A Szemerédi-type theorem for subsets of the unit cube

Vjekoslav Kovač (U. of Zagreb)
Joint work with Polona Durcik (Caltech)

Supported by HRZZ UIP-2017-05-4129 (MUNHANAP)
Georgia Tech, Atlanta, Jan 29, 2020

Ramsey theory (for analysts)

Searches for patterns in large arbitrary structures
discrete vs. Euclidean
Ramsey (1920s)
Erdős et al. (1973)
coloring theorems
vs.
e.g., Van der Waerden's thm (1927)
e.g., Szemerédi's thm (1975)
non-arithmetic patterns
vs.
arithmetic patterns
e.g., spherical configurations
e.g., arithmetic progressions

This combination of choices: Cook, Magyar, and Pramanik (2017)

Szemerédi's theorem on \mathbb{Z}

A question posed by Erdős and Turán (1936)

For a positive integer $n \geq 3$ and a number $0<\delta \leq 1 / 2$ is there a positive integer N such that each set $S \subseteq\{0,1,2, \ldots, N-1\}$ with at least δN elements must contain a nontrivial arithmetic progression of length n ?

- $n=3 \checkmark \quad$ Roth (1953)
- $n=4 \checkmark$ Szemerédi (1969)
- $n \geq 5 \checkmark$ Szemerédi (1975)

Szemerédi's theorem on \mathbb{Z}

Let $N(n, \delta)$ be the smallest such N

What are the best known bounds for $N(n, \delta)$?

- $N(3, \delta) \leq \exp \left(\delta^{-C}\right) \quad$ Heath-Brown (1987)
- $N(4, \delta) \leq \exp \left(\delta^{-C}\right) \quad$ Green and Tao (2017)
- $N(n, \delta) \leq \exp \left(\exp \left(\delta^{-C(n)}\right)\right) \quad$ Gowers (2001)

Szemerédi's theorem in $[0,1]^{d}$

Reformulation of Szemerédi's theorem with the above bounds

For $n \geq 3$ and $d \geq 1$ there exists a constant $C(n, d)$ such that for $0<\delta \leq 1 / 2$ and a measurable set $A \subseteq[0,1]^{d}$ with $|A| \geq \delta$ one has

$$
\begin{aligned}
& \int_{[0,1]^{d}} \int_{[0,1]^{d}} \prod_{i=0}^{n-1} \mathbb{1}_{A}(x+i y) d y d x \\
& \geq \begin{cases}\left(\exp \left(\delta^{-c(n, d)}\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\
\left(\exp \left(\exp \left(\delta^{-c(n, d)}\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
\end{aligned}
$$

Gaps of progressions in $A \subseteq[0,1]^{d}$

What can be said about the following set?

$$
\begin{aligned}
& \operatorname{gaps}_{n}(A):= \\
& \left\{y \in[-1,1]^{d}:\left(\exists x \in[0,1]^{d}\right)(x, x+y, \ldots, x+(n-1) y \in A)\right\}
\end{aligned}
$$

It contains a ball $\mathrm{B}(0, \varepsilon)$ for some $\varepsilon>0$

A proof by Stromberg (1972):

- Assume that A is compact
- Find an open set U such that $U \supseteq A$ and $|U| \leq(1+1 / 2 n)|A|$
- Take $\varepsilon:=\operatorname{dist}\left(A, \mathbb{R}^{d} \backslash U\right) / n$
- For any $\|y\|_{l^{2}}<\varepsilon: x \in A \cap(A-y) \cap \cdots \cap(A-(n-1) y) \neq \emptyset$

Gaps of progressions in $A \subseteq[0,1]^{d}$

Number ε has to depend on "geometry" of A and not just on $|A|$

There is an obstruction already when we ask for much less
$\ell^{2}-\operatorname{gaps}_{n}(A):=$
$\left\{\lambda \in[0, \infty):(\exists x, y)\left(x, x+y, \ldots, x+(n-1) y \in A,\|y\|_{\ell^{2}}=\lambda\right)\right\}$

Does $\ell^{2}-\operatorname{gaps}_{n}(A)$ contain an interval of length depending only on n, d, and the measure $|A|$?

Gaps of progressions in $A \subseteq[0,1]^{d}$

No! Bourgain (1986):
$A:=\left\{x \in[0,1]^{d}:(\exists m \in \mathbb{Z})\left(m-1 / 10<\left\|\varepsilon^{-1} x\right\|_{\ell^{2}}^{2}<m+1 / 10\right)\right\}$.

- The parallelogram law:

$$
\|x\|_{\ell^{2}}^{2}-2\|x+y\|_{\ell^{2}}^{2}+\|x+2 y\|_{\ell^{2}}^{2}=2\|y\|_{\ell^{2}}^{2}
$$

- $x, x+y, x+2 y \in A \quad \Longrightarrow \quad m^{\prime}-2 / 5<2\left\|\varepsilon^{-1} y\right\|_{\ell^{2}}^{2}<m^{\prime}+2 / 5$
- $|A| \gtrsim 1$ uniformly as $\varepsilon \rightarrow 0^{+}$

One can switch attention to other patterns (spherical configurations) or ...

Gaps of 3-term progressions in other ℓ^{p} norms

For $p \in[1, \infty]$ define:
$\ell^{p}-\operatorname{gaps}_{n}(A):=$ $\left\{\lambda \in[0, \infty):(\exists x, y)\left(x, x+y, \ldots, x+(n-1) y \in A,\|y\|_{l^{p}}=\lambda\right)\right\}$

Theorem (Cook, Magyar, and Pramanik (2017))

Take $n=3, p \neq 1,2, \infty, d \geq D(p), \delta \in(0,1 / 2], A \subseteq[0,1]^{d}$ measurable, $|A| \geq \delta$.
Then ℓ^{p}-gaps ${ }_{3}(A)$ contains an interval of length depending only on p, d, and δ

Gaps of longer progressions in other ℓ^{p} norms

Theorem (Durcik and K. (2020))

Take $n \geq 3, p \neq 1,2, \ldots, n-1, \infty, d \geq D(n, p), \delta \in(0,1 / 2]$, $A \subseteq[0,1]^{d}$ measurable, $|A| \geq \delta$.
Then $\ell^{p}-\operatorname{gaps}_{n}(A)$ contains an interval of length at least

$$
\begin{cases}\left(\exp \left(\exp \left(\delta^{-c(n, p, d)}\right)\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\exp \left(\delta^{-c(n, p, d)}\right)\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

Modifying Bourgain's example \rightarrow sharp regarding the values of p
One can take $D(n, p)=2^{n+3}(n+p) \quad \rightarrow \quad$ certainly not sharp

Quantities that detect progressions

$$
\sigma(x)=\delta\left(\|x\|_{\ell^{p}}^{p}-1\right)
$$

a measure supported on the unit sphere in the ℓ^{p}-norm

$$
\begin{gathered}
\mathscr{N}_{\lambda}^{0}(A):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} \mathbb{1}_{A}(x+i y) \mathrm{d} \sigma_{\lambda}(y) \mathrm{d} x \\
\mathscr{N}_{\lambda}^{0}(A)>0 \Longrightarrow(\exists x, y)\left(x, x+y, \ldots, x+(n-1) y \in A,\|y\|_{\ell^{p}}=\lambda\right) \\
\mathcal{N}_{\lambda}^{\varepsilon}(A):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} \mathbb{1}_{A}(x+i y)\left(\sigma_{\lambda} * \varphi_{\varepsilon \lambda}\right)(y) \mathrm{d} y d x
\end{gathered}
$$

for a smooth $\varphi \geq 0$ with $\int_{\mathbb{R}^{d}} \varphi=1$

Quantities that detect progressions

"The largeness/smoothness multiscale approach"
Essentially introduced by Cook, Magyar, and Pramanik (2017)

$$
\mathscr{N}_{\lambda}^{\varepsilon}(A):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} \mathbb{1}_{A}(x+i y)\left(\sigma_{\lambda} * \varphi_{\varepsilon \lambda}\right)(y) \mathrm{dyd} x
$$

$\lambda \in(0, \infty)$, scale of largeness \rightarrow detect APs with $\|y\|_{\ell^{p}}=\lambda$
$\varepsilon \in[0,1]$, scale of smoothness \rightarrow the picture is blurred up to scale ε

Proof strategy

$\mathscr{N}_{\lambda}^{0}(A)=\mathscr{N}_{\lambda}^{1}(A)+\left(\mathscr{N}_{\lambda}^{\varepsilon}(A)-\mathscr{N}_{\lambda}^{1}(A)\right)+\left(\mathscr{N}_{\lambda}^{0}(A)-\mathscr{N}_{\lambda}^{\varepsilon}(A)\right)$

- $\mathscr{N}_{\lambda}^{1}(A)=$ the structured part ("the main term")

Controlled uniformly in λ using Szemerédi's theorem (with the best known bounds) as a black box

- $\mathscr{N}_{\lambda}^{\varepsilon}(\mathrm{A})-\mathscr{N}_{\lambda}^{1}(\mathrm{~A})=$ the error part

Certain pigeonholing in λ is needed
Leads to some multilinear singular integrals

- $\mathscr{N}_{\lambda}^{0}(A)-\mathscr{N}_{\lambda}^{\varepsilon}(A)=$ the uniform part

Controlled uniformly in λ using Gowers uniformity norms Leads to some oscillatory integrals

Three propositions

Proposition handling the structured part

If $\lambda \in(0,1], \delta \in(0,1 / 2], A \subseteq[0,1]^{d},|A| \geq \delta$, then

$$
\mathscr{N}_{\lambda}^{1}(A) \geq \begin{cases}\left(\exp \left(\delta^{-E}\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\delta^{-E}\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

This is essentially the analytical reformulation of Szemerédi's theorem

Three propositions

Proposition handling the error part

IF $J \in \mathbb{N}, \lambda_{j} \in\left(2^{-j}, 2^{-j+1}\right]$ for $j=1,2, \ldots, J, \varepsilon \in(0,1 / 2]$, $A \subseteq[0,1]^{d}$ measurable, then

$$
\sum_{j=1}^{J}\left|\mathscr{N}_{\lambda_{j}}^{\varepsilon}(A)-\mathscr{N}_{\lambda_{j}}^{1}(A)\right| \leq \varepsilon^{-F} j^{1-2^{-n+2}}
$$

Note the gain of $厂^{2^{-n+2}}$ over the trivial estimate for each fixed λ_{j}

Three propositions

Proposition handling the uniform part

If $d \geq D(n, p), \lambda, \varepsilon \in(0,1], A \subseteq[0,1]^{d}$ measurable, then

$$
\left|\mathscr{N}_{\lambda}^{0}(A)-\mathscr{N}_{\lambda}^{\varepsilon}(A)\right| \leq G \varepsilon^{1 / 3}
$$

Consequently, the uniform part can be made arbitrarily small by choosing a sufficiently small ε

How to finish the proof?

Denote

$$
\vartheta:= \begin{cases}\left(\exp \left(\delta^{-E}\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\delta^{-E}\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

and choose

$$
\varepsilon:=\left(\frac{9}{3 G}\right)^{3}, \quad J:=\left\lfloor\left(39^{-1} \varepsilon^{-F}\right)^{2^{n-2}}\right\rfloor+1
$$

Observe

$$
2^{-\jmath} \geq \begin{cases}\left(\exp \left(\exp \left(\delta^{-c(n, p, d)}\right)\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\exp \left(\delta^{-c(n, p, d)}\right)\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

How to finish the proof?

Take $A \subseteq[0,1]^{d}$ such that $|A| \geq \delta$
By pigeonholing we find $j \in\{1,2, \ldots, J\}$ such that for every
$\lambda \in\left(2^{-j}, 2^{-j+1}\right]$ we have

$$
\left|\mathscr{N}_{\lambda}^{\varepsilon}(A)-\mathscr{N}_{\lambda}^{1}(A)\right| \leq \varepsilon^{-F} \int^{2^{-n+2}}
$$

Now, $I=\left(2^{-j}, 2^{-j+1}\right]$ is the desired interval!
Indeed, for $\lambda \in I$ we can estimate

$$
\begin{aligned}
\mathscr{N}_{\lambda}^{0}(A) & \geq \mathscr{N}_{\lambda}^{1}(A)-\left|\mathscr{N}_{\lambda}^{\varepsilon}(A)-\mathscr{N}_{\lambda}^{1}(A)\right|-\left|\mathscr{N}_{\lambda}^{0}(A)-\mathscr{N}_{\lambda}^{\varepsilon}(A)\right| \\
& \geq \vartheta-\varepsilon^{-F} 厂^{2^{-n+2}}-G \varepsilon^{1 / 3} \\
& \geq 9-9 / 3-9 / 3>0
\end{aligned}
$$

The error part

The most interesting part for us is the error part

We need to estimate

$$
\sum_{j=1}^{J} K_{j}\left(\mathscr{N}_{\lambda_{j}}^{\varepsilon}(A)-\mathscr{N}_{\lambda_{j}}^{1}(A)\right)
$$

for arbitrary scales $\lambda_{j} \in\left(2^{-j}, 2^{-j+1}\right]$ and arbitrary complex signs κ_{j}, with a bound that is sub-linear in J

The error part

It can be expanded as

$$
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} \mathbb{1}_{A}(x+i y) K(y) d y d x,
$$

where

$$
K(y):=\sum_{j=1}^{J} \kappa_{j}\left(\left(\sigma_{\lambda_{j}} * \varphi_{\varepsilon \lambda_{j}}\right)(y)-\left(\sigma_{\lambda_{j}} * \varphi_{\lambda_{j}}\right)(y)\right)
$$

is a translation-invariant Calderón-Zygmund kernel

The error part

If $d=1$ and $K(y)$ is a truncation of $1 / y$, then this becomes the (dualized and truncated) multilinear Hilbert transform,

$$
\int_{\mathbb{R}} \int_{[-R,-r] \cup[r, R]} \prod_{i=0}^{n-1} f_{i}(x+i y) \frac{d y}{y} d x
$$

- When $n \geq 4$, no L^{p}-bounds uniform in r, R are known
- Tao (2016) showed a bound of the form o(J)
- Durcik, K., and Thiele (2019) showed a bound of the form $O\left(\jmath^{1-\varepsilon}\right)$

A stronger property

Most papers on the Euclidean density theorem simultaneously also establish a stronger property for subsets $A \subseteq \mathbb{R}^{d}$ of positive upper Banach density

Upper Banach density of a measurable set $A \subseteq \mathbb{R}^{d}$:

$$
\bar{\delta}(A):=\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\left|A \cap\left(x+[0, R]^{d}\right)\right|}{R^{d}} \in[0,1]
$$

An open problem

Problem

Prove or disprove: if $n \geq 4, p \neq 1,2, \ldots, n-1, d \geq D^{\prime}(n, p)$,
$A \subseteq \mathbb{R}^{d}$ measurable, $\bar{\delta}(A)>0$, then $\exists \lambda_{0}=\lambda_{0}(n, p, d, A) \in(0, \infty)$
such that for every $\lambda \geq \lambda_{0}$ one can find $x, y \in \mathbb{R}^{d}$ satisfying
$x, x+y, \ldots, x+(n-1) y \in A$ and $\|y\|_{\ell^{p}}=\lambda$

Its difficulty \longleftrightarrow lack of our understanding of boundedness properties of multilinear Hilbert transforms

Thank you for your attention!

