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§1. SINGLE LINEAR ERGODIC AVERAGES

1
N

N−1∑
n=0

f(Snx) or 1
N

ˆ N

0
f(Stx)dt

∙ (X,F , µ) a probability space or a σ-finite measure space
∙ S : X→ X a measure-preserving transf. (i.e., µ

(
S−1E

)
= µ(E)),

or St : X→ X is a measure-preserving flow (i.e., an R-action)
∙ f ∈ L2(X) or f ∈ Lp(X), 1 ≤ p < ∞
∙ Motivated by statistical mechanics (Boltzmann) about 100 yrs ago
∙ Pioneering work by von Neumann, Birkhoff, and Koopman in the
1930s
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§1. SINGLE LINEAR ERGODIC AVERAGES — NORM CONVERGENCE

1
N

N−1∑
n=0

f(Snx) or 1
N

ˆ N

0
f(Stx)dt

L2 convergence as N→ ∞:

∙ Proved by von Neumann (1932)
∙ Can we quantify the L2 convergence by controlling the number of
jumps in the norm?

Norm-variation estimate [Jones, Ostrovskii, and Rosenblatt (1996)]

sup
N0<N1<···<Nm

( m∑
j=1

∥∥ANj f− ANj−1 f
∥∥2
L2

)1/2
≤ C ‖f‖L2

∙ They work on T ≡ S1 and then use the spectral theorem for the
unitary operator f 7→ f ◦ S (the Koopman operator)

Consequence
ANf make O(ε−2‖f‖2L2) jumps of size ≥ ε in the L2 norm

2



§1. SINGLE LINEAR ERGODIC AVERAGES — A.E. CONVERGENCE

1
N

N−1∑
n=0

f(Snx) or 1
N

ˆ N

0
f(Stx)dt

Pointwise a.e. convergence as N→ ∞:

∙ Proved by Birkhoff (1931)
∙ Can we quantify the a.e. convergence by controlling the number of
jumps along almost all trajectories?

Pointwise variational estimate [Bourgain (1988), Jones, Kaufman,
Rosenblatt, and Wierdl (1998)]∥∥∥ sup

N0<N1<···<Nm

( m∑
j=1

|ANj f− ANj−1 f|ϱ
)1/ϱ∥∥∥

Lp
≤ Cp,ϱ ‖f‖Lp

for 2 < ϱ < ∞, 1 < p < ∞

∙ Bourgain actually studied more general, discrete single polynomial
averages
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§1. SINGLE LINEAR ERGODIC AVERAGES — CALDERÓN’S TRANSFERENCE PRINCIPLE

1
N

N−1∑
n=0

f(Snx) or 1
N

ˆ N

0
f(Stx)dt

∙ These correspond to the following averages on R:

1
N

ˆ N

0
F(x+ t)dt

or, in turn, to ˆ
R
F(x+ t)φN(t)dt

for a fixed Schwartz function φ, where φN(t) := N−1φ(N−1t)
∙ The latter averages (for N = 2k) can be further compared to a
martingale (e.g., dyadic) model
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§2. MULTIPLE ERGODIC AVERAGES

1
N

N−1∑
n=0

f1(Snx)f2(S2nx) · · · fd(Sdnx)

∙ f1, f2, . . . , fd ∈ L∞(X)
∙ Introduced by Furstenberg (1977) to reprove Szemerédi’s theorem
∙ Initially interested only in lim supn→∞ > 0 for fj = 1A

1
N

N−1∑
n=0

f1(Sn1 x)f2(Sn2x) · · · fd(Sndx)

∙ SiSj = SjSi for 1 ≤ i < j ≤ d
∙ Introduced by Furstenberg and Katznelson (1977) to prove
higher-dimensional Szemerédi’s theorem

1
N

N−1∑
n=0

f1(SP1(n)1 x)f2(SP2(n)2 x) · · · fd(SPd(n)d x)

∙ Introduced by Bergelson and Leibman (1996) to prove polynomial
Szemerédi’s theorem 5



§3. DOUBLE LINEAR ERGODIC AVERAGES

1
N

N−1∑
n=0

f(Snx)g(Tnx) or 1
N

ˆ N

0
f(Stx)g(Ttx)dt

The setting:

∙ ST = TS or SsTt = TtSs

∙ f,g ∈ L∞(X)

Convergence in L2(X) (and in Lp(X), p < ∞) as N→ ∞:

∙ Proved by Conze and Lesigne (1984)

Convergence a.e. as N→ ∞:

∙ It is an old open problem! (Calderón? Furstenberg?)
∙ Particular case T = S−1 shown by Bourgain (1990), with a pointwise
variational estimate by Do, Oberlin, and Palsson (2015)

∙ “Additionally averaged” aver. handled by Donoso and Sun (2016)
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§3. DOUBLE LINEAR ERGODIC AVERAGES

1
N

N−1∑
n=0

f(Snx)g(Tnx) or 1
N

ˆ N

0
f(Stx)g(Ttx)dt

∙ Can we quantify L2 convergence in the sense of controlling the
number of jumps?

∙ This can also be considered as partial progress towards a.e.
convergence (Bourgain’s metric entropy bounds)

∙ A question by Avigad and Rute (2012); also by Bourgain?

Norm-variation estimate [Durcik, K., Škreb, and Thiele (2016)]

sup
N0<N1<···<Nm

( m∑
j=1

∥∥ANj(f,g)− ANj−1(f,g)
∥∥2
L2

)1/2
≤ C ‖f‖L4‖g‖L4
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§3. DOUBLE LINEAR ERGODIC AVERAGES — CALDERÓN’S TRANSFERENCE PRINCIPLE

1
N

N−1∑
n=0

f(Snx)g(Tnx) or 1
N

ˆ N

0
f(Stx)g(Ttx)dt

correspond to the following averages on R:

1
N

ˆ N

0
F(x+ t, y)G(x, y+ t)dt

or, in turn, to ˆ
R
F(x+ t, y)G(x, y+ t)φN(t)dt

for a fixed Schwartz function φ
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§3. DOUBLE LINEAR ERGODIC AVERAGES — CALDERÓN’S TRANSFERENCE PRINCIPLE

AN(F,G)(x, y) :=
ˆ
R
F(x+ t, y)G(x, y+ t)φN(t)dt

Beginning of the proof of a special case (a bilinear square function)∑
k∈Z

∥∥A2k+1(f,g)− A2k(F,G)
∥∥2
L2 ≤ C ‖F‖2L4‖G‖

2
L4

∙ Expand the LHS asˆ
R4
F(x+ s, y)F(x+ t, y)G(x, y+ s)G(x, y+ t)K(s, t)dsdtdxdy

∙ Substitute u = x+ y+ s, v = x+ y+ t to obtainˆ
R4
F1(u, y)F2(v, y)F3(x,u)F4(x, v)K(u− x− y, v− x− y)dudvdxdy

∙ This quadrilinear singular integral form has a certain “entangled”
structure and relates to the previous work by K. (2010, 2011), Durcik
(2014, 2015), etc.
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§3. DOUBLE LINEAR ERGODIC AVERAGES — CALDERÓN’S TRANSFERENCE PRINCIPLE

AN(F,G)(x, y) :=
ˆ
R
F(x+ t, y)G(x, y+ t)φN(t)dt

m∑
j=1

∥∥A2kj (f,g)− A2kj−1 (F,G)
∥∥2
L2 ≤ C ‖F‖2L4‖G‖

2
L4

∙ Do not dualize the L2-variation expression as it would lead to the
“triangular Hilbert transform”:

T(F,G)(x, y) := p.v.
ˆ
R
F(x+ t, y)G(x, y+ t) dtt ,

boundedness of which is still an open problem
∙ Partial results by K., Thiele, and Zorin-Kranich (2015); Zorin-Kranich
(2016); Durcik, K., and Thiele (2016)
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§4. DOUBLE POLYNOMIAL ERGODIC AVERAGES

1
N

N−1∑
n=0

f(Snx)g(Tn
2
x) or 1

N

ˆ N

0
f(Stx)g(Tt

2
x)dt

The setting:

∙ ST = TS or SsTt = TtSs

∙ f,g ∈ L∞(X)

Convergence in L2(X) (and in Lp(X), p < ∞) as N→ ∞:

∙ Proved by Bergelson and Leibman (1996), in much higher generality
∙ Continuous-time result is strictly speaking a consequence of
discrete-to-continuous transference by Bergelson, Leibman, and
Moreira (2011)
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§4. DOUBLE POLYNOMIAL ERGODIC AVERAGES

1
N

N−1∑
n=0

f(Snx)g(Tn
2
x) or 1

N

ˆ N

0
f(Stx)g(Tt

2
x)dt

Convergence a.e. as N→ ∞:

Continuous-time averages

∙ Proved by Christ, Durcik, K., and Roos (2020)
∙ Hypotheses can be relaxed to f ∈ Lp(X), g ∈ Lq(X), 1 < p,q ≤ ∞,
1/p+ 1/q ≤ 1

Discrete-time averages

∙ Still an open problem
∙ Particular case T = S (which was already a big open problem)
shown by Krause, Mirek, and Tao (2020); they also establish
pointwise variational estimates
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§4. DOUBLE POLYNOMIAL CONTINUOUS-TIME ERGODIC AVERAGES

Pointwise convergence result [Christ, Durcik, K., and Roos (2020)]

lim
N→∞

1
N

ˆ N

0
f(Stx)g(Tt

2
x)dt exists a.e.

A few ingredients of the proof:

∙ We transfer the estimate∥∥∥ 1N
ˆ N

0

(
F(x+ t+ δ, y)− F(x+ t, y)

)
G(x, y+ t2)dt

∥∥∥
L1
(x,y)

≤ Cγ,δN−γ∥F∥L2∥G∥L2

for δ > 0 and γ = γ(δ) > 0 from R2 to the meas.-preserving system
∙ This estimate is, in turn, shown as a consequence of a powerful
“trilinear smoothing estimate” (a “local estimate”) by Christ, Durcik,
and Roos (2020)

∙ We are partly quantitative, partly relying on density arguments
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§5. ERGODIC–MARTINGALE PARAPRODUCT

N−1∑
k=0

( 1
bakc

⌊ak⌋−1∑
n=0

f(Snx)
)(

E(g|Fk+1)− E(g|Fk)
)
(x)

∙ A hybrid object that combines ergodic averages and martingales
∙ Motivated by an open-ended question of Kakutani (1950)
∙ S : X→ X is measure-preserving
∙ F0 ⊇ F1 ⊇ F2 ⊇ · · · so that E(g|Fn) is a backward (i.e., reversed)
martingale

∙ Commutativity assumption: E(h ◦ S|Fn) = E(h|Fn) ◦ S
∙ 1 < a < ∞, f ∈ Lp(X), g ∈ Lq(X)
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§5. ERGODIC–MARTINGALE PARAPRODUCT

N−1∑
k=0

( 1
bakc

⌊ak⌋−1∑
n=0

f(Snx)
)(

E(g|Fk+1)− E(g|Fk)
)
(x)

Convergence in norm as N→ ∞:

∙ If 1/p+ 1/q = 1/r, p,q ∈ [4/3, 4], r ∈ [1, 4/3], then convergence in
the Lr norm was shown by K. and Stipčić (2020)

∙ The main part is mere Lp × Lq → Lr boundedness (nontrivial here)

Convergence pointwise a.e. as N→ ∞:

∙ Still an open problem
∙ Could be a nice toy-problem for the famous open problem on
double linear averages w.r.t. two commuting transformations
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§5. ERGODIC–MARTINGALE PARAPRODUCT — BOUNDEDNESS

N−1∑
k=0

( 1
bakc

⌊ak⌋−1∑
n=0

f(Snx)
)(

E(g|Fk+1)− E(g|Fk)
)
(x)

Boundedness of the erg.–mart. paraprod. [K. and Stipčić (2020)]

‖ΠN(f,g)‖Lr =
∥∥∥ N−1∑
k=0

(Akf)(Ek+1g− Ekg)
∥∥∥
Lr

≤ Ca,p,q,r ‖f‖Lp‖g‖Lq

for 1/p+ 1/q = 1/r, p,q ∈ [4/3, 4], r ∈ [1, 4/3]

=⇒ ‖ΠN(f,g)− ΠM(f,g)‖Lr ≤ Ca,p,q,r ‖f‖Lp‖ENg− EMg‖Lq

so convergence in Lr(X) follows
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§5. ERGODIC–MARTINGALE PARAPRODUCT — CALDERÓN’S TRANSFERENCE PRINCIPLE

N−1∑
k=0

( 1
bakc

⌊ak⌋−1∑
n=0

f(Snx)
)(

E(g|Fk+1)− E(g|Fk)
)
(x)

∙ For a = 2 it corresponds to an object obtained by lifting to R× X:
N−1∑
k=0

( 1
2k

ˆ 2k

0
F(x+ t, y)dt

)(
E2(G(x, y)|Fk+1)− E2(G(x, y)|Fk)

)
and, in turn, to

N−1∑
k=0

E1(F|Dk)
(
E2(G|Fk+1)− E2(G|Fk)

)
,

where Dk is the dyadic filtration
∙ Reduces (up to several technical details) to estimates for two
“commuting” martingales by K. and Škreb (2013)
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§6. LONGER LINEAR MULTIPLE ERGODIC AVERAGES

1
N

N−1∑
n=0

f1(Sn1 x)f2(Sn2x) · · · fd(Sndx) or 1
N

ˆ N

0
f1(St1x)f2(St2x) · · · fd(Stdx)dt

Convergence in L2(X) (and in Lp(X), p < ∞) as N→ ∞:

∙ Proved by Tao (2007) and also by Austin (2008), Walsh (2011),
Zorin-Kranich (2011)

∙ No quantitative norm-convergence results known for d ≥ 3

Convergence a.e. as N→ ∞ is open already for d ≥ 2
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§7. LONGER POLYNOMIAL CONTINUOUS-TIME MULTIPLE ERGODIC AVERAGES

1
N

ˆ N

0
f1(SP1(t)1 x)f2(SP2(t)2 x) · · · fd(SPd(t)d x)dt

Convergence in L2(X) (and in Lp(X), p < ∞) as N→ ∞:

∙ Proved by Austin (2011)

Additionally assume:

degP1 < degP2 < · · · < degPd

Convergence a.e. as N→ ∞:

∙ Proved by Frantzikinakis (2021)
∙ He uses beautifully elegant density argument
∙ Emphasizes simplifications coming from continuous time and
polynomials (or general Hardy-field functions) with different
orders of growth
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THANK YOU FOR YOUR ATTENTION!
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