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Paul Erdős (1913–1996)
Photo by Kmhkmh, CC BY 3.0

Ernst G. Straus (1922–1983)
Photo: AMS Mathematical Reviews

In the 1960s Erdős and Straus used the term Ahmes series for
∞∑

k=1

1
ak

, a1 < a2 < a3 < · · · positive integers.

The main question: Is the sum ∈ Q?
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The Seated Scribe (2613–2494 B.C.), Louvre
Photo by Rama, Wikimedia Commons, CC BY-SA 3.0 fr

Ahmes was an Egyptian scribe who (re)wrote the Rhind
Mathematical Papyrus around 1550 B.C.

Alternative terms sums of unit fractions and Egyptian fractions have
finitary connotations.
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Which of these series have irrational sums?

∞∑
n=1

1
n2

= ζ(2) = π2

6 ̸∈ Q Lindemann 1882 (π is transcendental)

∞∑
n=1

1
n3

= ζ(3) ̸∈ Q Apéry 1978 (much more difficult!)

∞∑
n=1

1
n5

= ζ(5) ? open problem
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Which of these series have irrational sums?

∞∑
n=1

1
n!

= e − 1 ̸∈ Q Euler 1737 (e has infinite continued fraction)

∞∑
n=2

1
n!− 1

? open problem, posed by Erdős in the 1960s, EP #68

∞∑
n=1

1
n!(n + 2)

= 1
2 ∈ Q easy
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How fast can (ak)
∞
k=1 grow if

∞∑
k=1

1
ak

∈ Q?

For example, numbers given by a very rapidly convergent series,
e.g., ∞∑

k=1

1
2k!

are Liouville numbers and thus ̸∈ Q.
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How fast can (ak)
∞
k=1 grow if

∞∑
k=1

1
ak

∈ Q?

Consider
∞∑

k=1

1
sk

=
1
2
+

1
3
+

1
7
+

1
43

+
1

1807
+· · · =

∞∑
k=1

( 1
sk−1

−
1

sk+1−1

)
= 1

for Sylvester’s sequence s1 = 2, sk+1 = s2
k − sk + 1, so that sk ∼ c2k

0
for c0 = 1.2640847 . . ..
By shifting, ak = sk+t, we get ak ∼ C2k for C = c2t

0 , so

lim
k→∞ a1/2k

k ∈ R

can be as large as we wish.
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How fast can (ak)
∞
k=1 grow if

∞∑
k=1

1
ak

∈ Q?

Conversely,
lim

k→∞ a1/2k

k = ∞
is sufficient for

∑∞
k=1

1
ak

̸∈ Q.

Erdős (in 1975) proved that lim sup
k→∞ a1/2k

k = ∞ and ak ⩾ k1+ε for

large k are already sufficient.



New results 9/38

• One-dimensional results
E.g., (ir)rationality of certain “perturbations” of

∑
k

1
ak

.

• Higher-dimensional results
E.g., simultaneous rationality of(∑

k

1
ak

,
∑

k

1
ak + 1

, . . . ,
∑

k

1
ak + d − 1

)
∈ Qd.

• Infinite-dimensional results
E.g., simultaneous rationality of(∑

k

1
ak + t

: t ∈ N
)
∈ QN.
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Rationals are countable =⇒ easy to avoid.

Rationals are dense =⇒ difficult to miss.
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Ronald L. Graham (1935–2020)
Photo by Cheryl Graham, CC BY 3.0

Erdős and Graham, 1980, gave a possible definition of an
irrationality sequence a1 < a2 < a3 < · · · ∈ N.

(This was the third one appearing in the literature!)
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Definition
We require that ∞∑

n=1

1
an + bn

̸∈ Q

for every bounded (bn)
∞
n=1 such that bn ∈ Z \ {0}, an + bn ̸= 0.

22n is an irrationality sequence although we do not know
about 2n or n!. (Erdős and Graham, 1980, EP #264)

Is there an irrationality sequence an of this type which in-
creases exponentially? It is not hard to show that it cannot
increase slower than exponentially. (Erdős, 1986)
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Theorem: a negative result — K. and Tao, 2024

lim sup
n→∞

an+1

an
< ∞ =⇒ (an)

∞
n=1 is not an irrationality sequence.

In particular,
an = 2n

and sequences
an ∼ θn, θ > 1

are not irrationality sequences

The condition can be weakened to

lim inf
n→∞

(
a2

n

∞∑
k=n+1

1
a2

k

)
> 0
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Theorem: a negative result — K. and Tao, 2024

lim sup
n→∞

an+1

an
< ∞ =⇒ (an)

∞
n=1 is not an irrationality sequence.

Proof 1
a2

n
⩽ C

∞∑
k=n+1

1
a2

k
, an ⩾ 4C + 1

Jn :=
{

an + 1, an + 2, an + 3, . . . , an + 4C + 1
}

In :=

[ ∞∑
k=n

1
max Jk

,
∞∑

k=n

1
min Jk

]
⊂ (0,∞)

We first claim that In =
{ 1

j : j ∈ Jn
}
+ In+1.

The gaps 1
j −

1
j+1 < 1

a2
n

are smaller than the length of In+1,

∞∑
k=n+1

( 1
an + 1

−
1

an + 4C + 1

)
⩾

∞∑
k=n+1

C
a2

k
.
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Theorem: a negative result — K. and Tao, 2024

lim sup
n→∞

an+1

an
< ∞ =⇒ (an)

∞
n=1 is not an irrationality sequence.

Thus, we have In =
{ 1

j : j ∈ Jn
}
+ In+1 for all n ⩾ m.

Now we claim that the tail sums{ ∞∑
k=m

1
xk

: xk ∈ Jk for every k ⩾ m
}

fill in the whole segment Im.
Fix some x ∈ Im and inductively construct xk ∈ Jk for k ⩾ m s.t.

x ∈
n−1∑
k=m

1
xk

+ In =⇒ x =

∞∑
k=m

1
xk
.
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Theorem: a negative result — K. and Tao, 2024

lim sup
n→∞

an+1

an
< ∞ =⇒ (an)

∞
n=1 is not an irrationality sequence.

Taking
x ∈ Im ∩Q

and writing
xn = an + bn

we conclude:
there exists (bn)

∞
n=1 in [1, 4C + 1]N s.t.

∞∑
n=1

1
an + bn

∈ Q.

■
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Corollary
an = 2n is not an irrationality sequence.

Note that the representations are not explicit, e.g.,

3
4
=

∞∑
n=1

1
2n + bn

with 1 ⩽ bn ⩽ 5 for every n.
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Theorem: a positive result — K. and Tao, 2024

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n).

In particular, there exists an irrationality sequence with, say,

an ∼ 2n log2 log2 log2 n.

The proof gives more: there exists an irrationality sequence with,
say,

an = n!+ O(log2 log2 n).

Remember that we do not know if
∞∑

n=2

1
n!− 1

̸∈ Q.
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Theorem: a positive result — K. and Tao, 2024

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n).

Proof
Choose (cn)

∞
n=1 with “much slower” growth than F.

Consider a sequence (an)
∞
n=1 constructed randomly with

an ∈ ⌊F(n)⌋+ {1, 2, 3, . . . , cn}

uniformly and independently for each n ⩾ n0.
Then an ∼ F(n) and even an = F(n) + O(cn) and we claim that

P
(
(an)

∞
n=1 is an irrationality sequence

)
= 1.
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Theorem: a positive result — K. and Tao, 2024

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n).

Proof
The assumptions on the growth of F and (cn)

∞
n=1 guarantee that, for

sufficiently large m, every q ∈ Q has at most one representation

q =

∞∑
n=m

1
⌊F(n)⌋+ dn

with −cn < dn ⩽ 2cn.
The gaps between 1

⌊F(k)⌋+dk
and 1

⌊F(k)⌋+d ′
k

decay very rapidly.
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Theorem: a positive result — K. and Tao, 2024

For F : N → (0,∞), lim
n→∞ F(n + 1)

F(n)
= ∞ there exists an irrationality

sequence (an)
∞
n=1 such that an ∼ F(n)

Proof EC,q :=
{
(an)

∞
n=1 : ∃ (bn)

∞
n=mC s.t. − C ⩽ bn ⩽ C for n ⩾ mC

and
∞∑

n=mC

1
an + bn

= q
}

If an + bn = ⌊F(n)⌋+ dn is “the only possibility” for q then

EC,q =

∞⋂
n=mC

{
(an)

∞
n=1 : ⌊F(n)⌋+ dn − C ⩽ an ⩽ ⌊F(n)⌋+ dn + C

}
.

P(EC,q) ⩽ lim
N→∞

N∏
n=mC

2C + 1
cn

= 0

Take a union over q ∈ Q and C ∈ N. ■
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Once I asked: Assume that
∑ 1

nk
and

∑ 1
nk−1 are both ratio-

nal. How fast can nk tend to infinity? I was (and am) sure
that n1/k

k → ∞ is possible but n1/2k

k must tend to 1. Unfor-
tunately almost nothing is known. David Cantor observed
that ∞∑

k=3

1(k
2
) and

∞∑
k=3

1(k
2
)
− 1

are both rational and we do not know any sequence with
this property which tends to infinity faster than polynomi-
ally. (Erdős, 1986, EP #265)

(. . . ) and we could never decide if nk can increase exponen-
tially or even faster. (Erdős, 1983)
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Theorem — K. and Tao, 2024
For every d ∈ N there exists β > 1 such that{( ∞∑

k=1

1
ak

,
∞∑

k=1

1
ak + 1

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 is a strictly increasing sequence

in N such that lim
k→∞ a1/βk

k = ∞}
has a non-empty interior in Rd.

In particular, there is a sequence with lim
k→∞ a1/βk

k = ∞ and∞∑
k=1

1
ak + j

∈ Q for j = 0, . . . , d − 1. (double exponential growth)
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Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
Linear change of variables:

U
(1

x
,

1
x + 1

,
1

x + 2
, . . . ,

1
x + d − 1

)
=

(
f1(x), f2(x), f3(x), . . . , fd(x)

)
fi(x) :=

1
x(x + 1) · · · (x + i − 1)

It “decouples” the dynamics so that we can imitate the 1D proof.
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Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
1 < β <

(2d + 2
2d + 1

)1/d
, βd < α <

2d + 2
2d + 1

Nk :=

{
(2d + 1)k for 1 ⩽ k ⩽ k0,⌊

2αk⌋ for k > k0,
Mk ∼ N1/2

k

Consider the collection of sequences

A :=
{
(an)

∞
n=1 ∈ ZN : jNk−Mk ⩽ a(k−1)d+j ⩽ jNk+Mk for 1 ⩽ j ⩽ d

}
.

We want to prove Int
{( ∞∑

n=1
fi(an)

)d

i=1
: (an)

∞
n=1 ∈ A

}
̸= ∅.
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Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
We first show

sk + Rk ⊆ Sk + Rk+1,

sk :=
( d∑

j=1

fi(jNk)
)d

i=1
∈ Rd,

Sk :=
{( d∑

j=1

fi(jNk + nj)
)d

i=1
: n1, . . . , nd ∈ [−Mk,Mk] ∩ Z

}
⊂ Rd,

Rk :=

d∏
i=1

[
−
εdMk

Ni+1
k

,
εdMk

Ni+1
k

]
.



Rd results — Simultaneous rationality 27/38

Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
Using

fi(N + n) = fi(N) −
in

Ni+1 + Oi

( n2

Ni+2

)
we can rewrite

Sk =
{

sk−pk(n1, . . . , nd)−∆k(n1, . . . , nd) : n1, . . . , nd ∈ [−Mk,Mk]∩Z
}
,

pk(n1, . . . , nd) :=
( i

Ni+1
k

d∑
j=1

nj

ji+1

)d

i=1
,

∆k(n1, . . . , nd) ∈
d∏

i=1

[
−

CiM2
k

Ni+2
k

,
CiM2

k
Ni+2

k

]
.
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Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
Vandermonde =⇒{( d∑

j=1

nj

ji+1

)d

i=1
: n1, . . . , nd ∈ Z

}

contains an integer sub-lattice vdZd.
Now the argument becomes essentially 1D.
The error-term ∆k is small if

1
Ni+1

k
+

M2
k

Ni+2
k

≪ Mk+1

Ni+1
k+1

.
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Theorem — K. and Tao, 2024

Int
{( ∞∑

k=1

1
ak

, . . . ,
∞∑

k=1

1
ak + d − 1

)
: (ak)

∞
k=1 s.t. lim

k→∞ a1/βk

k = ∞}
̸= ∅

Proof
Now that we have sk + Rk ⊆ Sk + Rk+1 for k ⩾ m, we take

x ∈
∞∑

k=m

sk + Rm

and inductively construct yk ∈ Sk such that

x ∈
n−1∑
k=m

yk +

∞∑
k=n

sk + Rn =⇒ x =

∞∑
k=m

yk.

■
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Already the non-empty interior with no growth requirement was
posed as an open problem by Erdős, Graham, and Straus. (EP #268)

Corollary
For every d ∈ N{(∑

n∈A

1
n
,
∑
n∈A

1
n+1

, . . . ,
∑
n∈A

1
n+d−1

)
: A ⊂ N infinite,

∑
n∈A

1
n
< ∞}

has a non-empty interior in Rd.

Special cases:

• d = 2 claimed by Erdős and Straus.
• d = 3 posed by Erdős and Graham in 1980, proved by K., 2024,

producing a concrete ball of radius 10−24 inside the set.
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Kenneth B. Stolarsky (1942)
Photo: University of Illinois Urbana-Champaign

The following pretty conjecture is due to Stolarsky:

∞∑
n=1

1
an + t

cannot be rational for every positive integer t.
(Erdős and Graham, 1980, EP #266)
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Theorem — K. and Tao, 2024

No. There exists (an)
∞
n=1 such that

∞∑
n=1

1
an + t

∈ Q for every

t ∈ Q \ {−an : n ∈ N}.

Proof
Order the rationals as (ti)

∞
i=1.

This time use the linear change of variables U : RN → RN,

U
( 1

x + t1
,

1
x + t2

,
1

x + t3
, . . .

)
=

(
f1(x), f2(x), f3(x), . . .

)
,

fi(x) :=


1∏i

j=1(x + tj)
for x ∈ R \ {−t1, . . . ,−ti},

0 otherwise,

UQN = QN.
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Theorem — K. and Tao, 2024

No. There exists (an)
∞
n=1 such that

∞∑
n=1

1
an + t

∈ Q for every

t ∈ Q \ {−an : n ∈ N}.

Proof
We find an algorithm that generates xi ∈ Q and an ∈ N such that∞∑

n=1
fi(an) = xi for i = 1, 2, 3, . . . .

The idea is to preserve the old relations

xi ∈
∑

l⩽k−1

∑
j

fi(an(l)+j) +
∑
l⩾k

∑
j

fi(jNl) +
[
− δi,k, δi,k

]
and gradually introduce the new x’s, i.e., increase the dimension. ■
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Open problem

Is
∞∑

k=1

1
2nk − 1

̸∈ Q for any positive integers n1 < n2 < n3 < · · · ?

(Erdős and Graham, 1980, EP #257)

Is
∞∑

k=1

1
tnk − 1

̸∈ Q for every integer t ⩾ 2 and positive integers

n1 < n2 < n3 < · · · ? (Erdős, 1968)

•
∞∑

n=1

1
2n − 1

̸∈ Q conjectured by Chowla, 1947,
proved by Erdős, 1948.

•
∑

p prime

1
2p − 1

̸∈ Q posed by Erdős in the 1940s,

proved by Pratt, 2024, assuming a certain uniform version
of the Hardy–Littlewood prime tuples conjecture.
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• 2 ⩽ t1 < · · · < tm,
m∑

j=1

1
tj − 1

> 1 =⇒
m∑

j=1

∑
n∈Sj

1
tn

j − 1
∈ Q

for some S1, . . . , Sm ⊆ N with S1 ∪ · · · ∪ Sm infinite.
K. and Tao, 2024

•
{∑

n∈S

1
2n − 1

: S ⊆ N
}

has empty interior, but positive

Lebesgue measure (a fat Cantor set).

• Boes, Darst, and Erdős, 1981, showed that there exist fat,
symmetric, irrational Cantor sets.
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Open problem

Is
∞∑

n=1

1
(n + 1)(n + 2) · · · (n + f(n))

̸∈ Q whenever

f(1) ⩽ f(2) ⩽ f(3) ⩽ · · · → ∞? (Erdős and Graham, 1980)

• No if only f(n) → ∞. Crmarić and K., 2025, EP #270

Partial series with 1 ⩽ f(1) ⩽ 5, 2 ⩽ f(2), f(3) ⩽ 5, 3 ⩽ f(4), f(5), f(6), f(7) ⩽ 5; the smallest 3000 sums sorted.
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• The sums from the open problem form a set of Lebesgue
measure 0. Crmarić and K., 2025

Partial series with 1 ⩽ f(1) ⩽ f(2) ⩽ f(3) ⩽ f(4) ⩽ f(5) ⩽ f(6) ⩽ f(7) ⩽ 8; the smallest 3000 sums sorted.



Thank you! 38/38

Thank you for your attention!


