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The basic definitions

An orthonormal wavelet is a function ψ ∈ L2(R) such that(
2j/2ψ(2j · −k)

)
j,k∈Z forms an orthonormal basis for L2(R).

ψ is an MSF wavelet if ψ is an orthonormal wavelet and
|ψ̂| = χK a.e. for some K ∈ B(R).

ψ is an MRA wavelet associated with an MRA (Vj)j∈Z
if (ψ(· − k))k∈Z forms an orthonormal basis for W0, where
V1 = V0 ⊕W0.

A function ϕ ∈ L2(R) is a scaling function associated with
an MRA (Vj)j∈Z if (ϕ(· − k))k∈Z forms an orthonormal ba-
sis for V0.

Theorem. Suppose that (Vj)j∈Z is an MRA with some
MSF wavelet associated with it. There exist K,S ∈ B(R)
such that:
for each associated wavelet ψ we have |ψ̂| = χK a.e.,
for each associated scaling function ϕ we have |ϕ̂| = χS a.e.
Moreover, S =

⋃∞
j=1 2−jK a.e. and K = 2S \ S a.e.

[The WUTAM Consortium (1998)]

[M.Papadakis, H.Šikić, G.Weiss (1999)]

Measurable sets S and K obtained in this way are called
scaling sets and MRA wavelet sets, respectively.

Theorem. If K is an MRA wavelet set then any ψ ∈ L2(R)

such that |ψ̂| = χK a.e. is an MRA and MSF wavelet.

[The WUTAM Consortium (1998)]
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The characterization of scaling sets

S ∈ B(R) is a scaling set iff

(1) {S + 2kπ; k ∈ Z} is an a.e.-partition of R

(2) S ⊆ 2S a.e.

(3)
⋃

j∈N 2jS = R a.e.

[M.Papadakis, H.Šikić, G.Weiss (1999)]

The characterization of MRA wavelet sets

K ∈ B(R) is an MRA wavelet set iff

(1) {K + 2kπ; k ∈ Z} is an a.e.-partition of R

(2)
{
2jK; j ∈ Z}

is an a.e.-partition of R

(3)
{
2−jK + 2kπ; j ∈ N, k ∈ Z}

is an a.e.-partition of R

(The first two conditions characterize general wavelet sets.)

[E.Hernández, G.Weiss (1996)]

Note that |S| = 2π and |K| = 2π.

There is a 1–1 correspondence between scaling sets and
MRA wavelet sets given by

Scaling sets MRA wavelet sets

S |−−−−−−> K = 2S \ S⋃∞
j=1 2−jK = S <−−−−−−| K
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Examples?
It is still not clear how to construct some (interesting)
examples of scaling sets / MRA wavelet sets.

Simple examples (finite unions of intervals)

1. S = [−π, π], K = [−2π,−π] ∪ [π, 2π]
(the Shannon wavelet)

S =
0-2 Π -Π Π 2 Π

K =
0-2 Π -Π Π 2 Π

2. S = [−12π
7 ,−11π

7 ]∪[−10π
7 ,−8π

7 ]∪[−6π
7 , 2π

7 ]∪[3π7 , 4π
7 ]∪[6π7 , 8π

7 ]

K = [−24π
7 ,−22π

7 ]∪[−20π
7 ,−16π

7 ]∪[−11π
7 ,−10π

7 ]∪[−8π
7 ,−6π

7 ]

∪[2π7 , 3π
7 ]∪ [12π

7 , 16π
7 ]

S =
-4 Π -3 Π -2 Π -Π 0 Π 2 Π 3 Π 4 Π

K =
-4 Π -3 Π -2 Π -Π 0 Π 2 Π 3 Π 4 Π

3. S = [−π
4 ,

3π
4 ] ∪ [5π4 , 3π

2 ] ∪ [11π
4 , 3π] ∪ [11π

2 , 23π
4 ] ∪ [11π, 45π

4 ]

K = [−π
2 ,−π

4 ] ∪ [3π4 , 5π
4 ] ∪ [5π2 , 11π

4 ] ∪ [23π
4 , 6π] ∪ [45π

4 , 23π
2 ]

∪[22π, 45π
2 ]

S =
0 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π 16 Π 18 Π 20 Π 22 Π

K =
0 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π 16 Π 18 Π 20 Π 22 Π
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Some questions

1. Does every wavelet set vanish a.e. outside some bounded
interval?

X.Fang and X.Wang (1994) gave a counterexample:

Example. Let

lj = 2j+1 − 1, aj = 2−jπ

2
lj+1−1

; j ∈ N
and

K0 =
[

π
2 + 1

2

∑∞
j=1 aj, π

]
,

Kj =
[
2ljπ + 2lj

∑j−1
i=1 ai, 2ljπ + 2lj

∑j
i=1 ai

]
; j ∈ N.

Then
K = −⋃∞

j=0 Kj ∪
⋃∞

j=0 Kj

is a wavelet set.

The above example is a countable union of disjoint intervals
with total length 2π. Therefore, we may ask ourselves if
there exists a wavelet set which does not vanish a.e. outside
a closed set of finite measure.

1.’ Is there any wavelet set whose topological support has
infinite measure?

We shall construct such an example which is also an MRA
wavelet set.
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2. Does every wavelet set have a “hole” around 0, i.e. does
every wavelet set have to be a.e.-disjoint from an interval
about 0?

L.Brandolini, G.Garrigós, Z.Rzeszotnik and G.Weiss (1999)
gave a counterexample:

Example. Suppose that (aj)j∈N is a sequence of reals such
that

π
4 < a1 ≤ π

3 ,
π

2j+1 < aj < 1
2aj−1, limj→∞ 2jaj = π

2 .

Then

S =
⋃∞

j=1[−2π + π
2j ,−2π + 2aj] ∪

⋃∞
j=1[− π

2j−1 ,−2aj]

∪⋃∞
j=1[2aj,

π
2j−1 ] ∪

⋃∞
j=1[2π − 2aj, 2π − π

2j ]

is a scaling set S ⊆ [−2π, 2π] and K = 2S \S ⊆ [−4π, 4π]
is the corresponding MRA wavelet set.

S =
0

K =
0

This example is again a countable union of disjoint intervals
with total length 2π. It has no hole about 0, but it has many
“holes” in every neighborhood of 0.

2.’ Is there a wavelet set K and an open neighborhood U of 0
such that for every interval I ⊆ U we have |I ∩K| > 0.

The answer is positive. Our examples will also have some
additional qualities.
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The Rademacher functions (Rn)n∈N

Rn: [0, 1] → R, Rn(ξ) := (−1)αn,

where
ξ = 0.α1α2α3 . . .

is a binary representation of ξ ∈ [0, 1].

(Rn)n∈N is a sequence of independent random variables on
the probability space (Ω,A,P) = ([0, 1],B([0, 1]), λ) and

each of them has a coin-toss distribution, ∼
( −1 1

1/2 1/2

)
.

Suppose that (an)n∈N is a sequence of reals satisfying
∑∞

n=1 a2
n < +∞, a1 > a2 > a3 > . . . > 0.

Since ∑∞
n=1 Var(anRn) =

∑∞
n=1 a2

n < +∞,

it follows that the series
∑∞

n=1 anRn converges a.s., so we
define

X :=
∑∞

n=1 anRn.

Note that
ϕX(t) =

∏∞
n=1 cos(ant)

(the characteristic function of the distribution).
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Theorem. For a.e. ξ ∈ [0, 1]

(a) X(ξ+1
2 ) ≤ X(ξ) ≤ X(ξ

2),

(b) limj→∞X( ξ
2j ) =

∑∞
n=1 an ∈ 〈0, +∞],

(c) limj→∞X(ξ+2j−1
2j ) = −∑∞

n=1 an ∈ [−∞, 0〉.
Sketch of Proof.

X( ξ
2j ) =

∑j
n=1 an +

∑∞
n=1 an+jRn(ξ)

X(ξ+2j−1
2j ) = −∑j

n=1 an +
∑∞

n=1 an+jRn(ξ)

¤

Examples of scaling sets S ⊆ [−2π, 2π]

Proposition.

S := (2π {X < 0} − 2π) ∪ 2π {X ≥ 0}
is a scaling set.

S =
0-2 Π 2 Π

2Π 8 X < 0 < - 2Π 2Π 8 X ³ 0 <

Sketch of Proof.

For a.e. ζ ∈ S

1◦ If ζ = 2πξ, X(ξ) ≥ 0, then ζ
2 = 2π·ξ2, X(ξ

2) ≥ X(ξ) ≥ 0,

so ζ
2 ∈ S.

2◦ If ζ = 2πξ − 2π, X(ξ) < 0, then ζ
2 = 2π · ξ+1

2 − 2π,

X(ξ+1
2 ) ≤ X(ξ) < 0, so ζ

2 ∈ S.

Therefore S ⊆ 2S a.e.
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For a.e. ζ ∈ [−2π, 2π]

1◦ If ζ = 2πξ, ξ ∈ [0, 1], then ζ
2j = 2π · ξ

2j and (for j large

enough) X( ξ
2j ) ≥ 0, so ζ

2j ∈ S.

2◦ If ζ = 2πξ − 2π, ξ ∈ [0, 1], then ζ
2j = 2π · ξ+2j−1

2j − 2π,

and (for j large enough) X(ξ+2j−1
2j ) < 0, so ζ

2j ∈ S.

Thus,
⋃

j∈N 2jS = R a.e. ¤

In the following we additionally suppose that
∑∞

n=1 an = ∞.

Lemma. Suppose that a positive sequence (bn)n∈N satisfies
∑∞

n=1 b2
n < +∞,

∑∞
n=1 bn = +∞

and define Y :=
∑∞

n=1 bnRn. Then for any c, d ∈ R, c < d
we have

P (Y ∈ 〈c, d〉) > 0.

Theorem.

S =
-2 Π 0 2 Π

2Π 8X<0< -2Π 2Π 8X³0<

For every interval I ⊆ [−2π, 2π] we have 0 < |I ∩ S| < |I|.
(Neither S nor [−2π, 2π] \ S contains an interval a.e.)

K =
-4 Π 0 4 Π

H4Π 8X<0< -4ΠL \ H2Π 8X<0< -2ΠL 4Π 8X³0< \ 2Π 8X³0<

For every interval I ⊆ [−4π, 4π] we have 0 < |I∩K| < |I|.
(Neither K nor [−4π, 4π] \K contains an interval a.e.)
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Sketch of Proof.

Consider a dyadic interval J ⊆ [0, 1], i.e.

J = {R1 = ε1, . . . , Rm = εm}
for some ε1, . . . , εm ∈ {−1, 1}.
|2πJ ∩ S| = 2π · P (R1 = ε1, . . . , Rm = εm, X ≥ 0) =

= [independence of (Rn)n∈N] =

= 2π · (1
2

)m · P (Y ≥ c) > 0,

where Y =
∑∞

n=m+1 anRn, c = −∑m
n=1 anεn. Similarly,

|(2πJ − 2π) ∩ S| = 2π · (1
2

)m · P (Y < c) > 0.

Analogously, |2πJ ∩ Sc| > 0 and |(2πJ − 2π) ∩ Sc| > 0.

The calculations for K are similar. For example,

|2πJ ∩K| =

= 2π · P (
R1 = ε1, . . . , Rm = εm, X( ·2) ≥ 0, X < 0

) ≥
≥ 2π · (1

2

)m+1 · P (c < Y < d) ,

where Y =
∑∞

n=m+2 anRn, d = −∑m
n=1 anεn + am+1,

c = d− 2(am+1 − am+2).
¤
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Examples of unbounded scaling sets

Theorem.

S :=
⋃∞

k=0

(
2π

{
R1 = 1, X( ·

2k) < 0, X( ·
2k+1) ≥ 0

}− 2k+1π
)

∪ (2π {R1 = −1, X < 0} − 2π) ∪ 2π {R1 = 1, X ≥ 0}
∪ ⋃∞

k=0

(
2π

{
R1 = −1, X(·+2k−1

2k ) ≥ 0, X(·+2k+1−1
2k+1 ) < 0

}

+(2k+1−2)π
)

is a scaling set. Let K = 2S\S be the corresponding MRA
wavelet set. For every interval I such that

I ⊆ ⋃∞
k=2[−(2k−1)π,−(2k−2)π]∪⋃∞

k=2[(2
k−2)π, (2k−1)π]

we have |I ∩K| > 0.

S =
-8 Π -7 Π -6 Π -5 Π -4 Π -3 Π -2 Π -Π 0 Π 2 Π 3 Π 4 Π 5 Π 6 Π 7 Π 8 Π

K =
-8 Π -7 Π -6 Π -5 Π -4 Π -3 Π -2 Π -Π 0 Π 2 Π 3 Π 4 Π 5 Π 6 Π 7 Π 8 Π

Therefore, the topological support of K contains
⋃∞

k=2[−(2k−1)π,−(2k−2)π] ∪ ⋃∞
k=2[(2

k−2)π, (2k−1)π],

so it is a set of infinite measure.


