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THE BELLMAN FUNCTION TECHNIQUE

- Inspired by Bellman'’s work on the optimal control in the 1960s
- Burkholder introduced the trick to harmonic analysis in the 1980s
- Nazarov, Treil, and Volberg started shaping it into a powerful
“method” in the 1990s
- The main idea is:
‘ general estimate

= ‘ existence of a function with certain convexity properties

— \ methodical search for such function

- It can also be thought of as a “clever induction on scales” with
carefully chosen control parameters

- This presentation is a case study, rather than an overview



ELLIPTICITY AND p-ELLIPTICITY

Q C RY an open set
A: Q — C9%9 a matrix function with L coefficients
(Note: non-smooth and complex)

Ais elliptic if 3IA, A € (0,00) sit.

NP for¢ e CY, forae. xeQ

Re <A(X)§7€>Cd
( A |n] for &,n e CY, forae.xeQ
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A'is p-elliptic for p € (1, 00) if additionally 3A, € (0, c0) s.t.

Re<A(x)§, £+ 1-2/p| §_>Cd > Apl¢)? forg e forae xeQ



PROPERTIES OF p-ELLIPTIC MATRIX FUNCTIONS

A, () = the class of p-elliptic matrix functions on Q

- Ap(Q) = Ay (), where 1/p" +1/p =1

- Ap(Q) increases in p € (1,2] and decreases in p € [2,c0)
- {elliptic on Q} = A4,(Q)

- {realellipticon Q} = (1] Ay (Q)

p€(1,00)



HISTORY OF p-ELLIPTICITY

Re<A(x)£, E+1-2/p| §_>Cd > Apl¢)? forg e forae xeQ

- Introduced by Carbonaro and Dragicevic (2016)

- Avariant of the condition was introduced by Cialdea and Maz'ya
(2005) to characterize LP-contractivity of the generated semigroup

- An equivalent condition was introduced by Dindos and Pipher
(2016) in the context of regularity theory of elliptic PDEs



DIVERGENCE-FORM OPERATORS

Boundary conditions reflect the choice of %:

. Dirichlet: % = H)(Q) = C=(%Q) in H'(Q)
- Neumann: % = H'(Q) = W"(Q)
- mixed: % = {ulq : u € C(RI\N} in H'(Q), T C 99 closed

n

Divergence-form operator informally: “La o u = — div(AVU)

Rigorously:

<LA’%U7V>L2(Q) = / (AVU, VV) forueD(law), ve ¥,
Q

where D(La%) := {u € % : RHS extends boundedly to L*(Q)}

(7% )10 is the operator semigroup on L2(Q2) generated by —L4 o



TRILINEAR EMBEDDING

Take p,q,r € (1,00) st.1/p+1/g+1/r=1

Theorem (Carbonaro, Dragicevi¢, K., and Skreb (2020))

Suppose that A, B, C : Q — C9<9 are max{p, q, r}-elliptic. Then for
fe(Pn®)(Q), g € (LYNL3(Q) and h € (LN L*)(RQ) we have

[ T AITE ol |97 bl dx < € Wiy Naley Il

When Q = RY, the same conclusion holds if only: A is p-elliptic, B is
g-elliptic and (14 g/r)-elliptic, C is r-elliptic and (1+ r/q)-elliptic

The embedding constant C only depends on p, g, r and the
x-ellipticity constants of A, B, C; in particular the estimate is
“dimension-free”



APPLICATIONS OF THE TRILINEAR EMBEDDING

- By “removing absolute values” we, in particular, bound the
following semigroup paraproduct:

Of 1) = [ [ wlttua)f eltlar)g eltlewIh
for
v =27, g =e

a possible beginning of a paradifferential calculus for complex
divergence-form operators



APPLICATIONS OF THE TRILINEAR EMBEDDING

- Auscher, Hofmann, and Martell (2012) proved boundedness of the
“conical” square function:

1/2
A — A 2 dydt
(€SN = ( I IFEAON )

for real elliptic A; our main theorem refines their result
- Kato—Ponce inequalities, i.e., fractional Leibniz rules:

||L %(fg) LS(Q) (HL ?/fHLD‘\(Q)Hg”Lq“ +”f”LPZ(Q)HLf,%gHqu(QQ

where 1/s =1/p1+1/g1 =1/p2 +1/q2, B € (0,1/s)




A TOY-PROBLEM

For a dyadic interval | ¢ R and a locally integrable function f: R — C

denote ]
= m /f
1 Ji

Let us translate the problem from the semigroup setting to a dyadic
martingale setting:

(t,x) +— dyadic interval |
scale: t — ]
position: X +— left endpoint of |
Jo~ g -+ dxdt — > [ -
| dyadic interval
(Tef)(x) — i
(VT)(x) — (D= D)



A TOY-PROBLEM

The toy-model of our estimate:

S MO 51— @l 51N = (]

| dyadic interval
S C Il ry 191l ioqry 101l ()
This estimate can be shown very easily using:
- the well-known bounds for the dyadic martingale maximal
function (in probability: Doob’s inequality),
- the well-known bounds for the dyadic square function (in

probability: the Burkholder-Davis-Gundy inequalities)

However, we want to give an “optimal control proof,” which will
translate to our setting (where maximal and square function bounds
are no longer available)



THE BELLMAN FUNCTION RESTATEMENT

Rewrite the problem in terms of the averages:

1
f g,h): |[| Z |j| | f>/ heﬂ >jrlght‘ §’<h>heﬂ_ <h>}rr’ght’

JCI
as the estimate:
i(f, g, h) < C(AP)"P (g1 (1hI" < € (L (AP +2 (191 +1 (1))
Define the abstract Bellman function:

B(U,V, w, Ua Va W) = Supcbl(fag?h)a
f.9,h

where the supremum is taken over all f, g, h st.
Mr=u, (@) =v, (hyy=w, (") =U, {91°), =V, (|h"), =

1



THE BELLMAN FUNCTION RESTATEMENT

(B1) Domain:
uv,weC, U V,Wel[0,00), JulP<U, VIV, |w W

(B2) Range:
0 < B(u,v,w,U,V,W) < C (U + 1V +1w)

(B3) Certain concavity:

1
B(u,v,w,U,V, W) > §B(U1,V17W1, Uq, Vo, Wy)

—_

+ 7B(U2, Vo, W, U27 V27 W2)

+1|u +u|1|v v\q\vv W, |
21 221 221 2

N

whenever u = %(LH +Uuy), v= %(w + v,), etc. and all three 6-tuples
belong to the domain



THE BELLMAN FUNCTION RESTATEMENT

Substitute Au = 3(uy — uy), etc.
Assume that B is C' and “piecewise” C*:

(B3') Infinitesimal version:

f%( B ) (u,v,w, U,V, W) (Au, Av, Aw, AU, AV, AW) > |ul|Av]|Aw]|
quadratic form at a point on a vector
(33) Taylor’s:fc;rmula (83/)

convexity of the domain
— (

(B3") B3)



THE BELLMAN FUNCTION RESTATEMENT

Sufficiency of (B1)-(B3)

Apply (B3) n times:

|| B( B (@)s h)y s (P (9%, <hr>1)
Z |/ B( y,49),, )y, <fp>/ ) <gq>1 ) <hr>1)

JCI

=" -
1
+ Z | <f>] j[eft < >/r/ght| §| <h>lleﬁ_ <h>lrlght|
JCI
1>27"1

Use (B2) and let n — oo
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CONSTRUCTION OF B

From a predating paper by K. and Skreb (2016)
Motivated by (B2) we make the initial ansatz:

B(u,v,w,U,V,W) = C(%U+%V+}W) — a(u,v,w)

Properties (B1), (B2), (B3’) can now be restated as the following
properties of Q

(A1) Domain: C3

(A2) Range:
0 < a(u,v,w) < C(JulP + V|9 + |w|")

(A3') Certain convexity:

( d*a ) (u,v,w)(Au, Av, Aw) > 2|ul|Av]|Aw|
S~~~ —_——— ———— ——

quadratic form ¢ 5 point on a vector



CONSTRUCTION OF B

WLOG assume g > r and make another ansatz motivated by (.A2):

V|9 IWIr)
ulP” Julp
—~

t S

a(u,v,w) = |ul? ’y(

Consult the literature:

- a single variable function 7y(t) was constructed by Nazarov and
Treil (1995) and it was used in all bilinear embeddings;

- it is made of three powers of t: 1,t¢,t;

- try to make Y(t,s) out of linear combinations of powers of t,s

16



CONSTRUCTION OF B

ar + bit+ ¢is; 1T<s<t
Oz+b2t+CzS"i'; s<1<t
Ay + batasT™a 4 4P t<s<1
as + b5t% +Cst%S1_% +dss; t<1<s
Qo+ bet + CotTs' 0 +des;  1<t<s

Adjust the coefficients so that 7y is C'



CONSTRUCTION OF B

a+ bt +cs; 1<s<t
a
aol=c | pt 4 57, P
L, 2

SR 4 BT o+ s St
2 1 1 a1

V(b s) = =50 4 PrasrTa 4 HEROS, £ s <
2ar(p—1)—b(q+1) ba®> .2 | ba(q—n) ;2 -2
2r(p—1) + zp((?_z)tq ot Zr(q_z)tas q

+Ws; t < —I < S

n.2 g2 el
0+ satyt+ samgtis 7+ #5s, 1<t

Choose a, b,c > 0 appropriately and we are done!



PROOF OF THE TE — SPECIAL CASE

Let us illustrate the proof of the trilinear embedding in the very

special case (also known previously):
d=1 Q=R, A=B=C=1 (one-dimensional heat semigroups)

Assume for simplicity that B € C* (mollify it)
ulx, t) == (TeNHX), ..., U, t) = (TfP)(X), ...
b(x,t) := B(u(x,t), v(x, t), w(x, 1), U(x, t), V(X, t), W(x, 1))
= (0 — 19)b(x,t) = (VB)(U,V,...)- (8 — 307)(u,v,...)

=0
— H(*B)(u,v,...)(0u, byv,...)

Using (B3') we get
lu(x, t)] |8xv(x, t)] |Oxw(x, t)| < (8r — 3057)b(x, t)

19



PROOF OF THE TE — SPECIAL CASE

Integrating by parts and using B > 0 we get for §, M > 0:
/ ROGM — £) |u(x, B)] [Bxv(x, 1)) |8sw(x, )] dx dt
Rx(8,M—6)
< / R(x, &) b(x,M — ) dx
R
Letting 6 — 0 and using (B2):

/ R(x,M —t) Ju(x, t)| |Oxv(x, t)| |oxw(X, t)| dxdt < b(0, M)
Rx (0,M)

C
V2mM

<

L - 1 _2 1 2
G / f)lPem dy + / l9(v)|%e~ 5 dy + - / Ih(y)I"e=# dy)
P Jr q Jr rJg

20



PROOF OF THE TE — SPECIAL CASE

Now we have
V2rMk(x, M = 1) [(TA)0)] 1(Teg) (] [(Teh) ()] dxdt
Rx(0,M)
<C (2l + 2glhem + Hihle)

i.e, homogenizing back,

V2rMR(X, M — t) [(TH)()] [(Teg)' ()] [(Teh)’ (x)] dx dt
Rx (0,M)
< Clllee@yllgllamy 1Dl (m)

Observe that vV2rM R(x,M —t) — 1 as M — oo uniformly over
(x,t) € [-R,R] x (0,N], so let M — oo, R = 0o, N — oo to obtain

/R(O )\(th)(X)I\(Ttg)'(X)II(Tth)’(X)ldxdt<CHﬂILD(R)IIQHLQ(R)IIhIIU(R)
x (0,00

In this particular case we did not use the structure of B
21



PROOF OF THE TE — GENERAL CASE

What is the relation to p-ellipticity?

Forat: C* - R, A,B,C € C¥9, (u,v,w) € C3, and (¢,n,€) € (C9)° we
define the generalized Hessian form of ¢ with respect to (A, B, C),

e (u, v, w); (¢, )],
as the standard inner product of

[ReA —ImA [Re (]
ImA  ReA Im ¢
ReB —ImB Ren

ImB ReB Imn

ReC —ImC Re¢

ImC ReC 1 LImg]

22



PROOF OF THE TE — GENERAL CASE

and

Re (]
Im ¢
Ren
Imn
Re¢
LIm ¢

Here one has to interpret Hess((; (u,v,w)) as the 6 x 6 real Hessian
matrix of the function

(Hess(av; (u, v, W) ® Iga) € (RY)°

6 . . .
R — Rv (ul’7 uﬁvl’vviawl’awi) — &(ul’+ /U,‘,Vr—‘r Ivi7Wf+ IWi)

23



PROOF OF THE TE — GENERAL CASE

Lemma
If (u, v, w) = |u|?|v|?|w|¢ for some a, b, ¢ € [0, o0), then

Hey “T(u, v, w); (¢ m, )]
> Sl (o) + @[+ adofEf
— 2n@)+nE)| | [2] - 268 +A|E | ] - 208®)+a 0] 2| )

We see that appropriate p-ellipticity conditions can (potentially)
guarantee generalized convexity properties

It is now very convenient (or even crucial?) that the constructed
Bellman function B is made of powers.

2%



THANK YOU FOR YOUR ATTENTION!



