Several irrationality problems for
Ahmes series
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Paul Erdds (1913-1996) Ernst G. Straus (1922-1983)

Photo by Kmhkmh, CC BY 3.0 Photo: AMS Mathematical Reviews
In the 1960s Erd6s and Straus used the term Ahmes series for

e

k=1

a1 < a; < as < --- positive integers.

S|

The main question: Isthe sum € Q?
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The Seated Scribe (2613-2494 B.C.), Louvre

Photo by Rama, Wikimedia Commons, CC BY-SA 3.0 fr

Ahmes was an Egyptian scribe who (re)wrote the Rhind
Mathematical Papyrus around 1550 B.C.

Alternative terms sums of unit fractions and Egyptian fractions have
finitary connotations.



(Ir)rationality problems — Examples

Which of these series have irrational sums?

o
1
2

n
n=1

=((2)= %2 ZQ Lindemann 1882 (7t is transcendental)
=

P

n=1

=(3)¢Q Apéry 1978 (much more difficult!)

1
=((5)? open problem



(Ir)rationality problems — Examples

Which of these series have irrational sums?

= 1
nt
n=1
=e—1€Q Euler 1737 (e has infinite continued fraction)
=1
nZ_z nl—1
? open problem, posed by Erdés in the 1960s, EP #68
= 1
Z n'(n+2)

1
1
=1cQ easy



Irrationality vs. growth — A folklore example 6/38

oo
1
How fast can (ay)2 ; grow ifZ o e Q?
k
k=1

For example, numbers given by a very rapidly convergent series,
e.g.,

=1
2 om
k=1

are Liouville numbers and thus & Q.
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o
1
How fast can (ay)2 ; grow ifZ o e Q?
k

k=1
Consider
(o) o0
1 1 1 1
R = ( ):1
;sk 23 7 a3 T mor % si—1  Spq—1

for Sylvester’s sequence sy = 2, s1 = Sz — Sk + 1,50 that s ~ c%k
forco = 1.2640847 . . ..
fEo k
By shifting, ay = sy..¢, we get ay ~ C2 for C = 2, so
1/2k

lima/" €R
k— o0

can be as large as we wish.
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How fast can (a,)° ; grow |fZ — e Q?
k=1

Conversely,
. 1/2k
lim a,’" =o0
k— o0

is sufficient for 3"}, o- & Q.

k
Erdés (in 1975) proved that lim sup ai/z = oo and a;, > k'€ for
k—o0
large k are already sufficient.
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One-dimensional results N

E.g., (ir)rationality of certain “perturbations” of =
k
k
Higher-dimensional results
E.g., simultaneous rationality of

1 1 1
<Zak'§ak+1 ----- ;aker—JeQd'

Infinite-dimensional results
E.g., simultaneous rationality of

<;akl+t:t€N> e QY.




Heuristics that often actually works! 10/38

Rationals are countable = easy to avoid.

Rationals are dense = difficult to miss.
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Ronald L. Graham (1935-2020)

Photo by Cheryl Graham, CC BY 3.0

Erd6s and Graham, 1980, gave a possible definition of an
irrationality sequence a; < a; < az < --- € N.

(This was the third one appearing in the literature!)
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We require that

o0

1
Zan+bn zQ

n=1

for every bounded (b,)¢° ; such that b, € Z\ {0}, a, + b, # 0.

22" s an irrationality sequence although we do not know
about 2" or nl. (Erdés and Graham, 1980, EP #264)

Is there an irrationality sequence ay, of this type which in-
creases exponentially? It is not hard to show that it cannot
increase slower than exponentially. (Erdés, 1986)
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. On+1 " N .
limsup = < 0o = (@,)%%, is not an irrationality sequence.
n—oco dn
In particular,

an S 2”

and sequences
a,~0", 0>1

are not irrationality sequences

The condition can be weakened to

= 1
I|nrr_1>|or<1)f (an g az> >0
k=n-+1 k
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dn+1

lim sup

< oo = (ap);2,isnotanirrationality sequence.
n—oo  dn

CZ a, > 4C+1

k= n+l
Jy = {an+1,an+2,an+3,...,an+4C+1}

(.¢] (0.¢]

1 1
In = . ; C (0,
. [Z max Jy m|an] (0, c0)
k=n k=n

We first claim that /, = {jl 1€ dn} + g1

The gaps == /Tl < a% are smaller than the length of /41,

(0.¢)
1 1 C
— > -
2 (a,,+l an+4C+1) 2 a2

k=n+1 k=n-+1
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an+1

lim sup < oo = (ap);2,; isnotanirrationality sequence.

n—oco dp

Thus, we have I, = jl 1 j € J,,} + Ih1 foralln > m.
Now we claim that the tail sums

21
{Z — Xy € Jy foreveryk > m}
Xk

k=m

fillin the whole segment /,,.
Fix some x € I, and inductively construct x, € J, fork > m s.t.

o0

nfll 1
xezx—k—l—/n = x:ZX—k.
k=m
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an+1

lim sup < oo = (a,),isnotanirrationality sequence.

n—oo Qp

Taking
Xe€l,NQ
and writing
Xn = an + bn
we conclude:
there exists (b,)32, in [1,4C + 11N sit.
o0
1
€Q
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a, = 2" is not an irrationality sequence.

Note that the representations are not explicit, e.g.,

3_i 1
4_n:lzn+b,,

with 1 < b, < 5 for every n.
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F 1
For F: N — (0, c0), lim M

n—co  F(n)
sequence (a,)32, such thata, ~ F(n).

= oo there exists an irrationality

In particular, there exists an irrationality sequence with, say,

ap ~ N log, log; log, n

The proof gives more: there exists an irrationality sequence with,
say,
a, = n!' 4 O(log, log, n).

Remember that we do not know if Z Z Q.
n=2

nl—1
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For F: N — (0,oo),n|Lm F(Ilz(—:)l)

sequence (a,)32, such thata, ~ F(n).

= oo there exists an irrationality

Choose (cp)52 ; with “much slower” growth than F.
Consider a sequence (a,)7° ; constructed randomly with

an € [F(n)| +1{1,2,3,...,¢cn}

uniformly and independently for each n > ny.
Then a, ~ F(n) and even a, = F(n) + O(c,) and we claim that

]P’((a,,),?ozl is an irrationality sequence) =1.
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F 1
For F: N — (O,oo),nli_)m (I,:(,t))

sequence (a,)2; such thata, ~ F(n).

= oo there exists an irrationality

The assumptions on the growth of F and (c,)5° ; guarantee that, for
sufficiently large m, every g € Q has at most one representation

=Y Forea

W|th _Cn < dn < 2Cn.
The gaps between L

HOIEE] and FT J+d’ decay very rapidly.
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For F: N — (0, c0), lim F(g(—,:)l)
n—o00

sequence (a,)22 such thata, ~ F(n)

= oo there exists an irrationality

Ecqi= {(a,,)g;l £ 3 (bp)2 . St. — C < by < Corn > me

andZan1 —}

If a, + b, = |F(n)| + dn is “the only possibility” for g then

Ecqg= ﬂ {(an)p2; : |F(n)] +dn—C < ap < [F(n)] +dn+C}.

n=mc N
. 2C+1
N—o0 Cn
n=mc

Take aunionoverg € Qand C € N. |



R results — Simultaneous rationality

Once | asked: Assume that 3” .- and 3~ 1 are both ratio-
nal. How fast can ny tend to infinity? | was (and am) sure
that ni/k — 00 Is possible but ni/zk must tend to 1. Unfor-
tunately almost nothing is known. David Cantor observed

that

=1 =1
Z — and Z T —

3 K
k=3 (z) k=3 (2) —1
are both rational and we do not know any sequence with
this property which tends to infinity faster than polynomi-
ally. (Erdés, 1986, EP #265)

(...) and we could never decide if n, can increase exponen-
tially or even faster. (Erdés, 1983)



R results — Simultaneous rationality

For every d € N there exists 3 > 1 such that

: (ak)2; is a strictly increasing sequence

k—00

k
in N such that lim a,l(/ﬁ :oo}

has a non-empty interior in R¢.

/B*

. . Q . 1
In particular, there is a sequence with kllm a'" =ocoand

— 00
(e.¢]

1
Z - € Qforj=0,..., d — 1. (double exponential growth)
= Gkt




R results — Simultaneous rationality

Int{(i : 3

1 L1/
— o,y ————— | (g st lim a =
— ay % a,+d— l) ( k)kfl kLmoo & OO} 7&@

Linear change of variables:

1 1 1 1
o

;'X+l'x+2""'x+d—1> = (L0, £, (), ..., falx))

1
i) = D =1

It “decouples” the dynamics so that we can imitate the 1D proof.



R results — Simultaneous rationality

(o¢]

00 1 1 - . .
Int{(; szm> t(ar) ey st klmwai/ﬁ = oo} #0

k=1 k=1
2d 421\ 1/d ; 2d 42
1< <<7) < <
b<{2g71 BT << gt

2d + 1)k forl < k < ko,
Nk::{( 1) O M~ N2

LZ“kJ for k > ko,

Consider the collection of sequences

A= {(an)52, € ZN : jNe—My < a(x_1ya+j < jNk+My forl <j < d}.

d

We want to prove Int{ <ifi(an)) D (an)p, € A} # ().
n=1

i=1



R results — Simultaneous rationality

o0

Int{(; G—Zm> s (ak)pe, st k||—>mooa’l‘/6 :oo} 20

k=1 k k=1

We first show
Sk + Rk C Sk + Riy1,

d
sci=(Y_fiiMo)_ €Y,
j=1 -
d
Sk = {(Zf/(/NkJrn,)) S N1, ... Ng € [=My, My] QZ} CRY
j=1 i=1
d
Ede Ede
Rk = H _Nl+l ! Nl+l]
=i k k



R results — Simultaneous rationality

Using
in n?
fi(N +n) = fi(N) — N,.H+o,(N,+2)
we can rewrite
Sk = {Sk PNy, ...,ng)=Ax(ny,...,ng) : n ng €| Mkka]ﬂZ}
d

k
CiM2 CiM2
Ak(nl’ - ’nd) € H{ NIH-Z’ NI+2:|



R results — Simultaneous rationality

1 1 . .
Int{ (Z a' Z m) (ag)pey st kllm ai/ﬁ’ = oo} £ ()

—00
k=1 k=1

Vandermonde —

d n: \d
(S, memect)

=L

contains an integer sub-lattice v4Z7.
Now the argument becomes essentially 1D.
The error-term Ay is small if

1 M} My 1

T T = — =
i1 i+2 i+l
N Ny N




R results — Simultaneous rationality

o l o l " : )
'”t{(z o g ra—1) @t im @/ = oo} 10

k=1 k=1 =

Now that we have s, + Ry C Sk + Rx1 fork > m, we take

(e.0]
X € Zsk-f—Rm

k=m

and inductively construct y, € Sy such that

n—1 00 00
xGZyk+Zsk+Rn — x:Zyk.
k=m k=n k=m



R results — Simultaneous rationality

Already the non-empty interior with no growth requirement was
posed as an open problem by Erdés, Graham, and Straus. (EP #268)

Foreveryd € N
1 1 1 1
-, — ., ——— ) : AC Ninfinite, -
UE ST g X gy A Nininite, 3 2 < o)
neA neA neA neA
has a non-empty interior in R¢.
Special cases:

d = 2 claimed by Erdds and Straus.

d = 3 posed by Erdés and Graham in 1980, proved by K., 2024,
producing a concrete ball of radius 10~2* inside the set.
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Kenneth B. Stolarsky (1942)

Photo: University of Illinois Urbana-Champaign

The following pretty conjecture is due to Stolarsky:

= 1
HZ_lamLt

cannot be rational for every positive integer t.
(Erdés and Graham, 1980, EP #266)
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1

€ Q for ever
anp+t Q y

oo
No. There exists (a,)52 ; such that Z
n=1

te Q\{—a,:neN}L

Order the rationals as (¢;)°;.
This time use the linear change of variables U: RY — RN,

1 1 1
U<X+t1YX+t2'x+t3""> — (fl(x)vfz(x),@(X),...),
L

filx) = q Tz x + )
0 otherwise,

uQN = QY.

forx e R\ {—ty,..., —t},
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oo
. 1
No. There exists (a,)7° ; such that Z .
—. Unp

; € Q forevery

te Q\{—a,:neN}L

We find an algorithm that generates x; € Q and a, € N such that

> filan) =x fori=1,2,3....

n=1

The idea is to preserve the old relations

Xi€ D Y filany)+ Y D iGN+ [— ik 8i]

<k—1 § >k |

and gradually introduce the new x’s, i.e., increase the dimension. l
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o
1 e
Is Z Fr— ¢ Q for any positive integersny; <n; <ns < ---?
k=1

(Erd6s and Graham, 1980, EP #257)

(o)
l 3 g . .
Is kZ 1 ¢ Q for every integert > 2 and positive integers
=il

n<np<ng<---? (Erdds, 1968)
— 1
Z 1 ¢ Q conjectured by Chowla, 1947,
=t proved by Erdds, 1948.
1 ’” .
Z 1 ZQ posed by Erdds in the 1940s,
p prime

proved by Pratt, 2024, assuming a certain uniform version
of the Hardy-Littlewood prime tuples conjecture.
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=1
2< ¢t oo
L= th—l
=1 j= 1n€S,
forsome Sy, .. ., Sm C Nwith S; U --- U S, infinite.

K. and Tao, 2024

1
{ Z 1 SC N} has empty interior, but positive
nes

Lebesgue measure (a fat Cantor set).

Boes, Darst, and Erdds, 1981, showed that there exist fat,
symmetric, irrational Cantor sets.
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Open problem
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—

3
4
1
2
1
4




Thank you! 38/38



