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'THE BASIC DEFINITIONS

An orthonormal wavelet is a function ¢ € L*(R) such that
(27/24h(27 - —k))j Lo, forms an orthonormal basis for L*(R).

wA is an MSF wavelet if 1 is an orthonormal wavelet and
1| = xx a.e. for some K € B(R).

Y is an MRA wavelet associated with an MRA <Vj>jez
if (¢(- — k)),ey forms an orthonormal basis for Wy, where
Vi — Vb ¥, W().

A function ¢ € L*(R) is a scaling function associated with
an MRA (V)5 1f (¢(- — k)) e forms an orthonormal ba-
sis for V.

Theorem. Suppose that (V);., is an MRA with some
MSF wavelet associated with it. There exist K, S € B(R)
such that:
for each associated wavelet ¢ we have W| = YK a.e.

for each associated scaling function ¢ we have |@| = xg a.e.
Moreover, S' = (J;2, 277K a.e. and K =25\ S ae.

[The WUTAM Consortium (1998)]
[M.Papadakis, H.Sikié, G.Weiss (1999)]

Measurable sets S and K obtained in this way are called
scaling sets and MRA wavelet sets, respectively.

Theorem. If K is an MRA wavelet set then any ) € L*(R)
such that || = xx a.e. is an MRA and MSF wavelet.

[The WUTAM Consortium (1998)]



THE CHARACTERIZATION OF SCALING SETS
S € B(R) is a scaling set iff
(1) {S + 2km; k € Z} is an a.e-partition of R
(2) S C 25 ae.
(3) Ujen 275 =R a.e.

[M.Papadakis, H.Sikié, G.Weiss (1999)]

THE CHARACTERIZATION OF MRA WAVELET SETS

K € B(R) is an MRA wavelet set iff

(1) {K + 2km; k € Z} is an a.e.-partition of R

(2) {2/K; j € Z} is an a.e.-partition of R

(3) {277K + 2km; j € N,k € Z} is an a.e.-partition of R

(The first two conditions characterize general wavelet sets.)

[E.Hernandez, G.Weiss (1996)]
Note that |S| = 27 and |K| = 2.

There is a 1-1 correspondence between scaling sets and
MRA wavelet sets given by

Scaling sets MRA wavelet sets

S h——= K=25\S5
Ui 27K=5 <— K



EXAMPLES?

It is still not clear how to construct some (interesting)
examples of scaling sets / MRA wavelet sets.

SIMPLE EXAMPLES (FINITE UNIONS OF INTERVALS)

1., S=]-mn|, K=|[-27 —n|U]lm,2n7]

(the Shannon wavelet)

T 2n

N —
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2] § = (-1, ~Helul-%, U=, FIUE, Sl 5
K = [, - B2, - Le, -, -
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SOME QUESTIONS

1.] Does every wavelet set vanish a.e. outside some bounded

interval?

X.Fang and X.Wang (1994) gave a counterexample:
Example. Let
+1 2m .
l]‘:2‘7+—1, CL]':E, ]GN
KO = _%—I—%Zﬁlaj, 7T:|,

oliqr 4 2l Z‘Z;ll a;, 2l + 2l Zgzl az} . 7 €N,

Then
K = _U;ion UU;ZOKJ

1s a wavelet set.

The above example is a countable union of disjoint intervals
with total length 27w. Therefore, we may ask ourselves if
there exists a wavelet set which does not vanish a.e. outside
a closed set of finite measure.

1.)] Is there any wavelet set whose topological support has
infinite measure?

We shall construct such an example which is also an MRA
wavelet set.
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2. Does every wavelet set have a “hole” around 0, i.e. does

every wavelet set have to be a.e.-disjoint from an interval
about 07

L.Brandolini, G.Garrigds, Z.Rzeszotnik and G.Weiss (1999)
gave a counterexample:

Example. Suppose that (a;),en is a sequence of reals such

T 1 Jg. =T

S = U] 1[ 27T+297_27T+2aj]UU90 - 2] 2J—1> Zaj]
U szl[Zaj, F] U U;)il[Qﬂ' QCL], 2m — ;E]

is a scaling set S C [—27,27] and K = 25\ S C [—4m, 47]
is the corresponding MRA wavelet set.

S:

0

K: —— - e oo oo o @ —

0

This example is again a countable union of disjoint intervals
with total length 27r. It has no hole about 0, but it has many
“holes” in every neighborhood of 0.

2.’ Is there a wavelet set K and an open neighborhood U of 0

such that for every interval I C U we have [I N K| > 0.

The answer is positive. Our examples will also have some
additional qualities.



THE RADEMACHER FUNCTIONS (R, )nen
R, [0,1] = R, R,(&) = (—1)",

where
f — O.CklOéQOfg c.e

is a binary representation of £ € [0, 1].

(Ry)nen is a sequence of independent random variables on

the probability space (22, A4,P) = ([0, 1], B([0,1]), \) and
. . —1 1

each of them has a coin-toss distribution, ~ 12 1/2 )

Suppose that (a,),en is a sequence of reals satisfying

S a? < 4oo, a;>a;>az>...> 0.

n=1
Since
> ey Var(a,Ry) = 370° a; < +00,
it follows that the series 220:1 a, R, converges a.s., so we

define
X =3 a,R,.

Note that
px(t) = [1,2; cos(ant)
(the characteristic function of the distribution).



Theorem. For a.e. £ € [0, 1]
(a)  X(5) < X() < X(5),

(b)  limj_q X(Q%) =>"  an e (0, 40,
© i X(EZ) — T 0, €[-00,0)
Sketch of Proof.
X(Q%) — %:1 (p + Zzozl an+jRn<€>
XS = =300 an+ 300 ang i Ra()
[]

EXAMPLES OF SCALING SETS S C [—27, 27]
Proposition.
S:=2r{X <0} =27m) U 2r{X >0}
is a scaling set.

21{X <0} -2 27 {X =0}
S =

e e 0000000000000 000000000000000000000000000000000000000000000000—
27 0 2r

Sketch of Proof.

Forae. ( € 5

1°If ¢ = 27, X (&) > 0, then § = 275
SO % cSs.

2°1f ¢ = 27& — 27, X(€) < 0, then § = 27 - &4 — 27
X(f%l) < X(€) <0,s0 % cS.

Therefore S C 25 a.e.



For a.e. ( € |[—2m, 27|
1°If ¢ = 2n¢, £ € [0, 1], then 2% = 27 - 2% and (for j large
enough) X(Z%) > 0, s0 2% cS.

2° If ¢ = 2n€ — 2m, € € [0,1], then § = 27 - 421 — o
and (for j large enough) X (22=1) < 0,50 & € S.

2] 2J
Thus, J..n2/S =R a.c. O

jEN

In the following we additionally suppose that >, a,, = oo.

Lemma. Suppose that a positive sequence (by,),en satisfies
S0 bE < 400, Y7 b, = +oc

and define Y := > ">  b,R,,. Then for any ¢,d € R, ¢ < d

we have

P(Y € (c,d) > 0.

Theorem.

21 {X<0} -2 21 {X=0)

g —

27 0 21

For every interval I C [—2m, 27] we have 0 < |[I N S| < |1].
(Neither S nor [—2m, 27| \ S contains an interval a.e.)

(4rr {X<0} —4m) \ (27 {X<0} —2n1) 4r {X=0} \ 27 {X=0}

K —

-4 0 4

For every interval I C |—4m, 4] we have 0 < [INK| < |1].
(Neither K nor |—4m, 4n] \ K contains an interval a.e.)



Sketch of Proof.
Consider a dyadic interval J C [0, 1], i.e
J={Ri=¢1,...,R, =¢,}

for some e1,...,¢e, € {—1,1}.
2nJNS| =2n-P(Ry=¢1,...,Rpn=6p, X >0) =
= lindependence of (R,,),e ]

=21 (3)"-P(Y >¢) >0,

where Y =" | a
(2nJ —2m)N S| =27 (3)"-P(Y <¢)>0.

Analogously, [2nrJ N S¢| > 0 and |(27J — 27) NS¢ > 0.

anR,, ¢c=—=> ", a,e,. Similarly,

The calculations for K are similar. For example,
2rJ N K| =
=2n-P(Ri=¢1,...,Rp=¢,,X(5) >0,X <0)

> 27r-(%)m+1-]P>(c<Y<d),

where Y =>""  sa,R, d=—> " ann+ Qp1,

c=d—2(ami1 — Amio).

Vv
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EXAMPLES OF UNBOUNDED SCALING SETS

Theorem.
S =Ui 2 {R1 =1, X(5) < 0,X(57) >0} —2"'n)
U@2r{R=-1,X<0}—-2m)U2n{R;=1,X >0}
U U @n{Ri= -1, X(#271) > 0, X %Zii Ly < 0}
(2/€+1_2) )

is a scaling set. Let K = 25\ .S be the corresponding MRA
wavelet set. For every interval I such that

I C U, =), — (2 =2)a] DU, (2 —2)m, (2~ 1)x
we have | N K| > 0.
g

-8n -7n -6n =57 -4n -37 -2n -n O 7 2n 3n 4x 5m 6nr Tn 8nx

K —

-8n -7n -6n =57 -4n -37 -2n -n O n 2n 3n 4m 5m 6nr Tn 8nx

Therefore, the topological support of K contains
UZO:Q[_(Qk o 1>7T7 _<2k o 2)7T] U UZO:QKQk R 2>7T? <2k o 1>7T]7

so 1t 1s a set of infinite measure.



