Aκ) ∩ D(LB
α), and for all u ∈ C1,1

c (D;Rd),
(5.4) ∥Lκu∥L∞(supp(u)) <∞
and Aκu = Lκu a.e. in D.

Proof. For any u ∈ C1,1
c (Rd) and x, y ∈ Rd, by the mean value theorem, there exists a ∈ [0, 1]

such that u(y)− u(x) = ∇u(ax+ (1− a)y) · (y − x). Hence,

|u(y)− u(x)−∇u(x) · (y − x)| ≤ (1− a)∥u∥
C1,1

c (Rd)
|y − x|2 ≤ ∥u∥

C1,1
c (Rd)

|y − x|2.(5.5)

By repeating the arguments of [53, Proposition 4.2 and Corollary 4.4], using (5.5) instead of
Taylor’s theorem, we obtain the desired result. 2

Proposition 5.2. Let U be an open set with U ⊂ D. For any u ∈ C1,1
c (D) and x ∈ U ,

M
[u]
t := u(Y κ

t∧τU )− u(Y κ
0 )−

∫ t∧τU

0
Lκu(Y κ

s )ds

is a Px-martingale with respect to the filtration of Y κ.

Proof. Let u ∈ C1,1
c (D) and V be an open set with U ∪ supp(u) ⊂ V ⊂ V ⊂ D. By Proposition

5.1, one can get (see the proofs of [53, Corollaries 4.4-4.5]) that, if (Aκ,V ,D(Aκ,V )) is the L2

generator of the semigroup of Y κ,V , then

C1,1
c (V ) ⊂ D(Aκ,V ) and Aκ,V f = Lκf a.e. in V for all f ∈ C1,1

c (V ).(5.6)

It follows from Remark 4.19 that Y κ,U is strongly Feller. Hence, since u ∈ C1,1
c (V ), using (5.6),

one can follow the argument in the first paragraph of the proof of [53, Lemma 4.6] and deduce
that for any x ∈ U ,

u(Y κ,V
t )− u(Y κ,V

0 )−
∫ t∧τV

0
Lκu(Y κ,V

s )ds

is a Px-martingale with respect to the filtration of Y κ. Since τU ≤ τV and Y κ
t = Y κ,V

t for t < τV ,
by the optional stopping theorem, the assertion of the proposition follows. 2

Proposition 5.3. Let U be a bounded open set with U ⊂ D. For any bounded function u on D
such that u|U ∈ C1,1(U), we have

Ex
[
u(Y κ

τU
)
]
= u(x) + Ex

[ ∫ τU

0
Lκu(Y κ

s )ds

]
for all x ∈ U.(5.7)

Proof. Choose an open set V of D with U ⊂ V and f ∈ C1,1
c (D) such that f = u on V . By

Proposition 5.2, we see that for all x ∈ U and t > 0,

Ex
[
f(Y κ

t∧τU )
]
= f(x) + Ex

[ ∫ t∧τU

0
Lκf(Y κ

s )ds

]
= u(x) + Ex

[ ∫ t∧τU

0

(
LB
αf(Y

κ
s )− κ(Y κ

s )u(Y
κ
s )

)
ds

]
.

(5.8)

By (5.4), we have ∥Lκf∥L∞(U) < ∞. Letting t → ∞ in (5.8) and applying the dominated

convergence theorem, we get that for any x ∈ U ,

Ex
[
f(Y κ

τU
)
]
= u(x) + Ex

[ ∫ τU

0

(
LB
αf(Y

κ
s )− κ(Y κ

s )u(Y
κ
s )

)
ds

]
.(5.9)
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Let h := u− f . Then h = 0 on V and h is bounded. In particular, by (B2-a),∥∥∥∥∥
∫
D\V

h(y)B(·, y)
| · −y|d+α

dy

∥∥∥∥∥
L∞(U)

≤ C1∥h∥L∞(D)

∫ c

B(0,dist(U,V c))

dy

|y|d+α
<∞.

Hence, using the Lévy system formula (4.36), we have for any x ∈ U ,

Ex
[
h(Y κ

τU
)
]
= Ex

[
h(Y κ

τU
) : Y κ

τU
∈ D \ V

]
= Ex

[ ∫ τU

0

∫
D\V

h(y)B(Y κ
s , y)

|Y κ
s − y|d+α

dyds

]
= Ex

[ ∫ τU

0
LB
αh(Y

κ
s )ds

]
.

(5.10)

Adding (5.9) and (5.10), we conclude that (5.7) holds. 2

Corollary 5.4. Let U ⊂ D be a bounded open set and u be a bounded Borel function on D such
that u|U ∈ C1,1(U). Suppose that either Lκu(y) ≥ 0 in U or Lκu(y) ≤ 0 in U . Then (5.7) holds.

Proof. Let x ∈ U . For j ≥ 1, define Aj := {y ∈ U : δD(y) > 2−j}. Clearly, Aj ↑ U . Hence, there

exists j0 ≥ 1 such that x ∈ Aj for all j ≥ j0. Since u|Aj
∈ C1,1(Aj) for all j ≥ 1, by Proposition

5.3, we get that for all j ≥ j0,

Ex
[
u(Y κ

τAj
)
]
= u(x) + Ex

[ ∫ τAj

0
Lκu(Y κ

s )ds

]
.(5.11)

By the dominated convergence theorem, the left-hand side of (5.11) converges to that of (5.7)
as j → ∞. On the other hand, since Lκu is either positive in U or negative in U , using the
monotone convergence theorem, we see that the right-hand side of (5.11) converges to that of
(5.7) as j → ∞. Now we arrive at the result by letting j → ∞ in (5.11). 2

5.2. Construction of barrier. In this subsection, we introduce two new assumptions on the
function B, and construct a barrier ψ(r).

Let Φ0 be a Borel function on (0,∞) such that Φ0(r) = 1 for r ≥ 1 and

cL

(
r

s

)β
0

≤ Φ0(r)

Φ0(s)
≤ cU

(
r

s

)β0

for all 0 < s ≤ r ≤ 1,(5.12)

for some constants β0 ≥ β
0
≥ 0 and cL, cU > 0. Let β0 be the lower Matuszewska index of Φ0,

see (2.9).
Consider the following conditions on B.

(B4-a) There exists a constant C6 > 0 such that

B(x, y) ≤ C6Φ0

(
δD(x) ∧ δD(y)

|x− y|

)
for all x, y ∈ D.

(B4-b) There exists a constant C7 > 0 such that

B(x, y) ≥ C7Φ0

(
δD(x) ∧ δD(y)

|x− y|

)
for all x, y ∈ D with δD(x) ∨ δD(y) ≥

|x− y|
2

.

From now until the end of Section 10, we assume that

B satisfies (B1), (B2-b), (B3), (B4-a) and (B4-b).

Note that (B4-a) implies (B2-a).

Remark 5.5. Since B is bounded by (B2-a), the inequality (5.3) automatically holds for all

x, y ∈ D with |x− y| ≥ δD(x)∧ δD(y)∧ R̂. Hence, since (B4-a) is assumed, for (B3) it suffices

to require that (5.3) holds for all x, y ∈ D with |x− y| < δD(x) ∧ δD(y) ∧ R̂.
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We now define a barrier ψ(r) and give an upper bound on LB
αψ

(r). This upper bound will be
used in Section 7, leading eventually to the important Theorem 7.4.

Fix a positive integer N0 > α + β0 + 2. Let ψ : H → [0,∞) be a CN0 function such that

(i) ψ(v) = |ṽ|2N0 + v2N0
d for v ∈ UH(2); and (ii) ψ(v) = 0 for H \ UH(3). For a multi-index

ρ = (ρ1, ..., ρd) ∈ Nd0, we define |ρ| :=
∑d

i=1 ρi and ρ! := Πdi=1ρi!. Let further vρ := Πdi=1 v
ρi
i for

v = (v1, ...vd) ∈ Rd and

∂ρψ(v) :=
∂|ρ|ψ(v)

∂vρ11 · · · ∂vρdd
, v = (v1, ...vd) ∈ H

Denote by i(k) the family of all multi-indices ρ = (ρ1, ..., ρd) ∈ Nd0 with |ρ| = k. Let i0(k) :=
{ρ ∈ i(k) : ρd = 0}. One sees that for any integer 1 ≤ k ≤ N0, there exists a constant c(k) > 0
depending only on k such that for any v = (ṽ, vd) ∈ UH(2),∑

ρ∈i0(k)

∂ρ(∂ψ/∂vd)(v)

ρ!
= 0,(5.13)

∣∣∣∣ ∑
ρ∈i0(k)

∂ρψ(v)

ρ!

∣∣∣∣ ≤ c(k)|ṽ|2N0−k and

∣∣∣∣∂kψ(v)∂vkd

∣∣∣∣ ≤ c(k)v2N0−k
d .(5.14)

For Q ∈ ∂D and 0 < r ≤ R̂/(18 + 9Λ0), we define ψ(r) = ψ
(r)
Q : D → [0,∞) by

ψ(r)(y) =

{
ψ((f

(r)
Q )−1(y)) if y ∈ UQ(3r),

0 if y ∈ D \ UQ(3r),
(5.15)

where f
(r)
Q is the function defined in (3.6). Then ψ(r) is a non-negative C1,1 function with

support in UQ(3r). By Proposition 5.1, LB
αψ

(r) is well defined.
In the remainder of this subsection, we will work with a fixed Q ∈ ∂D, and will write U(r)

for UQ(r) and f (r) for f
(r)
Q .

The goal of this subsection is to prove the following proposition.

Proposition 5.6. Let Q ∈ ∂D. For any ε > 0, there exists a constant C(ε) > 0 independent of

Q such that for any 0 < r ≤ R̂/(18 + 9Λ0) and any y ∈ U(r),

LB
αψ

(r)(y) ≤ εδD(y)
−αψ(r)(y) + C(ε)r−αΦ0(δD(y)/r).

We will prove Proposition 5.6 by estimating some specific integrals within the half space
through a series of lemmas.

Define for r ∈ (0, R̂/(18 + 9Λ0)] and v ∈ UH(1),

I(r)
1 (v) :=

∫
UH(3)\B(v,vd/2)

(ψ(w)− ψ(v))
B(f (r)(w), f (r)(v))

|f (r)(w)− f (r)(v)|d+α
dw,(5.16)

I(r)
2 (v) :=

∫
B(v,vd/2)

(ψ(w)− ψ(v))
(B(f (r)(w), f (r)(v))− B(f (r)(v), f (r)(v)))

|f (r)(w)− f (r)(v)|d+α
dw,(5.17)

I(r)
3 (v) := B(f (r)(v), f (r)(v))

∫
B(v,vd/2)

ψ(w)− ψ(v)−∇ψ(v) · (w − v)

|f (r)(w)− f (r)(v)|d+α
dw.(5.18)

To get estimates for I(r)
1 (v), I(r)

2 (v) and I(r)
3 (v), we use the following lemma.
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Lemma 5.7. (i) There exists C > 0 such that for any v ∈ UH(1),∫
UH(2)\B(v,vd/2)

Φ0(vd/|w − v|)
|w − v|d+α−N0

dw ≤ CΦ0(vd).

(ii) For any ε ∈ (0, 1), there exists a constant C(ε) > 0 such that for any 1 ≤ k ≤ N0 − 1 and
any v ∈ UH(1),

(|ṽ|2N0−k + v2N0−k
d )

∫
UH(2)\B(v,vd/2)

Φ0(vd/|w − v|)
|w − v|d+α−k

dw ≤ ε|ṽ|2N0v−αd + C(ε)Φ0(vd).

Proof. (i) Using (5.12) and vd/2 < |v − w| < 4 for w ∈ UH(2) \ B(v, v2/2), since N0 > α + β0,
we get ∫

UH(2)\B(v,vd/2)

Φ0(vd/|w − v|)
|w − v|d+α−N0

dw ≤ cΦ0(vd/4)

∫ 4

vd/2
sN0−1−α−β0ds ≤ cΦ0(vd).

(ii) Let ε ∈ (0, 1) and 1 ≤ k ≤ N0 − 1. Using (5.12), |ṽ|2N0−k + v2N0−k
d ≤ (|ṽ| + vd)

2N0−k,

k − α/2 > 0, the boundedness of Φ, and 2N0 − α− β0 > 0, we obtain

(|ṽ|2N0−k + v2N0−k
d )

∫
UH(2)\B(v,vd/2)

Φ0(vd/|w − v|)
|w − v|d+α−k

dw

≤ c1(|ṽ|2N0−k + v2N0−k
d )

∫ 4

vd/2
sk−1−αΦ0(vd/s)ds

≤ c2(|ṽ|+ vd)
2N0−k

(∫ |ṽ|+vd

vd/2
sk−1−αds+Φ0(vd/4)

∫ 4

|ṽ|+vd
sk−1−α−β0ds

)
≤ c2(|ṽ|+ vd)

2N0−k

(vd/2)α/2

∫ |ṽ|+vd

vd/2
sk−1−α/2ds+ c3Φ0(vd)

∫ 4

|ṽ|+vd
s2N0−1−α−β0ds

≤ c4(|ṽ|+ vd)
2N0−α/2v

−α/2
d + c5Φ0(vd).

Hence, it remains to show that there exists c6 > 0 independent of v such that

c4(|ṽ|+ vd)
2N0−α/2 < ε|ṽ|2N0v

−α/2
d + c6v

α/2
d Φ0(vd).(5.19)

Indeed, for c7 = c7(ε) := (2α/2−2N0ε/c4)
−2/α + 1, if |ṽ| > c7vd, then c4(|ṽ| + vd)

2N0−α/2 ≤
22N0−α/2c4|ṽ|2N0−α/2 < ε|ṽ|2N0v

−α/2
d . If |ṽ| ≤ c7vd, then by (5.12), since 2N0 − α/2− β0 > 0,

c4(|ṽ|+ vd)
2N0−α/2 ≤ c4(1 + c7)

2N0−α/2v
2N0−α/2
d

< c8v
2N0−α/2−β0
d Φ(vd)/Φ(1) < c8Φ(vd)/Φ(1).

The proof is complete. 2

Lemma 5.8. For any ε > 0, there exists a constant C = C(ε) > 0 such that for all r ∈
(0, R̂/(18 + 9Λ0)] and v ∈ UH(1),

I(r)
1 (v) ≤ r−d−α

(
ε|ṽ|2N0v−αd + CΦ0(vd)

)
,

where I(r)
1 (v) is defined by (5.16).

Proof. By (B4-a), (3.16), the almost increasing property of Φ0 and Lemma 3.3, there exist
c1, c2 > 0 independent of Q and r such that for any w, z ∈ UH(3),

B(f (r)(w), f (r)(z)) ≤ c1Φ0

(
ρD(f

(r)(z))

|f (r)(w)− f (r)(z)|

)
≤ c2Φ0

(
zd

|w − z|

)
.(5.20)

Observe that
I(r)
1 (v) := I1 + I2 + I3,
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where

I1 :=

∫
UH(3)\UH(2)

(ψ(w)− ψ(v))
B(f (r)(w), f (r)(v))

|f (r)(w)− f (r)(v)|d+α
dw,

I2 :=

∫
UH(2)\B(v,vd/2)

(
ψ(w)− ψ(v)−

N0−1∑
k=1

∑
ρ∈i(k)

∂ρψ(v)

ρ!
(w − v)ρ

)

× B(f (r)(w), f (r)(v))
|f (r)(w)− f (r)(v)|d+α

dw,

I3 :=

∫
UH(2)\B(v,vd/2)

N0−1∑
k=1

∑
ρ∈i(k)

∂ρψ(v)

ρ!
(w − v)ρ

B(f (r)(w), f (r)(v))
|f (r)(w)− f (r)(v)|d+α

dw.

Using the mean value theorem, (5.20), (5.12) and Lemma 3.3, we obtain

I1 ≤ c

∫
UH(3)\B(v,1)

supξ∈Rd |∇ψ(ξ)||w − v|
|f (r)(w)− f (r)(v)|d+α

Φ0

(
vd

|w − v|

)
dw

≤ cr−d−αΦ0(vd)

∫
UH(3)\B(v,1)

dw

|w − v|d+α−1
≤ cr−d−αΦ0(vd).

By using Taylor’s theorem, (5.20) and Lemmas 3.3 and 5.7(i), we have

I2 ≤ cr−d−α
∫
UH(2)\B(v,vd/2)

|w − v|N0

|w − v|d+α
Φ0

(
vd

|w − v|

)
dw ≤ cr−α−dΦ0(vd).

Moreover, using (5.20), (5.13), (5.14) and Lemmas 3.3 and 5.7(ii), we obtain

I3 =

∫
UH(2)\B(v,vd/2)

N0−1∑
k=1

∑
ρ∈i0(k)

∂ρψ(v)

ρ!
(w − v)ρ

B(f (r)(w), f (r)(v))
|f (r)(w)− f (r)(v)|d+α

dw

+

∫
UH(2)\B(v,vd/2)

N0−1∑
k=1

1

k!

∂kψ(v)

∂vkd
(wd − vd)

k B(f (r)(w), f (r)(v))
|f (r)(w)− f (r)(v)|d+α

dw

≤ cr−d−α
N0−1∑
k=1

(|ṽ|2N0−k + v2N0−k
d )

∫
UH(2)\B(v,vd/2)

1

|w − v|d+α−k
Φ0

(
vd

|w − v|

)
dw

≤ r−d−α
N0−1∑
k=1

(
(ε/N0) |ṽ|2N0v−αd + cΦ0(vd)

)
≤ r−d−α

(
ε|ṽ|2N0v−αd + cΦ0(vd)

)
.

Combining the above estimates, we arrive at the desired result. 2

Lemma 5.9. For any ε > 0, there exists a constant C = C(ε) > 0 such that for all r ∈
(0, R̂/(18 + 9Λ0)] and v ∈ UH(1),

I(r)
2 (v) + I(r)

3 (v) ≤ r−d−α
(
ε|ṽ|2N0v−αd + CΦ0(vd)

)
,

where I(r)
2 (v) and I(r)

3 (v) are defined by (5.17) and (5.18).

Proof. Denote the Hessian matrix of ψ at point ξ by D2ψ(ξ). Using (2.2), Taylor’s theorem,
Lemma 3.3, (5.13) and (5.14), we get

I(r)
3 (v) ≤ c

∫
B(v,vd/2)

supξ∈B(v,vd/2)
|D2ψ(ξ)||w − v|2

|f (r)(w)− f (r)(v)|d+α
dw
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≤ cr−d−α sup
ξ∈B(v,vd/2)

(|ξ̃|2N0−2 + ξ2N0−2
d )

∫
B(v,vd/2)

dw

|w − v|d+α−2

≤ c1r
−d−αv2−αd (|ṽ|+ vd)

2N0−2.

When α < 1, by using Lemma 3.3, the mean value theorem and (5.14), we have

I(r)
2 (v) ≤ cr−d−α sup

ξ∈B(v,vd/2)
(|ξ̃|2N0−1 + ξ2N0−1

d )

∫
B(v,vd/2)

dw

|w − v|d+α−1

≤ c2r
−d−αv1−αd (|ṽ|+ vd)

2N0−1.

When α ≥ 1, using Lemma 3.3, the mean value theorem, (B3), (3.16) and (5.14), since θ0 > α−1,
we obtain

I(r)
2 (v)

≤ c

∫
B(v,vd/2)

supξ∈B(v,vd/2)
|∇ψ(ξ)||w − v|

|f (r)(w)− f (r)(v)|d+α

(
|f (r)(w)− f (r)(v)|

ρD(f (r)(w)) ∧ ρD(f (r)(v))

)θ0
dw

≤ cr−d−α sup
ξ∈B(v,vd/2)

(|ξ̃|2N0−1 + ξ2N0−1
d )

∫
B(v,vd/2)

1

|w − v|d+α−1

(
|w − v|
wd ∧ vd

)θ0
dw

≤ cr−d−α(vd/2)
−θ0(|ṽ|+ vd)

2N0−1

∫
B(v,vd/2)

dw

|w − v|d+α−1−θ0

= c3r
−d−αv1−αd (|ṽ|+ vd)

2N0−1.

Therefore, it holds that

I(r)
2 (v) + I(r)

3 (v) ≤ (c1 + c2 + c3)r
−d−αv1−αd (|ṽ|+ vd)

2N0−1.

Let ε > 0. To obtain the desired result, we need to show that there exists a constant c(ε) > 0
independent of Q, r and v such that

(c1 + c2 + c3)v
1−α
d (|ṽ|+ vd)

2N0−1 ≤ ε|ṽ|2N0v−αd + c(ε)Φ0(vd).(5.21)

Set c4 = c4(ε) := 22N0−1(c1+c2+c3)ε
−1+1. If |ṽ| > c4vd, then (c1+c2+c3)v

1−α
d (|ṽ|+vd)2N0−1 <

22N0−1(c1+ c2+ c3)v
1−α
d |ṽ|2N0−1 ≤ ε|ṽ|2N0v−αd . If |ṽ| ≤ c4vd, then since N0 > α+β0 and vd < 1,

we get from (5.12) that

v1−αd (|ṽ|+ vd)
2N0−1 ≤ (1 + c4)

2N0−1v2N0−α
d ≤ (1 + c4)

2N0−1v
β0
d ≤ cΦ0(vd)/Φ0(1).

Therefore, (5.21) holds. 2

Proof of Proposition 5.6. Let Q ∈ ∂D, 0 < r ≤ R̂/(18 + 9Λ0) and y ∈ U(r). Denote

v = (f (r))−1(y) ∈ UH(1). Since ψ(r)(z) = 0 in D \ U(3r), by using the change of variables
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z = f (r)(w) in the second line below, we have

LB
αψ

(r)(y) ≤ lim
ε→0

∫
D∩(U(3r)\B(y,ε))

(ψ(r)(z)− ψ(r)(y))
B(z, y)

|z − y|d+α
dz

= lim
ε→0

rd
∫
H∩(f (r))−1(U(3r)\B(y,ε))

(ψ(w)− ψ(v))
B(f (r)(w), f (r)(v))

|f (r)(w)− f (r)(v)|d+α
dw

= rd
∫
UH(3)\B(v,vd/2)

(ψ(w)− ψ(v))
B(f (r)(w), f (r)(v))

|f (r)(w)− f (r)(v)|d+α
dw

+ rd
∫
B(v,vd/2)

(ψ(w)− ψ(v))
(B(f (r)(w), f (r)(v))− B(f (r)(v), f (r)(v)))

|f (r)(w)− f (r)(v)|d+α
dw

+ rdB(f (r)(v), f (r)(v))
∫
B(v,vd/2)

ψ(w)− ψ(v)−∇ψ(v) · (w − v)

|f (r)(w)− f (r)(v)|d+α
dw

= rd
(
I(r)
1 (v) + I(r)

2 (v) + I(r)
3 (v)

)
.

(5.22)

Since ṽ = ỹ/r and vd = ρD(y)/r, by Lemmas 5.8 and 5.9, for any ε > 0, there exists a constant
c(ε) > 0 such that

rd
(
I(r)
1 (v) + I(r)

2 (v) + I(r)
3 (v)

)
≤ r−α

(
ε|ṽ|2N0v−αd + c(ε)Φ0(vd)

)
= ε(|ỹ|/r)2N0ρD(y)

−α + c(ε)r−αΦ0(ρD(y)/r).

Using this, (3.16), (5.12) and ψ(r)(y) = ψ(v) = |ṽ|2N0 + v2N0
d ≥ |ṽ|2N0 = (|ỹ|/r)2N0 , we obtain

rd
(
I(r)
1 (v) + I(r)

2 (v) + I(r)
3 (v)

)
≤ εδD(y)

−αψ(r)(y) + c1c(ε)r
−αΦ0(δD(y)/r).(5.23)

Combining (5.22) and (5.23), we get the desired result. 2

6. Key estimates on C1,1 open sets

Starting from this section, we assume that D ⊂ Rd is a C1,1 open set with characteristics

(R̂,Λ). See Definition 2.1. Without loss of generality, we assume that R̂ ≤ 1 ∧ (1/(2Λ)).
Furthermore, in the remainder of this work, we assume that the killing potential κ satisfies the
following:

(K3) There exist constants η0 > 0 and C8, C9 ≥ 0 such that for all x ∈ D,{
|κ(x)− C9B(x, x)δD(x)−α| ≤ C8δD(x)

−α+η0 if δD(x) < 1,

κ(x) ≤ C8 if δD(x) ≥ 1.
(6.1)

When α ≤ 1, we further assume that C9 > 0.

Note that (K3) implies conditions (K1) and (K2).
Now, we introduce additional assumptions on B that will play a central role in obtaining

Proposition 6.9. Recall the definition of the set EQν (r) from (3.18). We consider the cases when
the killing potential κ(x) is critical (namely, the constant C9 is (K3) is strictly positive) and is
subcritical (namely, C9 = 0), separately.

Case C9 > 0: In this case we consider the following assumption.

(B5-I) There exist constants ν ∈ (0, 1], θ1, θ2, C10 > 0, and a non-negative Borel function F0

on H−1 such that for any Q ∈ ∂D and x, y ∈ EQν (R̂/8) with x = (x̃, xd) in CSQ,∣∣B(x, y)− B(x, x)F0((y − x)/xd)
∣∣+ ∣∣B(x, y)− B(y, y)F0((y − x)/xd)

∣∣
≤ C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .
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Under condition (B5-I), we define a function F on H−1 by

F(y) =
F0(y) + F0(−y/(1 + yd))

2
, y = (ỹ, yd) ∈ H−1.(6.2)

We will see in Lemma 6.2 that F is a bounded function. Moreover, we observe that

F(y) = F(−y/(1 + yd)) for all y ∈ H−1.(6.3)

This property is in a crucial way related to the symmetry of B (see Lemma 11.1(ii) below).
For a function f on H−1, define

C(α, q, f)(6.4)

=

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

0

(sq − 1)(1− sα−1−q)

(1− s)1+α
f
(
((s− 1)ũ, s− 1)

)
ds dũ,

With the function F in (6.3) and q ∈ [(α − 1)+, α + β0), we associate a constant C(α, q,F)
using the definition in (6.4) and additionally assume that

C9 < lim
q→α+β0

C(α, q,F).(6.5)

See Lemma 6.4 for a simple sufficient condition for (6.5).
We will show in Lemma 6.3 that q 7→ C(α, q,F) is a well-defined strictly increasing continuous

function on [(α− 1)+, α+ β0) and C(α, (α− 1)+,F) = 0. Therefore, under (6.5), there exists a
unique constant p ∈ ((α− 1)+, α+ β0) such that

C9 = C(α, p,F).(6.6)

Case C9 = 0: In this case, instead of (B5-I), we introduce the following weaker condition:

(B5-II) There exist constants ν ∈ (0, 1], θ1, θ2, C10 > 0, C11 > 1, i0 ≥ 1, and non-negative Borel
functions Fi0 : H−1 → [0,∞) and µi : D → (0,∞), 1 ≤ i ≤ i0, such that

C−1
11 ≤ µi(x) ≤ C11 for all x ∈ D,(6.7)

and for any Q ∈ ∂D and x, y ∈ EQν (R̂/8) with x = (x̃, xd) in CSQ,∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi0((y − x)/xd)

∣∣∣∣+ ∣∣∣∣B(x, y)− i0∑
i=1

µi(y)Fi0((y − x)/xd)

∣∣∣∣
≤ C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .
(6.8)

Analogously to (6.2), for each 1 ≤ i ≤ i0, we also define

Fi(y) := (Fi0(y) + Fi0(−y/(1 + yd)))/2

and associate constants C(α, q,Fi) for q ∈ [(α− 1)+, α+ β0) .

Note that if (B5-I) holds, then (B5-II) holds with i0 = 1, F1
0 = F0 and µ1(x) = B(x, x).

The conditions (B5-I) and (B5-II) always come in connection with (K3). We now combine
these two conditions into the condition (B5), and assume that (B5) holds from here on until
the end of Section 10.

(B5) If C9 > 0, then (B5-I) and (6.5) hold, and if C9 = 0, then (B5-II) holds.

We will let p denote the constant satisfying (6.6) if C9 > 0 and let p = α − 1 if C9 = 0. Recall
that we assume α > 1 if C9 = 0. Hence, we always have p ∈ [(α − 1)+, α + β0) ∩ (0,∞).
Furthermore, we treat (B5-I) as a special case of (B5-II) with i0 = 1 in all instances. This
means that whenever C9 > 0, we set i0 = 1, F0 = F1

0 and µ1(x) = B(x, x). Here µ1(x) = B(x, x)
satisfies (6.7) by (2.2).
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6.1. Properties of C(α, q,F) and C(α, q,Fi). In this subsection we show that q 7→ C(α, q, F i)
is well defined, continuous and strictly increasing, and give a sufficient condition for (6.5) to hold
true. We start with the symmetrized version of condition (B5-II).

Lemma 6.1. For any Q ∈ ∂D and x, y ∈ EQν (R̂/8) with x = (x̃, xd) in CSQ,∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi((y − x)/xd)

∣∣∣∣
≤ C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .
Proof. Let Q ∈ ∂D and x = (x̃, xd), y = (ỹ, yd) ∈ EQν (R̂/8) in CSQ. Using (B1) and applying
(6.8) to B(x, y) and B(y, x), we obtain

2

∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi((y − x)/xd)

∣∣∣∣
=

∣∣∣∣B(x, y) + B(y, x)−
i0∑
i=1

µi(x)
(
Fi0((y − x)/xd) + Fi0((x− y)/yd)

)∣∣∣∣
≤

∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi0((y − x)/xd)

∣∣∣∣+ ∣∣∣∣B(y, x)− i0∑
i=1

µi(x)Fi0((x− y)/yd)

∣∣∣∣
≤ 2C10

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ2 .
2

Lemma 6.2. There exists C > 1 such that for all y ∈ H−1,

C−11|ỹ|≤(yd+1)∨1Φ0

(
(yd + 1) ∧ 1

|y|

)
≤

i0∑
i=1

Fi(y) ≤ CΦ0

(
(yd + 1) ∧ 1

|y|

)
.

In particular, Fi is bounded for all 1 ≤ i ≤ i0.

Proof. Let y = (ỹ, yd) ∈ H−1. We fix Q ∈ ∂D and use the coordinate system CSQ. For each

ε ∈ (0, R̂/8], define yε = ε(y + ed) = (ỹε, (yε)d). Then we have

ỹε = εỹ, (yε)d = ε(yd + 1), δD(εed) = ε and |εed − yε| = ε|y|.(6.9)

Fix a constant ε0 ∈ (0, R̂/16) satisfying ε0|ỹ| < R̂/32, ε0(yd + 1) < R̂/16 and ε0(yd + 1) >

22+3νε1+ν0 R̂−ν |ỹ|1+ν . Then yε ∈ EQν (R̂/8) for all ε ∈ (0, ε0). Moroever, for all ε ∈ (0, ε0), using
Lemma 6.1, and (6.9), we get∣∣∣∣B(εed, yε)− i0∑

i=1

µi(εed)F
i(y)

∣∣∣∣(6.10)

=

∣∣∣∣B(εed, yε)− i0∑
i=1

µi(εed)F
i((yε − εed)/ε)

∣∣∣∣
≤ c

(
1 ∨ (yd + 1) ∨ |y|
1 ∧ (yd + 1) ∧ |y|

)θ1(
ε(1 ∨ (yd + 1) ∨ |y|)

)θ2 =: c(y)εθ2 .

If |ỹ| ≤ (yd + 1) ∨ 1, then by Lemma 3.7(iii), we get that for all ε < ε0,

|εed − yε|2 = ε2(|ỹ|2 + y2d) ≤

{
2ε2 if yd ≤ 0,

2ε2(yd + 1)2 if yd > 0
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≤ 2(ε ∨ (yε)d)
2 ≤ 4(δD(εed) ∨ δD(yε))2.

Hence, by (B4-a), (B4-b), Lemma 3.7(iii), (6.9) and (5.12), there exists c1 ≥ 1 such that for
all ε < ε0,

c−1
1 1|ỹ|≤(yd+1)∨1Φ0

(
(yd + 1) ∧ 1

|y|

)
≤ B(εed, yε) ≤ c1Φ0

(
(yd + 1) ∧ 1

|y|

)
.(6.11)

Now, by choosing ε ∈ (0, ε0) small enough so that c(y)εθ2 < 2−1c−1
1 Φ0(((yd + 1) ∧ 1)/|y|), we

deduce from (6.10), (6.11), the triangle inequality and (6.7) that

1|ỹ|≤(yd+1)∨1

2c1C11
Φ0

(
(yd + 1) ∧ 1

|y|

)
≤

i0∑
i=1

Fi(y) ≤ 2c1C11Φ0

(
(yd + 1) ∧ 1

|y|

)
.

The proof is complete. 2

Lemma 6.3. For every 1 ≤ i ≤ i0, q 7→ C(α, q,Fi) is a well-defined strictly increasing contin-
uous function on [(α− 1)+, α+ β0) and C(α, (α− 1)+,F

i) = 0.

Proof. Fix 1 ≤ i ≤ i0 and an arbitrary β
0
∈ [0, β0] such that the first inequality in (5.12) holds.

Let q ∈ [(α− 1)+, α+β
0
). Since Fi is non-negative, C(α, q,Fi) is non-negative. By Lemma 6.2,

C(α, q,Fi) is bounded above by

c

(∫ 1/2

0
+

∫ 1

1/2

)∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

× (sq − 1)(1− sα−1−q)

(1− s)1+α
Φ0

(
s

(1− s)|(ũ, 1)|

)
dũ ds

=: c(I1 + I2).

Since Φ0 is bounded, using the mean value theorem, we get

I2 ≤ c

∫
Rd−1

dũ

(|ũ|2 + 1)(d+α)/2

∫ 1

1/2

(1− sq)(sα−1−q − 1)

(1− s)1+α
ds ≤ c

∫ 1

1/2

ds

(1− s)α−1
<∞.

Besides, using (5.12), since sups∈(0,1/2)((1− sq)/(1− s)1+α) <∞ and q < α+ β
0
, we get

I1 ≤ c

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1/2

0
(sα−1−q − 1)

(
s

(1− s)|(ũ, 1)|

)β
0

ds dũ

≤ c

∫
Rd−1

dũ

(|ũ|2 + 1)(d+α+β0
)/2

∫ 1/2

0
(sα−1−q+β

1 − sβ0)ds <∞.

Therefore, C(α, q,Fi) is well-defined. Continuity can be proved using the dominated convergence
theorem.

For each fixed s ∈ (0, 1), the map fs(q) := (sq−1)(1−sα−1−q)/(1−s)1+α is strictly increasing
on [(α − 1)+,∞) and satisfies fs(α − 1) = 0. Thus, q 7→ C(α, q,Fi) is strictly increasing on
[(α− 1)+, α+ β0) and C(α, (α− 1)+,F

i) = 0. 2

Under (B5-I), we give a sufficient condition for limq→α+β0 C(α, q,F) = ∞ so that (6.5) holds
trivially.

Lemma 6.4. Assume (B5-I). Let ℓ0 : (0, 1) → (0,∞) be a non-decreasing function satisfying∫ 1

0

ℓ0(r)

r
dr = ∞.(6.12)

Suppose that Φ0(r) = rβ0ℓ0(r) for 0 < r ≤ 1. Then limq→α+β0 C(α, q,F) = ∞.
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Proof. By Lemma 6.2, for ε ∈ (0, (α ∧ 1)/2), the constant C(α, α+ β0 − ε,F) is bounded below
by

I(ε) := c

∫ 1/2

0

∫
Rd−1, |ũ|<1

1

(|ũ|2 + 1)(d+α)/2

× (1− sα+β0−ε)(s−β0−1+ε − 1)

(1− s)1+α
Φ0

(
s

(1− s)|(ũ, 1)|

)
dũ ds.

Note that for all s ∈ (0, 1/2), we have 1− sα+β0−ε ≥ 1− 2−α/2, 1− s ≤ 1 and s−β0−1+ε ≥ 21/2

so that s−β0−1+ε− 1 ≥ (1− 2−1/2)s−β0−1+ε. Moreover, by (5.12), we see that for all s ∈ (0, 1/2)
and ũ ∈ Rd−1 with |ũ| < 1,

Φ0

(
s

(1− s)|(ũ, 1)|

)
≥ cΦ0(2

−1/2s) ≥ cΦ0(s).

It follows that

I(ε) ≥ c(1− 2−α/2)(1− 2−1/2)

2(d+α)/2

∫ 1/2

0
s−β0−1+εΦ0(s)ds

∫
Rd−1, |ũ|<1

dũ

= c

∫ 1/2

0
s−1+εℓ0(s)ds.

Hence, by (6.12), we obtain limq→α+β0 C(α, q,F) ≥ c limε→0 I(ε) = ∞. 2

Remark 6.5. Let a ≥ 0. Note that ℓ0(r) = loga(e/r) satisfies (6.12). Hence, if Φ0(r) =
rβ0 loga(e/r) for 0 < r ≤ 1, then limq→α+β0 C(α, q,F) = ∞.

6.2. Estimates of some auxiliary integrals. In this subsection, we present estimates of some
integrals that will be used in the proof of Proposition 6.9.

Lemma 6.6. Let q ∈ [0, α+ β0). For all 1 ≤ i ≤ i0, x = (0̃, xd) ∈ H and ε > 0,∫
H, |x−y|>ε

yqd F
i((y − x)/xd)

|x− y|d+α
dy <∞.

Proof. Choose β
0
∈ [0, β0] such that q ∈ [0, α+ β

0
) and the first inequality in (5.12) holds. Fix

1 ≤ i ≤ i0, x = (0̃, xd) ∈ H and ε > 0. Using Lemma 6.2 and the almost monotonicity of Φ0, we
obtain ∫

H, |x−y|>ε

yqd F
i((y − x)/xd)

|x− y|d+α
dy ≤ cε−d−α

∫
H, |x−y|≤2|x|

yqdΦ0(xd/|x− y|)dy

+ c

∫
H, |x−y|>2|x|

yqdΦ0(xd/|x− y|)
|x− y|d+α

dy

=: I1 + I2.

Since Φ0 is bounded, I1 ≤ c(ε)|x|q
∫
Rd, |x−y|≤2|x| dy <∞. On the other hand, for any y ∈ H with

|x − y| > 2|x|, we have |y| ≤ |x − y| + |x| < 2|x − y| and |y| ≥ |x − y| − |x| > |x| = xd. Thus,
using (5.12), since q < α+ β

0
, we obtain

I2 ≤ c

∫
H, |y|>|x|

yqd
(|y|/2)d+α

(
xd

|y|/2

)β
0

dy ≤ cx
β
0
d

∫
Rd\B(0,xd)

|y|−d−α+q−β0dy <∞.

The proof is complete. 2
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Lemma 6.7. Let q ∈ [(α − 1)+, α + β0). There exists C > 0 such that for all 1 ≤ i ≤ i0,

x = (0̃, xd) ∈ H and δ ∈ (0, (xd ∧ 1)/2),∣∣∣∣∣
∫
H, |x−y|>δ

(yqd − xqd)
Fi((y − x)/xd)

|x− y|d+α
dy − C(α, q,Fi)xq−αd

∣∣∣∣∣ ≤ C(δ/xd)
2−αxq−αd .

Proof. Let 1 ≤ i ≤ i0, x = (0̃, xd) ∈ H and δ ∈ (0, (xd ∧ 1)/2). We set

I(q, δ) :=

∫
H, |x−y|>δ

(yqd − xqd)
Fi((y − x)/xd)

|x− y|d+α
dy.

Using Lemma 6.6 twice (with q and q = 0), one sees that the integrand in the above integral is
absolutely integrable. Hence I(q, δ) is well-defined. Using the change of variables z = y/xd in
the first equality below and the change of variables ũ = z̃/(zd − 1) in the second, we get

I(q, δ) = xq−αd

∫
H, |z̃|2+(zd−1)2>(δ/xd)2

(zqd − 1)Fi(z − ed)

|(z̃, zd)− ed|d+α
dz̃ dzd(6.13)

= xq−αd

∫
H, (|ũ|2+1)(zd−1)2>(δ/xd)2

(zqd − 1)Fi(((zd − 1)ũ, zd − 1))

(|ũ|2 + 1)(d+α)/2|zd − 1|1+α
dũ dzd.

Set ϵ(δ, ũ) := (δ/xd)(|ũ|2 + 1)−1/2 ∈ (0, 1/2). By Fubini’s theorem, we obtain from (6.13) that

I(q, δ) = xq−αd

∫
Rd−1

(I1(q, δ, ũ) + I2(q, δ, ũ))
dũ

(|ũ|2 + 1)(d+α)/2
,(6.14)

where

I1(q, δ, ũ) :=

∫ 1−ϵ(δ,ũ)

0

(zqd − 1)Fi(((zd − 1)ũ, zd − 1))

|zd − 1|1+α
dzd,

I2(q, δ, ũ) :=

∫ ∞

1+ϵ(δ,ũ)

(zqd − 1)Fi(((zd − 1)ũ, zd − 1))

|zd − 1|1+α
dzd.

Using the change of the variables s = 1/zd and (6.3), we see that

I2(q, δ, ũ) =

∫ (1+ϵ(δ,ũ))−1

0

(1/s)q − 1

|(1/s)− 1|1+α
Fi(((1/s− 1)ũ, 1/s− 1))

ds

s2

=

(∫ 1−ϵ(δ,ũ)

0
+

∫ (1+ϵ(δ,ũ))−1

1−ϵ(δ,ũ)

)
sα−1−q(1− sq)

(1− s)1+α
Fi(((s− 1)ũ, s− 1))ds

=: I2,1(q, δ, ũ) + I2,2(q, δ, ũ).

Note that (1 + ϵ(δ, ũ))−1 − 1 + ϵ(δ, ũ) = ϵ(δ, ũ)2(1 + ϵ(δ, ũ))−1 ≤ ϵ(δ, ũ)2. Therefore, since Fi is
bounded and ϵ(δ, ũ) ≤ δ/xd < 1/2, by using the mean value theorem we have

|I2,2(q, δ, ũ)| ≤ c

∫ 1−ϵ(δ,ũ)+ϵ(δ,ũ)2

1−ϵ(δ,ũ)

1− sq

(1− s)1+α
ds

≤ c(2q−1 ∨ 1)

∫ 1−ϵ(δ,ũ)+ϵ(δ,ũ)2

1−ϵ(δ,ũ)

ds

(1− s)α

≤ c(2q−1 ∨ 1)

(ϵ(δ, ũ)/2)α

∫ 1−ϵ(δ,ũ)+ϵ(δ,ũ)2

1−ϵ(δ,ũ)
ds ≤ cϵ(δ, ũ)2−α,

which implies that∣∣∣∣∫
Rd−1

I2,2(q, δ, ũ)

(|ũ|2 + 1)(d+α)/2
dũ

∣∣∣∣ ≤ c(δ/xd)
2−α

∫
Rd−1

dũ

(|ũ|2 + 1)(d+2)/2
= c(δ/xd)

2−α.(6.15)
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On the other hand, by the mean value theorem, we have∣∣(sq − 1)(1− sα−1−q)(1− s)−1−α∣∣ ≤ c(1− s)1−α for all s ∈ (1/2, 1).

Thus, since Fi is bounded, we get∣∣∣∣∫
Rd−1

(I1(q, δ, ũ) + I2,1(q, δ, ũ))
dũ

(|ũ|2 + 1)(d+α)/2
− C(α, q,Fi)

∣∣∣∣(6.16)

=

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

1−ϵ(δ,ũ)

(sq − 1)(1− sα−1−q)

(1− s)1+α
Fi(((s− 1)ũ, s− 1))ds dũ

≤ c

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

1−ϵ(δ,ũ)

ds

(1− s)−1+α
dũ

≤ c(δ/xd)
2−α

∫
Rd−1

dũ

(|ũ|2 + 1)(d+2)/2
= c(δ/xd)

2−α.

Combining (6.14) with (6.15) and (6.16), we arrive at the result. 2

Lemma 6.8. Let q ∈ [0, α + β0), ν ∈ (0, 1], r ∈ (0, R̂/8] and x = (0̃, xd) ∈ H with xd ≤ r/4.
Then the following hold.
(i) There exist constants C > 0 and b1 > 0 independent of r and x such that∫

Rd\(E0
ν(r)∪Ẽ0

ν(r))

|yd|q Φ0(xd/|x− y|)
|x− y|d+α

dy ≤ C(xd/r)
b1xq−αd .

(ii) There exist constants C > 0 and b′1 > 0 independent of r and x such that∫
B(0,R̂)\(E0

ν(r)∪Ẽ0
ν(r))

(R̂−1|ỹ|2)q Φ0(xd/|x− y|)
|x− y|d+α

dy ≤ C(xd/r)
b′1xq−αd .

Proof. Choose β
0
∈ [0, β0] so that q ∈ [0, α+β

0
) and (5.12) holds. Since Φ0 is almost increasing,

for all y = (ỹ, yd) ∈ H \ E0
ν(r),

Φ0(xd/|x− (ỹ,−yd)|)
|x− (ỹ,−yd)|d+α

≤ c
Φ0(xd/|x− y|)
|x− y|d+α

.(6.17)

(i) By (6.17), to get the desired result, it suffices to show that

I :=

∫
H\E0

ν(r)

yqd Φ0(xd/|x− y|)
|x− y|d+α

dy ≤ c1(xd/r)
b1x−αd

for some constants c1, b1 > 0 independent of r and x.
We now estimate I from above by splitting the integral into five pieces over not necessarily

disjoint subsets of H that may contain parts of E0
ν(r). Set lν := (rνxd)

1/(1+ν)/4 ∈ (0, r/4). For
any y = (ỹ, yd) ∈ H \ E0

ν(r) with |ỹ| = s < lν , we have either yd ≤ 4r−νs1+ν or yd ≥ r/2. Thus,
since Φ0 is almost increasing, we get

I ≤ c

∫ xd/8

0
sd−2

∫ 4r−νs1+ν

0

yqd Φ0(xd/|xd − yd|)
|xd − yd|d+α

dyd ds

+ c

∫ lν

xd/8
sd−2

∫ 4r−νs1+ν

0

yqd Φ0(xd/s)

sd+α
dyd ds

+ c

∫ lν

0
sd−2

∫ ∞

r/2

yqd Φ0(xd/|xd − yd|)
|xd − yd|d+α

dyd ds

+ c

∫ ∞

lν

sd−2

∫ 16s

0

yqd Φ0(xd/s)

sd+α
dyd ds
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+ c

∫ ∞

lν

sd−2

∫ ∞

16s

yqd Φ0(xd/|xd − yd|)
|xd − yd|d+α

dyd ds

=: cI1 + cI2 + cI3 + cI4 + cI5.

For s ∈ (0, xd/8) and yd ∈ (0, 4r−νs1+ν), we have yd ≤ 4s ≤ xd/2, and so |xd − yd| ≥ xd/2.
Thus, since Φ0 is bounded, we get

I1 ≤ c(xd/2)
−d−α

∫ xd/8

0
sd−2

∫ 4r−νs1+ν

0
yqd dyd ds

= cr−ν(q+1)x−d−αd

∫ xd/8

0
sd−2+(1+ν)(q+1)ds = c(xd/r)

ν(q+1)xq−αd .

For I2, using (5.12) and the fact that q < α+ β
0
, we get

I2 ≤ cΦ0(1)x
β
0
d

∫ lν

xd/8
s−α−β0

−2
∫ 4r−νs1+ν

0
yqd dyd ds

≤ cr−ν(q+1)x
β
0
d

∫ lν

xd/8
s−α−β0

−2+(1+ν)(q+1)ds

≤ cl ν(q+1)
ν r−ν(q+1)x

β
0
d

∫ lν

xd/8
s−α−β0

+q−1ds

≤ cl ν(q+1)
ν r−ν(q+1)xq−αd = c(xd/r)

ν(q+1)/(1+ν)xq−αd .

For yd > r/2, we have |xd − yd| ≥ yd − r/4 ≥ yd/2. Thus, using (5.12) and the fact that
q < α+ β

0
, we obtain

I3 ≤ c

∫ lν

0
sd−2

∫ ∞

r/2
y−d−α+qd Φ0(xd/yd)dyd ds

≤ cΦ0(1)x
β
0
d

∫ lν

0
sd−2

∫ ∞

r/2
y
−d−α−β

0
+q

d dyd ds

= cr−d−α−β0
+q+1x

β
0
d

∫ lν

0
sd−2ds

= cl d−1
ν r−d−α−β0

+q+1x
β
0
d = c(xd/r)

α+β
0
−q+(d−1)/(1+ν) xq−αd .

For I4, by (5.12), we see that

I4 ≤ cΦ0(1)x
β
0
d

∫ ∞

lν

s−α−β0
−2

∫ 16s

0
yqd dyd ds ≤ cx

β
0
d

∫ ∞

lν

s−α−β0
+q−1ds

= cl
−α−β

0
+q

ν x
β
0
d = c(xd/r)

ν(α+β
0
−q)/(1+ν)xq−αd .

For s > lν > (rνxd)
1/(1+ν)/8 and yd > 16s, we have yd > 2xd, so that yd − xd > yd/2. Thus,

using (5.12), we obtain

I5 ≤ c

∫ ∞

lν

sd−2

∫ ∞

16s
yq−d−αd Φ0(xd/yd)dyd ds

≤ cΦ0(1)x
β
0
d

∫ ∞

lν

sd−2

∫ ∞

16s
y
q−d−α−β

0
d dyd ds

= cx
β
0
d

∫ ∞

lν

s−α−β0
+q−1ds = c(xd/r)

ν(α+β
0
−q)/(1+ν)xq−αd .

The proof of (i) is complete.
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(ii) By (6.17), to get the desired result, it suffices to show that

II :=

∫
(B(0,R̂)∩H)\E0

ν(r)

(R̂−1|ỹ|2)q Φ0(xd/|x− y|)
|x− y|d+α

dy ≤ c1(xd/r)
b′1x−αd

for some constants c1, b
′
1 > 0 independent of r and x. Since Φ0 is almost increasing,

II ≤ c

∫ xd/8

0
sd−2

∫ 4r−νs1+ν

0

(r−1s2)q Φ0(xd/(xd − yd))

(xd − yd)d+α
dyd ds

+ c

∫ xd/8

0
sd−2

∫ R̂

r/2

(r−1s2)q Φ0(xd/(yd − xd))

(yd − xd)d+α
dyd ds

+ c

∫ r/4

xd/8
sd−2

∫ 4r−νs1+ν

0

(r−1s2)q Φ0(xd/s)

sd+α
dyd ds

+ c

∫ r/4

xd/8
sd−2

∫ ∞

r/2

(r−1s2)q Φ0(xd/(yd − xd))

(yd − xd)d+α
dyd ds

+ c

∫ R̂

r/4
sd−2

∫ 2s

0

(R̂−1s2)q Φ0(xd/s)

sd+α
dyd ds

+ c

∫ R̂

r/4
sd−2

∫ R̂

2s

(R̂−1s2)q Φ0(xd/(yd − xd))

|yd − xd|d+α
dyd ds

=: II1 + II2 + II3 + II4 + II5 + II6.

Note that since xd ≤ r/4, for all s ∈ (0, xd/8) and yd ∈ (0, 4r−νs1+ν),

xd − yd ≥ xd − 4r−ν(xd/8)
1+ν ≥ xd/2.

Using this, since Φ0 is bounded, we get

II1 ≤ cr−qx−d−αd

∫ xd/8

0
sd−2+2q

∫ 4r−νs1+ν

0
dyd ds

≤ cr−q−νx−d−αd

∫ xd/8

0
sd−1+2q+ν ds = c(xd/r)

q+νxq−αd .

We also note that yd − xd ≥ yd − r/4 ≥ yd/2 for all yd > r/2. Using this and (5.12), since
q < α+ β

0
, we obtain

II2 ≤ cΦ0(1)r
−qx

β
0
d

∫ xd/8

0
sd−2+2qds

∫ R̂

r/2
y
−(d+α+β

0
)

d dyd

≤ c(xd/r)
d+α+β

0
+q−1xq−αd ,

II4 ≤ cΦ0(1)r
−qx

β
0
d

∫ r/4

xd/8
sd−2+2qds

∫ ∞

r/2
y
−(d+α+β

0
)

d dyd ≤ c(xd/r)
α+β

0
−qxq−αd ,

and

II6 ≤ cΦ0(1)R̂
−qx

β
0
d

∫ R̂

r/4
sd−2+2q

∫ R̂

2s
y
−(d+α+β

0
)

d dyd ds

≤ cR̂−qx
β
0
d

∫ R̂

r/4
s−α−β0

−1+2qds

≤ cx
β
0
d

∫ R̂

r/4
s−α−β0

−1+qds ≤ c(xd/r)
α+β

0
−qxq−αd .(6.18)
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For II5, using (5.12) and (6.18), we see that

II5 ≤ cΦ0(1)R̂
−qx

β
0
d

∫ R̂

r/4
s−α−β0

−2+2q
∫ 2s

0
dyd ds

≤ cR̂−qx
β
0
d

∫ R̂

r/4
s−α−β0

+1+2qds ≤ c(xd/r)
α+β

0
−qxq−αd .

For II3, we fix a constant ε ∈ (0, (α+ β
1
− q) ∧ (q + ν)). Using (5.12), we get

II3 ≤ cΦ0(1)r
−qx

β
0
d

∫ r/4

xd/8
s−α−β0

−2+2q
∫ 4r−νs1+ν

0
dyd ds

≤ cr−q−νx
β
0
d

∫ r/4

xd/8
s−α−β0

−1+2q+ν ds

≤ cr−εx
β
0
d

∫ r/4

xd/8
s−α−β0

−1+q+ε ds ≤ c(xd/r)
εxq−αd .

The proof is complete. 2

6.3. Key estimates on cutoff distance functions. For a Borel set V ⊂ D and q ∈ [(α −
1)+, α+ β0) ∩ (0,∞), let

hq,V (y) = 1V (y)δD(y)
q(6.19)

be the q-th power of the cutoff distance function.
The next proposition is the main result of this subsection and one of the key estimates of this

work.

Proposition 6.9. Let q ∈ [(α − 1)+, α + β0) ∩ (0,∞), Q ∈ ∂D and r ∈ (0, R̂/8]. There exist
constants C > 0 and η1 > 0 independent of Q and r such that for any Borel set V satisfying

UQ(3r) ⊂ V ⊂ BD(Q, R̂) and any x ∈ UQ(r/4),

|LB
αhq,V (x)−

i0∑
i=1

µi(x)C(α, q,Fi)δD(x)
q−α| ≤ C(δD(x)/r)

η1δD(x)
q−α.

Proof. Let x ∈ UQ(r/4) and Qx ∈ ∂D be the point such that δD(x) = |x − Qx|. We use the

coordinate system CSQx and denote EQx
ν (r) and ẼQx

ν (r) by Eν and Ẽν respectively. Note that

x = (0̃, xd) = (0̃, δD(x)) ∈ Eν and

δEν (x) ≥ δ{(ỹ,yd):yd>4|ỹ|}((0̃, xd)) = xd/
√
17 = δD(x)/

√
17.(6.20)

Using (3.15) twice, we see that BD(x, r) ⊂ BD(Q, r + |x−Q|) ⊂ BD(Q, 3r/2) ⊂ UQ(3r). Also,
for any y = (ỹ, yd) ∈ Eν , we have |x− y| ≤ |ỹ|+ |yd − xd| < r/4 + r/2. Hence,

Eν ⊂ BD(x, r) ⊂ UQ(3r) ⊂ V.(6.21)

Let

O := B(x, 5−1r−θ2/(2α+2θ1)x
1+θ2/(2α+2θ1)
d ),

where θ1, θ2 > 0 are the constants in (6.8). Since xd < r/4, we have by (6.20),

(6.22) 5−1r−θ2/(2α+2θ1)x
1+θ2/(2α+2θ1)
d < 5−1xd ≤ δEν (x)

so that O ⊂ Eν . Thus, since hq,V (x) = xqd, we get that

LB
αhq,V (x) = p.v.

∫
D

(hq,V (y)− hq,V (x))B(x, y)
|x− y|d+α

dy
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= p.v.

∫
Eν

(hq,V (y)− yqd)B(x, y)
|x− y|d+α

dy + p.v.

∫
Eν

(yqd − xqd)B(x, y)
|x− y|d+α

dy

+

∫
D\Eν

(hq,V (y)− hq,V (x))B(x, y)
|x− y|d+α

dy

=: I1 + J2 + J3.

We further split J2 and J3 as follows:

J2 = p.v.

∫
O

qxq−1
d (yd − xd)B(x, x)

|x− y|d+α
dy

+

∫
O

(yqd − xqd − qxq−1
d (yd − xd))B(x, x)

|x− y|d+α
dy +

∫
O
(yqd − xqd)

B(x, y)− B(x, x)
|x− y|d+α

dy

+

∫
Eν\O

(yqd − xqd)(B(x, y)−
∑i0

i=1 µ
i(x)Fi((y − x)/xd)))

|x− y|d+α
dy

+

i0∑
i=1

∫
H\O

(yqd − xqd)µ
i(x)Fi((y − x)/xd)

|x− y|d+α
dy

−
i0∑
i=1

∫
H\Eν

(yqd − xqd)µ
i(x)Fi((y − x)/xd)

|x− y|d+α
dy

=: I2 + I3 + I4 + I5 + I6 − I7,

J3 =

∫
V \Eν

hq,V (y)B(x, y)
|x− y|d+α

dy −
∫
D\Eν

hq,V (x)B(x, y)
|x− y|d+α

dy =: I8 − I9.

Estimates of the integrals I1 and I5 are the most delicate and are postponed to, respectively,
Lemmas 6.10 and 6.11 below which together give that

(6.23) |I1|+ |I5| ≤ c(xd/r)
ηxq−αd

for some constants c, η > 0 independent of Q, r, x and V . In the rest of the proof we estimate
the remaining seven integrals.

By Lemma 6.7 and (6.7), we get∣∣∣∣I6 − i0∑
i=1

µi(x)C(α, q,Fi)xq−αd

∣∣∣∣
≤

i0∑
i=1

µi(x)

∣∣∣∣ ∫
H\O

(yqd − xqd)F
i((y − x)/xd)

|x− y|d+α
dy − C(α, q,Fi)xq−αd

∣∣∣∣
≤ c

i0∑
i=1

(r−θ2/(2α+2θ1)x
θ2/(2α+2θ1)
d )2−αxq−αd

≤ c(xd/r)
(2−α)θ2/(2α+2θ1)xq−αd .

We have I2 = 0 by symmetry. Note that for any y ∈ O, by the triangle inequality and (6.22),
(4/5)xd ≤ δD(y) ≤ (6/5)xd. Hence, since O ⊂ Eν , using Lemma 3.7(iii), we see that

yd ≍ δD(y) ≍ xd for y ∈ O.(6.24)

Using (2.2), Taylor’s theorem and (6.24), we obtain

|I3| ≤ c

∫
O

xq−2
d |xd − yd|2

|x− y|d+α
dy ≤ cxq−2

d

∫ 5−1r−θ2/(2α+2θ1)x
1+θ2/(2α+2θ1)
d

0
l1−αdl

≤ cxq−2
d (x

1+θ2/(2α+2θ1)
d /rθ2/(2α+2θ1))2−α = c(xd/r)

(2−α)θ2/(2α+2θ1)xq−αd .
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When α ≥ 1, by the mean value theorem, (6.24) and (B3),

|I4| ≤ c

∫
O

xq−1−θ0
d

|x− y|d+α−1−θ0 dy ≤ cxq−1−θ0
d

(x1+θ2/(2α+2θ1)
d

rθ2/(2α+2θ1)

)1+θ0−α

= c
(xd
r

)(1+θ0−α)θ2/(2α+2θ1)
xq−αd .(6.25)

When α < 1, since B is bounded, (6.25) holds with θ0 = 0.
For I7, using Lemma 6.2, (6.7) and Lemma 6.8(i) twice, we get that

|I7| ≤ c

∫
H\Eν

yqdΦ0(xd/|x− y|)
|x− y|d+α

dy + cxqd

∫
H\Eν

Φ0(xd/|x− y|)
|x− y|d+α

dy

≤ c(xd/r)
b1xq−αd + c(xd/r)

b2rq−α,

for some constants b1, b2 > 0 independent of Q, r, x and V .
For I9, using Lemma 3.7(ii), (B4-a) and Lemma 6.8(i), we obtain

I9 ≤ cxqd

∫
Rd\(E0

ν∪Ẽ0
ν)

Φ0(xd/|x− y|)
|x− y|d+α

dy ≤ c(xd/r)
b2rq−α.

For I8, using the fact that V ⊂ BD(Q, R̂), Lemma 3.7(i)-(ii), (B4-a) and Lemma 6.8(i)-(ii),
we get

I8 ≤ c

∫
B(0,R̂)\(E0

ν∪Ẽ0
ν)

(|yd|+ R̂−1|ỹ|2)q Φ0(xd/|x− y|)
|x− y|d+α

dy

≤ c

∫
Rd\(E0

ν∪Ẽ0
ν)

|yd|q Φ0(xd/|x− y|)
|x− y|d+α

dy

+ c

∫
B(0,R̂)\(E0

ν∪Ẽ0
ν)
(R̂−1|ỹ|2)qΦ0(xd/|x− y|)

|x− y|d+α
dy

≤ c(xd/r)
b1xq−αd + c(xd/r)

b3xq−αd ,

for some constant b3 > 0 independent of Q, r, x and V .
Together with (6.23) this completes the proof. 2

In the remainder of this subsection, we fix q,Q, r and V as in Proposition 6.9, let β
0
∈ [0, β0]

be such that q ∈ [(α − 1)+, α + β
0
) ∩ (0,∞) and that the first inequality in (5.12) holds, let

x ∈ UQ(r/4) and let Qx ∈ ∂D be such that δD(x) = |x−Qx|, use the coordinate system CSQx ,

and denote EQx
ν (r) and ẼQx

ν (r) by Eν and Ẽν respectively.

Lemma 6.10. There exist constants C, b > 0 independent of Q, r, x and V such that

|I1| ≤ C(xd/r)
bxq−αd .

Proof. Recall from the proof of Proposition 8.6 that

I1 = p.v.

∫
Eν

(hq,V (y)− yqd)B(x, y)
|x− y|d+α

dy.

We will show that the integral above is actually absolutely convergent and will establish the
required estimate.

Recall from (6.21) that Eν ⊂ V . By Lemma 3.7(i), (iii) and the mean value theorem, we see
that for any y ∈ Eν ,

|hq,V (y)− yqd| ≤
(
(yd + r−1|ỹ|2)q − yqd

)
∨
(
yqd − (yd − r−1|ỹ|2)q

)
≤

(
2q(2q−1 ∨ 1)yq−1

d r−1|ỹ|2
)
∨
(
q(21−q ∨ 1)yq−1

d r−1|ỹ|2
)
≤ q2q+1r−1yq−1

d |ỹ|2.
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Hence, using (B4-a)and (5.12), since Φ0 is bounded and almost increasing, we obtain

|I1| ≤ c

∫ 8−1/(1+ν)r

0
sd−2

∫ r/2

4r−νs1+ν

r−1yq−1
d s2

(s+ |yd − xd|)d+α
Φ0

(
xd

s+ |yd − xd|

)
dyd ds

≤ c

∫ xd/2

0
sd

∫ xd/2

0

r−1yq−1
d

(xd − yd)d+α
dyd ds+ c

∫ xd/2

0
sd

∫ xd−s

xd/2

r−1yq−1
d

(xd − yd)d+α
dyd ds

+ c

∫ xd/2

0
sd

∫ xd+s

xd−s

r−1yq−1
d

sd+α
dyd ds+ c

∫ xd/2

0
sd

∫ 2xd

xd+s

r−1yq−1
d

(yd − xd)d+α
dyd ds

+ c

∫ xd/2

0
sd

∫ r/2

2xd

r−1yq−1
d Φ0(xd/(yd − xd))

(yd − xd)d+α
dyd ds

+ c

∫ r/4

xd/2
sd

∫ 4s

0

r−1yq−1
d Φ0(xd/s)

sd+α
dyd ds

+ c

∫ r/4

xd/2
sd

∫ r

4s

r−1yq−1
d Φ0(xd/yd)

(yd − xd)d+α
dyd ds

=: I1,1 + I1,2 + I1,3 + I1,4 + I1,5 + I1,6 + I1,7.

For I1,1, we have I1,1 ≤ cr−1x−d−αd

∫ xd/2
0 sdds

∫ xd/2
0 yq−1

d dyd = cr−1xq−α+1
d . Note that

yq−1
d ≤ (21−q + 2q−1)xq−1

d for yd ∈ (xd/2, 2xd).(6.26)

Using (6.26), we get

I1,2 ≤ cr−1xq−1
d

∫ xd/2

0
sd

∫ xd−s

xd/2

dyd
(xd − yd)d+α

ds

≤ cr−1xq−1
d

∫ xd/2

0
s1−αds = cr−1xq−α+1

d ,

I1,3 ≤ cr−1xq−1
d

∫ xd/2

0
s−α

∫ xd+s

xd−s
dyd ds = cr−1xq−1

d

∫ xd/2

0
s1−αds = cr−1xq−α+1

d

and

I1,4 ≤ cr−1xq−1
d

∫ xd/2

0
sd

∫ 2xd

xd+s

dyd
(yd − xd)d+α

ds

≤ cr−1xq−1
d

∫ xd/2

0
s1−αds = cr−1xq−α+1

d .

Besides, by using (5.12), since q < α+ β
0
, we obtain

I1,5 ≤ cr−1

∫ xd/2

0
sd

∫ r/2

2xd

y−d−α+q−1
d Φ0(xd/yd)dyd ds

≤ cΦ0(1)r
−1x

β
0
d

∫ xd/2

0
sdds

∫ r/2

2xd

y
−d−α−β

0
+q−1

d dyd ≤ cr−1xq−α+1
d ,

I1,6 ≤ cΦ0(1)r
−1x

β
0
d

∫ r/4

xd/2
s−α−β0

∫ 4s

0
yq−1
d dyd ds = cr−1x

β
0
d

∫ r/4

xd/2
s−α−β0

+qds

and

I1,7 ≤ cΦ0(1)r
−1x

β
0
d

∫ r/4

xd/2
sd

∫ r

4s
y
−d−α−β

0
+q−1

d dyd ds
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≤ cr−1x
β
0
d

∫ r/4

xd/2
s−α−β0

+qds.

Since

r−1x
β
0
d

∫ r/4

xd/2
s−α−β0

+qds ≤ cxq−αd


(xd/r)

α+β
0
−q if − α− β

0
+ q > −1,

xd/r if − α− β
0
+ q < −1,

(xd/r) log(r/xd) if − α− β
0
+ q = −1

and (xd/r) log(r/xd) ≤ (xd/r)
1/2, we arrive at the result. 2

Lemma 6.11. There exist constants C, b > 0 independent of Q, r, x and V such that

|I5| ≤ C(xd/r)
bxq−αd .

Proof. We first recall that

I5 =

∫
Eν\O

(yqd − xqd)(B(x, y)−
∑i0

i=1 µ
i(x)Fi((y − x)/xd)))

|x− y|d+α
dy.

Let λ ∈ (0, 1/(θ1 ∨ θ2 ∨ 1)) be such that q < α + (1 − λ)β
0
− λ(θ1 + 2θ2), where θ1, θ2 > 0 are

the constants in (6.8). Define

A1 = {y ∈ Eν \ O : 3|x− y| < yd ∨ (2xd)},
A2 = {y ∈ Eν \ O : 3|x− y| ≥ 2xd ≥ yd},
A3 = {y ∈ Eν \ O : 3|x− y| ≥ yd > 2xd}.

Using Lemma 6.1, Lemma 3.7(iii), (B4-a), Lemma 6.2 and (5.12), we obtain

|I5| ≤
∫
A1

∣∣∣∣B(x, y)− i0∑
i=1

µi(x)Fi((y − x)/xd)))

∣∣∣∣ |xqd − yqd|
|x− y|d+α

dy

+

∫
A2∪A3

(
B(x, y) +

i0∑
i=1

µi(x)Fi((y − x)/xd)))

)1−λ

×
∣∣∣∣B(x, y)− i0∑

i=1

µi(x)Fi((y − x)/xd)))

∣∣∣∣λ |xqd − yqd|
|x− y|d+α

dy

≤ cr−θ2
∫
A1

(xd ∨ yd ∨ |x− y|)θ1+θ2
(xd ∧ yd ∧ |x− y|)θ1

|xqd − yqd|
|x− y|d+α

dy

+ cr−λθ2
∫
A2

Φ0(xd/|x− y|)1−λ
(
(xd ∨ yd ∨ |x− y|)θ1+θ2
(xd ∧ yd ∧ |x− y|)θ1

)λ |xqd − yqd|
|x− y|d+α

dy

+ cr−λθ2
∫
A3

Φ0(xd/|x− y|)1−λ
(
(xd ∨ yd ∨ |x− y|)θ1+θ2
(xd ∧ yd ∧ |x− y|)θ1

)λ |xqd − yqd|
|x− y|d+α

dy

=: I5,1 + I5,2 + I5,3.

By the triangle inequality, for every y ∈ A1, if 3|x − y| < yd, then 2|x − y| < (2/3)yd < xd <
(4/3)yd, and if 3|x − y| < 2xd, then (1/2)|x − y| < (1/3)xd < yd < (5/3)xd. Hence, for every
y ∈ A1, we have

(1/2)|x− y| < xd ∧ yd ≤ xd ∨ yd ≤ (5/3)(xd ∧ yd).

Using this, since |xqd − yqd| ≤ xqd + yqd for all y ∈ A1, we obtain

I5,1 ≤ cr−θ2xq+θ1+θ2d

∫
A1

dy

|x− y|d+α+θ1
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≤ cr−θ2xq+θ1+θ2d

∫
Rd\B(x,5−1r−θ2/(2α+2θ1)x

1+θ2/(2α+2θ1)
d )

dy

|x− y|d+α+θ1

≤ c(xd/r)
θ2/2xq−αd .

For I5,2, since Φ0 is bounded, |xqd − yqd| ≤ xqd for all y ∈ A2 and λ(θ1 ∨ θ2) < 1, we have

I5,2 ≤ cr−λθ2xqd

∫
A2

(|x− y|θ1+θ2/yθ1d )λ

|x− y|d+α
dy

≤ cr−λθ2xqd

∫
A2

dy

yλθ1d (2xd/3)α+1−λθ1 |x− y|d−1−λθ2

≤ cr−λθ2xq−α−1+λθ1
d

∫
ỹ∈Rd−1, 4r−ν |ỹ|1+ν<2xd

∫ 2xd

4r−ν |ỹ|1+ν

1

yλθ1d |ỹ|d−1−λθ2
dyddỹ

≤ cr−λθ2xq−α−1+λθ1
d

∫ (rνxd)
1/(1+ν)

0

sd−2

sd−1−λθ2

∫ 4xd

4r−νs1+ν

y−λθ1d dyd ds

≤ cr−λθ2xq−αd

∫ (rνxd)
1/(1+ν)

0
s−1+λθ2ds = c(xd/r)

λθ2/(1+ν)xq−αd .

For all y ∈ A3, we have |x − y| ≥ yd − xd ≥ yd/2 > xd. Using this, (B4-a), Lemma 6.2 and
(5.12), since q−d−α− (1−λ)β

0
+λ(θ1+θ2) < −1 and q−α−1− (1−λ)β

0
+λ(θ1+2θ2) < −1,

we get

I5,3 ≤ cΦ0(1)
1−λr−λθ2

∫
A3

(
xd

|x− y|

)(1−λ)β
0
(
|x− y|θ1+θ2

xθ1d

)λ yqd
|x− y|d+α

dy

≤ cr−λθ2x
(1−λ)β

0
−λθ1

d

∫ xd/4

0
sd−2

∫ r/2

2xd

y
q−d−α−(1−λ)β

0
+λ(θ1+θ2)

d dyd ds

+ cr−λθ2x
(1−λ)β

0
−λθ1

d

∫ r/4

xd/4
sd−2

∫ r/2

2xd

y
q−α−1−(1−λ)β

0
+λ(θ1+2θ2)

d

sd−1+λθ2
dyd ds

≤ cr−λθ2xq−d−α+λθ2+1
d

∫ xd/4

0
sd−2ds+ cr−λθ2xq−α+2λθ2

d

∫ r/4

xd/4
s−1−λθ2ds

≤ c(xd/r)
λθ2xq−αd .

The proof is complete. 2

7. Explicit decay rates

In this section we establish the explicit decay rate of some particular harmonic functions,
namely, exit probabilities from small boxes based at a boundary point. We will show that
these functions decay as the p-th power of the distance to the boundary. The first step towards
this goal is to combine the already constructed barrier ψ(r) (see Subsection 5.2) with cutoff
functions of the type hq,U(r) to obtain more refined barriers. This is done in the next subsection.
Subsection 7.2 is devoted to the proof of Theorem 7.4 – sharp two-sided estimates of some exit
probabilities.

Throughout this section, we work with Q ∈ ∂D and will denote UQ(a, b) by U(a, b), and
UQ(a) by U(a).

7.1. Barriers revisited. Recall the definition of hq,V (y) from (6.19). Since D is a C1,1 open

set, it is known that for any q ∈ [(α− 1)+, α+ β0) ∩ (0,∞), Q ∈ ∂D and r ∈ (0, R̂/8],

hq,U(r) ∈ C1,1(U(r/2)).(7.1)
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See, e.g., [32, Theorem 7.8.4].
We also recall that p ∈ [(α−1)+, α+β0)∩(0,∞) denotes the constant satisfying (6.6) if (K3)

holds with C9 > 0, and p = α− 1 if C9 = 0, and the operators LB
α and Lκ are defined by

LB
αf(x) = p.v.

∫
D
(f(y)− f(x))

B(x, y)
|x− y|d+α

dy and Lκf(x) = LB
αf(x)− κ(x)f(x).

Lemma 7.1. Let Q ∈ ∂D, 0 < r ≤ R̂/8, and

q0 = p+ 2−1 ((α+ β0 − p) ∧ η0 ∧ η1) ,
where η0, η1 > 0 are the constants in (6.1) and Proposition 6.9 respectively. Define functions ϕp
and φp on D by

ϕp(y) = 2hp,U(r)(y)− rp−q0hq0,U(r)(y),

φp(y) = hp,U(r)(y) + rp−q0hq0,U(r)(y).(7.2)

Then there exists a constant ϵ1 ∈ (0, 1/12) independent of Q and r such that

(i) ϕp satisfies the following properties:

(a) ϕp ∈ C1,1(U(ϵ1r)) and ϕp(y) = 0 for all y ∈ D \ U(r);
(b) δD(y)

p ≤ ϕp(y) ≤ 2δD(y)
p for all y ∈ U(r);

(c) Lκϕp(y) ≤ −(δD(y)/r)
η0∧η1δD(y)

p−α for all y ∈ U(ϵ1r).

(ii) φp satisfies the following properties:

(a) φp ∈ C1,1(U(ϵ1r)) and φp(y) = 0 for all y ∈ D \ U(r);
(b) δD(y)

p ≤ φp(y) ≤ 2δD(y)
p for all y ∈ U(r);

(c) Lκφp(y) ≥ (δD(y)/r)
η0∧η1δD(y)

p−α for all y ∈ U(ϵ1r).

Proof. By (7.1), we have that ϕp, φp ∈ C1,1(U(εr)) for any ε ∈ (0, 1/12). Clearly, ϕp(y) =
φp(y) = 0 for y ∈ D \ U(r). Hence, ϕp and φp satisfy property (a) in (i) and (ii), respectively.
Moreover, for all y ∈ U(r), since δD(y) < r and q0 > p, we have

rp−q0hq0,U(r)(y) = (δD(y)/r)
q0−php,U(r)(y) ≤ hp,U(r)(y) = δD(y)

p.

Using this, we see that ϕp and φp satisfy property (b) in (i) and (ii), respectively.
Now, we show that ϕp and φp satisfy property (c) in (i) and (ii) respectively. When C9 > 0,

by Proposition 6.9, (6.1) and (6.6), for all y ∈ U(r/12),∣∣Lκhp,U(r)(y)
∣∣ = ∣∣LB

αhp,U(r)(y)− κ(y)hp,U(r)(y)
∣∣

≤
∣∣LB
αhp,U(r)(y)− C(α, p,F)B(y, y)δD(y)−αhp,U(r)(y)

∣∣
+
∣∣κ(y)− C9B(y, y)δD(y)−α

∣∣hp,U(r)(y)

≤ c(δD(y)/r)
η1δD(y)

p−α + cδD(y)
p−α+η0

≤ c(δD(y)/r)
η0∧η1δD(y)

p−α.

Moreover, using Proposition 6.9, (6.1), (6.6) and (2.2), since C(α, q0,F) > C(α, p,F) by Lemma
6.3, we also get that for all y ∈ U(r/12),

Lκhq0,U(r)(y) = LB
αhq0,U(r)(y)− κ(y)hq0,U(r)(y)

= LB
αhq0,U(r)(y)− C(α, q0,F)B(y, y)δD(y)−αhq0,U(r)(y)

+ (C(α, q0,F)− C(α, p,F))B(y, y)δD(y)−αhq0,U(r)(y)

− (κ(y)− C(α, p,F)B(y, y)δD(y)−α)hq0,U(r)(y)

≥ C2(C(α, q0,F)− C(α, p,F))δD(y)
q0−α

− c(δD(y)/r)
η1δD(y)

q0−α − cδD(y)
q0−α+η0

≥ cδD(y)
q0−α − c(δD(y)/r)

η0∧η1δD(y)
q0−α.
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When C9 = 0, using (6.1), Proposition 6.9 and (6.7), since C(α, α−1,Fi) = 0 < C(α, q0,F
i) for

all 1 ≤ i ≤ i0, we get that for all y ∈ U(r/12),∣∣Lκhp,U(r)(y)
∣∣ ≤ ∣∣LB

αhp,U(r)(y)
∣∣+ κ(y)hp,U(r)(y)

≤ c(δD(y)/r)
η1δD(y)

p−α + cδD(y)
p−α+η0 ≤ c(δD(y)/r)

η0∧η1δD(y)
p−α

and

Lκhq0,U(r)(y) = LB
αhq0,U(r)(y)− κ(y)hq0,U(r)(y)

= LB
αhq0,U(r)(y)−

i0∑
i=1

µi(x)C(α, q0,F
i)δD(y)

−αhq0,U(r)(y)

+

i0∑
i=1

µi(x)C(α, q0,F
i)δD(y)

−αhq0,U(r)(y)− κ(y)hq0,U(r)(y)

≥ C−1
11

i0∑
i=1

C(α, q0,F
i)δD(y)

q0−α

− c(δD(y)/r)
η1δD(y)

q0−α − cδD(y)
q0−α+η0

≥ cδD(y)
q0−α − c(δD(y)/r)

η0∧η1δD(y)
q0−α.

Therefore, in both cases, we have∣∣Lκhp,U(r)(y)
∣∣ ≤ c1(δD(y)/r)

η0∧η1δD(y)
p−α(7.3)

and

Lκhq0,U(r)(y) ≥ c2δD(y)
q0−α − c3(δD(y)/r)

η0∧η1δD(y)
q0−α.(7.4)

Since p < q0 < p+ η0 ∧ η1, there exists ϵ1 ∈ (0, 1/12) such that

c2s
q0−p−η0∧η1 ≥ c3s

q0−p + 2c1 + 1 for all s ∈ (0, ϵ1].(7.5)

(i) Using (7.3), (7.4) and (7.5), we get that for all y ∈ U(ϵ1r),

Lκϕp(y) = 2Lκhp,U(r)(y)− rp−q0Lκhq0,U(r)(y)

≤ −
(
c2(δD(y)/r)

q0−p−η0∧η1 − c3(δD(y)/r)
q0−p − 2c1

)
(δD(y)/r)

η0∧η1δD(y)
p−α

≤ −(δD(y)/r)
η0∧η1δD(y)

p−α.

(ii) Using (7.3), (7.4) and (7.5), we see that for all y ∈ U(ϵ1r),

Lκφp(y) = rp−q0Lκhq0,U(r)(y) + Lκhp,U(r)(y)

≥
(
c2(δD(y)/r)

q0−p−η0∧η1 − c3(δD(y)/r)
q−p − 2c1

)
(δD(y)/r)

η0∧η1δD(y)
p−α

≥ (δD(y)/r)
η0∧η1δD(y)

p−α.

The proof is complete. 2

Recall that we treat (B5-I) as a special case of (B5-II) with i0 = 1.
To control certain exit probabilities from below (see Lemma 7.10), we need to introduce the

following non-local operators with appropriate additional critical killings.
For q ∈ (p, α+ β0), we define

L̃qf(y) = Lκf(y)−
i0∑
i=1

µi(y)(C(α, q,Fi)− C(α, p,Fi))δD(y)
−αf(y).(7.6)

In the following two lemmas, we let ψ(r) denote the function defined by (5.15) and let N0 >

α+ β0 + 2 be the constant appearing in the construction of ψ(r).
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Lemma 7.2. Let Q ∈ ∂D and q ∈ (p, α + β0). There exists C > 0 independent of Q such that

for all 0 < r ≤ R̂/24 and y ∈ U(r),

L̃qψ
(r)(y) ≤ Cr−αΦ0(δD(y)/r).

Proof. Let r ∈ (0, R̂/24] and y ∈ U(r). By Lemma 6.3, C(α, q,Fi) > C(α, p,Fi) for all 1 ≤ i ≤
i0. Thus, by (6.7), we have

L̃qψ
(r)(y) ≤ LB

αψ
(r)(y)− C−1

11

i0∑
i=1

(C(α, q,Fi)− C(α, p,Fi))δD(y)
−αψ(r)(y).(7.7)

Note that r ≤ R̂/24 < R̂/(18+9Λ0) by (3.14). Applying Proposition 5.6 with ε = C−1
11

∑i0
i=1(C(α, q,F

i)
−C(α, p,Fi)), we deduce the result from (7.7). 2

Lemma 7.3. Let q ∈ (p, α+ β0), q1 ∈ (p, q), Q ∈ ∂D and 0 < r ≤ R̂/24. There exist constants
ϵ2 = ϵ2(q, q1) ∈ (0, ϵ1] and C > 0 independent of Q and r such that the function χq defined by

χq(y) = hq,U(r)(y)− ϵq−2N0
2 rqψ(r)(y), y ∈ D,

satisfies the following properties:
(a) χq ∈ C1,1(U(ϵ2r)) and χq(y) ≤ 0 for all y ∈ D \ U(ϵ2r);

(b) 2−1δD(y)
q ≤ χq(y) ≤ δD(y)

q for all y = (0̃, yd) ∈ U(ϵ2r/2);

(c) L̃q1χq(y) ≥ −Crq−αΦ0(δD(y)/r) for all y ∈ U(ϵ2r).

Here, ϵ1 ∈ (0, 1/12) is the constant in Lemma 7.1.

Proof. Let ϵ2 ∈ (0, ϵ1] be a constant to be determined later.

By (7.1), since ψ(r) ∈ C1,1(D), we have χq ∈ C1,1(U(ϵ2r)). Since ψ(r) is non-negative,

χq(y) = −ϵq−2N0
2 rqψ(r)(y) ≤ 0 for all y ∈ D \ U(r). Let y ∈ U(r) \ U(ϵ2r) and denote v =

(f (r))−1(y) where f (r) is the function defined in (3.6). Then v ∈ UH(1) \ UH(ϵ2), ρD(y) = rvd
and ψ(r)(y) = |ṽ|2N0 + v2N0

d . If vd ≥ ϵ2, then since δD(y) ≤ ρD(y) = rvd and N0 > q, we get

χq(y) ≤ rqvqd − ϵq−2N0
2 rqv2N0

d = rqvqd(1− ϵq−2N0
2 v2N0−q

d ) ≤ 0.

Assume vd < ϵ2. Since v /∈ UH(ϵ2), it follows that |ṽ| ≥ ϵ2. Hence, we obtain

χq(y) ≤ rqvqd − ϵq−2N0
2 rq|ṽ|2N0 ≤ ϵq2r

q − ϵq2r
q = 0.

Therefore, χq satisfies (a).

Since ψ(r) is non-negative, χq(y) ≤ δD(y)
q for all y ∈ U(ϵ2r/2). Moreover, for any y =

(0̃, yd) ∈ U(r), we have ψ(r)(y) = (yd/r)
2N0 = (δD(y)/r)

2N0 . Thus, since N0 > q + 2, for all

y = (0̃, yd) ∈ U(ϵ2r/2), we have

χq(y) ≥ δD(y)
q − ϵq−2N0

2 rq(ϵ2/2)
2N0−q(δD(y)/r)

q

= (1− 2q−2N0)δD(y)
q ≥ 2−1δD(y)

q.

Hence, χq satisfies (b).
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For (c), using (6.7), Proposition 6.9, (6.1) and (6.6), we see that for all y ∈ U(r/12),

L̃q1hq,U(r)(y) = LB
αhq,U(r)(y)−

i0∑
i=1

µi(y)C(α, q,Fi)δD(y)
−αhq,U(r)(y)

+

i0∑
i=1

µi(y)(C(α, q,Fi)− C(α, q1,F
i))δD(y)

−αhq,U(r)(y)

−
(
κ(y)−

i0∑
i=1

µi(y)C(α, p,Fi)

)
hq,U(r)(y)

≥ C−1
11

i0∑
i=1

(C(α, q,Fi)− C(α, q1,F
i))δD(y)

−αhq,U(r)(y)

− (c1(δD(y)/r)
η1 + C8δD(y)

η0)δD(y)
−αhq,U(r)(y).

(7.8)

Set c2 := C−1
11

∑i0
i=1(C(α, q,F

i) − C(α, q1,F
i)). Since q1 < q, by Lemma 6.3, c2 is a positive

constant. Now we choose ϵ2 ∈ (0, ϵ1] to satisfy c2 − c1ϵ
η1
2 −C8ϵ

η0
2 ≥ 0. By (7.8) and Lemma 7.2,

we get that for all y ∈ U(ϵ2r),

L̃q1χq ≥ −ϵq−2N0
2 rqL̃q1ψ

(r)(y) ≥ −c3rq−αΦ0(δD(y)/r).

The proof is complete. 2

7.2. Explicit decay rate of some special harmonic functions. In this subsection, we
establish some estimates of exit probabilities from small boxes based at a boundary point. These
exit probabilities are non-negative harmonic functions vanishing continuously at the boundary.
Recall that the definition of harmonic and regular harmonic functions is given in Definition 4.30.

For the remainder of this work, we suppress the superscript κ from Y κ and related objects.

We also recall the following well-known fact: If f : D → [0,∞) is harmonic in D ∩ B(Q, r),
Q ∈ ∂D, and vanishes continuously on ∂D∩B(Q, r), then f is regular harmonic in D∩B(Q, r/2)
(see, for example, [48, Lemma 5.1] and its proof).

Throughout this subsection, we let ϵ1 be the constant in Lemmas 7.1. We also fix

q =
p+ 2α+ 2β0

3
and q1 =

2p+ α+ β0
3

and let ϵ2 be the constant in Lemma 7.3 with these fixed q and q1.
The goal of this subsection is to prove the following theorem.

Theorem 7.4. Let Q ∈ ∂D and 0 < r ≤ R̂/24. There are comparison constants independent
of Q and r such that for all x ∈ U(ϵ2r/4),

Px(YτU(ϵ2r)
∈ U(r) \ U(r, r/2)) ≍ Px(YτU(ϵ2r)

∈ D) ≍ (δD(x)/r)
p.

Before giving the proof of Theorem 7.4, we record one of its consequences.

Corollary 7.5. There exists a constant K0 > 4 such that for all x ∈ D with δD(x) ≤
ϵ2R̂/(24K0), it holds that Px(τBD(x,(2K0+1)δD(x)) = ζ) ≥ 1/2.

Proof. Let K0 > 4 be a constant to be chosen later, x ∈ D with δD(x) ≤ ϵ2R̂/(24K0) and Qx ∈
∂D be such that |x − Qx| = δD(x). Note that BD(x, (2K0 + 1)δD(x)) ⊃ BD(Qx, 2K0δD(x)) ⊃
UQx(K0δD(x)) by (3.15). Hence, by Theorem 7.4 (with r = K0δD(x)/ϵ2), there exists c1 > 0
independent of x and K0 such that

Px(YτBD(x,(2K0+1)δD(x))
∈ D) ≤ Px(Yτ

UQx (K0δD(x))
∈ D) ≤ c1K

−p
0 .
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Set K0 := (2c1)
1/p ∨ 5. Then we arrive at

Px(τBD(x,(2K0+1)δD(x)) = ζ) = 1− Px(YτBD(x,(2K0+1)δD(x))
∈ D) ≥ 1/2.

2

Now we turn to the proof of Theorem 7.4. To do so, we first establish several results that will
be used in the proof. The proof of Theorem 7.4 will be presented at the end of this subsection.

Lemma 7.6. Let Q ∈ ∂D, 0 < r ≤ R̂/8 and ε ∈ (0, 1/12). There exist comparison constants
independent of Q and r such that for all x ∈ U(εr),

Px
(
YτU(εr)

∈ U(εr, r) \ U(εr, (3/4)r)
)
≍ r−α Ex

[∫ τU(ϵr)

0
Φ0(δD(Ys)/r)ds

]
.

Proof. Let z ∈ U(εr) and y ∈ U(εr, r) \ U(εr, (3/4)r). Then |y − z| ≥ (3/4 − ε)r ≥ (2/3)r and

|y − z| ≤ ((|ỹ| + |z̃|)2 + y2d)
1/2 < ((2ε)2 + 1)1/2r <

√
37/36 r. Moreover, by (3.16), we have

δD(y) ≥
√
4/5 ρD(y) ≥

√
9/20 r > 2−1|y − z| ∨ δD(z). Thus, using (B4-a), (B4-b) and (5.12),

we get that

B(z, y)
|z − y|d+α

≍ Φ0(δD(z)/|y − z|)
|z − y|d+α

≍ Φ0(δD(z)/r)

rd+α
.(7.9)

By using the Lévy system formula (4.36) and (7.9), we deduce that for all x ∈ U(εr),

Px
(
YτU(εr)

∈ U(εr, r) \ U(εr, (3/4)r)
)

= Ex

[∫ τU(εr)

0

∫
U(εr,r)\U(εr,(3/4)r)

B(Ys, y)
|Ys − y|d+α

dyds

]

≍ r−d−αmd(U(εr, r) \ U(εr, (3/4)r))Ex
[∫ τU(εr)

0
Φ0(δD(Ys)/r)ds

]
≍ r−α Ex

[∫ τU(εr)

0
Φ0(δD(Ys)/r)ds

]
.

2

Lemma 7.7. Let Q ∈ ∂D, 0 < r ≤ R̂/8 and ε ∈ (0, ϵ1). For all x ∈ U(εr), we have

2p+1(
√
5/3)p(δD(x)/r)

p ≥ Px
(
YτU(εr)

∈ U(εr, r) \ U(εr, (3/4)r)
)

(7.10)

and

2−1(δD(x)/r)
p ≤ Px

(
YτU(εr)

∈ U(r)
)
.(7.11)

Proof. By Lemma 7.1(i)-(ii), the functions ϕp and φp defined in (7.2) satisfy all the assumptions
of Corollary 5.4 with U = U(ϵ1r). Hence, using Corollary 5.4, Lemma 7.1(i)-(ii) and (3.16), we
get that for all x ∈ U(εr),

2δD(x)
p ≥ ϕp(x) ≥ Ex

[
ϕp(YτU(εr)

)
]
≥ Ex

[
δD(YτU(εr)

)p : YτU(εr)
∈ U(r)

]
≥ (3/2

√
5)prp Px

(
YτU(εr)

∈ U(εr, r) \ U(εr, (3/4)r)
)

and

δD(x)
p ≤ φp(x) ≤ Ex

[
φp(YτU(εr)

)
]
≤ 2Ex

[
δD(YτU(εr)

)p : YτU(εr)
∈ U(r)

]
≤ 2rp Px

(
YτU(εr)

∈ U(r)
)
.

2

Combining (7.10) with Lemma 7.6, we arrive at
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Corollary 7.8. Let Q ∈ ∂D and 0 < r ≤ R̂/8. There exists C > 0 independent of Q and r
such that for all x ∈ U(ϵ1r),

Ex
[∫ τU(ϵ1r)

0
Φ0(δD(Ys)/r)ds

]
≤ C(δD(x)/r)

prα.

Lemma 7.9. Let β
0
∈ [0, β0] be such that p < α + β

0
and that the first inequality in (5.12)

holds. Let Q ∈ ∂D, 0 < r ≤ R̂/8 and a, b ∈ (0, 1) be such that a < ϵ1b/5. There exists C > 0
independent of Q, r, a and b such that for all x ∈ U(ar),

Px
(
YτBD(x,ar)

∈ D \B(x, br)
)
≤ C(a/b)α+β0(δD(x)/(ar))

p.

Proof. Let y ∈ BD(x, ar). Then δD(y) ≤ δD(x) + ar < 2ar and B(y, 4br/5) ⊂ B(x, br) since
a < ϵ1b/5. For all z ∈ D \ B(y, 4br/5) we have that |y − z| ≥ 4ϵ−1ar, hence by (B4-a) and
(5.12), it holds that

B(y, z) ≤ c1Φ0

(
δD(y)

|y − z|

)
≤ c2

(
4ϵ−1

1 ar

|y − z|

)β
0

Φ0

(
δD(y)

4ϵ−1
1 ar

)
.

Therefore, we have∫
D\B(x,br)

B(y, z)
|y − z|d+α

dz ≤ c2(4ϵ
−1
1 ar)β0 Φ0

(
δD(y)

4ϵ−1
1 ar

)∫
D\B(y,4br/5)

dz

|y − z|d+α+β0

≤ c3(4ϵ
−1
1 ar)β0

(4br/5)α+β0

Φ0

(
δD(y)

4ϵ−1
1 ar

)
=

c4a
β
0

bα+β0rα
Φ0

(
δD(y)

4ϵ−1
1 ar

)
.(7.12)

Note that BD(x, ar) ⊂ BD(Q, 2ar) ⊂ U(4ar) by (3.15). Thus, using the Lévy system formula
(4.36), (7.12) and Corollary 7.8, we arrive at

Px
(
YτBD(x,ar)

∈ D \B(x, br)
)
= Ex

[∫ τBD(x,ar)

0

∫
D\B(x,br)

B(Ys, z)
|Ys − z|d+α

dzds

]

≤ c4a
β
0

bα+β0rα
Ex

[∫ τBD(x,ar)

0
Φ0

(
δD(Ys)

4ϵ−1
1 ar

)
ds

]
≤ c4a

β
0

bα+β0rα
Ex

[∫ τU(4ar)

0
Φ0

(
δD(Ys)

4ϵ−1
1 ar

)
ds

]
≤ c5(a/b)

α+β
0(δD(x)/(ar))

p.

2

Let Q ∈ ∂D and 0 < r ≤ R̂/24. Since q ∈ (p, α + β
1
) and q1 ∈ (p, q), by using Corollary 5.4

and Lemma 7.3, we see that for all x ∈ U(ϵ2r/2),

2−1δD(x)
q ≤ χq(x) ≤ χq(x)− Ex

[
χq(YτU(ϵ2r)

)

]
= −Ex

[ ∫ τU(ϵ2r)

0
Lχq(Ys)ds

]
≤ −Ex

[ ∫ τU(ϵ2r)

0
L̃q1χq(Ys)ds

]
≤ crq−αEx

[ ∫ τU(ϵ2r)

0
Φ0(δD(Ys)/r)ds

]
,

where the function χq is defined in Lemma 7.3 and the operator L̃q1 is defined by (7.6). Com-
bining the above with Lemma 7.6, we obtain

Lemma 7.10. Let Q ∈ ∂D and 0 < r ≤ R̂/24. There exists C > 0 independent of Q and r
such that for any x ∈ U(ϵ2r/2),

Px
(
YτU(ϵ2r)

∈ U(ϵ2r, r) \ U(ϵ2r, (3/4)r)
)
≥ C(δD(x)/r)

q.

The next proposition is the most demanding part of the proof of Theorem 7.4.
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Proposition 7.11. Let Q ∈ ∂D and 0 < r ≤ R̂/24. There exists C > 0 independent of Q and
r such that for any x ∈ U(ϵ2r/4),

Px
(
YτU(ϵ2r)

∈ U(ϵ2r, r) \ U(ϵ2r, (3/4)r)
)
≥ CPx

(
YτU(ϵ2r)

∈ U(r)
)
.

To prove Proposition 7.11, we follow the proof of [48, Lemma 6.2] (see also [50, Lemma 6.2]
and [52, Lemma 5.2]). The main challenge is to prove Lemma 7.13 below. Unlike in [48] and
[50], since we allow the killing potential κ to be zero, highly non-trivial modifications are needed.
In [52], where the case of no killing potential was studied, the step corresponding to Lemma 7.13
was a consequence of the scaling property of the underlying process (see [52, Corollary 3.4(b)]),
which is not applicable in the current setting.

Before giving the proof of Proposition 7.11, we introduce some notation which is used in the

proof. Let Q ∈ ∂D, 0 < r ≤ R̂/24,

H1 :=
{
YτU(ϵ2r)

∈ U(ϵ2r, r) \ U(ϵ2r, (3/4)r)
}

and H2 :=
{
YτU(ϵ2r)

∈ U(r)
}
.

For i ≥ 1, we set

si :=
5ϵ2r

8

(
1

2
− 1

50

i∑
j=1

1

j2

)
,

U−
i := U(si, 2

−i−1ϵ2r) and U+
i := U(si, 2

−iϵ2r) \ U−
i .

Note that for all i ≥ 1, we have ϵ2r/4 < si < 5ϵ2r/16, U
+
i+1 ⊂ U−

i ⊂ U(ϵ2r) for all i ≥ 1 and

2−i−2ϵ2r ≤ δD(z) ≤ 2−iϵ2r, z ∈ U+
i(7.13)

by (3.16). This implies that U(ϵ2r/4) ⊂ ∪i≥1U
+
i . Moreover, by Lemma 7.10, (7.13), there exists

Figure 3. The sets U+
i and U+

i+1

a constant c > 0 such that

Pz(H1) ≥ c(2−i−2ϵ2)
q for all i ≥ 1 and z ∈ U+

i .(7.14)

Define for i ≥ 1,

ai = sup
z∈U+

i

(
Pz(H2)/Pz(H1)

)
and τi = τU−

i
.

For every i ≥ 1, the constant ai is finite by (7.14). Our goal is to show that

sup
z∈U(ϵ2r/4)

(
Pz(H2)/Pz(H1)

)
≤ sup

z∈∪i≥1U
+
i

(
Pz(H2)/Pz(H1)

)
= sup

i≥1
ai <∞,
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which proves the proposition. This will be done through a series of lemmas.

Lemma 7.12. For all i ≥ 1,

ai+1 ≤ sup
1≤j≤i

aj + sup
z∈U+

i+1

Pz
(
Yτi ∈ U(r) \ ∪ik=1U

+
k

)
Pz(H1)

.(7.15)

Proof. Let i ≥ 1 and z ∈ U+
i+1. Since τi ≤ τU(ϵ2r), we have by the strong Markov property that

Pz(H2, Yτi ∈ ∪ik=1U
+
k ) =

i∑
k=1

Pz(H2, Yτi ∈ U+
k )

=
i∑

k=1

Ez(PYτi (H2), Yτi ∈ U+
k ) ≤

i∑
k=1

Ez(akPYτi (H2), Yτi ∈ U+
k )

≤ ( sup
1≤j≤i

aj)Pz(H1, Yτi ∈ ∪ik=1U
+
k ) ≤ ( sup

1≤j≤i
aj)Pz(H1).

This implies that

Pz(H2) = Pz(H2, Yτi ∈ ∪ik=1U
+
k ) + Pz(Yτi ∈ U(r) \ ∪ik=1U

+
k )

≤ ( sup
1≤j≤i

aj)Pz(H1) + Pz(Yτi ∈ U(r) \ ∪ik=1U
+
k ),

which implies (7.15). 2

For i ≥ 1, we define σi,0 = 0, σi,1 = inf{t > 0 : |Yt − Y0| ≥ 2−i−1ϵ2r} and σi,k+1 =
σi,k + σi,1 ◦ θσi,k for k ≥ 1. Here θt denotes the shift operator for Y .

Lemma 7.13. There exists a constant b1 ∈ (0, 1) independent of Q and r such that for all i ≥ 1
and w ∈ U−

i ,

Pw(τi > σi,1) ≤ b1.

Proof. Let i ≥ 1 and w ∈ U−
i . By the Lévy system formula(4.36), since Y can be regarded as

the part process of Y killed at ζ, we have

Pw(τi ≤ σi,1) ≥ Pw
(
YτBD(w,2−i−2ϵ2r)

∈ (D \ U−
i ) ∪ {∂}

)
≥ Pw

(
YτBD(w,2−i−2ϵ2r)

∈ D \ U−
i , τBD(w,2−i−2ϵ2r) < ζ

)
+ Pw

(
τBD(w,2−i−2ϵ2r) = ζ

)
= Ew

[
1{τBD(w,2−i−2ϵ2r)

<ζ}

∫ τB
D

(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds

]
+ Ew

[
1{τBD(w,2−i−2ϵ2r)

=ζ}

]
≥ Ew

[
1 ∧

∫ τB
D

(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds

]
.

(7.16)

Thus, to obtain the desired result, it suffices to show that there exist constants c0, c1 ∈ (0, 1)
independent of Q, r, i and w ∈ U−

i such that

Pw
(∫ τB

D
(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds ≥ c0

)
≥ c1.(7.17)

Indeed, if (7.17) holds, then we deduce from (7.16) that

Pw(τi > σi,1) = 1− Pw(τi ≤ σi,1)
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≤ 1− c0Pw
(∫ τB

D
(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds ≥ c0

)
≤ 1− c0c1,

which yields the result.
Now we prove (7.17). We will use the coordinate system CSQ. For i ≥ 1, define

Ai =
{
z ∈ BD(w, 2

−i−3ϵ2r) : δD(z) > 2−i−5ϵ2r
}
.

Then md(Ai) ≥ c2(2
−i−3ϵ2r)

d for a constant c2 > 0 independent of Q, r, i and w. Let Ki be
any compact subset of Ai such that md(Ki) ≥ 2−1md(Ai). Then by Lemma 4.10 (with b = 1/2,

R0 = R̂/24, and r replaced by 2−i−2ϵ2r), there exists c3 ∈ (0, 1) independent of Q, r, i and w
such that

Pw
(
σKi < τBD(w,2−i−2ϵ2r)

)
≥ c3.(7.18)

Choose any z ∈ Ki, v ∈ B(z, 2−i−6ϵ2r) and y ∈ B(z + 2−iϵ2red, 2
−i−6ϵ2r). Then we have

δD(v) ≥ δD(z)− |z − v| ≥ 2−i−6ϵ2r, δD(v) ≤ δD(w) + |w − z|+ |z − v| ≤ 2−iϵ2r and

|v − y| ≤ |v − z|+ 2−iϵ2r + |z + 2−iϵ2red − y| < (2−i + 2−i−5)ϵ2r.

Moreover, using the mean value theorem and (3.2), since zd ≥ Ψ(z̃), |ỹ| ∨ |z̃| ≤ |w|+21−iϵ2r < r

by (3.15) Λr ≤ ΛR̂/24 ≤ 1/48 and ϵ2 ≤ 1/12, we see that

ρD(y) ≥ zd + 2−iϵ2r − 2−i−6ϵ2r −Ψ(ỹ)

≥ zd + 2−iϵ2r − 2−i−6ϵ2r −Ψ(z̃)− Λ(|ỹ| ∨ |z̃|)|ỹ − z̃|
≥ 2−iϵ2r − 2−i−6ϵ2r − (2−iϵ2r + 2−i−6ϵ2r)/48 ≥ (23/24)2−iϵ2r.

Thus y ∈ D \ U−
i showing that B(z + 2−iϵ2red, 2

−i−6ϵ2r) ⊂ D \ U−
i . Further, by (3.16),

δD(y) ≥ (2/
√
5)ρD(y) ≥ (2−i−1+2−i−6)ϵ2r ≥ 2−1(|v−y|∨δD(v)). By (B4-b), (5.12) and (3.3),

it follows that∫
D\U−

i

B(v, y)
|v − y|d+α

dy ≥ C7

∫
B(z+2−iϵ2red, 2−i−6ϵ2r)

Φ0((δD(v) ∧ δD(y))/|v − y|)
|v − y|d+α

dy

≥ c4Φ0(2
−6)

(21−iϵ2r)d+α

∫
B(z+2−iϵ2red, 2−i−6ϵ2r)

dy ≥ c5(2
−iϵ2r)

−α,

where c5 ∈ (0, 1) is a constant independent of Q, r, i and w.

On the other hand, by Lemma 4.3 (with T = R̂α, see also Remark 4.9), there exists c6 ∈ (0, 1)
such that

Pw
(
τB(Y0,2−i−6ϵ2r) ◦ θσKi

≥ c6(2
−i−6ϵ2r)

α
)
≥ 2−1.(7.19)

On the event {τB(Y0,2−i−6ϵ2r) ◦ θσKi
≥ c6(2

−i−6ϵ2r)
α, σKi < τBD(w,2−i−2ϵ2r)}, we have∫ τB

D
(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds

≥
∫ σKi

+τB(Y0,2
−i−6ϵ2r)

◦θσKi

σKi

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds

≥
∫ σKi

+τB(Y0,2
−i−6ϵ2r)

◦θσKi

σKi

inf
z∈Ki, v∈B(z,2−i−6ϵ2r)

∫
D\U−

i

B(v, y)
|v − y|d+α

dyds

≥ c5(2
−iϵ2r)

−α
∫ σKi

+τB(Y0,2
−i−6ϵ2r)

◦θσKi

σKi

ds ≥ 2−6αc5c6.

(7.20)
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By the strong Markov property, (7.18), (7.19) and (7.20), we arrive at

Pw
(∫ τB

D
(w,2−i−2ϵ2r)

0

∫
D\U−

i

B(Y s, y)

|Y s − y|d+α
dyds ≥ 2−6αc5c6

)
≥ Pw

(
τB(Y0,2−i−6ϵ2r) ◦ θσKi

≥ c6(2
−i−6ϵ2r)

α, σKi < τBD(w,2−i−2ϵ2r)

)
≥ 2−1Pw

(
σKi < τBD(w,2−i−2ϵ2r)

)
≥ 2−1c3,

proving that (7.17) holds with c0 := 2−6αc5c6. The proof is complete. 2

Lemma 7.14. For all i,m ≥ 1 and z ∈ U+
i+1, we have

Pz(τi > σi,mi) ≤ bmi1 ,

where b1 ∈ (0, 1) is the constant in Lemma 7.13.

Proof. Using the strong Markov property and Lemma 7.13, since U+
i+1 ⊂ U−

i , we obtain

Pz(τi > σi,mi) = Ez
[
PYσi,mi−1

(τi > σi,1);Yσi,k ∈ U−
i , 1 ≤ k ≤ mi− 1

]
≤ sup

w∈U−
i

Pw(τi > σi,1)Pz(τi > σi,mi−1) ≤ · · · ≤
(

sup
w∈U−

i

Pw(τi > σi,1)
)mi

≤ bmi1 .

2

Let β
0
∈ [0, β0] be such that p < α + β

0
and that the first inequality in (5.12) holds. We

now choose m0 ∈ N such that bm0
1 < 2−(α+β

0
), where b1 ∈ (0, 1) is the constant in Lemma 7.13.

Then we choose i0 ∈ N such that 400m0(i + 1)3 < ϵ12
i+1 for all i ≥ i0, where ϵ1 ∈ (0, 1/12) is

the constant in Lemma 7.1.

Lemma 7.15. There exists C > 0 independent of Q and r such that for any i ≥ i0 and z ∈ U+
i+1,

Pz
(
Yτi ∈ U(r) \ ∪ik=1U

+
k , τi ≤ σi,m0i

)
≤ Ci3(α+β0

)+1 2−i(α+β0
).

Proof. Let z ∈ U+
i+1. Note that for any y = (ỹ, yd) ∈ U(r) \ (U−

i ∪ ∪ik=1U
+
k ) in CSQ, if

|ỹ| < si, then using the mean value theorem and (3.2), since ρD(y) ≥ 2−1ϵ2r, ρD(z) ≤ 2−i−1ϵ2r,

|z̃| ≤ si+1 < si < 5ϵ2r/16 and Λr ≤ ΛR̂/24 ≤ 1/48, we see that

yd − zd ≥ ρD(y)− ρD(z)− (Ψ(ỹ)−Ψ(z̃))

≥ 2−1ϵ2r − 2−i−1ϵ2r − sup{Λ|w| : w ∈ Rd−1, |w| < si} |ỹ − z̃|
≥ 2−2ϵ2r − 2Λs2i ≥ 2−3ϵ2r > si − si+1 = (ϵ2r)/(80(i+ 1)2).

Thus, it holds that

|y − z| ≥ si − si+1 = (ϵ2r)/(80(i+ 1)2) for all y ∈ U(r) \ (U−
i ∪ ∪ik=1U

+
k ).

Hence, on the event {Yτi ∈ U(r) \ ∪ik=1U
+
k , τi ≤ σi,m0i}, we have

ϵ2rm0i

40m0(i+ 1)3
<

ϵ2r

40(i+ 1)2
≤

∑
1≤k≤m0i, σi,k−1<τi

|Yσi,k − Yσi,k−1
|,

which yields that{
Yτi ∈ U(r) \ ∪ik=1U

+
k , τi ≤ σi,m0i

}
⊂ ∪m0i

k=1

{
|Yσi,k − Yσi,k−1

| > ϵ2r/(40m0(i+ 1)3), Yσi,k−1
∈ U−

i , Yσi,k ∈ U(r)
}
.

Now, using the strong Markov property, subadditivity and Lemma 7.9 (with a = 2−i−1ϵ2 and
b = ϵ2/(80m0(i+ 1)3)), we obtain

Pz
(
Yτi ∈ U(r) \ ∪ik=1U

+
k , τi ≤ σi,m0i

)
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≤ m0i sup
w∈U−

i

Pw
(
|Yσi,1 − w| > ϵ2r/(80m0(i+ 1)3)

)
≤ c1m0i

(
80m0(i+ 1)3

2i+1

)α+β
0

.

The proof is complete. 2

Proof of Proposition 7.11. By Lemmas 7.14 and 7.15 and the definition of m0, we have
for all i ≥ i0 and z ∈ U+

i+1,

Pz
(
Yτi ∈ U(r) \ ∪ik=1U

+
k

)
≤ Pz

(
Yτi ∈ U(r) \ ∪ik=1U

+
k , τi ≤ σi,m0i

)
+ Pz

(
τi > σi,m0i

)
≤ c1i

3(α+β
0
)+1 2−i(α+β0

) + bm0i
1 ≤ (c1 + 1)i3(α+β0

)+1 2−i(α+β0
).

Therefore, we deduce from (7.14) and (7.15) that for all i ≥ i0,

sup
1≤j≤i+1

aj ≤ sup
1≤j≤i

aj + c2i
3(α+β

0
)+1 2−i(α+β0

−q),

which implies that

sup
j≥1

aj ≤ sup
1≤j≤i0

aj + c2

∞∑
i=i0

i3(α+β0
)+1 2−i(α+β0

−q) <∞.

This proves the proposition. 2

Finally, we are ready to give the proof of Theorem 7.4.

Proof of Theorem 7.4. Using Proposition 7.11, (7.10) and (7.11), we get

Px(YτU(ϵ2r)
∈ U(r)) ≤ cPx(YτU(ϵ2r)

∈ U(ϵ2r, r) \ U(ϵ2r, (3/4)r)) ≤ c(δD(x)/r)
p

and

Px(YτU(ϵ2r)
∈ U(r) \ U(r, r/2))

≥ Px(YτU(ϵ2r)
∈ U(ϵ2r, r) \ U(ϵ2r, (3/4)r)) ≥ cPx(YτU(ϵ2r)

∈ U(r)) ≥ c(δD(x)/r)
p.

Thus, it remains to show that Px(YτU(ϵ2r)
∈ D \ U(r)) ≤ c1(δD(x)/r)

p for some c1 > 0.

Let z ∈ U(ϵ2r) and w ∈ D \ U(r). By (3.15), we have |z − Q| < 2ϵ2r and |w − Q| > 2r/3.
Hence, by (B4-a), since ϵ2 ≤ 1/12 and Φ0 is almost increasing, we see that

|z − w| ≥ |w −Q| − |z −Q| ≥ |w −Q|/2 ≥ r/3 and B(z, w) ≤ cΦ0(δD(w)/r).(7.21)

Using the Lévy system formula (4.36) in the first line, (7.21) and (5.12) in the second, (3.15) in
the third, and Corollary 7.8 in the last, we arrive at

Px(YτU(ϵ2r)
∈ D \ U(r)) = Ex

∫ τU(ϵ2r)

0

∫
D\U(r)

B(Ys, w)
|Ys − w|d+α

dw ds

≤ c2Ex
∫ τU(ϵ2r)

0
Φ0(δD(Ys)/r)ds

∫
D\U(r)

dw

|w −Q|d+α

≤ c2Ex
∫ τU( ϵ1r)

0
Φ0(δD(Ys/r))ds

∫
B(Q,2r/3)c

dw

|w −Q|d+α

≤ c3(δD(x)/r)
prα(2r/3)−α = c4(δD(x)/r)

p.

The proof is complete. 2
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8. Estimates of Green potentials

In this section we establish some upper and lower bounds of the Green functionGBD(x0,R0)(x, y),
x0 ∈ D, R0 > 0, that incorporate the decay rate at the boundary. Based on these estimates and
using the technical Lemma 8.5, we obtain sharp two-sided estimates of (killed) Green potentials
of powers of distance to the boundary.

We let ϵ2 ∈ (0, 1/12) be the constant in Theorem 7.4 for the remainder of this work.
We first deal with the upper bound.

Proposition 8.1. Let x0 ∈ D and R0 > 0. There exists C = C(R0) > 0 independent of x0 such
that

GBD(x0,R0)(x, y) ≤ C

(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p 1

|x− y|d−α
, x, y ∈ BD(x0, R0).

Proof. Without loss of generality, we assumeR0 > 4. SetB := BD(x0, R0) and B̃ := BD(x0, R0+
1). By the symmetry and Proposition 4.32, we only need to show that there exists a constant

c1 = c1(R0) > 0 such that for any x, y ∈ B with δD(x) = δD(x) ∧ δD(y) < 2−8(ϵ2R̂/R0)|x− y|,
GB(x, y) ≤ c1δD(x)

p|x− y|−d+α−p.

Let x, y ∈ B with δD(x) = δD(x) ∧ δD(y) < 2−8(ϵ2R̂/R0)|x − y| and Qx ∈ ∂D be such that
|x − Qx| = δD(x). In the following, we use the coordinate system CSQx , and write U(r) for

UQx(r). Set r := 2−6(R̂/R0)|x− y|. Then r < (R̂/32)∧ (|x− y|/8). Moreover, by (3.15), we see
that

U(ϵ2r) ⊂ U(r) ⊂ BD(Qx, 2r) ⊂ BD(x, 3r) ⊂ B̃ \BD(y, 5r).(8.1)

In particular, GB̃(·, y) is regular harmonic in U(ϵ2r). Thus, we have

GB(x, y) ≤ GB̃(x, y)

= Ex
[
GB̃(YτU(ϵ2r)

, y);YτU(ϵ2r)
∈ U(r)

]
+ Ex

[
GB̃(YτU(ϵ2r)

, y);YτU(ϵ2r)
∈ B̃ \ U(r)

]
=: I1 + I2.

For I1, using Proposition 4.32, (8.1) and Theorem 7.4, we get

I1 ≤ c2(5r)
α−d Px(YτU(ϵ2r)

∈ U(r)) ≤ c3δD(x)
pr−d+α−p.

For w ∈ U(ϵ2r) and z ∈ D \ U(r), we have |w| ≤ 2ϵ2r and |z| ≥ r/2 by (3.15), so that
|z| ≍ |z−w| ≥ r/3. Thus, by using Proposition 4.32 and (B4-a), since Φ0 is almost increasing,
we see that for all w ∈ U(ϵ2r),∫

D\U(r)
GB̃(z, y)

B(w, z)
|w − z|d+α

dz ≤ c4Φ0(δD(w)/r)

∫
D\U(r)

dz

|y − z|d−α|z|d+α
.

Hence, by using the Lévy system formula (4.36) and Corollary 7.8, since ϵ2 is less than or equal
to the constant ϵ1 in Corollary 7.8, we obtain

I2 = Ex
∫ τU(ϵ2r)

0

∫
D\U(r)

GB̃(z, y)
B(Ys, z)

|Ys − z|d+α
dz ds

≤ c4Ex
∫ τU(ϵ2r)

0
Φ0(δD(Ys)/r)ds

∫
D\U(r)

dz

|y − z|d−α|z|d+α

≤ c5δD(x)
prα−p

∫
D\U(r)

dz

|y − z|d−α|z|d+α
.

Since D \ U(r) ⊂ Rd \B(0, r/2) by (3.15), we have∫
D\(U(r)∪B(y,r))

dz

|y − z|d−α|z|d+α
≤ r−d+α

∫
Rd\B(0,r/2)

dz

|z|d+α
≤ c6r

−d
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and ∫
B(y,r)\U(r)

dz

|y − z|d−α|z|d+α
≤ r−d−α

∫
B(y,r)

dz

|y − z|d−α
≤ c7r

−d.

Thus, I2 ≤ c8δD(x)
pr−d+α−p and the proof is complete. 2

We now deal with the lower bound.

Theorem 8.2. Let x0 ∈ D and R0 > 0. There exists C = C(R0) > 0 independent of x0 such
that for all R ∈ (0, R0] and x, y ∈ BD(x0, R/10),

GBD(x0,R)(x, y) ≥ C

(
δD(x)

|x− y|
∧ 1

)p( δD(y)

|x− y|
∧ 1

)p 1

|x− y|d−α
.

We will prove Theorem 8.2 using the following two lemmas.

Lemma 8.3. Let x0 ∈ D and R0 > 0. For every k > 1, there exists C = C(R0, k) > 0 such
that for all R ∈ (0, R0] a nd x, y ∈ BD(x0, R/9) with δD(x) ≤ |x− y| ≤ kδD(y), it holds that

GBD(x0,R)(x, y) ≥ CδD(x)
p|x− y|−d+α−p.

Proof. Fix x, y ∈ BD(x0, R/9) with δD(x) ≤ |x− y| ≤ kδD(y). Let r := R̂|x− y|/(100 + 48R0)
and Qx ∈ ∂D be such that |x−Qx| = δD(x). If δD(x) ≥ 2−2ϵ2r, then |x−y| ≤ (k∨ (22ϵ−1

2 (100+

48R0)/R̂))(δD(x) ∧ δD(y)) so that the result holds by Proposition 4.31.
Suppose now that δD(x) ≤ 2−2ϵ2r. Set U := UQx(ϵ2r). By (3.15), since r < |x − y|/100 <

R/400, we have

U ⊂ UQx(r) ⊂ BD(Qx, 2r) ⊂ BD(x, 33r/16) ⊂ BD(x0, R/8) \ {y}.(8.2)

Besides, by (3.15) and (3.16), for all z ∈ UQx(r) \ UQx(r, r/2), we have

|z − y| ≤ |z −Qx|+ |x−Qx|+ |x− y| ≤ (3 + (100 + 48R0)/R̂) r(8.3)

and δD(z) ≥ (2/
√
5)ρD(z) ≥ r/

√
5. Thus, there exists c1 = c1(R0, k) > 0 such that

|z − y| ≤ c1(δD(y) ∧ δD(z)) for all z ∈ UQx(r) \ UQx(r, r/2).(8.4)

By (8.2) and (8.4), we get from Proposition 4.31 and (8.3) that there exists c2 = c2(R0, k) > 0
such that for all z ∈ UQx(r) \ UQx(r, r/2),

GBD(x0,R)(z, y) ≥ c|z − y|−d+α ≥ c2r
−d+α.

Using this and Theorem 7.4, since GBD(x0,R)(·, y) is regular harmonic in U by (8.2), we arrive
at

GBD(x0,R)(x, y) ≥ Ex
[
GBD(x0,R)(YτU , y) : YτU ∈ UQx(r) \ UQx(r, r/2)

]
≥ c2r

−d+αPx
(
YτU ∈ UQx(r) \ UQx(r, r/2)

)
≥ c3δD(x)

pr−d+α−p.

2

Lemma 8.4. Let x0 ∈ D and R0 > 0. There exists C = C(R0) > 0 such that for all R ∈ (0, R0]
and x, y ∈ BD(x0, R/10) with |x− y| ≥ 4(δD(x) ∨ δD(y)), it holds that

GBD(x0,R)(x, y) ≥ CδD(x)
pδD(y)

p|x− y|−d+α−2p.
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Proof. Let x, y ∈ BD(x0, R/10) and r := R̂|x − y|/(100 + 48R0). By symmetry and Lemma
8.3, it suffices to consider the case δD(x) ≤ δD(y) ≤ 2−2ϵ2r only. Let Qx ∈ ∂D be such that
|x−Qx| = δD(x) and U := UQx(ϵ2r). By (3.15), since r < |x− y|/100 < R/500,

U ⊂ UQx(r) ⊂ BD(Qx, 2r) ⊂ BD(x, 3r) ⊂ BD(x0, R/9) \ {y}.

Moreover, by (3.15), we see that for all z ∈ UQx(r) \ UQx(r, r/2),

|z − y| ≥ |x− y| − |x−Qx| − |z −Qx| ≥ 100r − 3r = 97r ≥ δD(y).

Note that (8.3) and (8.4) are still valid. By (8.4), there exists c1 = c1(R0, k) > 0 such that
δD(z) ≥ c1|z − y| ≥ 97c1r for all z ∈ UQx(r) \ UQx(r, r/2). Thus, we can use Lemma 8.3 to
conclude that

(8.5) GBD(x0,R)(z, y) ≥ c2δD(y)
p r−d+α−p for all z ∈ UQx(r) \ UQx(r, r/2).

Since GBD(x0,R)(·, y) is regular harmonic in U , by (8.5) and Theorem 7.4, we arrive at

GBD(x0,R)(x, y) ≥ Ex
[
GBD(x0,R)(YτU , y) : YτU ∈ UQx(r) \ UQx(r, r/2)

]
≥ c2δD(y)

pr−d+α−p Px
(
YτU ∈ UQx(r) \ UQx(r, r/2)

)
≥ c3δD(x)

pδD(y)
pr−d+α−2p.

2

Now we are in the position to give the proof of Theorem 8.2.
Proof of Theorem 8.2: Let x, y ∈ BD(x0, R/10). Without loss of generality, we assume

that δD(x) ≤ δD(y). We have three cases:

Case 1: δD(x) ≤ δD(y) ≤ |x− y|/4. Then we conclude from Lemma 8.4 that

GBD(x0,R)(x, y) ≥ c1δD(x)
p δD(y)

p

|x− y|d−α+2p
≍

(
δD(x)

|x− y|
∧ 1

)p( δD(y)

|x− y|
∧ 1

)p 1

|x− y|d−α
.

Case 2: δD(x) ≤ |x− y|/4 ≤ δD(y). Then we conclude from Lemma 8.3 that

GBD(x0,R)(x, y) ≥ c2δD(x)
p

|x− y|d−α+p
≍

(
δD(x)

|x− y|
∧ 1

)p( δD(y)

|x− y|
∧ 1

)p 1

|x− y|d−α
.

Case 3: |x− y|/4 ≤ δD(x) ≤ δD(y). Then we conclude from Proposition 4.31 that

GBD(x0,R)(x, y) ≥ c3
|x− y|d−α

≍
(
δD(x)

|x− y|
∧ 1

)p( δD(y)

|x− y|
∧ 1

)p 1

|x− y|d−α
.

The proof is complete. 2

In the next lemma, we let Φ be a positive Borel function on (0, 1] such that

cl

(
r

s

)β
≤ Φ(r)

Φ(s)
≤ cu

(
r

s

)β
for all 0 < s ≤ r ≤ 1(8.6)

for some constants β, β ∈ R with β ≤ β and cl, cu > 0. Observe that for any γ > −1 − β, by
(8.6), there exists c1 = c1(γ) > 0 such that∫ s

0
uγΦ(u)du ≤ c−1

l s−β Φ(s)

∫ s

0
uγ+βdu = c1s

γ+1Φ(s) for all s ∈ (0, 1].(8.7)

The next technical lemma is a generalization of [51, Lemma 6.1], which was inspired by [2,
Lemma 3.3]. A simple version of the next lemma is used in Proposition 8.6 below, while its full
power will be used in Section 10.
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Lemma 8.5. Let Φ be as above, γ > −1− β, q > α− 1, r ∈ (0, R̂/8], x ∈ D with δD(x) ≤ r/2,
and let Qx ∈ ∂D be such that |x−Qx| = δD(x). For a ∈ (0, r], define

Iq,γ(r, a) =
∫
UQx (r,a)

(
δD(x)

|x− w|
∧ 1

)q ρQx

D (w)γ Φ(ρQx

D (w)/r)

|x− w|d−α
dw.

The following statements hold.

(i) There exists C > 0 independent of r and x such that for any 2δD(x) ≤ a ≤ b ≤ r,

Iq,γ(r, b)− Iq,γ(r, a) ≤ Crα+γ−qδD(x)
q

∫ b/r

a/r
sα+γ−q−1Φ(s)ds.

(ii) There exists C > 0 independent of r and x such that for any a ∈ (0, 2δD(x)],

Iq,γ(r, a) ≤ CδD(x)
α−1 aγ+1Φ(a/r).

(iii) Assume that q < α+ γ + β. Then there exists C > 0 independent of r and x such that for
any a ∈ (0, r],

Iq,γ(r, a) ≤ CδD(x)
α−1 aγ+1

(
δD(x)

a
∧ 1

)q−α+1

Φ(a/r).

Proof. Let f (r) = f
(r)
Qx

: UH(3) → UQx(3r) be the function defined by (3.6). Set v := (f (r))−1(x) =

(0̃, δD(x)/r).

(i) Let 2δD(x) ≤ a ≤ b ≤ r. Using the change of the variables w = f (r)(ξ) and Lemma 3.3,
we obtain

Iq,γ(r, b)− Iq,γ(r, a) ≤ crd
∫
UH(1,b/r)\UH(1,a/r)

(
rvd

r|v − ξ|

)q (rξd)
γ Φ(ξd)

(r|v − ξ|)d−α
dξ

= crα+γ
∫ b/r

a/r

(∫
|ξ̃|<ξd

+

∫
ξd≤|ξ̃|<1

)(
vd

|v − ξ|

)q ξγd Φ(ξd)

|v − ξ|d−α
dξ̃ dξd

=: crα+γ(I1 + I2).

Since a/r ≥ 2δD(x)/r = 2vd, we get

I1 ≤ cvqd

∫ b/r

a/r

∫ ξd

0

ξγd Φ(ξd)

(ξd − vd)q+d−α
sd−2ds dξd

≤ 2q+d−αcvqd

∫ b/r

a/r
ξα+γ−q−1
d Φ(ξd)dξd.

Besides, since q > α− 1, we have

I2 ≤ cvqd

∫ b/r

a/r

∫ 1

ξd

ξγd Φ(ξd)

sq+d−α
sd−2ds dξd ≤ cvqd

∫ b/r

a/r
ξα+γ−q−1
d Φ(ξd)dξd.

Since vd = δD(x)/r, we arrive at the desired result.

(ii) By the change of the variables w = f (r)(ξ) and Lemma 3.3, for all a ∈ (0, r],

Iq,γ(r, a) ≤ c

∫
UH(1,a/r)

(
rvd

r|v − ξ|
∧ 1

)q (rξd)
γ Φ(ξd)

(r|v − ξ|)d−α
rddξ(8.8)

= crα+γ
∫
UH(1,a/r)

(
vd

|v − ξ|
∧ 1

)q ξγd Φ(ξd)

|v − ξ|d−α
dξ.

Let a ∈ (0, 2δD(x)]. Using (8.7), since q > α− 1 and γ > −1− β, we obtain∫
UH(1,a/r)\UH(vd,a/r)

(
vd

|v − ξ|
∧ 1

)q ξγd Φ(ξd)

|v − ξ|d−α
dξ
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≤ cvqd

∫ 1

vd

∫ a/r

0

ξγd Φ(ξd)

sq+d−α
sd−2 dξd ds ≤ cvα−1

d (a/r)γ+1Φ(a/r).

Since vd = δD(x)/r ≥ a/(2r), using (8.7) again, we also get∫
UH(vd,a/(4r))

(
vd

|v − ξ|
∧ 1

)q ξγd Φ(ξd)

|v − ξ|d−α
dξ

≤ c

∫ vd

0

∫ a/(4r)

0

ξγd Φ(ξd)

(vd − ξd)d−α
sd−2 dξd ds

≤ c(vd/2)
−d+α

∫ vd

0
sd−2ds

∫ a/r

0
ξγdΦ(ξd) dξd

≤ cvα−1
d (a/r)γ+1Φ(a/r).

Further, by using (8.6), we see that

I :=

∫
UH(vd,a/r)\UH(vd,a/(4r))

(
vd

|v − ξ|
∧ 1

)q ξγd Φ(ξd)

|v − ξ|d−α
dξ

≤ c(a/r)γΦ(a/r)

∫
UH(vd,a/r)\UH(vd,a/(4r))

dξ

|v − ξ|d−α

≤ c(a/r)γΦ(a/r)

∫ a/r

a/(4r)

∫ vd

0

sd−2

sd−1−α/2 |ξd − vd|1−α/2
ds dξd

= cv
α/2
d (a/r)γΦ(a/r)

∫ a/r

a/(4r)

dξd
|ξd − vd|1−α/2

.

If vd ≥ 2a/r, then∫ a/r

a/(4r)

dξd
|ξd − vd|1−α/2

≤ (vd/2)
α/2−1

∫ a/r

a/(4r)
dξd ≤ (vd/2)

α/2−1(a/r)

and if a/(2r) ≤ vd < 2a/r, then∫ a/r

a/(4r)

dξd
|ξd − vd|1−α/2

≤
∫ 2vd

vd/8

dξd
|ξd − vd|1−α/2

≤ cv
α/2
d ≍ v

α/2−1
d (a/r).

Thus, in any case, we get I ≤ cvα−1
d (a/r)γ+1Φ(a/r).

Combining the above estimates with (8.8), since vd = δD(x)/r, we arrive at

Iq,γ(r, a) ≤ crα+γ(δD(x)/r)
α−1(a/r)γ+1Φ(a/r) = cδD(x)

α−1aγ+1Φ(a/r).

(iii) By (ii), it remains to prove the claim for a ∈ [2δD(x), r]. Let a ∈ [2δD(x), r]. Using (i)
and (ii) in the second line, and (8.7) and (8.6) in the third, since α+ γ− q− 1 > −1−β, we get

Iq,γ(r, a) = Iq,γ(r, a)− Iq,γ(r, 2δD(x)) + Iq,γ(r, 2δD(x))

≤ crα+γ−qδD(x)
q

∫ a/r

2δD(x)/r
sα+γ−q−1Φ(s)ds+ cδD(x)

α+γΦ(2δD(x)/r)

≤ crα+γ−qδD(x)
q(a/r)α+γ−qΦ(a/r) + cδD(x)

α+γ(2δD(x)/a)
β Φ(a/r)

≤ cδD(x)
qaα+γ−qΦ(a/r) + cδD(x)

α+γ(2δD(x)/a)
−α−γ+q Φ(a/r)

= cδD(x)
qaα+γ−qΦ(a/r).

The proof is complete. 2

Now we are ready to give the sharp two sided estimates on the Green potentials.



MARKOV PROCESSES WITH JUMP KERNELS DECAYING AT THE BOUNDARY 81

Proposition 8.6. Let Q ∈ ∂D and γ > −p − 1. Then for any R ∈ (0, R̂/24], any Borel set A
satisfying BD(Q,R/4) ⊂ A ⊂ BD(Q,R) and any x ∈ BD(Q,R/8),

Ex
∫ τA

0
δD(Yt)

γ dt =

∫
A
GA(x, y)δD(y)

γ dy ≍


Rα+γ−pδD(x)

p, γ > p− α,

δD(x)
p log(R/δD(x)), γ = p− α,

δD(x)
α+γ , γ < p− α,

where the comparison constants are independent of Q, R, A and x.

Proof. Let R ∈ (0, R̂/24], A be a Borel set satisfying BD(Q,R/4) ⊂ A ⊂ BD(Q,R) and x ∈
BD(Q,R/8). Note that δD(x) < R/8.

Upper bound: Let Qx ∈ ∂D be such that |x − Qx| = δD(x). Since |Q − Qx| ≤ |Q − x| +
δD(x) < R/4, using (3.15), we see that A ⊂ BD(Qx, 2R) ⊂ UQx(3R). Thus, by Proposition 8.1

(with x0 = Qx and R0 = R̂), we have∫
A
GA(x, y)δD(y)

γ dy ≤
∫
BD(Qx,2R)

GBD(Qx,R̂)(x, y)δD(y)
γ dy

≤ c

(∫
UQx (3R)\UQx (3R,2δD(x))

+

∫
UQx (3R,2δD(x))

)(
δD(x)

|x− y|
∧ 1

)p ρD(y)
γ

|x− y|d−α
dy

=: I1 + I2.

Applying Lemma 8.5(i)-(ii) with Φ = 1 and q = p, we get that

I1 + I2 ≤ cRα+γ−pδD(x)
p

∫ 1

2δD(x)/(3R)
sα+γ−p−1ds+ cδD(x)

α+γ .

By considering each case separately, we deduce that the upper bound holds.

Lower bound: By Theorem 8.2, we have∫
A
GA(x, y)δD(y)

γ dy ≥
∫
BD(x,R/80)

GBD(x,R/8)(x, y)δD(y)
γ dy

≥ cδD(x)
p

∫
BD(x,R/80)\BD(x,δD(x)/80)

δD(y)
p+γ

|x− y|d−α+2p
dy =: cδD(x)

pII.

Note that there exist z1 ∈ D and a constant c1 ∈ (0, 1) depending only on Λ such that R/320 <
|z1−x| < R/160 and δD(z1) ≥ c1R/320. Let z2 ∈ D be such that δD(x)/40 < |z2−x| < δD(x)/20.
Now if γ > p− α, then

II ≥ (R/80)−d+α−2p

∫
B(z1,c1R/640)

δD(y)
p+γdy ≥ cRα+γ−p

and if γ < p− α, then

II ≥ (δD(x)/20 + δD(x)/80)
−d+α−2p

∫
B(z2,δD(x)/80)

δD(y)
p+γdy ≥ cδD(x)

α+γ−p.

Now suppose that γ = p− α. Define

V = {w = (w̃, wd) in CSQx : δD(x)/80 < wd − xd < R/160, wd − xd > |w̃|} .
For any w = (w̃, wd) ∈ V , we have |w−x| < 2(wd−xd) < R/80 and Ψ(w̃) ≤ |w̃| < wd by (3.17).
Thus, V ⊂ BD(x,R/80) \BD(x, δD(x)/80). It follows that

II ≥
∫
V

dy

|x− y|d
≥ c

∫ R/160

δD(x)/80

∫ wd

0

1

(2wd)d
sd−2ds dwd

= c

∫ R/160

δD(x)/80

dwd
wd

≍ log(R/δD(x)).

The proof is complete. 2



82 SOOBIN CHO, PANKI KIM, RENMING SONG AND ZORAN VONDRAČEK

9. Carleson’s estimate and the boundary Harnack principle

So far our assumptions on the function B(x, y) do not provide a full description of its behavior
near the boundary – the lower bound in (B4-b) need not hold when both x and y are close to
the boundary. Moreover, compared with (1.6) the factor containing δD(x) ∨ δD(y) is missing.
This will be rectified in our final assumption on B. This final assumption will imply (B4-a) and
(B4-b) with a specific Φ0. With this assumption we will first prove Carleson’s estimate and
then also the boundary Harnack principle.

Let Φ1 and Φ2 be Borel functions on (0,∞) such that Φ1(r) = Φ2(r) = 1 for r ≥ 1 and that

c′L

(
r

s

)β
1

≤ Φ1(r)

Φ1(s)
≤ c′U

(
r

s

)β1

for all 0 < s ≤ r ≤ 1,

and

c′′L

(
r

s

)β
2

≤ Φ2(r)

Φ2(s)
≤ c′′U

(
r

s

)β2

for all 0 < s ≤ r ≤ 1

for some β1 ≥ β
1
≥ 0, β2 ≥ β

2
≥ 0 and c′L, c

′
U , c

′′
L, c

′′
U > 0. Note that Φ1 and Φ2 are almost

increasing. Let β1 and β2 be the lower Matuszewska indices of Φ1 and Φ2, defined by (2.9) with
Φ1 and Φ2 instead of Φ0, respectively. Then by the definition of the lower Matuszewska index,
since Φ1 and Φ2 are almost increasing, we see that for any ε > 0, there exist constants c′L(ε) > 0
and c′′L(ε) > 0 such that

c′L(ε)

(
r

s

)β1−ε∧β1
≤ Φ1(r)

Φ1(s)
≤ c′U

(
r

s

)β1

for all 0 < s ≤ r ≤ 1(9.1)

and

c′′L(ε)

(
r

s

)β2−ε∧β2
≤ Φ2(r)

Φ2(s)
≤ c′′U

(
r

s

)β2

for all 0 < s ≤ r ≤ 1.(9.2)

Let ℓ be a Borel function on (0,∞) with the following properties: (i) ℓ(r) = 1 for r ≥ 1, and
(ii) for every ε > 0, there exists a constant c(ε) > 1 such that

c(ε)−1

(
r

s

)−ε∧β1
≤ ℓ(r)

ℓ(s)
≤ c(ε)

(
r

s

)ε∧β2
for all 0 < s ≤ r ≤ 1.(9.3)

Note that ℓ is almost increasing if β1 = 0, and ℓ is almost decreasing if β2 = 0.
We consider the following condition.

(B4-c) There exist comparison constants such that for all x, y ∈ D,

B(x, y) ≍ Φ1

(
δD(x) ∧ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
ℓ

(
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)
.

Remark 9.1. Let β1, β2, β3, β4 ≥ 0 be such that β1 > 0 if β3 > 0, and β2 > 0 if β4 > 0. By
letting Φ1(r) = (r ∧ 1)β1,

Φ2(r) =
1

(log 2)β4
(r ∧ 1)β2(log(1 + 1/(r ∧ 1)))β4

and

ℓ(r) =
1

(log 2)β3
(log(1 + 1/(r ∧ 1)))β3 ,

(B4-c) covers the assumption (A3) in [51]. Moreover, by Remark 6.5, we have limq→α+β1 C(α, q,F) =
∞.
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We now explain how (B4-c) is related to the previous assumptions.
For given Φ1 and ℓ satisfying (9.1) and (9.3) respectively, we define a function Φ0 on (0,∞)

by

Φ0(r) := Φ1(r)ℓ(r), r > 0.(9.4)

Then Φ0(r) = 1 for r ≥ 1. Further, for any ε > 0, by (9.1) and (9.3), there exists a constant
c̃(ε) > 1 such that

c̃(ε)−1

(
r

s

)β1−ε∧β1
≤ Φ0(r)

Φ0(s)
≤ c̃(ε)

(
r

s

)β1+ε∧β2
for all 0 < s ≤ r ≤ 1.(9.5)

Indeed, the second inequality in (9.5) directly follows from (9.1) and (9.3). When β1 = 0, the
first inequality in (9.5) holds since both Φ1 and ℓ are almost increasing in this case. When
β1 > 0, using (9.1) and (9.3) with ε replaced by (ε ∧ β1)/2, we see that the first inequality
in (9.5) holds. Therefore, the function Φ0 defined in (9.4) satisfies (5.12) and is thus almost
increasing. It is clear from (9.3) that the lower Matuszewska index of Φ0 is equal to β1.

In this section and the next, we assume that (B1), (B3), (B4-c), (K3) and (B5) hold. In
the next lemma, we will show that, under these assumptions, (B2-a), (B2-b), (UBS) (hence
(IUBS)), and (B4-a)–(B4-b) (with the Φ0 defined in (9.4)) holds.

In this section and the next, we will always take Φ0 to be the function defined in (9.4) and
thus

the constant β0 in Sections 5–8 is equal to β1.

Lemma 9.2. The following statements hold under (B4-c).
(i) (B2-a), (B2-b), (B4-a) and (B4-b) (with the Φ0 defined in (9.4)) hold.
(ii) For every ε ∈ (0, 1), there exists C = C(ε) > 1 such that for every x0 ∈ D and 0 < r <
δD(x0)/(1 + ε), we have

C−1B(z, y) ≤ B(x, y) ≤ CB(z, y) for all x, z ∈ B(x0, r) and y ∈ D \B(x0, (1 + ε)r).

(iii) For every k ≥ 1, there exists C = C(k) > 0 such that for all x, y, z ∈ D satisfying
δD(x) ≤ kδD(z) and |y − z| ≤M |y − x| with M ≥ 1,

B(x, y) ≤ CMβ1+β1+β2+β2B(z, y).(9.6)

(iv) (UBS) holds.

Proof. For x, y ∈ D, we define

rx,y1 =
δD(x) ∧ δD(y)

|x− y|
, rx,y2 =

δD(x) ∨ δD(y)
|x− y|

and rx,y3 =
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|
.

Note that

rx,y3 = rx,y1 /(rx,y2 ∧ 1), x, y ∈ D.(9.7)

(i) Let x, y ∈ D. Using (B4-c) in the first line below, (9.3) in the second, (9.7) in the third,
and (9.2) in the last, we get

B(x, y) ≍ Φ1(r
x,y
1 )Φ2(r

x,y
2 )ℓ(rx,y3 )

≤ c1Φ0(r
x,y
1 )Φ2(r

x,y
2 )(rx,y3 /rx,y1 )β2/2

= c1

{
Φ0(r

x,y
1 )Φ2(1) if rx,y2 ≥ 1,

Φ0(r
x,y
1 )Φ2(r

x,y
2 )(rx,y2 )−β2/2 if rx,y2 < 1

≤ c2Φ0(r
x,y
1 )Φ2(1).

(9.8)

Hence, (B4-a) holds.
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For any a ∈ (0, 1), if rx,y2 ≥ a, then using the almost monotonicity of Φ2, (9.3) and (9.7), we
get

Φ1(r
x,y
1 )Φ2(r

x,y
2 )ℓ(rx,y3 ) ≥ c3Φ0(r

x,y
1 )Φ2(a)(r

x,y
3 /rx,y1 )−β1

≥ c4Φ2(a)(r
x,y
2 ∧ 1)β1Φ0(r

x,y
1 ) ≥ c4a

β1Φ2(a)Φ0(r
x,y
1 ).

(9.9)

Thus, (B4-b) holds. Further, if rx,y2 ≥ rx,y1 ≥ a, then since Φ0 is almost increasing, we get from
(9.9) that

Φ1(r
x,y
1 )Φ2(r

x,y
2 )ℓ(rx,y3 ) ≥ c5a

β1Φ0(a)Φ2(a),

which yields that (B2-b) holds. (B2-a) holds since Φ0 is almost increasing.
(ii) Let x0 ∈ D, 0 < r < δD(x0)/(1+ε) and x, z ∈ B(x0, r). We have δD(x)∨δD(z) ≤ δD(x0)+

r < 2δD(x0) and δD(x) ∧ δD(z) ≥ δD(x0) − r > εδD(x0)/(1 + ε) so that δD(x) ≍ δD(z) with
comparison constants depending only on ε. Moreover, |x−y| ≍ |z−y| for y ∈ D\B(x0, (1+ε)r).
Hence, using (9.1), (9.2) and (9.3), we get the result from (B4-c).

(iii) Fix k ≥ 1. Let x, y, z ∈ D be such that δD(x) ≤ kδD(z) and |y − z| ≤ M |y − x| with
M ≥ 1. Observe that

rx,y1

rz,y1

≤M

(
δD(x) ∧ δD(y)
δD(z) ∧ δD(y)

)
≤ kM(9.10)

and

(9.11)
rx,y2

rz,y2

≤M

(
δD(x) ∨ δD(y)
δD(z) ∨ δD(y)

)
≤ kM.

We consider the following two cases separately.

Case 1: δD(z) ∨ δD(y) ≥ |y − z|/(kM). Recall that, by (i), (B4-c) implies (B4-a). Using
(B4-a), (9.5) and (9.10), we get

B(x, y) ≤ cΦ0(r
x,y
1 ) ≤ c(1 ∨ (rx,y1 /rz,y1 ))β1+β2Φ0(r

z,y
1 ) ≤ c(k)Mβ1+β2Φ0(r

z,y
1 ).

On the other hand, note that we have rz,y2 ≥ (kM)−1 in this case. Using this, (B4-c), (9.2),
(9.3) with the fact that rz,y3 ≥ rz,y1 , and (9.7), we obtain

B(z, y) ≥ cΦ1(r
z,y
1 )Φ2(r

z,y
2 )ℓ(rz,y3 ) = c

Φ2(r
z,y
2 )ℓ(rz,y3 )

Φ2(1)ℓ(r
z,y
1 )

Φ0(r
z,y
1 )

≥ c(rz,y2 ∧ 1)β2(rz,y3 /rz,y1 )−β1Φ0(r
z,y
1 )

= c(rz,y2 ∧ 1)β1+β2Φ0(r
z,y
1 )

≥ c(k)M−β1−β2Φ0(r
z,y
1 ).

Hence, we conclude that (9.6) holds in this case.

Case 2: δD(z)∨δD(y) < |y−z|/(kM). In this case, we have rz,y2 < (kM)−1 and δD(x)∨δD(y) ≤
k(δD(z) ∨ δD(y)) < |y − z|/M ≤ |y − x|. Hence, rz,y2 ∧ 1 = rz,y2 and rx,y2 ∧ 1 = rx,y2 . Thus, by
(9.3), (9.7), (9.10) and (9.11), if rx,y3 ≥ rz,y3 , then

ℓ(rx,y3 )

ℓ(rz,y3 )
≤ c

(
rx,y3

rz,y3

)β2/2
= c

(
rx,y1

rz,y1

)β2/2(rz,y2

rx,y2

)β2/2
≤ c(k)Mβ2/2

(
rz,y2

rx,y2

)β2/2
and if rx,y3 < rz,y3 , then

ℓ(rx,y3 )

ℓ(rz,y3 )
≤ c

(
rx,y3

rz,y3

)−β1/2
= c

(
rz,y1

rx,y1

)β1/2(rx,y2

rz,y2

)β1/2
≤ c(k)Mβ1/2

(
rz,y1

rx,y1

)β1/2
.

Therefore, whether rx,y3 ≥ rz,y3 or not, it holds that

ℓ(rx,y3 )

ℓ(rz,y3 )
≤ c(k)M (β1+β2)/2

(
1 ∨ rz,y1

rx,y1

)β1/2(
1 ∨ rz,y2

rx,y2

)β2/2
.(9.12)
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By (9.1) and (9.10), we have

Φ1(r
x,y
1 )

Φ1(r
z,y
1 )

(
1 ∨ rz,y1

rx,y1

)β1/2
≤ c

{
(rx,y1 /rz,y1 )β1 if rz,y1 ≤ rx,y1 ,

(rx,y1 /rz,y1 )β1/2−β1/2 if rz,y1 > rx,y1

≤ c(k)Mβ1 .

(9.13)

Similarly, using (9.2) and (9.11), we get

Φ2(r
x,y
2 )

Φ2(r
z,y
2 )

(
1 ∨ rz,y2

rx,y2

)β2/2
≤ c

{
(rx,y2 /rz,y2 )β2 if rz,y2 ≤ rx,y2 ,

(rx,y2 /rz,y2 )β2/2−β2/2 if rz,y2 > rx,y2

≤ c(k)Mβ2 .

(9.14)

Using (B4-c) in the first line below, (9.12) in the second, and (9.13) and (9.14) in the last, we
arrive at

B(x, y)
B(z, y)

≍ Φ1(r
x,y
1 )Φ2(r

x,y
2 )ℓ(rx,y3 )

Φ1(r
z,y
1 )Φ2(r

z,y
2 )ℓ(rz,y3 )

≤ c(k)M (β1+β2)/2

(
1 ∨ rz,y1

rx,y1

)β1/2(
1 ∨ rz,y2

rx,y2

)β2/2Φ1(r
x,y
1 )Φ2(r

x,y
2 )

Φ1(r
z,y
1 )Φ2(r

z,y
2 )

≤ c(k)Mβ1+β1+β2+β2 .

The proof of (iii) is complete.

(iv) Let x, y ∈ D and 0 < r ≤ (|x− y| ∧ R̂)/2. Let

V :=
{
z ∈ BD(x, r) : δD(z) ≥ δD(x)/4

}
.

Since D is a Lipschitz open set, we have

md(V ) ≥ c1r
d,(9.15)

where c1 > 0 is a constant independent of x and r. Besides, note that for all z ∈ V ,

|y − z| ≤ |y − x|+ |x− z| ≤ |y − x|+ r < (3/2)|y − x|

by the triangle inequality. Hence, by (iii), we get B(z, y) ≥ c2B(x, y) for all z ∈ V . Using this
and (9.15), we arrive at

1

rd

∫
BD(x,r)

B(z, y)dz ≥ 1

rd

∫
V
B(z, y)dz ≥ c1c2B(x, y).

2

The next result is Carleson’s estimate for Y , which is a usual step in proving the boundary
Harnack principle.

Theorem 9.3. (Carleson’s estimate) Suppose that (B1), (B3), (B4-c), (K3) and (B5) hold.
Let p ∈ [(α−1)+, α+β1)∩(0,∞) denote the constant satisfying (6.6) if C9 > 0 and let p = α−1
if C9 = 0 where C9 is the contant in (K3). Then there exists C ≥ 1 such that for any Q ∈ ∂D,

r ∈ (0, R̂] and any non-negative Borel function f on D which is harmonic in BD(Q, r) with
respect to Y and vanishes continuously on ∂D ∩B(Q, r), we have

f(x) ≤ Cf(z0) for all x ∈ BD(Q, r/2),(9.16)

where z0 ∈ BD(Q, 8r/9) is any point with δD(z0) ≥ r/8.
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Proof. By using Lemma 9.2, Theorem 4.29 and Corollary 7.5, the assertion can be proved by
arguments similar to that for [50, Theorem 1.2]. We give the details for completeness.

Let Q ∈ ∂D, r ∈ (0, R̂], z0 ∈ BD(Q, 8r/9) with δD(z0) ≥ r/8 and let f be a non-negative
Borel function on D which is harmonic in BD(Q, r) and vanishes continuously on ∂D∩B(Q, r).
Recall that ϵ2 ∈ (0, 1/12) is the constant in Theorem 7.4. Note that (IUBS) holds by Lemma
9.2(iv). Hence, by Theorem 4.29 and a standard chain argument, it suffices to prove (9.16)
for x ∈ BD(Q, ϵ2r/(48K0)) where K0 > 4 is the constant in Corollary 7.5. Moreover, we also
deduce from Theorem 4.29 and a standard chain argument that there exist constants c1, γ > 0
independent of Q, r, f and z0 such that

f(x) ≤ c1(δD(x)/r)
−γf(z0) for all x ∈ BD(Q, ϵ2r/(24K0)).(9.17)

In the following, the constants ci are always independent of Q, r, f and z0.
Set θ := β1 + β1 + β2 + β2 and λ := α/(d+ α+ θ). Define

U1 := B(z0, δD(z0)/8), U2 := B(z0, δD(z0)/4)

and for x ∈ BD(Q, ϵ2r/(12K0)),

V1(x) := BD(x, (2K0 + 1)δD(x)), V2(x) := BD(x, (4K0 + 2)r1−λδD(x)
λ).

First note that, since for all w ∈ U1,

|w −Q| ≤ |w − z0|+ |z0 −Q| < δD(z0)/8 + |z0 −Q| ≤ 9|z0 −Q|/8,

we have U1 ⊂ BD(Q, r). For all x ∈ BD(Q, ϵ2r/(12K0)), since δD(x) < ϵ2r/(12K0), we have
V1(x) ⊂ V2(x) ∩BD(Q, r). Further, by Corollary 7.5, it holds that

Px(τV1(x) = ζ) ≥ 1/2 for all x ∈ BD(Q, ϵ2r/(24K0)).(9.18)

Pick any x ∈ BD(Q, ϵ2r/(24K0)). Since V1(x) ⊂ BD(Q, r), by the harmonicity of f , we have

f(x) = Ex
[
f(YτV1(x));YτV1(x) ∈ V2(x)

]
+ Ex

[
f(YτV1(x));YτV1(x) ∈ D \ V2(x)

]
=: I1 + I2.

By (9.18),

I1 ≤
(

sup
y∈V2(x)

f(y)
)
Px(YτV1(x) ∈ V2(x)) ≤ 2−1 sup

y∈V2(x)
f(y).(9.19)

Observe that for all w ∈ V1(x) and y ∈ D \ V2(x),

δD(w) ≤ (2K0 + 2)δD(x) and |w − y| ≥ |x− y| − |x− w| ≥ |x− y|/2.(9.20)

Thus, by Lemma 9.2(iii), B(w, y) ≤ c2B(x, y) for all w ∈ V1(x) and y ∈ D \ V2(x). Using this
and the second inequality in (9.20) in the second line below, and Proposition 4.17 in the third,
we obtain

I2 = Ex
[ ∫ τV1(x)

0

∫
D\V2(x)

f(y)B(Ys, y)
|Ys − y|d+α

dy ds

]
≤ c3Ex[τV1(x)]

∫
D\V2(x)

f(y)B(x, y)
|x− y|d+α

dy

≤ c4δD(x)
α

[ ∫
(D\V2(x))∩U2

f(y)B(x, y)
|x− y|d+α

dy +

∫
(D\V2(x))∩Uc

2

f(y)B(x, y)
|x− y|d+α

dy

]
=: c4δD(x)

α(I2,1 + I2,2).

(9.21)

Here, we used the Lévy system formula (4.36) in the first line. Using the triangle inequality, we
see that for all y ∈ U2,

|x− y| ≥ |z0 −Q| − |Q− x| − |z0 − y| ≥ 3δD(z0)/4− ϵ2r/(24K0) ≥ r/16.
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Further, by Theorem 4.29, we get f(y) ≤ c5f(z0) for all y ∈ U2. Thus, since B is bounded, we
obtain

I2,1 ≤ c6f(z0)

∫
U2

dy

|x− y|d+α
≤ c6f(z0)

∫
B(x,r/16)c

dy

|x− y|d+α
≤ c7r

−αf(z0).(9.22)

For I2,2, we observe that for all y ∈ D \ V2(x),
|z0 − y| ≤ |x− y|+ |z0 −Q|+ |x−Q|

≤ |x− y|+ 2r ≤ (1 + rλδD(x)
−λ)|x− y| ≤ 2rλδD(x)

−λ|x− y|.

Thus, since δD(x) < δD(z0), by Lemma 9.2(iii), we have

B(x, y) ≤ c8(2r
λδD(x)

−λ)θB(z0, y) for all y ∈ D \ V2(x).
Using the two displays above, since f is non-negative, we get

I2,2 ≤ c9(r
λδD(x)

−λ)d+α+θ
∫
D\U2

f(y)B(z0, y)
|z0 − y|d+α

dy.(9.23)

Besides, using the harmonicity of f on U1 ⊂ BD(Q, r), and the fact f ≥ 0 in the first line
below, the Lévy system formula (4.36) in the second, Lemma 9.2(ii) and the fact that |w− y| ≤
|z0 − w|+ |z0 − y| ≤ 2|z0 − y| for all w ∈ U1 and y ∈ D \ U2 in the third, and Proposition 4.17
in the last, we get

f(z0) ≥ Ez0
[
f(YτU1

);YτU1
∈ D \ U2

]
= Ez0

[ ∫ τU1

0

∫
D\U2

f(y)B(Ys, y)
|Ys − y|d+α

dy ds

]
≥ c10Ez0 [τU1 ]

∫ τU1

0

∫
D\U2

f(y)B(z0, y)
|z0 − y|d+α

dy

≥ c11r
α

∫ τU1

0

∫
D\U2

f(y)B(z0, y)
|z0 − y|d+α

dy.

Hence, we deduce from (9.23) that

I2,2 ≤ c12r
−α(rλδD(x)

−λ)d+α+θf(z0) ≤ c13δD(x)
−αf(z0).(9.24)

Combining (9.19), (9.22) and (9.24), since δD(x) < ϵ2r/(24K0), we arrive at

f(x) ≤ 2−1 sup
y∈V2(x)

f(y) + c14f(z0) for all x ∈ BD(Q, ϵ2r/(24K0)).(9.25)

Now we prove that (9.16) holds for all x ∈ BD(Q, ϵ2r/(48K0)) with

C =M := 3c14 + c1

(
24K0(4K0 + 2)

a0ϵ2

)γ/λ
,

where

a0 := 2−1

( ∞∑
n=0

(
3

4

)nλ/γ)−1

.

Suppose this fails. Then there exists x1 ∈ BD(Q, ϵ2r/(48K0)) such that f(x1) > Mf(z0). In
the following, we construct a sequence (xn)n≥2 in BD(Q, ϵ2r/(24K0)) such that for all n ≥ 2,

|xn − xn−1| <
a0ϵ2r

24K0

(
3

4

)(n−2)λ/γ

and f(xn) ≥ f(x1)

(
4

3

)n−1

.(9.26)

This leads to a contradiction since f is bounded.
By (9.25), since M > 3c14, there exists x2 ∈ V2(x1) such that

f(x2) ≥ 2(f(x1)− c14f(z0)) ≥ (4/3)f(x1).
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Note that δD(x1) ≤ c
1/γ
1 r(f(z0)/f(x1))

1/γ < (c1/M)1/γr by (9.17). Thus, we have

|x2 − x1| < (4K0 + 2)r1−λδD(x1)
λ < (4K0 + 2)(c1/M)λ/γr < a0ϵ2r/(24K0)

so that
|x2 −Q| ≤ |x1 −Q|+ |x1 − x2| < ϵ2r/(24K0)

by the triangle inequality. Hence, x2 ∈ BD(Q, ϵ2r/(24K0)) and (9.26) holds for n = 2. Next,
assume that xn ∈ BD(Q, ϵ2r/(24K0)), 1 ≤ n ≤ k, are chosen to satisfy (9.26) for all 1 ≤ n ≤ k,
for some k ≥ 2. By (9.25), since f(xk) ≥ f(x1) > Mf(z0), there exists xk+1 ∈ V2(xk) such that

f(xk+1) ≥ 2(f(xk)− c14f(z0)) ≥ (4/3)f(xk).

Since

δD(xk)

r
≤ c

1/γ
1

(
f(z0)

f(xk)

)1/γ

≤ c
1/γ
1

(
f(z0)

f(x1)(4/3)k−1

)1/γ

< (c1/M)1/γ
(
3

4

)(k−1)λ/γ

by (9.17) and the induction hypothesis, we have

|xk+1 − xk| < (4K0 + 2)r

(
δD(xk)

r

)λ
< (4K0 + 2)(c1/M)λ/γr

(
3

4

)(k−1)λ/γ

<
a0ϵ2r

24K0

(
3

4

)(k−1)λ/γ

.

Using this and the induction hypothesis, we get

|xk+1 −Q| ≤ |x1 −Q|+
k+1∑
n=2

|xn − xn−1|

<
ϵ2r

24K0

(
1

2
+ a0

k+1∑
n=2

(
3

4

)(n−2)λ/γ)
<

ϵ2r

24K0
.

Therefore, xk+1 ∈ BD(Q, ϵ2r/(24K0)) and we deduce that (9.26) holds for all n by the induction.
The proof is complete. 2

The above Theorem 9.3 will be used in the proof of the next theorem which is our first main
result – the boundary Harnack principle.

Theorem 9.4. (Boundary Harnack principle) Suppose that (B1), (B3), (B4-c), (K3) and
(B5) hold. Suppose also that p < α + (β1 ∧ β2). Here p ∈ [(α − 1)+, α + β1) ∩ (0,∞) denotes
the constant satisfying (6.6) if C9 > 0 and p = α − 1 if C9 = 0 where C9 is the contant in

(K3). Then for any Q ∈ ∂D, 0 < r ≤ R̂, and any non-negative Borel function f in D which is
harmonic in BD(Q, r) with respect to Y and vanishes continuously on ∂D ∩B(Q, r), we have

(9.27)
f(x)

δD(x)p
≍ f(y)

δD(y)p
for x, y ∈ BD(Q, r/2),

where the comparison constants are independent of Q, r and f , and depend on D only through

R̂ and Λ0.

It is worth mentioning that given any (large) p > (α− 1)+, there exist B(x, y) and κ(x) such
that the BHP holds with decay rate δD(x)

p for the operator L in (5.2).

For Q ∈ ∂D, 0 < r ≤ R̂/8 and y ∈ D, define

kr(y) =
1

|y −Q|d+α
Φ1

(
r ∧ δD(y)
|y −Q|

)
Φ2

(
r ∨ δD(y)
|y −Q|

)
ℓ

(
r ∧ δD(y)
r ∨ δD(y)

)
.(9.28)

In the following lemma, we compare the above function kr with the jump kernel in certain
regions that appear in the proof of Theorem 9.4.
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Lemma 9.5. Let Q ∈ ∂D and 0 < r ≤ R̂/8.
(i) There exists C > 0 independent of Q and r such that for all z ∈ U(2−1r)\U(2−1r, 2−3r) and
y ∈ D \ U(r),

B(z, y)|z − y|−d−α ≥ Ckr(y).

(ii) Let ε ∈ ((β1 − β2)+,∞). There exists C = C(ε) > 0 independent of Q and r such that for
all z ∈ U(2−1r) and y ∈ D \ U(r),

B(z, y)|z − y|−d−α ≤ C(δD(z)/r)
β1−εkr(y).

Proof. In this proof, we use the coordinate system CSQ, and write U(r) for UQ(r). By (3.15),
U(2−1r) ⊂ B(0, r) and B(0, 2−1r) ⊂ U(r). Thus, for z ∈ U(2−1r) and y ∈ D \ U(r), we have
δD(z) ∨ δD(y) ≤ (r/2) ∨ |y| = |y|, |z − y| ≤ |y|+ |z| < 2|y| and

|z − y| ≥ (1/3)(|y| − |z|) + (2/3)|z − y| > (1/3)(|y| − r) + (1/3)r = |y|/3.
Therefore, by (B4-c) and the scaling properties of Φ1,Φ2 and ℓ, it holds that for any z ∈ U(2−1r)
and y ∈ D \ U(r),

B(z, y)
|z − y|d+α

≍ 1

|y|d+α
Φ1

(
δD(z) ∧ δD(y)

|y|

)
Φ2

(
δD(z) ∨ δD(y)

|y|

)
ℓ

(
δD(z) ∧ δD(y)
δD(z) ∨ δD(y)

)
.(9.29)

(i) Observe that

r/
√
80 ≤ δD(z) ≤ r/2 for all z ∈ U(2−1r) \ U(2−1r, 2−3r).(9.30)

Indeed, the second inequality in (9.30) is clear. Besides, using (3.16), we get δD(z) ≥ (2/
√
5)ρD(z) ≥

r/
√
80. Hence, (9.30) holds. Now the result follows from (9.29), (9.30) and the scaling properties

of Φ1,Φ2 and ℓ.

(ii) Let ε ∈ ((β1 − β2)+,∞), z ∈ U(2−1r), y ∈ D \ U(r) and

I := B(z, y)|z − y|−d−α/kr(y).
Choose a constant λ ∈ (0, 1/2) such that (1 − 2λ)ε ≥ β1 − β2. Note that δD(z) ≤ r/2. There
are four cases.

Case 1: δD(y) < δD(z). Since β2− 2λε ≥ β1− ε, by (9.29), (9.2) and the upper scaling property
of ℓ in (9.3) (with ε replaced by λε), we have

I ≤ c

(
δD(z) ∨ δD(y)
r ∨ δD(y)

)β2−λε(δD(y)/δD(z)
δD(y)/r

)λε
= c(δD(z)/r)

β2−2λε ≤ c(δD(z)/r)
β1−ε.

Case 2: δD(z) ≤ δD(y) < (rδD(z))
1/2. Since −β1 + β2 + (1− 2λ)ε ≥ 0, using (9.29), (9.1), (9.2)

and the upper scaling property of ℓ in (9.3) (with ε replaced by λε), we get

I ≤ c

(
δD(z) ∧ δD(y)
r ∧ δD(y)

)β1−λε(δD(z) ∨ δD(y)
r ∨ δD(y)

)β2−λε(δD(z)/δD(y)
δD(y)/r

)λε
= c(δD(z)/r)

β1(δD(y)/r)
−β1+β2−2λε

≤ c(δD(z)/r)
β1−ε(δD(y)/r)

−β1+β2+(1−2λ)ε

≤ c(δD(z)/r)
β1−ε.

Case 3: (rδD(z))
1/2 ≤ δD(y) < r. Since −β1 + β2 + ε ≥ 0, we get from (9.29), (9.1), (9.2) and

the lower scaling property of ℓ in (9.3) (with ε replaced by ε/2) that

I ≤ c

(
δD(z) ∧ δD(y)
r ∧ δD(y)

)β1−ε/2(δD(z) ∨ δD(y)
r ∨ δD(y)

)β2−ε/2(δD(z)/δD(y)
δD(y)/r

)−ε/2

= c(δD(z)/r)
β1−ε(δD(y)/r)

−β1+β2+ε
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≤ c(δD(z)/r)
β1−ε.

Case 4: δD(y) ≥ r. By (9.29), (9.1) and the lower scaling property of ℓ in (9.3) (with ε replaced
by ε/2), we obtain

I ≤ c

(
δD(z) ∧ δD(y)
r ∧ δD(y)

)β1−ε/2(δD(z)/δD(y)
r/δD(y)

)−ε/2
= c(δD(z)/r)

β1−ε.

The proof is complete. 2

We now give the proof of Theorem 9.4. Proposition 8.6 will play an important role in the
proof.

Proof of Theorem 9.4. We use the coordinate system CSQ in this proof, and write U(r)

for UQ(r). Recall that ϵ2 ∈ (0, 1/12) is the constant in Theorem 7.4. Recall from Lemma 9.2(iv)
that (IUBS) holds under (B4-c). Hence, by Theorem 4.29 and a standard chain argument, it
suffices to prove (9.27) for x, y ∈ BD(Q, 2

−10ϵ2r).

Let x ∈ BD(Q, 2
−10ϵ2r) and set z0 := (0̃, 2−5r). Using Theorem 4.29 and a chain argument,

we see that there exists c1 > 0 independent of Q, r and f such that

f(z) ≥ c1f(z0) for all z ∈ B(z0, (2
−10 − 2−15)1/2r).(9.31)

Note that for all w = (w̃, wd) ∈ U(2−7r) \ U(2−7r, 2−8r), we have |w̃| < 2−7r, so by (3.17),
wd = ρD(w) + Ψ(w̃) < (2−7 + 2−14)r and wd > (2−8 − 2−14)r. Thus,

|z0 − w|2 = |w̃|2 + (2−5r − wd)
2 < (2−14 + (2−5 − 2−9)2)r2 < (2−10 − 2−15)r2.

Hence, U(2−7r) \U(2−7r, 2−8r) ⊂ B(z0, (2
−10− 2−15)1/2r). Using this, (9.31) and Theorem 7.4,

since f is harmonic in BD(Q, r), we obtain

f(x) = Ex
[
f(YτU(2−7ϵ2r)

)
]

(9.32)

≥ Ex
[
f(YτU(2−7ϵ2r)

);YτU(2−7ϵ2r)
∈ U(2−7r) \ U(2−7r, 2−8r)

]
≥ c1f(z0)Px

(
YτU(2−7ϵ2r)

∈ U(2−7r) \ U(2−7r, 2−8r)
)

≥ c2(δD(x)/r)
pf(z0).

On the other hand, using the harmonicity of f again, we see that

f(x) = Ex
[
f(YτU(2−7ϵ2r)

);YτU(2−7ϵ2r)
∈ U(2−3r)

]
+ Ex

[
f(YτU(2−7ϵ2r)

);YτU(2−7ϵ2r)
∈ D \ U(2−3r)

]
=: I1 + I2.

Since U(2−3r) ⊂ B(0, 2−2r), by Theorem 9.3 (with r replaced by 2−2r), we have f(z) ≤ c3f(z0)
for all z ∈ U(2−3r). Thus, using Theorem 7.4, we get that

I1 ≤ c3f(z0)Px(YτU(2−7ϵ2r)
∈ D) ≤ c4(δD(x)/r)

pf(z0).(9.33)

Now we estimate I2. Let k2−3r be the function defined in (9.28). Note that for all w = (w̃, wd) ∈
B(z0, 2

−7r), |w̃| < 2−7r, ρD(w) < (2−5+2−7)r and ρD(w) > wd−R̂−1|w̃|2 > (2−5−2−7−2−14)r
by (3.17). Hence, B(z0, 2

−7r) ⊂ U(2−4r) \ U(2−4r, 2−6r). Using this, the harmonicity of f , the
Lévy system formula (4.36), Lemma 9.5(i) (with r replaced by 2−3r) and Proposition 4.17, we
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get

f(z0) ≥ Ez0
[
f(YτU(2−4r)\U(2−4r,2−6r)

);YτU(2−4r)\U(2−4r,2−6r)
∈ D \ U(2−3r)

]
= Ez0

∫ τU(2−4r)\U(2−4r,2−6r)

0

∫
D\U(2−3r)

B(Yt, w)
|Yt − w|d+α

f(w)dw dt

≥ c5Ez0τB(z0,2−7r)

∫
D\U(2−3r)

k2−3r(w)f(w)dw

≥ c6r
α

∫
D\U(2−3r)

k2−3r(w)f(w)dw.

(9.34)

Using the assumption p < α+ (β1 ∧ β2), we see that (β1 − β2)+ < β1 − p+α. We now choose a
positive constant ε ∈ ((β1 − β2)+, β1 − p+ α) so that p− α < β1 − ε. By Lemma 9.5(ii) (with r
replaced by 2−3r), Proposition 8.6 and (9.34), we have

I2 = Ex
∫ τU(2−7ϵ2r)

0

∫
D\U(2−3r)

B(Yt, w)
|Yt − w|d+α

f(w)dw dt(9.35)

≤ c7r
−(β1−ε)Ex

∫ τU(2−7ϵ2r)

0
δD(Yt)

β1−εdt

∫
D\U(2−3r)

k2−3r(w)f(w)dw

≤ c8r
−(β1−ε)rα+β1−ε−pδD(x)

pr−αf(z0) = c8(δD(x)/r)
pf(z0).

Combining (9.32) with (9.33) and (9.35), we arrive at f(x) ≍ (δD(x)/r)
pf(z0) which implies

the conclusion of the theorem. 2

The result of Theorem 9.4 implies the following statement: There exists C > 0 such that for

any Q ∈ ∂D and 0 < r ≤ R̂, whenever two Borel functions f, g in D are harmonic in BD(Q, r)
with respect to Y and vanish continuously on ∂D ∩B(Q, r),

f(x)

f(y)
≤ C

g(x)

g(y)
for all x, y ∈ BD(Q, r/2).(9.36)

The inequality (9.36) is referred to as the scale-invariant boundary Harnack principle for Y .
We say that the inhomogeneous non-scale-invariant boundary Harnack principle holds for Y ,

if there is a constant r0 ∈ (0, R̂] such that for any Q ∈ ∂D and 0 < r ≤ r0, there exists a
constant C = C(Q, r) ≥ 1 such that (9.36) holds for any two Borel functions f, g in D which
are harmonic in BD(Q, r) with respect to Y and vanish continuously on ∂D ∩B(Q, r).

We will show that without the extra condition p < α + (β1 ∧ β2) in Theorem 9.4, even
inhomogeneous non-scale-invariant BHP may not hold for Y . In the remainder of this section,
we assume that (B1), (B3), (B4-c), (K3) and (B5) hold. Consider the following condition:

(F) For any 0 < r ≤ R̂, there exists a constant C = C(r) such that

lim inf
s→0

Φ2(b/r)ℓ(s/b)

ℓ(s)
≥ Cbp−α for all 0 < b ≤ r.

Theorem 9.6. Suppose that (B1), (B3), (B4-c), (K3) and (B5) hold. Suppose also that (F)
holds. Then the inhomogeneous non-scale-invariant boundary Harnack principle fails for Y .

Remark 9.7. If p < α + β2, then (F) fails. Indeed, suppose that ε := α + β2 − p > 0. Then
using the definition of the lower Matuszewska index and (2.29) (with ε replaced by ε/3), we get

that for any 0 < s < b ≤ r ≤ R̂,

Φ2(b/r)ℓ(s/b)

ℓ(s)
≤ c1Φ2(1)(b/r)

β2−ε/3(1/b)ε/3 = c2(r)b
p−α+ε/3.

Hence, (2.34) can not hold for all 0 < b ≤ r.
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A measurable function f : (0, 1] → (0,∞) is said to be slowly varying at zero if

lim
s→0

f(λs)

f(s)
= 1 for all λ > 1.

We present two sufficient conditions for condition (F).

Lemma 9.8. (i) If p > α+ β2, then (F) holds.
(ii) If p = α + β2, ℓ is slowly varying at zero, and there exists c0 > 0 such that Φ2(r) ≥ c0r

β2

for all 0 < r ≤ 1, then (F) holds.

Proof. (i) Assume that ε := p − α − β2 > 0. Using (2.28) and (2.29), we get that for any

0 < b ≤ r ≤ R̂,

lim inf
s→0

Φ2(b/r)ℓ(s/b)

ℓ(s)
≥ c1Φ2(1)(b/r)

β2bε = c2(r)b
p−α.

(ii) By the assumptions, we get that for any 0 < b ≤ r ≤ R̂,

lim inf
s→0

Φ2(b/r)ℓ(s/b)

ℓ(s)
≥ c0(b/r)

β2 lim inf
s→0

ℓ(s/b)

ℓ(s)
= c0r

−β2bp−α.

2

In particular, if Φ1, Φ2 and ℓ are the functions from Remark 9.1, then (F) holds if β1 > β2
and p ∈ [α+ β2, α+ β1).

To prove Theorem 9.6, we first establish the following lemma.

Lemma 9.9. Suppose that (B1), (B3), (B4-c), (K3) and (B5) hold. If the inhomogeneous

non-scale-invariant boundary Harnack principle holds for Y with r0 ∈ (0, R̂], then the following

is true: For any Q ∈ ∂D and 0 < r ≤ r0 ∧ (ϵ2R̂/288), there exists C = C(Q, r) ≥ 1 such
that for any non-negative Borel function f in D which is harmonic in BD(Q, r) and vanishes
continuously on ∂D ∩B(Q, r),

f(x)

f(y)
≤ C

(
δD(x)

δD(y)

)p
for all x, y ∈ BD(Q, r/2) with δD(x) ∨ δD(y) ≤ ϵ2r/8,

where ϵ2 ∈ (0, 1/12) is the constant in Lemma 7.3.

Proof. Let Q ∈ ∂D and r ∈ (0, r0∧ (ϵ2R̂/288)]. We use the coordinate system CSQ in this proof.
Define g(x) = Px(YτU(3r)

∈ D). By the strong Markov property, since BD(Q, r) ⊂ U(3r/2) by

(3.15), the function g is harmonic in BD(Q, r). We claim that there exists c1 > 1 such that for
all x ∈ BD(Q, r) with δD(x) ≤ ϵ2r/8,

c−1
1 (δD(x)/r)

p ≤ g(x) ≤ c1(δD(x)/r)
p.(9.37)

To establish this claim, choose any x ∈ BD(Q, r) with δD(x) ≤ ϵ2r/8, and let Qx ∈ ∂D
be such that |x − Qx| = δD(x). Since ϵ2 < 1/12, by the triangle inequality, it holds that
|Q−Qx| ≤ |Q− x|+ δD(x) < (2− 2ϵ2)r. Hence, by (3.15), we have

UQx(ϵ2r) ⊂ BD(Qx, 2ϵ2r) ⊂ BD(Q, 2r) ⊂ U(3r)

and
U(3r) ⊂ BD(Q, 6r) ⊂ BD(Qx, 8r) ⊂ UQx(12r).

Using these and Theorem 7.4, since 12r ≤ ϵ2R̂/24 and x ∈ UQx(ϵ2r/4), we obtain

g(x) ≤ Px(Yτ
UQx (ϵ2r)

∈ D) ≤ c(δD(x)/r)
p

and

g(x) ≥ Px(Yτ
UQx (12r)

∈ D) ≥ c(ϵ2δD(x)/(12r))
p.
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Therefore, (9.37) holds. Note that (9.37) particularly implies that g vanishes continuously on
∂D ∩B(Q, r). Now, the desired result follows from (9.36) and (9.37). 2

Proof of Theorem 9.6. We suppose that the inhomogeneous non-scale-invariant BHP

holds for Y with r0 ∈ (0, R̂] and derive a contradiction. Let Q ∈ ∂D and r ∈ (0, r0 ∧ (ϵ2R̂/288)].
We use the coordinate system CSQ in this proof.

Let P ∈ ∂D be such that 10r < |P −Q| < 12r. Using (3.15), we see that

3r < |z − y| < 20r for all z ∈ U(3r), y ∈ BD(P, r).(9.38)

Since D is a C1,1 open set, by (9.3) (with ε = 1/2), we see that∫
BD(P,r/n)

ℓ(δD(y))dy ≤ c

∫
BD(P,r/n)

δD(y)
−1/2dy <∞.

For n ≥ 1, define

Kn :=

∫
BD(P,r/n)

ℓ(δD(y))dy, Ξn(y) :=
rd+α 1BD(P,r/n)(y)

KnΦ1(δD(y)/(3r))

and

Fn(x) := Ex
[
Ξn(YτU(3r)

)
]
.

Since BD(Q, r) ⊂ U(3r) by (3.15), it follows by the strong Markov property that Fn is harmonic
in BD(Q, r) for any n ≥ 1.

We first show that Fn vanishes continuously on ∂D∩B(Q, r). Using the Lévy system formula
(4.36) in the first line below, and (B4-c), (9.38) and the scaling properties of Φ1, Φ2 and ℓ in
the second, we get that for all x ∈ BD(Q, r),

Fn(x) =
rd+α

Kn
Ex

[ ∫ τU(3r)

0

∫
BD(P,r/n)

B(Yt, y)
Φ1(δD(y)/(3r)) |Yt − y|d+α

dy dt

]
≍ 1

Kn
Ex

[ ∫ τU(3r)

0

∫
BD(P,r/n)

Φ1

(
δD(Yt) ∧ δD(y)

3r

)
Φ1

(
δD(y)

3r

)−1

× Φ2

(
δD(Yt) ∨ δD(y)

3r

)
ℓ

(
δD(Yt) ∧ δD(y)
δD(Yt) ∨ δD(y)

)
dy dt

]
=

1

Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)≤δD(y)

GU(3r)(x, z)Φ1

(
δD(z)

3r

)
Φ1

(
δD(y)

3r

)−1

× Φ2

(
δD(y)

3r

)
ℓ

(
δD(z)

δD(y)

)
dzdy

+
1

Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)>δD(y)

GU(3r)(x, z)Φ2

(
δD(z)

3r

)
ℓ

(
δD(y)

δD(z)

)
dzdy

=: fn,1(x) + fn,2(x).

Note that BD(Q, 2r) ⊂ U(3r) ⊂ BD(Q, 8r) by (3.15) and p − α ≥ β2 ≥ 0 by Remark 9.7.
Using the almost monotonicity of Φ1 and the boundedness of Φ2 in the first line below, (9.3)
(with ε = α/2) in the second and third, and Proposition 8.6 in the last, we get that for all
x ∈ BD(Q, r),

fn,1(x) ≤
c1
Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)≤δD(y)

GU(3r)(x, z)ℓ

(
δD(z)

δD(y)

)
dzdy

≤ c2
Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)≤δD(y)

GU(3r)(x, z)
ℓ(δD(z))

δD(y)α/2
dzdy
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≤ c3
Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)≤δD(y)

GU(3r)(x, z)
(δD(y)/δD(z))

α/2

δD(y)α/2
ℓ(δD(y)) dzdy

≤ c3

∫
U(3r)

GU(3r)(x, z)δD(z)
−α/2 dz

≤ c4δD(x)
α/2.

Further, for all x ∈ BD(Q, r), using the boundedness of Φ2 and (9.3) (with ε = α/2) in the first
inequality below, and Proposition 8.6 in the third, we also get

fn,2(x) ≤
c5
Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)>δD(y)

GU(3r)(x, z)
ℓ(δD(y))

δD(z)α/2
dzdy

≤ c5

∫
U(3r)

GU(3r)(x, z)δD(z)
−α/2 dz

≤ c6δD(x)
α/2.

Therefore, there exists c7 > 0 such that for all x ∈ BD(Q, r),

fn,1(x) + fn,2(x) ≤ c7δD(x)
α/2.(9.39)

In particular, the above estimate shows that for any n ≥ 1, the function Fn vanishes continuously
on ∂D ∩B(Q, r).

We claim that there exists c8 = c8(r) > 0 such that the following statement holds: For every
u ∈ (0, ϵ2r/8), there exists N(u) ∈ N such that

fN(u),2(ued) ≥ c8u
p log(3r/u).(9.40)

Assume for the moment that (9.40) holds. Then for all u ∈ (0, ϵ2r/8), by (9.39) and (9.40), it
holds that

FN(u)(ued)

FN(u)((ϵ2r/8)ed)
≥

c9fN(u),2(ued)

fN(u),1((ϵ2r/8)ed) + fN(u),2((ϵ2r/8)ed)

≥ c8c9u
p log(3r/u)

c7(ϵ2r/8)α/2
,

while by Lemma 9.9, there exists c10 > 0 independent of u such that

FN(u)(ued)

FN(u)((ϵ2r/8)ed)
≤ c10u

p

(ϵ2r/8)p
.

Since limu→0 log(r/u) = ∞, this gives a contradiction, thereby concluding the proof.
Now, we show that (9.40) holds. Let u ∈ (0, ϵ2r/8). Observe that for all n ≥ 1,

fn,2(ued) ≥
1

Kn

∫
BD(P,r/n)

∫
z∈U(3r):δD(z)>r/n

GU(3r)(ued, z)Φ2

(
δD(z)

3r

)
× ℓ(δD(y)/δD(z))

ℓ(δD(y))
ℓ(δD(y)) dzdy

≥
∫
z∈U(3r):δD(z)>r/n

GU(3r)(ued, z)Φ2

(
δD(z)

3r

)
inf

0<s<r/n

ℓ(s/δD(z))

ℓ(s)
dz.

Thus, using Fatou’s lemma and (F) in the first inequality below, and Proposition 8.6 in the
second, we obtain

lim inf
n→∞

fn,2(ued) ≥ c11

∫
U(3r)

GU(3r)(ued, z)δD(z)
p−αdz ≥ c12u

p log(3r/u).

This implies (9.40). The proof is complete. 2
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10. Sharp estimates of Green function

In this section, we establish sharp two-sided Green function estimates when D is bounded.
With the functions Φ1 and Φ2 in (B4-c), we define a positive function Υ on (0,∞) by

(10.1) Υ(t) :=

∫ 2

t∧ 1
u2α−2p−1Φ1(u)Φ2(u) du.

Since Φ1(u) = Φ2(u) = 1 for u ≥ 1, it holds that for all t > 0,

(10.2) Υ(t) ≥
∫ 2

1
u2α−2p−1du = c1.

Moreover, by (9.1) and (9.2), we see that for all t ∈ (0, 1],

(10.3) Υ(t) ≥
∫ 2t

t
u2α−2p−1Φ1(u)Φ2(u) du ≥ c2t

2α−2pΦ1(t)Φ2(t).

Further, given a ∈ (0, 1), there exists c = c(a) > 0 such that for all for all t > 0,

(10.4) Υ(at) ≥ Υ(t) ≥ cΥ(at).

Indeed, the first inequality in (10.4) is obvious. Next, if at ≥ 1, then Υ(at) = Υ(t) and if at < 1,
then by (9.1), (9.2), (10.2) and (10.3),

Υ(at) = Υ(t) +

∫ t∧1

at
u2α−2p−1Φ1(u)Φ2(u) du

≤ Υ(t) + c1Φ1(t ∧ 1)Φ2(t ∧ 1)

∫ t

at
u2α−2p−1 du

≤ Υ(t) + c2

{
1 if t ≥ 1,

t2α−2pΦ1(t)Φ2(t) if t < 1

≤ (1 + c3)Υ(t),

proving the claim.
The goal of this section is to get the following two-sided estimates on the Green function.

Theorem 10.1. Suppose that D is a bounded C1,1 open set and (B1), (B3), (B4-c), (K3)
and (B5) hold. Let p ∈ [(α− 1)+, α+β1)∩ (0,∞) denote the constant satisfying (6.6) if C9 > 0
and let p = α− 1 if C9 = 0 where C9 is the contant in (K3). Then for all x, y ∈ D,

G(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)p
×Υ

(
δD(x) ∨ δD(y)

|x− y|

)
1

|x− y|d−α
,

(10.5)

where the comparison constants depend on D only through R̂,Λ and diam(D).

Note that the function ℓ does not play a role in the Green function estimates in (10.5), while
it appears in the estimate of B in (B4-c).

By (9.1) and (9.2), since Φ1(r) = Φ2(r) = 1 for r ≥ 1, we see that for every ε > 0, there exists
a constant c(ε) > 1 such that for all 0 < s ≤ r ≤ 2,

c(ε)−1

(
r

s

)β1+β2−ε∧(β1+β2)
≤ Φ1(r)Φ2(r)

Φ1(s)Φ2(s)
≤ c(ε)

(
r

s

)β1+β2

.

Therefore, if p < α+ (β1 + β2)/2 or p > α+ (β1 + β2)/2, then we obtain the following explicit
estimates for Υ from [29, Lemma 5.1]: For all t > 0,

Υ(t) ≍

{
1 if p < α+ (β1 + β2)/2,

(t ∧ 1)2α−2pΦ1(t ∧ 1)Φ2(t ∧ 1) if p > α+ (β1 + β2)/2.
(10.6)
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Observe that Φ1(t∧ 1)Φ2(t∧ 1) = Φ1(t)Φ2(t) for all t > 0. Hence, by (10.6), we obtain the next
corollary from Theorem 10.1.

Corollary 10.2. Under the setting of Theorem 10.1, the following statements hold true.
(i) Suppose that p < α+ (β1 + β2)/2. Then for all x, y ∈ D,

G(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)p 1

|x− y|d−α
.

(ii) Suppose that α+ (β1 + β2)/2 < p < α+ β1. Then for all x, y ∈ D,

G(x, y) ≍
(
δD(x) ∧ δD(y)

|x− y|
∧ 1

)p(δD(x) ∨ δD(y)
|x− y|

∧ 1

)2α−p

× Φ1

(
δD(x) ∨ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
1

|x− y|d−α
.

(10.7)

Remark 10.3. Let β∗1 be the upper Matuszewska index of Φ1, namely,

β∗1 := inf
{
β : ∃ a > 0 s. t. Φ1(r)/Φ1(s) ≤ a(r/s)β for 0 < s ≤ r ≤ 1

}
,

and β∗2 be the upper Matuszewska index of Φ2. Then (10.7) continues to hold true if α+ (β∗1 +
β∗2)/2 < p < α+ β1.

Suppose that

Φ1(u) = (u ∧ 1)β1ℓ1(u), Φ2(u) = (u ∧ 1)β2ℓ2(u)(10.8)

and p = α + (β1 + β2)/2 (so 2α − 2p − 1 = −β1 − β2 − 1), where ℓ1 and ℓ2 are slowly varying
at zero. Here we note that since Φ1 and Φ2 are assumed to be almost increasing, ℓ1 (resp. ℓ2)
should be almost increasing if β1 = 0 (resp. β2 = 0). Then Υ(t) ≍ L(t) where

L(t) = 1 +

(∫ 1

t

ℓ1(u)ℓ2(u)

u
du

)
+

.(10.9)

Consequently, we obtain the next corollary from Theorem 10.1.

Corollary 10.4. Under the setting of Theorem 10.1, suppose also that (10.8) holds with ℓ1 and
ℓ2 that are slowly varying at zero, and p = α+ (β1 + β2)/2. Then for all x, y ∈ D,

G(x, y) ≍
(
δD(x)

|x− y|
∧ 1

)p( δD(y)

|x− y|
∧ 1

)p
× L

(
δD(x) ∨ δD(y)

|x− y|

)
1

|x− y|d−α

where L is defined in (10.9).

The following lemma will play an important role in obtaining the sharp upper estimates of
the Green function.

Lemma 10.5. Let r ∈ (0, R̂/8], x, y ∈ D with δD(x) ∨ δD(y) ≤ r/2, and Qx, Qy ∈ ∂D be such
that |x−Qx| = δD(x) and |y−Qy| = δD(y). There exists C > 0 independent of r, x and y such
that ∫

UQx (r)
dw

∫
UQy (r)

dz

(
δD(x) ∧ δD(w)

|x− w|
∧ 1

)p(δD(y) ∧ δD(z)
|y − z|

∧ 1

)p
|x− w|α−d

× |y − z|α−dΦ1

(
δD(w) ∧ δD(z)

r

)
Φ2

(
δD(w) ∨ δD(z)

r

)
ℓ

(
δD(w) ∧ δD(z)
δD(w) ∨ δD(z)

)
≤ Cr2α

(
δD(x) ∧ δD(y)

r

)p(δD(x) ∨ δD(y)
r

)p
Υ

(
δD(x) ∨ δD(y)

r

)
.



MARKOV PROCESSES WITH JUMP KERNELS DECAYING AT THE BOUNDARY 97

Proof. By symmetry, without loss of generality, we can assume that δD(x) ≤ δD(y). For con-

venience, we use ρD(w) to denote ρQx

D (w) for w ∈ UQx(r), and use ρD(z) to denote ρ
Qy

D (z) for

z ∈ UQy(r). Choose β
1
∈ [0, β1], β2 ∈ [0, β1] and ε ∈ (0, 1/2) such that p < α+ β

1
− ε ∧ β

2
− ε

and the first inequalities in (9.1)-(9.2) hold. Define

Φ̃1(t) = Φ1(t)(t ∧ 1)−ε and Φ̃2(t) = Φ2(t)(t ∧ 1)ε, t > 0.

We also define

Φ3(t) = Φ1(t)Φ2(t), t > 0.

Clearly, Φ3(t) = Φ̃1(t)Φ̃2(t) for all t > 0. By (3.16), (9.3), (9.1) and (9.2), we see that for all
w ∈ UQx(r) and z ∈ UQy(r),

Φ1

(
δD(w) ∧ δD(z)

r

)
Φ2

(
δD(w) ∨ δD(z)

r

)
ℓ

(
δD(w) ∧ δD(z)
δD(w) ∨ δD(z)

)
≤ c1Φ1

(
ρD(w) ∧ ρD(z)

r

)
Φ2

(
ρD(w) ∨ ρD(z)

r

)
ℓ

(
ρD(w) ∧ ρD(z)
ρD(w) ∨ ρD(z)

)
≤ c2Φ1

(
ρD(w) ∧ ρD(z)

r

)
Φ2

(
ρD(w) ∨ ρD(z)

r

)
ℓ(1)

(
ρD(w) ∧ ρD(z)
ρD(w) ∨ ρD(z)

)−ε

= c2Φ̃1

(
ρD(w) ∧ ρD(z)

r

)
Φ̃2

(
ρD(w) ∨ ρD(z)

r

)
.

Hence, we have∫
UQx (r)

dw

∫
UQy (r)

dz

(
δD(x) ∧ δD(w)

|x− w|
∧ 1

)p(δD(y) ∧ δD(z)
|y − z|

∧ 1

)p
|x− w|α−d

× |y − z|α−dΦ1

(
δD(w) ∧ δD(z)

r

)
Φ2

(
δD(w) ∨ δD(z)

r

)
ℓ

(
δD(w) ∧ δD(z)
δD(w) ∨ δD(z)

)
≤ c2

(∫
UQx (r)

dw

∫
UQy (r), ρD(z)<ρD(w)

dz +

∫
UQx (r)

dw

∫
UQy (r), ρD(z)≥ρD(w)

dz

)
(
δD(x)

|x− w|
∧ 1

)p( δD(y)

|y − z|
∧ 1

)p Φ̃1

(
(ρD(w) ∧ ρD(z))/r

)
Φ̃2

(
(ρD(w) ∨ ρD(z))/r

)
|x− w|d−α |y − z|d−α

≤ c2(I1 + I2),

where

I1 :=

∫
UQx (r)

dw

(
δD(x)

|x− w|
∧ 1

)p Φ̃2(ρD(w)/r)

|x− w|d−α

×
∫
UQy (r,ρD(w))

(
δD(y)

|y − z|
∧ 1

)p Φ̃1(ρD(z)/r)

|y − z|d−α
dz

and

I2 :=

∫
UQy (r)

dz

(
δD(y)

|y − z|
∧ 1

)p Φ̃2(ρD(z)/r)

|y − z|d−α

×
∫
UQx (r,ρD(z))

(
δD(x)

|x− w|
∧ 1

)p Φ̃1(ρD(w)/r)

|x− w|d−α
dw.

To estimate I1 and I2, we use Lemma 8.5 several times. Note that by (9.1) and (9.2), Φ̃1 satisfies

(8.6) with β = β̃
1
:= β

1
− ε ∧ β

2
− ε and Φ3 satisfies (8.6) with β = β

3
:= β

1
+ β

2
− ε ∧ β

2
.

Clearly, β
3
≥ β̃

1
. By the choice of ε, we see that

β̃
1
> −2ε > −1 and p < α+ β̃

1
.
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We first estimate I1. By applying Lemma 8.5(iii) with Φ = Φ̃1, γ = 0 and q = p, we get that

I1 ≤ cδD(y)
α−1

∫
UQx (r)

(
δD(x)

|x− w|
∧ 1

)p
ρD(w)

(
δD(y)

ρD(w)
∧ 1

)p−α+1Φ3(ρD(w)/r)

|x− w|d−α
dw

≤ cδD(y)
α−1

∫
UQx (r,2ρD(y))

(
δD(x)

|x− w|
∧ 1

)p ρD(w) Φ3(ρD(w)/r)

|x− w|d−α
dw

+ cδD(y)
p

∫
UQx (r)\UQx (r,2ρD(y))

(
δD(x)

|x− w|
∧ 1

)p ρD(w)α−pΦ3(ρD(w)/r)

|x− w|d−α
dw

=: c(I1,1 + I1,2).

Applying Lemma 8.5(iii) with Φ = Φ3, γ = 1 and q = p, and using the scaling property of Φ3

and (10.3), since ρD(y) = δD(y), we obtain

I1,1 ≤ cδD(x)
α−1δD(y)

α−1(2ρD(y))
2

(
δD(x)

2ρD(y)

)p−α+1

Φ3(2ρD(y)/r)

≤ cδD(x)
pδD(y)

2α−pΦ3(ρD(y)/r)

≤ cr2α−2pδD(x)
pδD(y)

pΥ(δD(y)/r).

For I1,2, since 2ρD(y) = 2δD(y) ≥ δD(x), applying Lemma 8.5(i) with Φ = Φ3, γ = α − p and
q = p, we obtain

I1,2 ≤ cr2α−2pδD(y)
pδD(x)

p

∫ 1

2ρD(y)/r
s2α−2p−1Φ3(s)ds

≤ cr2α−2pδD(y)
pδD(x)

pΥ(δD(y)/r).

For I2, by applying Lemma 8.5(iii) with Φ = Φ̃1, γ = 0 and q = p, we see that

I2 ≤ cδD(x)
α−1

∫
UQy (r)

(
δD(y)

|y − z|
∧ 1

)p
ρD(z)

(
δD(x)

ρD(z)
∧ 1

)p−α+1Φ3(ρD(z)/r)

|y − z|d−α
dz

≤ cδD(x)
p

∫
UQy (r,2ρD(y))

(
δD(y)

|y − z|
∧ 1

)p ρD(z)α−pΦ3(ρD(z)/r)

|y − z|d−α
dz

+ cδD(x)
p

∫
UQy (r)\UQy (r,2ρD(y))

(
δD(y)

|y − z|
∧ 1

)p ρD(z)α−pΦ3(ρD(z)/r)

|y − z|d−α
dz

=: c(I2,1 + I2,2).

Applying Lemma 8.5(ii) with Φ = Φ3, γ = α− p and q = p, and using the scaling propery of Φ3

and (10.3), we obtain

I2,1 ≤ cδD(x)
pδD(y)

α−1(2ρD(y))
α−p+1Φ3(2ρD(y)/r)

≤ cδD(x)
pδD(y)

2α−pΦ3(ρD(y)/r)

≤ cr2α−2pδD(x)
pδD(y)

pΥ(δD(y)/r).

Moreover, applying Lemma 8.5(i) with Φ = Φ3, γ = α− p and q = p, we get that

I2,2 ≤ cr2α−2pδD(x)
pδD(y)

p

∫ 1

2ρD(y)/r
s2α−2p−1Φ3(s)ds

≤ cr2α−2pδD(y)
pδD(x)

pΥ(δD(y)/r).

The proof is complete. 2
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Proof of Theorem 10.1. Let x, y ∈ D and set r := R̂ |x − y|/(30 + 24 diam(D)). Note

that r < (|x− y|/30) ∧ (R̂/24). Without loss of generality, we assume that δD(x) ≤ δD(y).

Upper bound: Recall that ϵ2 ∈ (0, 1/12) is the constant in Theorem 7.4. If δD(y) ≥ 2−4ϵ2r,
then by using (10.2), we get the result from Proposition 8.1 by taking R0 > 2diam(D).

Suppose now that δD(y) < 2−4ϵ2r. Denote by Qx, Qy ∈ ∂D the points satisfying δD(x) =
|x −Qx| and δD(y) = |y −Qy|. Set U := UQx(ϵ2r) and V := UQy(ϵ2r). By (3.15), we see that
U ⊂ BD(Qx, 2ϵ2r) ⊂ BD(x, r) ⊂ D \ B(y, 29r). Hence, G(·, y) is regular harmonic in U . Thus,
we get

G(x, y) = Ex
[
G(YτU , y);YτU ∈ V

]
+ Ex

[
G(YτU , y);YτU ∈ D \ V

]
=: I1 + I2.

Observe that |w − z| ≍ r for w ∈ U and z ∈ V . Thus, by (B4-c) and the scaling properties
of Φ1,Φ2 and ℓ, we see that for w ∈ U and z ∈ V ,

B(w, z) ≍ Φ1

(
δD(w) ∧ δD(z)

r

)
Φ2

(
δD(w) ∨ δD(z)

r

)
ℓ

(
δD(w) ∧ δD(z)
δD(w) ∨ δD(z)

)
.(10.10)

By using the Lévy system formula (4.36) in the equality, (10.10) and Proposition 8.1 (with
R0 = 2diam(D)) in the first inequality, Lemma 10.5 in the second, and (10.4) (with a =

ϵ2R̂/(30 + 24 diam(D))) in the last, we obtain

I1 = Ex
[∫ τU

0

∫
V

B(Ys, z)G(z, y)
|Ys − z|d+α

dz ds

]
=

∫
U
GU (x,w)

∫
V

B(w, z)
|w − z|d+α

G(z, y)dz dw

≤ c1
rd+α

∫
U
dw

∫
V
dz

(
δD(x) ∧ δD(w)

|x− w|
∧ 1

)p(δD(z) ∧ δD(y)
|y − z|

∧ 1

)p
|x− w|α−d

× |y − z|α−dΦ1

(
δD(w) ∧ δD(z)

r

)
Φ2

(
δD(w) ∨ δD(z)

r

)
ℓ

(
δD(w) ∧ δD(z)
δD(w) ∨ δD(z)

)
≤ c2
rd+α

(ϵ2r)
2α

(
δD(x) ∧ δD(y)

ϵ2r

)p(δD(x) ∨ δD(y)
ϵ2r

)p
Υ

(
δD(x) ∨ δD(y)

ϵ2r

)
≤ c3
rd−α

(
δD(x) ∧ δD(y)

|x− y|

)p(δD(x) ∨ δD(y)
|x− y|

)p
Υ

(
δD(x) ∨ δD(y)

|x− y|

)
.

For I2, we note that |y − z| ≥ ϵ2r/2 for all z ∈ D \ V by (3.15). Thus, by Proposition 8.1, it
holds that for all z ∈ D \ V ,

G(z, y) ≤ c4

(
δD(y)

|y − z|
∧ 1

)p 1

|y − z|d−α
≤ c5(δD(y)/r)

p r−d+α.

Using this in the first inequality below and Theorem 7.4 in the second, we obtain

I2 ≤ c5(δD(y)/r)
p r−d+α Px(YτU ∈ D) ≤ c6(δD(x)/r)

p(δD(y)/r)
p r−d+α.

By (10.2), we deduce that the desired upper bound holds.

Lower bound: If δD(y) ≥ r, then Υ(δD(y)/|x−y|) ≤ Υ(R̂/(30+24 diam(D))) and the result
follows from Theorem 8.2 (with R0 = 20diam(D)). Hence, we assume δD(x) ≤ δD(y) < r. Again
we denote by Qx, Qy ∈ ∂D the points satisfying δD(x) = |x−Qx| and δD(y) = |y −Qy|.

Let n0 ≥ 1 be such that 2−n0r ≤ δD(y) < 2−n0+1r. For 1 ≤ n ≤ n0, we define

Vx(n) =
{
w = (w̃, wd) in CSQx : |w̃| < 2−nr ≤ wd − δD(x) < 2−n+1r

}
,

Vy(n) =
{
z = (z̃, zd) in CSQy : |z̃| < 2−nr ≤ zd − δD(y) < 2−n+1r

}
.

Then there exists c1 > 0 such that for all 1 ≤ n ≤ n0,

md(Vx(n)) ∧md(Vy(n)) ≥ c1(2
−nr)d.(10.11)
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Moreover, we see that for all 1 ≤ n ≤ n0, w ∈ Vx(n) and z ∈ Vy(n),

2−nr ≤ |w − x| < 2−n+2r, 2−nr ≤ |z − y| < 2−n+2r(10.12)

so that

|w − z| ≤ |x− y|+ 2−n+3r ≤ ((30 + 24 diam(D))/R̂+ 4) r.(10.13)

Let 1 ≤ n ≤ n0 and w ∈ Vx(n). Then δD(w) ≤ |w − Qx| ≤ δD(x) + 2−n+2r < 2−n+3r. On the
other hand, by (3.16) and (3.17),

δD(w) ≥ (2/
√
5)(wd − (10r)−1|w̃|2) ≥ 2−n−1r.

Therefore, by repeating the same argument for 1 ≤ n ≤ n0 and z ∈ Vy(n), we get that

2−n−1r ≤ δD(w) ∧ δD(z) ≤ δD(w) ∨ δD(z) ≤ 2−n+3r.(10.14)

By (10.12) and (10.14), we get from Theorem 8.2 that for all 1 ≤ n ≤ n0 and w ∈ Vx(n),

GBD(x,20r)(x,w) ≥ c

(
δD(x)

|x− w|

)p 1

|x− w|d−α
≥ c(2−nr)−d+α−p δD(x)

p(10.15)

and for all 1 ≤ n ≤ n0 and z ∈ Vy(n),

GBD(y,20r)(z, y) ≥ c

(
δD(y)

|z − y|

)p 1

|z − y|d−α
≥ c(2−nr)−d+α−p δD(y)

p.(10.16)

Further, by (10.13), (10.14), (B4-c) and the scaling properties of Φ1,Φ2 and ℓ, we see that for
all 1 ≤ n ≤ n0, w ∈ Vx(n) and z ∈ Vy(n),

B(w, z)
|w − z|d+α

≥ cr−d−αΦ1(2
−n−1) Φ2(2

−n−1) ℓ(2−3) ≥ cr−d−αΦ1(2
−n+1) Φ2(2

−n+1).(10.17)

Now using the regular harmonicity of G(·, y) on BD(x, 20r) in the first inequality below, the
Lévy system formula (4.36) in the second, (10.16) and (10.17) in the fourth, (10.11) in the fifth,
the scaling properties of Φ1 and Φ2 in the sixth and (10.4) in the last, we arrive at

G(x, y) ≥ Ex
[
G(YτBD(x,20r)

, y) : YτBD(x,20r)
∈ ∪n0

n=1Vy(n)
]

≥
n0∑
n=1

∫
BD(x,20r)

∫
Vy(n)

GBD(x,20r)(x,w)
B(w, z)

|w − z|d+α
G(z, y)dz dw

≥
n0∑
n=1

∫
Vx(n)

∫
Vy(n)

GBD(x,20r)(x,w)
B(w, z)

|w − z|d+α
GBD(y,20r)(z, y)dz dw

≥ cδD(x)
pδD(y)

p

rd+α

n0∑
n=1

(2−nr)2(−d+α−p)Φ1(2
−n+1)Φ2(2

−n+1)

∫
Wx(n)

dz

∫
Wy(n)

dw

≥ cδD(x)
pδD(y)

p

rd−α+2p

n0∑
n=1

2−2(α−p)nΦ1(2
−n+1)Φ2(2

−n+1)

≥ cδD(x)
pδD(y)

p

rd−α+2p

n0∑
n=1

∫ 2−n+2

2−n+1

u2α−2p−1Φ1(u)Φ2(u)du

= cr−d+α−2pδD(x)
pδD(y)

pΥ(2−n0+1)

≥ cr−d+α−2pδD(x)
pδD(y)

pΥ(δD(y)/r).

This finishes the proof. 2
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11. Examples

This section is devoted to two types of examples. The main representatives of the first type
are subordinate killed stable processes and their modifications. In Subsection 11.1 we show that
they satisfy all of the introduced assumptions. Note that these processes are defined through
probabilistic transformations (killing and subordination), or, analytically, through their infini-
tesimal generators. This is different from the second type of examples where the processes are
defined via their jump kernel Ba(x, y)|x − y|−d−α with the function Ba being equal to some
function a(x, y) multiplied by the quantity on the right-hand side of the display in assumption
(B4-c), see (11.46). Such kernels are studied in Subsection 11.2 where we give sufficient condi-
tions on the function a(x, y) so that all assumptions (B) are satisfied. The last example of the
subsection extends the setting of [42].

We begin with a general lemma, inspired by the half-space setting in [51], that will be used
several times in the section.

Lemma 11.1. Let K : H×H → [0,∞) be such that for all x, y ∈ H, a > 0 and z̃ ∈ Rd−1,

K(x, y) = K(ax, ay) = K(x+ (z̃, 0), y + (z̃, 0)).(11.1)

Define FK : H−1 → [0,∞) by

FK(z) = K(ed, ed + z).

Then the following statements hold.
(i) K(x, y) = FK((y − x)/xd) for all x, y ∈ H.
(ii) If K is also assumed to be symmetric in x and y, then

FK(z) = FK(−z/(1 + zd)) for all z ∈ H−1.

Proof. (i) Using (11.1), we get that for all x, y ∈ H,

K(x, y) = K((0̃, xd), (ỹ − x̃, yd)) = K((0̃, xd), (0̃, xd) + y − x)) = FK((y − x)/xd).

(ii) Using (11.1) and symmetry, we obtain that for any z ∈ H−1,

FK(−z/(1 + zd)) = K(ed, (−z̃/(1 + zd), 1/(1 + zd))) = K((1 + zd)ed, (−z̃, 1))
= K((−z̃, 1), (1 + zd)ed) = K(ed, (z̃, 1 + zd)) = FK(z).

2

Throughout the next two subsections, we let D ⊂ Rd, d ≥ 2, be a C1,1 open set with

characteristics (R̂,Λ), assume that R̂ ≤ 1∧(1/(2Λ)) without loss of generality, and set R := R̂/8.

11.1. Subordinate killed stable processes. Let γ ∈ (0, 2]. In this subsection, we assume
that D is either (1) bounded or (2) the domain above the graph of a bounded C1,1 function in
Rd−1. When γ = 2, we additionally assume that D is connected.

Let Zγ be an isotropic γ-stable process in Rd, that is, a rotationally symmetric Lévy process
with Lévy exponent |ξ|γ . Denote by qγ(t, |x− y|) the transition density of Zγ . For a C1,1 open
set U ⊂ Rd, denote by Zγ,U the part process of Zγ killed upon exiting U . Denote by qγ,U (t, x, y)
the transition density of Zγ,U . We extend the domain of qγ,U to (0,∞) × Rd × Rd by letting
qγ,U (t, x, y) = 0 if x ∈ Rd \ U or y ∈ Rd \ U .

A non-negative function ϕ on (0,∞) is called a Bernstein function if ϕ is infinitely differ-

entiable and (−1)n−1ϕ(n)(λ) ≥ 0 for all n ∈ N and λ > 0. It is known that every Bernstein
function ϕ has the following representation:

ϕ(λ) = a+ bλ+

∫ ∞

0
(1− e−λt)Π(dt),

where a, b ≥ 0 and Π is a measure on (0,∞) satisfying
∫∞
0 (1∧ t)Π(dt) <∞. The triplet (a, b,Π)

is called the Lévy triplet of the Bernstein function ϕ. See [66, Theorem 3.2].
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A process T = (Tt)t≥0 is called a subordinator, if it is a non-decreasing Lévy process with
T0 = 0. For a given subordinator T , there exists a unique Bernstein function ϕ such that

E[e−λTt ] = e−tϕ(λ) for all λ, t > 0.(11.2)

In this sense, the Bernstein function ϕ is called the Laplace exponent of T . Conversely, given a
Bernstein function ϕ with ϕ(0+) = 0, there exists a unique subordinator T ϕ (up to equivalence)
such that (11.2) holds. See [66, Theorem 5.2].

Let β ∈ (0, 1) and T = (Tt)t≥0 be a β-stable subordinator with Laplace exponent λβ, inde-
pendent of Zγ . Define a time-changed process Y U = Y γ,U,β by

Y U
t = Zγ,UTt , t ≥ 0.(11.3)

The generator of Y U is equal to −((−∆)γ/2|U )β. When γ = 2, it is the negative of the spectral
fractional Laplacian.

By [63, (2.8)-(2.9)], the jump kernel JU (dx, dy) and the killing measure κU (dx) of Y U have
densities JU (x, y) and κU (x) given by

JU (x, y) = Jγ,U,β(x, y) = cβ

∫ ∞

0
qγ,U (t, x, y)t−1−βdt,(11.4)

κU (x) = κγ,U,β(x) = cβ

∫ ∞

0

(
1−

∫
U
qγ,U (t, x, y)dy

)
t−1−βdt,(11.5)

where cβt
−1−β is the Lévy density of the subordinator T .

Let α := γβ. Note that JRd
(x, y) equals, cd,−α|x − y|−d−α, which is the jump kernel of

isotropic α-stable process. Define

BU (x, y) = Bγ,U,β(x, y) =

{
|x− y|d+αJU (x, y) if x ̸= y,

cd,−α if x = y.
(11.6)

By the scaling and translation invariance properties of Zγ , we see that the kernel c−1
d,−αB

H(x, y)

satisfies (11.1) and is symmetric in x and y. Define a function F γ,β0 by

F γ,β0 (z) := c−1
d,−αB

H(ed, ed + z), z ∈ H−1.(11.7)

By Lemma 11.1(i)-(ii), we have

JH(x, y) = cd,−αF
γ,β
0 ((y − x)/xd)|x− y|−d−α for all x, y ∈ H(11.8)

and F γ,β0 (z) = F γ,β0 (−z/(1 + zd)) for all z ∈ H−1. It follows that

F γ,β0 (z) =
1

2

(
F γ,β0 (z) + F γ,β0 (−z/(1 + zd))

)
, z = (z̃, zd) ∈ H−1.(11.9)

Set

bγ,β :=

{
γ/2 if γ = 2 or β < 1/2;

γ − α otherwise,
(11.10)

and define

Φγ,β1 (r) := (r ∧ 1)bγ,β ,(11.11)

Φγ,β2 (r) :=


r ∧ 1 if γ = 2;

(r ∧ 1)γ/2−α if γ < 2 and β < 1/2;

1 if γ < 2 and β ≥ 1/2,

(11.12)

ℓγ,β(r) :=

{
log(e/(r ∧ 1)) if γ < 2 and β = 1/2;

1 otherwise.
(11.13)

The following is the main result of this subsection.
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Proposition 11.2. The process Y D defined by (11.3) satisfies (B1), (B3), (B4-c), (K3) and

(B5). More precisely, Y D satisfies (B4-c) with Φ1 = Φγ,β1 , Φ2 = Φγ,β2 and ℓ = ℓγ,β, (B5-I)

with F0 = F = F γ,β0 and any ν ∈ (0, 1), and (6.6) with p = γ/2.

Note that it was already proved in [49, Lemma 3.2] and [50, (2.9)] that Y D satisfies (B3).
We repeat the argument from [50] below since it provides a passageway to the proofs (B5-I)
and (K3).

By the the strong Markov property and joint continuity of qγ and qγ,D,

qγ(s, |x− y|)− qγ,D(s, x, y) = Ex
[
qγ
(
s− τ

(γ)
D , |Zγ

τ
(γ)
D

− y|
)
: τ

(γ)
D < s

]
Thus, by (11.4), Fubini’s theorem and the change of variables, we have tha for any x, y ∈ D,

j(|x− y|)− JD(x, y) = cβEx
∫ ∞

τ
(γ)
D

qγ
(
s− τ

(γ)
D , |Zγ

τ
(γ)
D

− y|
)
s−1−βds

= cβEx
∫ ∞

0
qγ
(
v, |Zγ

τ
(γ)
D

− y|
)
(v + τ

(γ)
D )−1−βds

≤ cβEx
∫ ∞

0
qγ
(
v, |Zγ

τ
(γ)
D

− y|
)
v−1−βdv

= Ex
[
j
(
|Zγ
τ
(γ)
D

− y|
)]

≤ j(δD(y)),

where the last inequality follows from |Zγ
τ
(γ)
D

− y| ≥ δD(y). Hence,

BD(x, x)− BD(x, y) = cd,−α − |x− y|d+αJD(x, y)

= |x− y|d+α
(
j(|x− y|)− JD(x, y)

)
≤ |x− y|d+αj(δD(y)) = cd,−α

(
|x− y|
δD(y)

)d+α
.

Thus (B3) holds with θ0 = d+ α > 1.
As we have seen, (B3) can be proved by analyzing the difference between the jumping kernel

of Y D and that of α-stable process in Rd. However, the bound in (B5-I) is much more delicate
and we need more refined estimates to obtain the bound with the extra vanishing term (δD(x)∨
δD(y)∨|x−y|)θ2 . To prove (B5-I) and (K3), we will analyze the difference between the jumping
kernel and killing potential of Y D and those of Y H, and use the sharp estimates of the transition
density of subordinate killed stable processes in complement of balls.

Recall that R = R̂/8, and EQν (R), SQ(R) and S̃Q(R) are defined by (3.18). In the remainder

of this subsection, we fix Q ∈ ∂D, use the coordinate system CSQ, and denote EQν (R), SQ(R)

and S̃Q(R) by Eν , S and S̃ respectively.

For a Borel set A ⊂ Rd, let τ (γ)A := inf{t > 0 : Zγt /∈ A}. By Lemma 3.7(ii), the strong Markov

property and joint continuity of qγ,R
d\S̃ , we see that for all t > 0 and x, y ∈ Rd \ S̃,

|qγ,D(t, x, y)− qγ,H(t, x, y)| ≤ qγ,R
d\S̃(t, x, y)− qγ,S(t, x, y)

= Ex
[
qγ,R

d\S̃(t− τ
(γ)
S , Zγ(τ

(γ)
S ), y); τ

(γ)
S < t

]
.

(11.14)
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Hence, by (11.4) and Fubini’s theorem, for any x, y ∈ D ∩H,∣∣∣JD(x, y)− JH(x, y)
∣∣∣

≤ cβ

∫ ∞

0
|qγ,D(t, x, y)− qγ,H(t, x, y)| t−1−βdt

≤ cβ

∫ ∞

0
Ex

[
qγ,R

d\S̃(t− τ
(γ)
S , Zγ(τ

(γ)
S ), y); τ

(γ)
S < t

]
t−1−βdt

= cβEx
[ ∫ ∞

τ
(γ)
S

qγ,R
d\S̃(t− τ

(γ)
S , Zγ(τ

(γ)
S ), y) t−1−βdt

]
≤ cβ sup

z∈Rd\(S∪S̃)

∫ ∞

0
qγ,R

d\S̃(t, z, y)t−1−βdt.

(11.15)

Define qγ : (0,∞)× Rd × Rd → (0,∞) and hγ,R : (0,∞)× (Rd \ S̃) → (0,∞) by

qγ(t, x, y) =

t
−d/2e−|x−y|2/(4t) if γ = 2,

t−d/γ ∧ t

|x− y|d+γ
if γ < 2,

hγ,R(t, x) =


1 ∧

δRd\S̃(x)
γ/2

(t ∧Rγ)1/2
if d > γ,

1 ∧
log(1 + δRd\S̃(x)/R)

log(1 + t1/2/R)
if d = γ = 2.

By the scaling property, qγ,R
d\S̃(t, x, y) = R−dqγ,R

d\B(−ed,1)(t/Rγ , x/R, y/R) for all t > 0 and

x, y ∈ Rd \ S̃. Hence, applying the Dirichlet heat kernel estimates from [26, Theorem 1.3] (for
γ < 2), [39, Subsection 5.2] (for γ = 2 and d = 2) and [72, Theorem 1.1] (for γ = 2 and d ≥ 3),
we deduce that there exist constants c1, c2 > 0 depending only on d and γ such that for all t > 0

and x, y ∈ Rd \ S̃,

qγ,R
d\S̃(t, x, y) ≤ c1hγ,R(t, x)hγ,R(t, y)qγ(c2t, x, y).(11.16)

In particular, for all t > 0 and x, y ∈ Rd \ S̃,

(11.17) qγ,R
d\S̃(t, x, y) ≤ c1qγ(c2t, x, y).

Lemma 11.3. Suppose that γ < 2. There exists C > 0 depending only on d and γ such that for
all ν ∈ (0, 1) and y ∈ Eν ,

sup
0<s≤Rγ , z∈Rd\(S∪S̃)

qγ,R
d\S̃(s, z, y) ≤ CδD(y)

−d(δD(y)/R)
γ(1−ν)
2(1+ν) .

Proof. Let y ∈ Eν and z = (z̃, zd) ∈ Rd \ (S ∪ S̃). We first note that, by Lemma 3.7(iii), we have

δRd\S̃(y) ≤ yd +R−
√
R2 − |ỹ|2

≤ yd +R− (R−R−1|ỹ|2) = yd +R−1|ỹ|2 ≤ 5yd/4 ≤ 2δD(y)
(11.18)

and

|y − w| ≥ δS(y) ≥ 3δD(y)/8 for all w ∈ Rd \ S.(11.19)

Thus,

δRd\S̃(z) ≤ δRd\S̃(y) + |y − z| ≤ (19/3)|y − z|.(11.20)
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By (11.16) and (11.18), we have

sup
0<s≤Rγ

qγ,R
d\S̃(s, z, y) ≤ c sup

0<s≤Rγ

(δRd\S̃(z)
γ/2δRd\S̃(y)

γ/2

s

s

|y − z|d+γ

)
≤ cδRd\S̃(z)

γ/2|y − z|−d−γδD(y)γ/2.
(11.21)

If |y − z| > 4−1Rν/(1+ν)δD(y)
1/(1+ν), then since δD(y) < R, using (11.20) and (11.21), we

obtain

sup
0<s≤Rγ

qγ,R
d\S̃(s, z, y) ≤ c|y − z|−d−γ/2δD(y)γ/2

≤ c(Rν/(1+ν)δD(y)
1/(1+ν))−d−γ/2δD(y)

γ/2

≤ cR−(1−ν)γ/(2+2ν)δD(y)
−d+(1−ν)γ/(2+2ν).

Suppose that |y − z| ≤ 4−1Rν/(1+ν)δD(y)
1/(1+ν). Then |z̃| ≤ |ỹ| + R/4 ≤ R/2. Hence, it holds

that
δRd\S̃(z) ≤ 2(R−

√
R2 − |z̃|2) ≤ 2R−1|z̃|2.

Using this and the triangle inequality in the first inequality below, y ∈ Eν and |y − z| ≤
4−1Rν/(1+ν)δD(y)

1/(1+ν) in the second, and Lemma 3.7(iii) in the last, we get

δRd\S̃(z) ≤ 4R−1(|ỹ|2 + |y − z|2)

≤ (4R)−(1−ν)/(1+ν)y
2/(1+ν)
d + 4−1R−(1−ν)/(1+ν)δD(y)

2/(1+ν)

≤ cR−(1−ν)/(1+ν)δD(y)
2/(1+ν).

(11.22)

Using (11.21), (11.19) and (11.22), we arrive at

sup
0<s≤Rγ

qγ,R
d\S̃(s, z, y) ≤ c(R−(1−ν)/(1+ν)δD(y)

2/(1+ν))γ/2(3δD(y)/8)
−d−γδD(y)

γ/2.

= cR−(1−ν)γ/(2+2ν)δD(y)
−d+(1−ν)γ/(2+2ν).

2

Lemma 11.4. There exists C > 0 depending only on d such that for all ν ∈ (0, 1) and y ∈ Eν ,

sup
0<s≤R2, z∈Rd\(S∪S̃)

q2,R
d\S̃(s, z, y) ≤ CδD(y)

−d(δD(y)/R)
(1−ν)/(1+ν).

Proof. Let y ∈ Eν and z = (z̃, zd) ∈ Rd \ (S ∪ S̃). If |y − z| > 4−1Rν/(1+ν) δD(y)
1/(1+ν), then by

(11.17), since R−1δD(y) ≤ 1, we get

sup
s>0

q2,R
d\S̃(s, z, y) ≤ c sup

s>0
s−d/2e−c|y−z|

2/s = c|y − z|−d

≤ cR−dν/(1+ν)δD(y)
−d/(1+ν) ≤ cR−(1−ν)/(1+ν)δD(y)

−d+(1−ν)/(1+ν).

If |y − z| ≤ 4−1Rν/(1+ν)δD(y)
1/(1+ν), then using (11.16) with the fact that log(1 + s) ≍ s for

s ∈ (0, 1) in the first line below, (11.18) and (11.22) in the second, and (11.19) in the last, we
obtain

sup
0<s≤R2

q2,R
d\S̃(s, z, y) ≤ cδRd\S̃(z)δRd\S̃(y) sup

0<s≤R2

s−1−d/2e−c|y−z|
2/s

≤ cR−(1−ν)/(1+ν)δD(y)
(3+ν)/(1+ν) sup

s>0
s−1−d/2e−c|y−z|

2/s

= cR−(1−ν)/(1+ν)δD(y)
(3+ν)/(1+ν)|y − z|−d−2

≤ cR−(1−ν)/(1+ν)δD(y)
−d+(1−ν)/(1+ν).
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2

Lemma 11.5. There exists C > 0 depending only on d and γ such that for all ν ∈ (0, 1) and
y ∈ Eν ,

sup
z∈Rd\(S∪S̃)

∫ δD(y)γ(δD(y)/R)(1−ν)γ/(2+2ν)

0
qγ,R

d\S̃(t, z, y)t−1−βdt

≤ C

(
δD(y)

R

)(1−β)(1−ν)γ/(2+2ν) 1

δD(y)d+α
.

Proof. Let ε := (1− ν)γ/(2 + 2ν), y ∈ Eν and z ∈ Rd \ (S ∪ S̃). When γ < 2, using (11.17) and
(11.19), since α = γβ, we obtain∫ R−εδD(y)γ+ε

0
qγ,R

d\S̃(t, z, y)t−1−βdt ≤ c1
|z − y|d+γ

∫ R−εδD(y)γ+ε

0
t−βdt

≤ c2R
−(1−β)εδD(y)

−d−α+(1−β)ε.

When γ = 2, using (11.17) and (11.19), since sups>0 s
d/2+1e−s <∞, we get that∫ R−εδD(y)2+ε

0
q2,R

d\S̃(t, z, y)t−1−β dt

≤ c3

∫ R−εδD(y)2+ε

0
t−d/2−1−βe−c4|z−y|

2/t dt

≤ c5

∫ R−εδD(y)2+ε

0
t−d/2−1−βe−c6δD(y)2/t dt

≤ c
−(d/2+1)
6 c7

∫ R−εδD(y)2+ε

0
t−d/2−1−β (t/δD(y)

2)d/2+1 dt

= c8R
−(1−β)εδD(y)

−d−2β+(1−β)ε.

The proof is complete. 2

We now analyze the difference between the jumping kernel of Y D and Y H.

Lemma 11.6. There exists C > 0 depending only on d and γ such that for all ν ∈ (0, 1) and
x, y ∈ Eν ,

|JD(x, y)− JH(x, y)| ≤ C

(
δD(x) ∨ δD(y)

R

) (1−β)(1−ν)γ
2(1+ν) 1

(δD(x) ∨ δD(y))d+α
.

Proof. Let ε := (1 − ν)γ/(2 + 2ν) and x, y ∈ Eν . By symmetry, without loss of generality, we
assume δD(x) ≤ δD(y). Using (11.15), (11.16) and Lemmas 11.3, 11.4 and 11.5, we get∣∣∣JD(x, y)− JH(x, y)

∣∣∣
≤ cβ sup

z∈Rd\(S∪S̃)

(∫ R−εδD(y)γ+ε

0
+

∫ Rγ

R−εδD(y)γ+ε

+

∫ ∞

Rγ

)
qγ,R

d\S̃(t, z, y)t−1−βdt

≤ cβ sup
z∈Rd\(S∪S̃)

∫ R−εδD(y)γ+ε

0
qγ,R

d\S̃(t, z, y)t−1−βdt

+ cβ sup
0<s≤Rγ , z∈Rd\(S∪S̃)

qγ,R
d\S̃(s, z, y)

∫ Rγ

R−εδD(y)γ+ε

dt

t1+β
+ c

∫ ∞

Rγ

dt

td/γ+1+β
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≤ c(δD(y)/R)
(1−β)εδD(y)

−d−α + cR−εδD(y)
−d+ε(R−εδD(y)

γ+ε)−β + cR−d−α

= c(δD(y)/R)
(1−β)εδD(y)

−d−α + cR−d−α.

Since δD(y) < R, we have (δD(y)/R)
(1−β)εδD(y)

−d−α > R−d−α. The proof is complete. 2

Proof of Proposition 11.2. (B1) clearly holds. As mentioned earlier, (B3) follows from
[50, (2.9)]. Using [68, Theorem 3.4] and [27, Theorem 1.1] if γ = 2, and [19, Theorem 1.1] and
[26, Theorem 1.2] if γ < 2, we see that Zγ,D satisfies either the condition HKh

B (if D is bounded)

or HKh
U (if D is unbounded) in [29] with Φ(r) = rγ , C0 = 1γ ̸=2 and the boundary function

hDγ (t, x, y) =

(
1 ∧ δD(x)

γ/2

t1/2

)(
1 ∧ δD(y)

γ/2

t1/2

)
.(11.23)

Thus, by [29, Example 7.2] (see also [50, (1.1) and (1.2)]), (B4-c) holds with Φ1 = Φγ,β1 ,

Φ2 = Φγ,β2 and ℓ = ℓγ,β. For (B5-I), using (11.8) and Lemma 11.6, we get that for all ν ∈ (0, 1)
and x, y ∈ Eν ,∣∣∣BD(x, y)− cd,−αF

γ,β
0 ((y − x)/xd)

∣∣∣ = |x− y|d+α
∣∣∣JD(x, y)− JH(x, y)

∣∣∣
≤ c

(
|x− y|

δD(x) ∨ δD(y)

)d+α(δD(x) ∨ δD(y)
R

) (1−β)(1−ν)γ
2(1+ν)

≤ c

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)d+α((δD(x) ∨ δD(y) ∨ |x− y|)
R

) (1−β)(1−ν)γ
2(1+ν)

.

Hence, (B5-I) holds true with any ν ∈ (0, 1), θ1 = d+ α and θ2 = (1− β)(1− ν)γ/(2 + 2ν).

In view of (11.9), it remains to prove that κD satisfies (K3) and (6.6) with F = F γ,β0 and
p = γ/2. It is known, see [64, (3.2)], that there exists c∗ > 0 such that for all w ∈ Rd, r > 0 and
t > 0,

Pw(τ
(γ)
B(w,r) ≤ t) = P0(τ

(γ)
B(0,r) ≤ t) = P0( max

0≤s≤t
|Zγs | ≥ r) ≤ c∗tr

−γ .(11.24)

From (11.24), we see that

Px(τ
(γ)
D ≤ t) ≤ Px(τ

(γ)
B(x,δD(x)) ≤ t) ≤ c∗tδD(x)

−γ .(11.25)

Applying (11.25) to (11.5), we have that for all x ∈ D with δD(x) ≥ R/2,

κD(x) ≤ cβ

∫ δD(x)γ

0
Px(τ

(γ)
D ≤ t)t−1−βdt+ cβ

∫ ∞

δD(x)γ
t−1−βdt(11.26)

≤ cδD(x)
−γ

∫ δD(x)γ

0
t−βdt+ cδD(x)

−α = cδD(x)
−α ≤ cR−α.

We now assume that x ∈ D with δD(x) < R/2. Without loss of generality, by choosing

Qx ∈ ∂D such that |x − Qx| = δD(x), we assume that x = (0̃, xd) = (0̃, δD(x)) in CSQx and

denote EQx
ν (R), SQx(R) and S̃Qx(R) by Eν , S and S̃ respectively.

Repeating the proof of [30, Lemma 2.4(i)], we see that there exists c1 = c1(γ, β) > 0 indepen-
dent of x such that

κH(x) = c1x
−α
d = c1δD(x)

−α.(11.27)

Recall bγ,β is defined in (11.10). We see that (B4-a) and (B4-b) hold with Φ0(r) = (r∧1)bγ,βℓ(r)
by Lemma 9.2. Hence, by Lemmas 6.3 and 6.4, q 7→ C(α, q, F γ,β0 ) is a strictly increasing continu-

ous function on [(α−1)+, α+bγ,β) with C(α, (α−1)+, F
γ,β
0 ) = 0 and limq→bγ,β C(α, q, F

γ,β
0 ) = ∞.
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Thus, there exists a unique constant p ∈ [(α− 1)+, α+ bγ,β) ∩ (0,∞) such that

C(α, p, F γ,β0 ) = c1/cd,−α = c1/BD(x, x).(11.28)

Set ε1 := (1− ν)γ/(8β + 8νβ) and ε2 := (1− ν)γ2/(8d+ 8νd). By (11.27), (11.28) and (11.5),
we get ∣∣κD(x)− C(α, p, F γ,β0 )BD(x, x)δD(x)−α

∣∣ = ∣∣∣κD(x)− κH(x)
∣∣∣(11.29)

≤ cβ

∫ R−ε1δD(x)γ+ε1

0

(
Px(τ

(γ)
D ≤ t) ∨ Px(τ

(γ)
H ≤ t)

)
t−1−βdt

+ cβ

∫ Rε2δD(x)γ−ε2

R−ε1δD(x)γ+ε1

∣∣∣∣ ∫
D
qγ,D(t, x, y)dy −

∫
H
qγ,H(t, x, y)dy

∣∣∣∣ t−1−βdt

+ cβ

∫ ∞

Rε2δD(x)γ−ε2

t−1−βdt

=: I1 + I2 + I3.

For I3, we have

I3 ≤ cR−βε2δD(x)
−α+βε2 .(11.30)

Using (11.24), we see that

Px(τ
(γ)
D ≤ t) ∨ Px(τ

(γ)
H ≤ t) ≤ Px(τ

(γ)
B(x,δD(x)) ≤ t) ≤ c∗tδD(x)

−γ .(11.31)

Thus, we get

I1 ≤ c∗δD(x)
−γ

∫ R−ε1δD(x)γ+ε1

0
t−βdt = cR−(1−β)ε1δD(x)

−α+(1−β)ε1 .(11.32)

Set W := B(x,Rε2/γδD(x)
1−ε2/γ). By Lemma 3.7(ii), we have that

I2 ≤ cβ

∫ Rε2δD(x)γ−ε2

R−ε1δD(x)γ+ε1

(∫
Rd\S̃

qγ,R
d\S̃(t, x, y)dy −

∫
S
qγ,S(t, x, y)dy

)
t−1−βdt(11.33)

≤ cβ

∫ Rε2δD(x)γ−ε2

R−ε1δD(x)γ+ε1

∫
W\S̃

(
qγ,R

d\S̃(t, x, y)− qγ,S(t, x, y)
)
dy t−1−βdt

+ cβ

∫ Rε2δD(x)γ−ε2

R−ε1δD(x)γ+ε1

∫
Rd\W

qγ,R
d\S̃(t, x, y)dy t−1−βdt

=: I2,1 + I2,2.

For any 0 < t ≤ Rγ and y ∈W \S̃, since x ∈ Eν , using symmetry, (11.14) and Lemmas 11.3-11.4,
we have

qγ,R
d\S̃(t, x, y)− qγ,S(t, x, y) = qγ,R

d\S̃(t, y, x)− qγ,S(t, y, x)

= Ey
[
qγ,R

d\S̃(t− τ
(γ)
S , Zγ(τ

(γ)
S ), x); τ

(γ)
S < t

]
≤ sup

0<s≤Rγ , z∈Rd\(S∪S̃)
qγ,R

d\S̃(s, z, x)

≤ cδD(y)
−d(δD(y)/R)

γ(1−ν)
2(1+ν) .

Hence, we obtain

I2,1 ≤ cδD(y)
−d(δD(y)/R)

γ(1−ν)
2(1+ν)

∫ Rε2δD(x)γ−ε2

R−ε1δD(x)γ+ε1

t−1−βdt

∫
W
dy(11.34)

≤ cδD(y)
−d(δD(y)/R)

γ(1−ν)
2(1+ν) (R−ε1δD(x)

γ+ε1)−β(Rε2/γδD(x)
1−ε2/γ)d
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= cδD(y)
−α(δD(y)/R)

γ(1−ν)
4(1+ν) ≤ cδD(y)

−α(δD(y)/R)
βε2 .

For I2,2, we see from (11.24) that for all t > 0,∫
Rd\W

qγ,R
d\S̃(t, x, y)dy ≤ Px(τ

(γ)
W ≤ t) ≤ ctR−ε2δD(x)

−γ+ε2 .

It follows that

I2,2 ≤ cR−ε2δD(x)
−γ+ε2

∫ Rε2δD(x)γ−ε2

0
t−βdt = cR−βε2δD(x)

−α+βε2 .(11.35)

Therefore, combining (11.29), (11.30) and (11.32)–(11.35), we get∣∣κD(x)− C(α, p, F γ,β0 )BD(x, x)δD(x)−α
∣∣ ≤ c(R)δD(x)

−α+η0

where η0 := (1− β)ε1 ∧ βε2 > 0. From this and (11.26), we conclude that (K3) holds.
Lastly, by comparing Theorem 10.1 with [29, (7.10)], we deduce from (11.28) that (6.6) holds

with F = F γ,β0 and p = γ/2. The proof is complete. 2

Below, we present two more examples, which are generalizations of the process Y D defined in
(11.3).

Recall that the functions Jγ,U,β(x, y), κγ,D,β, Bγ,D,β, F γ,β0 , Φγ,β1 , Φγ,β2 and ℓγ,β are defined
by (11.4) -(11.7) and (11.11)-(11.13) respectively. We also recall that the jump kernel of the
isotropic α-stable process has density cd,−α|x − y|−d−α, and the β-stable subordinator with

Laplace exponent λβ has Lévy density cβt
−1−β.

Example 11.7. Let α ∈ (0, 2), m ≥ 2 and 0 < γ1 < · · · < γm ≤ 2. Set βi := α/γi for

1 ≤ i ≤ m. Consider a process Ỹ corresponding to the generator

L =
m∑
i=1

−((−∆)γi/2|D)βi .

Ỹ is an independent sum of subordinate killed stable processes whose infinitesimal generators

have the same fractional order α. Note that the jump kernel and the killing measure of Ỹ have

densities J̃(x, y) and κ̃(x) given by J̃(x, y) =
∑m

i=1 J
γi,D,βi(x, y) and κ̃(x) =

∑m
i=1 κ

γi,D,βi(x).
Set

B̃(x, y) :=
m∑
i=1

Bγi,D,βi(x, y).

In the following, we show that Ỹ satisfies (B1), (B3), (B4-c) with Φ1 = Φγ1,β11 , Φ2 = Φγ1,β12

and ℓ = ℓγ1,β1, (K3), and (B5-I) and (6.6) with F0 = F = 1
m

∑m
i=1 F

γi,βi
0 and some p ∈

(γ1/2, γm/2).

(B1): By symmetry, (B1) clearly holds.

(B3): Since each Bγi,D,βi, 1 ≤ i ≤ m, satisfies (B3) by Proposition 11.2 and

|B̃(x, x)− B̃(x, y)| ≤
m∑
i=1

|Bγi,D,βi(x, x)− Bγi,D,βi(x, y)|,

B̃ satisfies (B3).

(B4-c): For x, y ∈ D, we let

rx,y1 :=
δD(x) ∧ δD(y)

|x− y|
, rx,y2 :=

δD(x) ∨ δD(y)
|x− y|

and rx,y3 :=
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|
.
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By Proposition 11.2, we get that for all x, y ∈ D,

B̃(x, y) ≍
m∑
i=1

Φγi,βi1 (rx,y1 ) Φγi,βi2 (rx,y2 ) ℓγi,βi(rx,y3 ).

Hence, it suffices to show that there exists c1 > 0 such that for all 2 ≤ i ≤ m and x, y ∈ D,

I :=
Φγi,βi1 (rx,y1 ) Φγi,βi2 (rx,y2 ) ℓγi,βi(rx,y3 )

Φγ1,β11 (rx,y1 ) Φγ1,β12 (rx,y2 ) ℓγ1,β1(rx,y3 )
≤ c1.(11.36)

It suffices to prove (11.36) for i = 2. Since γ1 < γ2, we have β1 > β2. If β1 < 1/2, then

I ≤ (rx,y1 ∧ 1)γ2/2 (rx,y2 ∧ 1)γ2/2−α

(rx,y1 ∧ 1)γ1/2 (rx,y2 ∧ 1)γ1/2−α
≤ 1.

If β1 ≥ 1/2 > β2, then

I ≤ (rx,y1 ∧ 1)γ2/2 (rx,y2 ∧ 1)γ2/2−α

(rx,y1 ∧ 1)γ1−α
≤ (rx,y1 ∧ 1)γ2/2

(rx,y1 ∧ 1)γ1/2
≤ 1.

If β1 > 1/2 = β2, then

I ≤ (rx,y1 ∧ 1)γ2−α

(rx,y1 ∧ 1)γ1−α
log

(
e

rx,y3 ∧ 1

)
= (rx,y1 ∧ 1)γ2−γ1 log

(
e(rx,y2 ∧ 1)

rx,y1 ∧ 1

)
≤ (rx,y1 ∧ 1)γ2−γ1 log

(
e

rx,y1 ∧ 1

)
≤ sup

0<s≤1
sγ2−γ1 log(e/s) = c2.

If β1 > β2 > 1/2, then

I ≤ (rx,y1 ∧ 1)γ2−α

(rx,y1 ∧ 1)γ1−α
≤ 1.

Thus, (11.36) holds.

(B5-I): Note that B̃(x, x) = mBγ1,D,β1(x, x) = · · · = mBγm,D,βm(x, x) for all x ∈ D. Hence, for
all x, y ∈ D, we have∣∣∣B̃(x, y)− 1

m
B̃(x, x)

m∑
i=1

F γi,βi0 ((y − x)/xd)
∣∣∣

≤
m∑
i=1

∣∣∣Bγi,D,βi(x, y)− Bγi,D,βi(x, x)F γi,βi0 ((y − x)/xd)
∣∣∣.

Therefore, since each Bγi,D,βi, 1 ≤ i ≤ m, satisfies (B5-I) by Proposition 11.2, B̃ satisfies
(B5-I).

(K3) and (6.6): By Proposition 11.2, each κγi,D,βi, 1 ≤ i ≤ m, satisfies (K3) and (6.6) with

p = γi/2 and F = F γi,βi0 . Hence, since B̃(x, x) = mBγ1,D,β1(x, x) = · · · = mBγm,D,βm(x, x) for

all x ∈ D, one sees that κ̃ satisfies (K3) with C9 =
∑m

i=1C(α, γi/2, F
γi,βi
0 ).

Set b := γ1/2 if γ1 = 2 or β1 < 1/2, and set b := γ1 − α1 otherwise. Then (B4-a) and
(B4-b) hold with Φ0(r) = (r ∧ 1)bℓβ1,γ1(r) by Lemma 9.2. Using this and Lemmas 6.3 and 6.4,
we deduce that there exists a unique constant p ∈ [(α− 1)+, α+ b) ∩ (0,∞) such that

C(α, p,
1

m

m∑
i=1

F γi,βi0 ) =
1

m

m∑
i=1

C(α, γi/2, F
γi,βi
0 ).

Using (6.4) and Lemma 6.3, we also get that

C(α, γ1/2,
1

m

m∑
i=1

F γi,βi0 ) =
1

m

m∑
i=1

C(α, γ1/2, F
γi,βi
0 ) <

1

m
summ

i=1C(α, γi/2, F
γi,βi
0 )
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and

C(α, γm/2,
1

m

m∑
i=1

F γi,βi0 ) =
1

m

m∑
i=1

C(α, γm/2, F
γi,βi
0 ) >

1

m

m∑
i=1

C(α, γi/2, F
γi,βi
0 ).

By Lemma 6.3, it follows that p ∈ (γ1/2, γm/2).

Example 11.8. Suppose also that D is bounded. Let γ ∈ (0, 2], β ∈ (0, 1) and α := γβ. Let
ϕ be a Bernstein function with Lévy triplet (0, 0,Π). Assume that Π(dt) has a density Π(t)dt
satisfying the following property:

There exist constants t0 > 0 and θ ∈ (γ−1(α − 1)+, 1), and a θ-Hölder continuous function
k : (0, t0) → (0,∞) with k(0+) ∈ (0,∞) such that

Π(t) = k(t)t−1−β for t ∈ (0, t0).(11.37)

Examples of such Bernstein functions include cβ
∫ 1
0 (1−e

−λt)t−1−βdt and (λ+m)β−mβ (m > 0).
We refer to [66, Section 16] for more examples.

Let Y γ,D,ϕ be a process corresponding to the generator

L = −ϕ((−∆)γ/2|D).

Equivalently, define Y γ,D,ϕ by Y γ,D,ϕ
t = Zγ,D

Tϕ
t

, where T ϕ is a subordinator with Laplace exponent

ϕ independent of Zγ. According to [63, (2.8)-(2.9)], the jump kernel and the killing measure of
Y γ,D,ϕ have densities Jγ,D,ϕ(x, y) and κγ,D,ϕ(x) given by

Jγ,D,ϕ(x, y) =

∫ ∞

0
qγ,D(t, x, y)Π(t)dt,

κγ,D,ϕ(x) =

∫ ∞

0

(
1−

∫
D
qγ,D(t, x, y)dy

)
Π(t)dt.(11.38)

Define for x, y ∈ D,

Bγ,D,ϕ(x, y) =

{
|x− y|d+αJγ,D,ϕ(x, y) if x ̸= y,

cd,−αk(0+)/cβ if x = y.

In this example, we prove that Y γ,D,ϕ satisfies (B1), (B3), (B4-c) with Φ1 = Φγ,β1 , Φ2 = Φγ,β2

and ℓ = ℓγ,β, (K3), and (B5-I) and (6.6) with F0 = F = F γ,β0 and p = γ/2.

(B1): Since qγ,D(t, x, y) = qγ,D(t, y, x), (B1) clearly holds.

(B4-c): Recall that Zγ,D satisfies the condition HKh
B in [29] with Φ(r) = rγ, C0 = 1γ ̸=2 and

the boundary function hDγ (t, x, y) defined in (11.23). By (11.37),

Π((t,∞)) ≍ t−β for t ∈ (0, t0/2).(11.39)

Thus, by [29, Example 7.2], (B4-c) holds with Φ1 = Φγ,β1 ,Φ2 = Φγ,β2 and ℓ = ℓγ,β.

(B3) and (B5-I): Set a0 := k(0+)/cβ. Then

Bγ,D,ϕ(x, x) = a0Bγ,D,β(x, x) = a0cd,−α for all x ∈ D.(11.40)

Since t−d/2e−r
2/(4t) ≤ ct−d/2(t/r2)(d+2)/2 for all t, r > 0, we have

qγ,D(t, x, y) ≤ qγ,R
d
(t, x, y) ≤ c

(
t−d/γ ∧ t

|x− y|d+γ

)
, t > 0, x, y ∈ D.(11.41)

By (11.4) and (11.38), we see that for all x, y ∈ D with x ̸= y,

|a0Bγ,D,β(x, y)− Bγ,D,ϕ(x, y)| |x− y|−d−α

≤
(∫ t0

0
+

∫ ∞

t0

)
qγ,D(t, x, y)

∣∣∣k(0+)t−1−β −Π(t)
∣∣∣ dt =: I1 + I2.
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For I1, using (11.41) and (11.37), we get

I1 ≤
c

|x− y|d+γ

∫ |x−y|γ

0
t−β|k(0+)− k(t)|dt+ c

∫ t0

|x−y|γ
t−d/γ−1−β|k(0+)− k(t)|dt

≤ c

|x− y|d+γ

∫ |x−y|γ

0
t−β+θdt+ c

∫ t0

|x−y|γ
t−d/γ−1−β+θdt ≤ c|x− y|−d−α+γθ.

Further, by (11.41), we have

I2 ≤ ct
−d/γ
0

∫ ∞

t0

(t−1−β +Π(t))dt = c ≤ c(diam(D))d+α−γθ |x− y|−d−α+γθ.

Therefore, we deduce that

|a0Bγ,D,β(x, y)− Bγ,D,ϕ(x, y)| ≤ c|x− y|γθ for all x, y ∈ D.(11.42)

If α ≥ 1, then by (11.40) and (11.42), since Bγ,D,β satisifes (B3) by Proposition 11.2, there
exists a constant θ0 > α− 1 such that for all x, y ∈ D, x ̸= y, with |x− y| < δD(x) ∧ δD(y),

|Bγ,D,ϕ(x, x)− Bγ,D,ϕ(x, y)| = |a0Bγ,D,β(x, x)− Bγ,D,ϕ(x, y)|

≤ a0|Bγ,D,β(x, x)− Bγ,D,β(x, y)|+ |a0Bγ,D,β(x, y)− Bγ,D,β(x, y)|

≤ c

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ0
+ cRγθ

(
|x− y|
R

)γθ
≤ c

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ0∧(γθ)
.

Since γθ > (α− 1)+, by Remark 5.5, we deduce that (B3) holds.
On the other hand, by (11.40), it holds that for all x, y ∈ D and z ∈ H−1,

|Bγ,D,ϕ(x, y)− a0cd,−αF
γ,β
0 (z)|

≤ |Bγ,D,ϕ(x, y)− a0Bγ,D,β(x, y)|+ a0|Bγ,D,β(x, y)− Bγ,D,β(x, x)F γ,β0 (z)|.

Since Bγ,D,β satisfies (B5-I) with F0 = F = F γ,β0 by Proposition 11.2 and

|Bγ,D,ϕ(x, y)− a0Bγ,D,β(x, y)| ≤ cRγθ
(
δD(x) ∨ δD(y) ∨ |x− y|

R

)γθ
by (11.42), we conclude that Bγ,D,ϕ satisfies (B5-I) with F0 = F = F γ,β0 .

(K3) and (6.6): Set ε := (γθ/(θ+1))∧(α/β) and R2 := t0/(2 diam(D)γ−ε). Choose any x ∈ D.
By (11.5) and (11.38), we have

|a0κγ,D,β(x)− κγ,D,ϕ(x)|

≤
(∫ R2δD(x)γ−ε

0
+

∫ ∞

R2δD(x)γ−ε

)(
1−

∫
D
qγ,D(t, x, y)dy

)
|k(0+)t−1−β −Π(t)|dt

=: I1 + I2.

By using (11.31) and (11.37), since R2δD(x)
γ−ε ≤ R2 diam(D)γ−ε < t0, we have

I1 ≤ cδD(x)
−γ

∫ R2δD(x)γ−ε

0
tθ−βdt = cδD(x)

(γ−ε)θ−α+βε−ε ≤ cδD(x)
−α+βε.

Further, we get from (11.39) that

I2 ≤
∫ ∞

R2δD(x)γ−ε

k(0+)t−1−βdt+

∫ ∞

R2δD(x)γ−ε

Π(t)dt ≤ cδD(x)
−α+βε.

Combining the two displays above, we obtain

|a0κγ,D,β(x)− κγ,D,ϕ(x)| ≤ cδD(x)
−α+βε.
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Using this and (11.40), we arrive at

|κγ,D,ϕ(x)− C(α, γ/2, F γ,β0 )Bγ,ϕ(x, x)δD(x)−α|

≤ a0|κγ,D,β(x)− C(α, γ/2, F γ,β0 )Bγ,D,β(x, x)δD(x)−α|+ cδD(x)
−α+βε.

Therefore, since Y γ,D,β satisfies (K3) and (6.6) with F = F γ,β0 and p = γ/2 by Proposition

11.2, one can conclude that Y γ,D,ϕ also satisfies (K3) and (6.6) with F = F γ,β0 and p = γ/2.

11.2. General jump kernels with explicit boundary functions. We start with a technical
lemma that compares some quantities in C1,1 open set with their analogs in the half-space H.

Lemma 11.9. Let ν ∈ (0, 1]. The following statements hold.

(i) For any Q ∈ ∂D and x, y ∈ EQν , we have∣∣∣∣δD(x) ∧ δD(y)|x− y|
− xd ∧ yd

|x− y|

∣∣∣∣ ∨ ∣∣∣∣δD(x) ∨ δD(y)|x− y|
− xd ∨ yd

|x− y|

∣∣∣∣
≤ δD(x) ∨ δD(y)

|x− y|

(
δD(x) ∨ δD(y)

R

)(1−ν)/(1+ν)
.

(ii) There exists C = C(ν) > 0 such that for any Q ∈ ∂D and x, y ∈ EQν ,∣∣∣∣ δD(x) ∧ δD(y)
(δD(x) ∨ δD(y)) ∧ |x− y|

− xd ∧ yd
(xd ∨ yd) ∧ |x− y|

∣∣∣∣
≤ C

(
δD(x) ∨ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)2(δD(x) ∨ δD(y)
R

)(1−ν)/(1+ν)
.

Proof. Let x, y ∈ EQν . Without loss of generality, we assume that Q = 0 and δD(x) ≤ δD(y). By
Lemma 3.7(i), (iii), since x, y ∈ E0

ν , we have

|δD(x)− xd| ∨ |δD(y)− yd| ≤ R−1(|x̃| ∨ |ỹ|)2(11.43)

≤ 4−2/(1+ν)R−(1−ν)/(1+ν)(xd ∨ yd)2/(1+ν)

≤ 3−2/(1+ν)R−(1−ν)/(1+ν)(δD(x) ∨ δD(y))2/(1+ν)

= 3−2/(1+ν)R−(1−ν)/(1+ν)δD(y)
2/(1+ν).

(i) Since δD(x) ≤ δD(y), we have

|xd − xd ∧ yd| = |yd − xd ∨ yd| = (xd − yd) ∨ 0

= (xd − δD(x) + δD(y)− yd + δD(x)− δD(y)) ∨ 0

≤ |xd − δD(x)|+ |δD(y)− yd|.

Hence, by (11.43), we get that

|δD(x) ∧ δD(y)− xd ∧ yd| ∨ |δD(x) ∨ δD(y)− xd ∨ yd|
≤ (|δD(x)− xd|+ |xd − xd ∧ yd|) ∨ (|δD(y)− yd|+ |yd − xd ∨ yd|)
≤ 3(|δD(x)− xd| ∨ |δD(y)− yd|)

≤ 3−(1−ν)/(1+ν)R−(1−ν)/(1+ν)δD(y)
2/(1+ν).

(ii) Since yd ≍ δD(y) by Lemma 3.7(iii), using (i), we obtain∣∣∣∣ δD(x) ∧ δD(y)
(xd ∨ yd) ∧ |x− y|

− xd ∧ yd
(xd ∨ yd) ∧ |x− y|

∣∣∣∣
≤ c|δD(x) ∧ δD(y)− xd ∧ yd|

δD(y) ∧ |x− y|
≤ cδD(y)

δD(y) ∧ |x− y|

(
δD(y)

R

)(1−ν)/(1+ν)
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and ∣∣∣∣ δD(x) ∧ δD(y)
(δD(x) ∨ δD(y)) ∧ |x− y|

− δD(x) ∧ δD(y)
(xd ∨ yd) ∧ |x− y|

∣∣∣∣
= δD(x)

∣∣∣∣ (xd ∨ yd) ∧ |x− y| − (δD(x) ∨ δD(y)) ∧ |x− y|
((δD(x) ∨ δD(y)) ∧ |x− y|)((xd ∨ yd) ∧ |x− y|)

∣∣∣∣
≤ cδD(x)

∣∣∣∣(xd ∨ yd)− (δD(x) ∨ δD(y))
(δD(y) ∧ |x− y|)2

∣∣∣∣
≤ cδD(x)δD(y)

(δD(y) ∧ |x− y|)2

(
δD(y)

R

)(1−ν)/(1+ν)

≤ c

(
δD(y)

δD(y) ∧ |x− y|

)2(δD(y)
R

)(1−ν)/(1+ν)
.

Combining the two displays above, we arrive at the result. 2

In this subsection, we assume that Φ1,Φ2, ℓ are differentiable and that

sup
r>0

(
|Φ′

1(r)|
r−1Φ1(r)

+
|Φ′

2(r)|
r−1Φ2(r)

+
|ℓ′(r)|
r−1ℓ(r)

)
<∞.(11.44)

See Remark 11.13 below.
Let α ∈ (0, 2) and a : D×D → (0,∞) be a Borel function satisfying the following properties:

(A1) There exists C12 > 1 such that

C−1
12 ≤ a(x, y) = a(y, x) ≤ C12 for all x, y ∈ D.

(A2) If α ≥ 1, then there exist constants θ′0 > α− 1 and C13 > 0 such that

|a(x, x)− a(x, y)| ≤ C13

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ′0
for all x, y ∈ D.(11.45)

(A3) There exist constants ν ∈ (0, 1], θ′1, θ
′
2, C14 > 0, a non-negative Borel function f0 on H−1

such that for any Q ∈ ∂D and x, y ∈ EQν (R) with x = (x̃, xd) in CSQ,∣∣a(x, y)− a(x, x)f0((y − x)/xd)
∣∣+ ∣∣a(x, y)− a(y, y)f0((y − x)/xd)

∣∣
≤ C14

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ′1(
δD(x) ∨ δD(y) ∨ |x− y|

)θ′2 .
Remark 11.10. Assume that θ′0 > (α−1)+ and that a ∈ Cθ

′
0(D×D) is symmetric and bounded

above and below by positive constants. Then a satisfies (A1), (A2) and (A3) with f0 ≡ 1.

We define Ba : D ×D → (0,∞) by

Ba(x, y) = a(x, y)Φ1

(
δD(x) ∧ δD(y)

|x− y|

)
Φ2

(
δD(x) ∨ δD(y)

|x− y|

)
(11.46)

× ℓ

(
δD(x) ∧ δD(y)

(δD(x) ∨ δD(y)) ∧ |x− y|

)
.

For y = x, we interpret the above as Ba(x, x) = a(x, x).

Proposition 11.11. Suppose that a satisfies (A1), (A2) and (A3). Then the function Ba
defined by (11.46) satisfies (B1), (B3), (B4-c) and (B5-I).

Proof. (B1) and (B4-c) are immediate by (A1). For (B3), we assume α ≥ 1. Then by (A2),
for all x, y ∈ D with |x− y| < δD(x) ∧ δD(y),

|Ba(x, x)− Ba(x, y)| = |a(x, x)− a(x, y)| ≤ C13

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ′0
.
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Hence, by Remark 5.5 (since (B2-a) and (B4-a) follows from (B4-c)), (B3) holds. By Lemma
11.12 below, (B5-I) also holds. 2

Define a kernel K0 : H×H → [0,∞) by

K0(x, y) = f0

(
y − x

xd

)
Φ1

(
xd ∧ yd
|x− y|

)
Φ2

(
xd ∨ yd
|x− y|

)
ℓ

(
xd ∧ yd

(xd ∨ yd) ∧ |x− y|

)
.

Observe that K0 satisfies (11.1). Hence, by Lemma 11.1(i), we have

K0(x, y) = F0((y − x)/xd) for all x, y ∈ H,(11.47)

where
F0(z) := K0(ed, ed + z).

Lemma 11.12. Let ν ∈ (0, 1] and ν0 ∈ (0, ν] ∩ (0, 1). There exists C > 0 such that for any

Q ∈ ∂D and x, y ∈ EQν0(R) with x = (x̃, xd) in CSQ,

|Ba(x, y)− Ba(x, x)F0((y − x)/xd)|+ |Ba(x, y)− Ba(y, y)F0((y − x)/xd)|

≤ C

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)θ′1∨2(δD(x) ∨ δD(y) ∨ |x− y|
R

)θ′2∧((1−ν0)/(1+ν0))
,

where F0 : H−1 → [0,∞) is defined as above, and θ′1, θ
′
2 > 0 are the constants in (A3). Therefore,

Ba satisfies (B5-I).

Proof. Let Q ∈ ∂D. By (3.19), we have EQν0(R) ⊂ EQν (R). In this proof, we use the coordinate

system CSQ and denote EQν0(R) by Eν0 . Set λ := (1− ν0)/(1 + ν0).
Let x, y ∈ Eν0 . We assume δD(x) ≤ δD(y) without loss of generality. Set

r1 :=
δD(x)

|x− y|
, r2 :=

δD(y)

|x− y|
, r3 :=

δD(x)

δD(y) ∧ |x− y|
and

r′1 :=
xd ∧ yd
|x− y|

, r′2 :=
xd ∨ yd
|x− y|

, r′3 :=
xd ∧ yd

(xd ∨ yd) ∧ |x− y|
.

By using (11.46) and (11.47), we have

Ba(x, y)− Ba(x, x)F0((y − x)/xd) = Ba(x, y)− a(x, x)K0(x, y)(11.48)

= a(x, y)Φ1(r1)Φ2(r2)ℓ(r3)− a(x, x)f0((y − x)/xd)Φ1(r
′
1)Φ2(r

′
2)ℓ(r

′
3)

and

Ba(x, y)− Ba(y, y)F0((y − x)/xd) = Ba(x, y)− a(x, x)K0(x, y)(11.49)

= a(x, y)Φ1(r1)Φ2(r2)ℓ(r3)− a(y, y)f0((y − x)/xd)Φ1(r
′
1)Φ2(r

′
2)ℓ(r

′
3).

Since xd ≍ δD(x) and yd ≍ δD(y) by Lemma 3.7(iii), by using the scaling properties of
Φ1,Φ2, ℓ, we get

r′1
r1

≍ r′2
r2

≍ r′3
r3

≍ Φ1(r
′
1)

Φ1(r1)
≍ Φ2(r

′
2)

Φ2(r2)
≍ ℓ(r′3)

ℓ(r3)
≍ 1.(11.50)

By (9.8) and (11.50), there exists c1 > 0 independent of Q, x and y such that

M := max
{
Φ1(a1)Φ2(a2)ℓ(a3) : ai ∈ {ri, r′i}, 1 ≤ i ≤ 3

}
≤ c1.(11.51)

Moreover, using the mean value theorem, (11.44) and (11.50), we get

|Φ1(r1)− Φ1(r
′
1)|

Φ1(r1)
≤ |r1 − r′1|

Φ1(r1)

(
sup

r1∧r′1≤u≤r1∨r′1
|Φ′

1(u)|
)

≤ c|r1 − r′1|
Φ1(r1)

(
sup

r1∧r′1≤u≤r1∨r′1

Φ1(u)

u

)
≤ c|r1 − r′1|

r1
.
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In the same way, we also get |Φ2(r2)−Φ2(r
′
2)|/Φ2(r2) ≤ c|r2− r′2|/r2 and |ℓ(r3)− ℓ(r′3)|/ℓ(r3) ≤

c|r3 − r′3|/r3. By Lemma 11.9, it follows that

|Φ1(r1)− Φ1(r
′
1)|

Φ1(r1)
≤ cr2

r1

(
δD(y)

R

)λ
=
cδD(y)

δD(x)

(
δD(y)

R

)λ
,(11.52)

|Φ2(r2)− Φ2(r
′
2)|

Φ2(r2)
≤ c|r2 − r′2|

r2
≤ c

(
δD(y)

R

)λ
(11.53)

and

|ℓ(r3)− ℓ(r′3)|
ℓ(r3)

≤ c

r3

(
δD(y)

δD(y) ∧ |x− y|

)2(δD(y)
R

)λ
(11.54)

=
cδD(y)

2

δD(x)(δD(y) ∧ |x− y|)

(
δD(y)

R

)λ
≤ c

(
δD(y)

δD(x) ∧ |x− y|

)2(δD(y)
R

)λ
.

By using (11.48), the triangle inequality, (11.52)-(11.54) and (A3), we obtain

|Ba(x, y)− Ba(x, x)F0((y − x)/xd)|
≤ a(x, y)Φ2(r2)ℓ(r3)

∣∣Φ1(r1)− Φ1(r
′
1)
∣∣

+ a(x, y)Φ1(r
′
1)ℓ(r3)

∣∣Φ2(r2)− Φ2(r
′
2)
∣∣

+ a(x, y)Φ1(r
′
1)Φ2(r

′
2)
∣∣ℓ(r3)− ℓ(r′3)

∣∣
+Φ1(r

′
1)Φ2(r

′
2)ℓ(r

′
3)
∣∣a(x, y)− a(x, x)f0((y − x)/xd)

∣∣
≤ cMa(x, y)

(
cδD(y)

δD(x)

(
δD(y)

R

)λ
+

(
δD(y)

R

)λ
+

(
δD(y)

δD(x) ∧ |x− y|

)2(δD(y)
R

)λ)
+ C14M

(
δD(y) ∨ |x− y|
δD(x) ∧ |x− y|

)θ′1(δD(y) ∨ |x− y|
R

)θ′2
.

Thus, by (A1) and (11.51), we arrive at

|Ba(x, y)− Ba(x, x)F0((y − x)/xd)|

≤ c

(
δD(y) ∨ |x− y|
δD(x) ∧ |x− y|

)θ′1∨2(δD(y) ∨ |x− y|
R

)θ′2∧λ
.

Similarly, we obtain the desired bound for |Ba(x, y)− Ba(y, y)F0((y − x)/xd)|. The proof is
complete. 2

Remark 11.13. For a Borel function Φ : (0, 1) → (0,∞) such that

a−1(r/s)−k ≤ Φ(r)/Φ(s) ≤ a(r/s)k for all 0 < s ≤ r < 1,

with some constants a > 1 and k > 0, we define [Φ](r) = r−k−1
∫ r
0 s

kΦ(s)ds. Then one can
easily show that

a−1 ≤ Φ(r)

[Φ](r)
≤ (2k + 1)a and

|[Φ]′(r)|
r−1[Φ](r)

≤ (2k + 1)a for all 0 < r < 1.

Let Φ̃1 : (0,∞) → (0, 1) be an increasing differentiable function such that Φ̃1(r) = [Φ1](r) for

r ∈ (0, 1/2) and Φ̃1(r) = 1 for r ≥ 1. Define Φ̃2 and ℓ̃ analogously. By considering Φ̃1, Φ̃2, ℓ̃
instead of Φ1,Φ2, ℓ respectively, we see that the differentiability assumption and (11.44) are not
big restrictions.

It follows from Lemma 3.7(ii) that for all y ∈ D with δD(y) < R, there is unique Qy ∈ ∂D
such that δD(y) = |y −Qy|. For y ∈ D with δD(y) < R, let y be the reflection of y with respect
to ∂D, that is, y = 2Qy − y.
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Example 11.14. Let θ ∈ ((α − 1)+, 1), and h : D × D → [0,∞) and Θ : [0,∞) → [0,∞) be
θ-Hölder continuous functions. That is,

|h(x, y)− h(x′, y′)| ≤ C(|x− x′|+ |y − y′|)θ for all x, y, x′, y′ ∈ D(11.55)

and

|Θ(r)−Θ(s)| ≤ C|r − s|θ for all r, s ≥ 0(11.56)

for some C > 0. Suppose that a : D ×D → (0,∞) is a Borel function satisfying the following
properties: There exists C > 0 such that for all x, y ∈ D,

(11.57) C−1 ≤ a(x, y) = a(y, x) ≤ C,

(11.58) |a(x, x)− a(x, y)| ≤ C|x− y|θ if δD(x) ∧ δD(y) > R/2,

and

(11.59)

∣∣∣∣a(x, y)− h(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣ ≤ C|x− y|θ if δD(x) ∨ δD(y) < R.

Then a satisfies (A1), (A2) and (A3).
Indeed, (A1) immediately follows from (11.57). For (A2), we assume that α ≥ 1 for the

moment. Since (A1) holds, it suffices to show that (11.45) holds for x, y ∈ D with |x − y| <
δD(x)/4 (cf. Remark 5.5). Let x, y ∈ D with |x − y| < δD(x)/4. Suppose that δD(x) ≥ 2R/3.
Then δD(y) ≥ δD(x)− |x− y| > 3δD(x)/4 ≥ R/2. Thus, by (11.58), we get

|a(x, x)− a(x, y)| ≤ c|x− y|θ ≤ cRθ
(

|x− y|
δD(x) ∧ δD(y) ∧R

)θ
.

Now assume that δD(x) < 2R/3. Since |x−y| < δD(x)/4, we have δD(y) ∈ [(3/4)δD(x), (5/4)δD(x)] ⊂
(0, R) and

|x− y|
|x− y|

≤ |x− y|
δDc(y)

=
|x− y|
δD(y)

<
δD(x)

4δD(y)
≤ 1/3.(11.60)

Note that a(x, x) = h(x, x)Θ(0) by (11.59) and hence Θ(0) > 0 by (11.57). Thus, using (11.55),
(11.56), (11.57), (11.59) and (11.60), we obtain

|a(x, x)− a(x, y)| ≤ a(x, x)

Θ(0)

∣∣∣∣Θ(0)−Θ

(
|x− y|
|x− y|

)∣∣∣∣+Θ

(
|x− y|
|x− y|

)
|h(x, x)− h(x, y)|(11.61)

+

∣∣∣∣a(x, y)− h(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣
≤ c

Θ(0)

(
|x− y|
|x− y|

)θ
+ c

(
sup

s∈[0,1/3]
Θ(s)

)
|x− y|θ + c|x− y|θ

≤ c
(
Θ(0)−1 +Rθ sup

s∈[0,1/3]
Θ(s) +Rθ

)( |x− y|
δD(y) ∧R

)θ
≤ c

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ
.

Thus, (A2) holds.
Now we show that (A3) holds. Define

f1(z) = Θ(|z|/|(z̃,−zd − 2)|) and f0(z) = f1(z)/Θ(0), z ∈ H−1.

Since |z|/|(z̃,−zd − 2)| ≤ 1 for all z ∈ H−1, we have

sup
z∈H−1

|f1(z)| ≤ sup
s∈[0,1]

Θ(s) =: c1 <∞(11.62)
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Moreover, since the map (x, y) 7→ Θ(|x− y|/|x− (ỹ,−yd)|) satisfies (11.1),

f1((y − x)/xd) = Θ(|x− y|/|x− (ỹ,−yd)|) for all x, y ∈ H(11.63)

by Lemma 11.1(i). Fix Q ∈ ∂D and let x = (x̃, xd), y = (ỹ, yd) ∈ EQ1/2(R) in CSQ. By (11.59),

we have a(x, x) = h(x, x)Θ(0) and a(y, y) = h(y, y)Θ(0). Hence, using (11.55) and (11.62), we
obtain ∣∣a(x, y)− a(x, x)f0((y − x)/xd)

∣∣+ ∣∣a(x, y)− a(y, y)f0((y − x)/xd)
∣∣

=
∣∣a(x, y)− h(x, x)f1((y − x)/xd)

∣∣+ ∣∣a(x, y)− h(y, y)f1((y − x)/xd)
∣∣

≤ 2
∣∣a(x, y)− h(x, y)f1((y − x)/xd)

∣∣
+ f1((y − x)/xd)

(
|h(x, x)− h(x, y)|+ |h(y, y)− h(x, y)|

)
≤ 2

∣∣a(x, y)− h(x, y)f1((y − x)/xd)
∣∣+ c|x− y|θ.

(11.64)

Let Qy = (w̃, wd) ∈ ∂D in CSQ be such that δD(y) = |y −Qy|. Then w̃ − ỹ = (yd − wd)∇Ψ(w̃),
where Ψ = ΨQ is the function in (3.1). Thus, we have

|w̃ − ỹ| ≤ |yd − wd||∇Ψ(w̃)−∇Ψ(0̃)| leΛ|yd − wd||w̃| ≤ Λ|yd − wd|(|ỹ|+ |w̃ − ỹ|).

Since Λ|yd − wd| ≤ (2R)−1|yd − wd| ≤ (2R)−1δD(y) < 1/2 and y ∈ EQ1/2(R), it follows that

|w̃ − ỹ| ≤ 2Λ|yd − wd||ỹ| ≤ R−1δD(y)(Ry
2
d)

1/3 ≤ cR−2/3δD(y)
5/3.(11.65)

We used Lemma 3.7(iii) in the last inequality above. Further, by using (3.17), (11.65) and
Lemma 3.7(iii), we get that

|wd| = |Ψ(w̃)| ≤ (4R)−1(|ỹ|2 + |w̃ − ỹ|2)(11.66)

≤ (4R)−1(Ry2d)
2/3 + (4R)−1R−2/3δD(y)

5/3

≤ cR−1/3δD(y)
4/3.

Combining (11.65) with (11.66), since y = (2w̃ − ỹ, 2wd − yd) and δD(y) < R, we deduce that

|y − (ỹ,−yd)| = 2|(w̃ − ỹ, wd)| ≤ cR−1/3δD(y)
4/3.(11.67)

By using (11.56) in the first inequality, the facts that y ∈ Dc and (ỹ,−yd) ∈ ẼQ1/2(R) ⊂ Dc (see

Lemma 3.7(ii)) in the third, and (11.67) in the last inequality below, it follows that∣∣∣∣Θ(
|x− y|
|x− y|

)
−Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣ ≤ c

∣∣∣∣ |x− y|
|x− y|

− |x− y|
|x− (ỹ,−yd)|

∣∣∣∣θ(11.68)

≤ c|x− y|θ
(
||x− (ỹ,−yd)| − |x− y||
|x− y| |x− (ỹ,−yd)|

)θ
≤ c

|x− y|θ|y − (ỹ,−yd)|θ

δD(x)2θ

≤ c

(
|x− y|
δD(x)

)θ(δD(y)
δD(x)

)θ(δD(y)
R

)θ/3
.

Since a(x, x) = h(x, x)Θ(0), using (11.57) and (11.55), we see that

(11.69) h(x, y) ≤ h(x, x) + |h(x, x)− h(x, y)| ≤ Θ(0)−1a(x, x) + c|x− y|θ ≤ c.

Now, using (11.63) and the triangle inequality in the first inequality below, (11.59), (11.69)
and (11.68) in the second, |x− y| < R < 1 in the last, we obtain∣∣a(x, y)− h(x, y)f1((y − x)/xd)

∣∣
≤

∣∣∣∣a(x, y)− h(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣+ h(x, y)

∣∣∣∣Θ(
|x− y|
|x− y|

)
−Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
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≤ c|x− y|θ + c

(
|x− y|
δD(x)

)θ(δD(y)
δD(x)

)θ
δD(y)

θ/3

≤ c

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)2θ(
δD(x) ∨ δD(y) ∨ |x− y|

)θ/3
.

Combining this with (11.64), we conclude that (A3) holds.

Example 11.15. Assume that α ∈ (1, 2). Consider a non-local operator

LB
αf(x) = p.v.

∫
D
(f(y)− f(x))

B(x, y)
|x− y|d+α

dy,

where B is a Borel function on D ×D such that

C−1 ≤ B(x, y) = B(y, x) ≤ C for all x, y ∈ D(11.70)

for some C ≥ 1. When B(x, y) ≡ c is a constant, the operator LB
α is called the regional fractional

Laplacian in D and the corresponding process Y 0 is called the censored α-stable process on D.
Let θ ∈ (α − 1, 1). Suppose that there exist C > 0 and θ-Hölder continuous functions h1 :

D ×D → [0,∞), h2 : D ×D → [0,∞) and Θ : [0,∞) → [0,∞) such that supx∈D h2(x, x) < ∞
and for all x, y ∈ D,

|B(x, x)− B(x, y)| ≤ C|x− y|θ if δD(x) ∧ δD(y) > R/2,∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣ ≤ C|x− y|θ if δD(x) ∨ δD(y) < R.
(11.71)

We will prove that (B1), (B3), (B4-c) and (B5-II) hold under (11.70) and (11.71). Assume
these for the moment. Then we deduce from Theorem 9.4 that for any subcritical killing potential
κ(x) satisfying (K3) with C9 = 0 (including no killing, i.e., κ(x) ≡ 0), the operator LB

α − κ
satisfies the boundary Harnack principle (9.27) with p = α− 1.

Now, we show that B satisfies (B1), (B3), (B4-c) and (B5-II). (B1) and (B4-c) (with
Φ1 = Φ2 = ℓ ≡ 1) clearly hold by (11.70).

(B3): Let x, y ∈ D with |x− y| < δD(x)/4. If δD(x) ≥ 2R/3, then δD(y) > 3δD(x)/4 > R/2 so
that |B(x, x)− B(x, y)| ≤ c|x−y|θ by (11.71). If δD(x) < 2R/3, then by following the arguments
for (11.61), we get from (11.71) that

|B(x, x)− B(x, y)| = |h1(x, x) + h2(x, x)Θ(0)− B(x, y)|

≤ |h1(x, x)− h1(x, y)|+ h2(x, x)

∣∣∣∣Θ(0)−Θ

(
|x− y|
|x− y|

)∣∣∣∣
+Θ

(
|x− y|
|x− y|

)
|h2(x, x)− h2(x, y)|+

∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣
≤ c|x− y|θ + c

(
|x− y|
|x− y|

)θ
+ c

(
sup

s∈[0,1/3]
Θ(s)

)
|x− y|θ + c|x− y|θ

≤ c

(
|x− y|

δD(x) ∧ δD(y) ∧R

)θ
.

In the second inequality above, we used supx∈D h2(x, x) < ∞. By Remark 5.5, we deduce that
(B3) holds.

(B5-II): Define µ1(x) = h1(x, x) and µ
2(x) = h2(x, x) for x ∈ D, and

F1
0(z) = 1 and F2

0(z) = Θ(|z|/|(z̃,−zd − 2)|) for z ∈ H−1.
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Fix Q ∈ ∂D and let x = (x̃, xd), y = (ỹ, yd) ∈ EQ1/2(R) in CSQ. Using (11.63) in the equality

below and (11.62) in the first inequality, we obtain∣∣∣∣B(x, y)− 2∑
i=1

µi(x)Fi0((y − x)/xd)

∣∣∣∣+ ∣∣∣∣B(x, y)− 2∑
i=1

µi(y)Fi0((y − x)/xd)

∣∣∣∣
=

∣∣∣∣B(x, y)− h1(x, x)− h2(x, x)Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
+

∣∣∣∣B(x, y)− h1(y, y)− h2(y, y)Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
≤ 2

∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
+ |h1(x, x)− h1(x, y)|+ |h1(y, y)− h1(x, y)|
+ sup
s∈[0,1]

Θ(s)
(
|h2(x, x)− h2(x, y)|+ |h2(y, y)− h2(x, y)|

)
≤ 2

∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣+ c|x− y|θ.

Since h2(x, y) ≤ supv∈D h2(v, v) + cRθ ≤ c and |x− y| < R < 1, using (11.71) and (11.68), we
get ∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
≤

∣∣∣∣B(x, y)− h1(x, y)− h2(x, y)Θ

(
|x− y|
|x− y|

)∣∣∣∣
+ h2(x, y)

∣∣∣∣Θ(
|x− y|
|x− y|

)
−Θ

(
|x− y|

|x− (ỹ,−yd)|

)∣∣∣∣
≤ c|x− y|θ + c

(
|x− y|
δD(x)

)θ(δD(y)
δD(x)

)θ
δD(y)

θ/3

≤ c

(
δD(x) ∨ δD(y) ∨ |x− y|
δD(x) ∧ δD(y) ∧ |x− y|

)2θ(
δD(x) ∨ δD(y) ∨ |x− y|

)θ/3
.

Putting the above two displays together, we conclude that (B5-II) holds.

Acknowledgements: The major part of this work was done while Zoran Vondraček was
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