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Paul Erdős 2/54

Paul Erdős (1913–1996)
Photo by Kmhkmh, CC BY 3.0

• Published around 1500 mathematical papers, with many
coauthors.

• Contributed to: combinatorics, graph theory, number theory,
geometry, probability, set theory, etc.

• Had no permanent address, constantly traveled, carried all his
belongings in a suitcase.
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Paul Erdős and Terence Tao in 1985 A letter to the Tao family
Photo by Billy and Grace Tao, CC BY-SA 2.0
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P. Erdős, Some old and new problems in combinatorial geometry, Applications of
discrete mathematics (Clemson, 1986), pp. 32–37, SIAM, Philadelphia, 1988



Erdős on Graphs (mathweb.ucsd.edu/~erdosproblems) 5/54

• Attempts to document problems posed by Paul Erdős in graph
theory (and related areas).

• Grew out of a 1997 survey paper by Fan Chung, and a 1998
book Erdős on Graphs by Fan Chung and Ronald Graham.

• Launched by students of Fan Chung in 2010.
• Contains 170 problems.

mathweb.ucsd.edu/~erdosproblems


Erdős Problems (www.erdosproblems.com) 6/54

• Launched by Thomas Bloom about 2 years ago.
• Currently contains 946 problems posed by Paul Erdős.
• 333 of those are fully solved.
• Browseable by tags: irrationality, primes, arithmetic

progressions, polynomials, etc.

www.erdosproblems.com


Are they important? 7/54

Paul Erdős, 1990s: A well chosen problem can isolate an
essential difficulty in a particular area, serving as a bench-
mark against which progress in this area can be measured.
An innocent looking problem often gives no hint as to its true
nature. It might be like a ‘marshmallow,’ serving as a tasty
tidbit supplying a few moments of fleeting enjoyment. Or it
might be like an ‘acorn,’ requiring deep and subtle new in-
sights from which a mighty oak can develop.



Are they difficult? 8/54

Christoph Thiele, 2000s (paraphrased): Every unsolved
problem is infinitely difficult. Every solved problem is triv-
ial — just read the solution.

Terence Tao, 2024: Every so often, I have taken a look at a
random problem from the site [Erdős Problems] for fun. A
few times, I was able to make progress on one of the prob-
lems, leading to a couple papers; but the more common out-
come is that I play around with the problem for a while, see
why the problem is difficult, and then eventually give up and
do something else.



Are they modern? Obviously no. 9/54

Melvyn Nathanson, 1996: He [Paul Erdős] learned mathe-
matics in the 1930’s in Hungary and England, and England
at that time was a kind of mathematical backwater. For
the rest of his life he concentrated on the fields that he had
learned as a boy. Elementary and analytic number theory
(. . . ), graph theory, set theory, probability theory, and clas-
sical analysis. In these fields he was an absolute master, a
virtuoso.
At the same time, it is extraordinary to think of the parts of
mathematics he never learned. Much of contemporary num-
ber theory, for example. (. . . )
A few months ago, on his last visit to New Jersey, I was telling
Erdős something about p-adic analysis. Erdős was not inter-
ested. “You know,” he said about the p-adic numbers, “they
don’t really exist.”



Are they modern? But they have some charm. 10/54

Melvyn Nathanson, 2018: None of this seemed to matter to
Erdős, who was content to prove and conjecture and publish
more than 1500 papers.
Not because of politicking, but because of computer science
and because his mathematics was always beautiful, in the
past decade the reputation of Erdős and the respect paid
to discrete mathematics have increased exponentially. (. . . )
Fields Medals are awarded to mathematicians who solve
Erdős-type problems. Science has changed.
Time has proved the fertility and richness of Erdős’s work.



Are they good for starting a career? Probably no. 11/54

Terence Tao, 2007: Don’t prematurely obsess on a single
“big problem” or “big theory”
(. . . ) I would strongly advocate a more balanced, patient,
and flexible approach instead: one can certainly keep the
big problems and theories in mind, and tinker with them
occasionally, but spend most of your time on more feasi-
ble “low-hanging fruit,” which will build up your experience,
mathematical power, and credibility for when you are ready
to tackle the more ambitious projects.



Why are problem databases useful? 12/54

Terence Tao, 2024: (. . . ) one of the values added by having
databases of problems [is] lowering the “friction” costs of
locating interesting questions and finding their most recent
status, it facilitates a different way of making progress in a
mathematical field, by scanning large numbers of problems
for “quick wins,” which is a largely orthogonal approach to
the more traditional method of thinking long and hard on
one (or a very few) difficult problems at a time. In the near
and medium term, I would expect the traditional approach
to still be dominant, but I also expect it to be increasingly
complemented by these other approaches.

Erdős problems list 58 preprints (partially) addressing the problems
since January 1, 2024.



Case study of Erdős problems 13/54

1. Euclidean Ramsey theory

2. Euclidean measure theory

3. Egyptian fractions

4. Irrationality problems

5. Arithmetic progressions
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Identifies monochromatic configurations present in every finite
coloring of Rd.

Systematic study initiated by Erdős, Graham, Montgomery,
Rothschild, Spencer, and Straus (1970s).
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A finite coloring of S ⊆ Rn

= any partition of S into finitely many color-classes C1, . . . ,Cr.

A coloring is measurable if Cj are Lebesgue-measurable.

A coloring is Jordan-measurable if Cj have boundaries of measure 0.
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Ronald L. Graham (1935–2020)
Photo by Cheryl Graham, CC BY 3.0

Graham, 1979
For all finite colorings of the plane some color-class contains, for ev-
ery α > 0, vertices of a right-angled triangle of area α.



1. Euclidean Ramsey theory 17/54

Erdős and Graham, 1979: The question is: Is this also true
for rectangles? (EP #189)

Theorem (K., 2023)
There exists a Jordan-measurable coloring of the plane in 25 colors
such that no color-class contains the vertices of a rectangle of area 1.



1. Euclidean Ramsey theory 18/54

Proof. Relax a rectangle of area 1 to a parallelogram P with
|AB| · |AD| = 1.

Define a complex “invariant” quantity:

I (P) := z2
A − z2

B + z2
C − z2

D = 2uv.
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On the one hand, for a parallelogram with |AB| · |AD| = 1,

|I (P)| = 2|u||v| = 2.

For each pair (j, k) ∈ {0, 1, 2, 3, 4}2 define a color-class Cj,k as

Cj,k :=

{
z ∈ C : z2 ∈ 10

3

(
Z+ iZ+

j + ik
5 +

[
0, 1

5

)
+ i

[
0, 1

5

))}
.

One the other hand, for a monochromatic parallelogram,

I (P) ∈ 10
3

(
Z+ iZ+

(
−

2
5 ,

2
5

)
+ i

(
−

2
5 ,

2
5

))
,

which is never = 2 in the absolute value. □
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The coloring (Cj,k) of R2:
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Aftermath:

• A general negative result for m-dimensional rectangular boxes
in Rd, d ⩾ m (K., 2025).

• A positive result for measurable colorings and m-dimensional
rectangular boxes with sufficiently large volumes α
(depending on the coloring) in Rd, d ⩾ m + 1 (K., 2025).

• Certain positive/negative results for simplices and
parallelotopes (K., 2025).

• Positive results use the tools from multilinear harmonic
analysis, which I was developing over the previous several
years.



1. Euclidean Ramsey theory 22/54

• Relates to: the hyperbolic Hadwiger–Nelson problem
(Bardestani and Mallahi-Karai, 2017; Davies, 2024) and
isometric embeddings of hypercube graphs (K. and Predojević,
2023).

• Relates to a lot of previous work on configurations in sets of
positive upper density (Bourgain; Lyall and Magyar; K. and
Durcik; Falconer, K., and Yavicoli, etc.).

Tip:

• Try to relate a problem that you solve to your previuos
research (your “comfort zone”).



2. Euclidean measure theory 23/54

In the proceedings of the conference Measure Theory, held at
Oberwolfach in 1983 Erdős asked:

Let S have infinite planar measure, consider all sets of 4
points, x1, x2, x3, x4, so that the area of the convex hull is 1.
Can one find 4 such points in S if we insist that they have
some regularity conditions?
(. . . ) can we assume that (x1, x2, x3, x4) is inscribed in a cir-
cle?
Is it true that, for n large enough, we have a convex poly-
gon (x1, x2, . . . , xn) of area 1, [such that] xi ∈ S and all sides
(xi, xi+1) are equal? (parts of EP #353)



2. Euclidean measure theory 24/54

Theorem (K. and Predojević, 2024)
Every measurable planar set of infinite Lebesgue measure contains
the four vertices of a cyclic quadrilateral of area 1.

Idea of proof.

Consider the map D 7→ E, Φ(D, E) = 0, locally near C.

Φ(x1, y1, x2, y2) =
(

y1x2+(c−x1)y2−2, x2
2+y2

2−cx2+
cx1 − x2

1 − y2
1

y1
y2
)



2. Euclidean measure theory 25/54

Theorem (K. and Predojević, 2024)
There exists a planar set of infinite Lebesgue measure such that every
convex polygon with congruent sides and all vertices in that set has
area strictly less than 1.

Idea of proof.

S := {(x, y) ∈ R2 : x > 1, y > 0, 4xy < 1}



2. Euclidean measure theory 26/54

Aftermath:

• Junnosuke Koizumi solved all 3 remaining subproblems from
EP #353 building on our ideas.

• Probably not a part of a bigger research program.



3. Egyptian fractions 27/54

Ancient Egyptians preferred to write positive rational numbers as

1
m1

+
1

m2
+ · · ·+ 1

mn

with positive integers m1 < m2 < · · · < mn.

Rhind Mathematical Papyrus (around 1550 B.C.), British Museum
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Ronald Graham, 2013: There are various explanations as
to why the Egyptians chose to use such representations,
but perhaps the most compelling is that given to the au-
thor some years ago by the legendary mathematician André
Weil. When I asked him why he thought the Egyptians used
this method for representing fractions, he thought for a mo-
ment and then said, “It is easy to explain. They took a wrong
turn!”.
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A rational number q ∈ [0,∞) is an n-term Egyptian
underapproximation of a real number x ∈ (0,∞) if

q =

n∑
k=1

1
mk

< x, m1 < m2 < · · · < mn.

Consider the number x = 11/24 = 0.45833 . . ..
Its greedy two-term Egyptian underapp. is 1/3 + 1/9 = 0.44 . . ..
Its best two-term Egyptian underapp. is 1/4 + 1/5 = 0.45.

For some numbers greedy and best underapp. coincide:
x = 1/b (Erdős, 1950);
x = a/b, a | b + 1 (Nathanson, 2023);
. . . (Chu, 2024).
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Erdős and Graham, 1980, claimed that every positive rational has
eventually greedy best Egyptian underapproximations, but gave no
proof or a reference.

(Graham retracted this 33 years later and this is still open!)

Then they commented:
It is not difficult to construct irrationals for which the result
fails. Conceivably, however, it holds for almost all reals.

(EP #206)
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Theorem (K., 2024)
The set of positive real numbers with eventually greedy best Egyp-
tian underapproximations has Lebesgue measure zero.

Idea of proof. Greedy underapproximations have denominators
from (1/ij, 1/(ij − 1)], j = 1, 2, 3, . . ., where ij+1 ⩾ i2

j − ij + 1.

For every integer i ⩾ 1000, at least 1‰of the numbers in the
interval (1/i, 1/(i − 1)] have non-greedy best two-term Egyptian
underapproximations.
(Quantifies the results of Nathanson and Chu.)

Then iterate to squeeze the numbers with eventually greedy
underapp. inside a Cantor-type set of measure 0.
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Aftermath:

• People continued more intensive / quantitative study of
greedy vs. best two-term Egyptian underapproximations
(Shiliaev, 2025).

• Egyptian fractions have been studied a lot recently (Liu and
Sawhney, 2024; Conlon, Fox, He, Mubayi, Pham, Suk, and
Verstraëte, 2024), but . . .
this is probably not a part of a bigger research program.
(It is about real, not rational numbers.)

• Richard Green discussed the paper and its background in the
popular Substack newsletter A Piece of the Pi: mathematics
explained.
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Ernst G. Straus (1922–1983)
Photo: AMS Mathematical Reviews

The Seated Scribe (2500 B.C.), Louvre
Photo by Rama, CC BY-SA 3.0 fr

In the 1960s Erdős and Straus used the term Ahmes series for
∞∑

k=1

1
ak

, a1 < a2 < a3 < · · · positive integers.

The main question: Is the sum ∈ Q or ̸∈ Q?

Ahmes was an Egyptian scribe who (re)wrote the Rhind
Mathematical Papyrus.
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Heuristic

It is much more likely for
∞∑

k=1

1
ak

to be ∈ R \Q than ∈ Q.

Rigorous probabilistic sense

A,B ⊆ N,
∑

n∈A∪B
1
n < ∞, B infinite, B ′ ⊆ B random, A ′ := A∆B ′

P
(∑

n∈A ′

1
n
∈ Q

)
= 0.

Rigorous topological sense

B ∈ N infinite,
∑

n∈B
1
n < ∞{

A ⊆ B :
∑
n∈A

1
n
∈ Q

}
is of the first category in {0, 1}B.
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Joint work with Terence Tao:

• One-dimensional results
E.g., (ir)rationality of certain “perturbations” of

∑
k

1
ak

.

• Higher-dimensional results
E.g., simultaneous rationality of(∑

k

1
ak

,
∑

k

1
ak + 1 , . . . ,

∑
k

1
ak + d − 1

)
∈ Qd.

• Infinite-dimensional results
E.g., simultaneous rationality of(∑

k

1
ak + t

: t ∈ N
)
∈ QN.
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Erdős and Graham gave a possible definition of an irrationality
sequence a1 < a2 < a3 < · · · ∈ N.

(This was the third one appearing in the literature.)
Definition
We require that ∞∑

n=1

1
an + bn

̸∈ Q

for every bounded (bn)
∞
n=1 such that bn ∈ Z \ {0}, an + bn ̸= 0.
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Erdős and Graham, 1980: 22n is an irrationality sequence al-
though we do not know about 2n or n!. (EP #264)

Erdős, 1986: Is there an irrationality sequence an of this type
which increases exponentially? It is not hard to show that it
cannot increase slower than exponentially.
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Theorem: a negative result (K. and Tao, 2024)

lim sup
n→∞

an+1
an

< ∞ =⇒ (an)
∞
n=1 is not an irrationality sequence.

In particular,
an = 2n

and sequences
an ∼ θn, θ > 1

are not irrationality sequences.

The condition can be weakened to

lim inf
n→∞

(
a2

n

∞∑
k=n+1

1
a2

k

)
> 0.
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Theorem: a negative result — K. and Tao, 2024

lim sup
n→∞

an+1
an

< ∞ =⇒ (an)
∞
n=1 is not an irrationality sequence.

Proof. 1
a2

n
⩽ C

∞∑
k=n+1

1
a2

k
, an ⩾ 4C + 1

Jn :=
{

an + 1, an + 2, an + 3, . . . , an + 4C + 1
}

In :=

[ ∞∑
k=n

1
max Jk

,
∞∑

k=n

1
min Jk

]
⊂ (0,∞)

We first claim that In =
{ 1

j : j ∈ Jn
}
+ In+1.

The gaps 1
j −

1
j+1 < 1

a2
n

are smaller than the length of In+1,

∞∑
k=n+1

( 1
an + 1 −

1
an + 4C + 1

)
⩾

∞∑
k=n+1

C
a2

k
.
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Thus, we have In =
{ 1

j : j ∈ Jn
}
+ In+1 for all n ⩾ m.

Now we claim that the tail sums{ ∞∑
k=m

1
xk

: xk ∈ Jk for every k ⩾ m
}

fill in the whole segment Im.

Fix some x ∈ Im and inductively construct xk ∈ Jk for k ⩾ m s.t.

x ∈
n−1∑
k=m

1
xk

+ In =⇒ x =

∞∑
k=m

1
xk
.
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Taking
x ∈ Im ∩Q

and writing
xn = an + bn

we conclude:
there exists (bn)

∞
n=1 in [1, 4C + 1]N s.t.

∞∑
n=1

1
an + bn

∈ Q.

□
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Corollary
an = 2n is not an irrationality sequence.

Note that the representations are not explicit, e.g.,

3
4 =

∞∑
n=1

1
2n + bn

with 1 ⩽ bn ⩽ 5 for every n.
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Theorem: a positive result — K. and Tao, 2024

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n).

In particular, there exists an irrationality sequence with, say,

an ∼ 2n log2 log2 log2 n.

The proof gives more: there exists an irrationality sequence with,
say,

an = n!+ O(log2 log2 n).

It is still open if
∞∑

n=2

1
n!− 1 ̸∈ Q. (EP #68).
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Theorem: a positive result (K. and Tao, 2024)

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n).

Idea of proof. Choose (cn)
∞
n=1 with “much slower” growth than F.

Consider a sequence (an)
∞
n=1 constructed randomly with

an ∈ ⌊F(n)⌋+ {1, 2, 3, . . . , cn}

uniformly and independently for each n ⩾ n0.

Then an ∼ F(n) and even an = F(n) + O(cn) and one can prove:

P
(
(an)

∞
n=1 is an irrationality sequence

)
= 1.
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Erdős, 1986: Once I asked: Assume that
∑ 1

nk
and

∑ 1
nk−1

are both rational. How fast can nk tend to infinity? I was
(and am) sure that n1/k

k → ∞ is possible but n1/2k

k must tend
to 1. Unfortunately almost nothing is known. David Cantor
observed that

∞∑
k=3

1(k
2
) and

∞∑
k=3

1(k
2
)
− 1

are both rational and we do not know any sequence with
this property which tends to infinity faster than polynomi-
ally. (EP #265)

Erdős, 1983: (. . . ) and we could never decide if nk can in-
crease exponentially or even faster.
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Theorem (K. and Tao, 2024)
For every d ∈ N there exists β > 1 such that{( ∞∑

k=1

1
ak

,
∞∑

k=1

1
ak + 1 , . . . ,

∞∑
k=1

1
ak + d − 1

)
: (ak)

∞
k=1, lim

k→∞ a1/βk

k = ∞}
has a non-empty interior in Rd.

In particular, there is a sequence with lim
k→∞ a1/βk

k = ∞ and∞∑
k=1

1
ak + j

∈ Q for j = 0, . . . , d − 1 (double exponential growth).

It is well-known that lim
k→∞ a1/2k

k = ∞ is impossible.
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Already the non-empty interior with no growth requirement was
posed as an open problem by Erdős, Graham, and Straus. (EP #268)
Corollary
For every d ∈ N{(∑

n∈A

1
n
,
∑
n∈A

1
n+1 , . . . ,

∑
n∈A

1
n+d−1

)
: A ⊂ N infinite,

∑
n∈A

1
n
< ∞}

has a non-empty interior in Rd.

Special cases:

• d = 2 claimed by Erdős and Straus;
• d = 3 posed by Erdős and Graham in 1980, proved by K. in

2024 (producing a concrete ball of radius 10−24 inside the set).
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Kenneth B. Stolarsky (1942)
Photo: University of Illinois Urbana-Champaign

Erdős and Graham, 1980: The following pretty conjecture is
due to Stolarsky: ∞∑

n=1

1
an + t

cannot be rational for every positive integer t. (EP #266)
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Theorem (K. and Tao, 2024)

There exists (an)
∞
n=1 such that

∞∑
n=1

1
an + t

∈ Q for every

t ∈ Q \ {−an : n ∈ N}.

The proof is constructive but far from “explicit.”
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Aftermath:

• There is a lot of recent interest on irrationality sequences.

• Similar tricks work for at least one other irrationality problem
(Crmarić and K., 2025).
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Pál Turán (1910–1976)
Photo: Bundesarchiv, CC-BY-SA 3.0

Endre Szemerédi (1940)
Photo by Bert Seghers, CC0

Erdős and Turan, 1936, $ 1000:
Let rk(N) be the size of the largest subset of {1, . . . ,N} which
does not contain a non-trivial k-term arithmetic progres-
sion. Prove that rk(N) = o(N). (EP #139)

Szemerédi, 1975
rk(N) = o(N).
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There is still a lot of work on bounds for rk(N):

• k = 3 — Kelley and Meka, 2023;
• k = 4 — Green and Tao, 2017;
• k ⩾ 5 — Leng, Sah, and Sawhney, 2024.

Szemerédi’s paper has 509 citations on Mathematical Reviews.
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The closest I ever got to the problem was the following.

We say that y is a gap of a progression

x, x + y, x + 2y, . . . , x + (k − 1)y ∈ Rd

of length k.

(Durcik and K., 2020)

Take k ⩾ 3, p ̸= 1, 2, . . . , k − 1,∞, d ⩾ D(k, p), A ⊆ [0, 1]d mea-
surable, |A| ⩾ δ > 0. Then the set of ℓp-norms of the gaps of k-term
arithmetic progressions in the set A contains an interval of length at
least c(k, p, d, δ) > 0.

We were using Szemerédi’s theorem + techniques from multilinear
harmonic analysis developed in our dissertations and in several
later papers.
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Thank you for your attention!


