Lower bounds for the L^{*p*} norms of some Fourier multipliers

Vjekoslav Kovač* (University of Zagreb) joint work with Aleksandar Bulj, Andrea Carbonaro, and Oliver Dragičević

Extremal Problems in Harmonic Analysis, Convexity, and Bellman Functions ICERM, Providence December 2, 2022

* Supported by the Croatian Science Foundation grant UIP-2017-05-4129 (MUNHANAP)

Lower estimates

Lower estimates O●OO	The complex Riesz transform	Generalization	Smooth phases	The Riesz group

UPPER VS. LOWER ESTIMATES

Upper estimates for operator norms

 $||T||_{\mathsf{L}^p\to\mathsf{L}^p}\leqslant C(T,p)$

are only as good as we can match them with lower estimates

 $||T||_{\mathsf{L}^p\to\mathsf{L}^p} \ge c(T,p).$

The latter might amount to merely constructing an **example** of f s.t.

 $||f||_{\mathsf{L}^p} = 1$ and $||Tf||_{\mathsf{L}^p} \ge c(T,p)$,

but concrete examples can be quite complicated.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
SHARP ESTIN	IATES			

Let $(T^k)_{k\in\mathbb{Z}}$ or $(T^{\lambda})_{\lambda\in\mathbb{R}}$ be a one-parameter group of bounded linear operators on every $\mathsf{L}^p(\mathbb{R}^n), p \in (1,\infty)$.

- T^{λ} are just integer or real powers of T.
- A typical situation with singular integrals.

In this talk the estimates are considered *sharp* if they are of the form

 $c(T) \,\kappa(\lambda, p) \leqslant \|T^{\lambda}\|_{\mathsf{L}^{p} \to \mathsf{L}^{p}} \leqslant C(T) \,\kappa(\lambda, p),$

 $\|T^{\lambda}\|_{\mathsf{L}^{p}\to\mathsf{L}^{p}}\sim_{T}\kappa(\lambda,p),$

i.e., we insist on finding sharp asymptotics simultaneously in λ and p.

Our techniques for lower bounds will occasionally give **exact** constants, but the exact upper bounds are rarely available.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
ON UPPER E	STIMATES			

$$(S_\Omega f)(x):=\mathrm{p.\,v.}\int_{\mathbb{R}^n}f(x-y)rac{\Omega(y/|y|)}{|y|^n}\,\mathrm{d}y$$

$$\begin{aligned} \|S_{\Omega}\|_{\mathsf{L}^{1}(\mathbb{R}^{n})\to\mathsf{L}^{1,\infty}(\mathbb{R}^{n})} &\lesssim_{n} \|\Omega\|_{\mathsf{L}^{2}(\mathbb{S}^{n-1})} \\ \|\Omega\|_{\mathsf{L}\log\mathsf{L}(\mathbb{S}^{n-1})} \end{aligned}$$

Christ and Rubio de Francia (1988), Hofmann (1988), <u>Seeger (1996)</u>, Tao (1999), etc. In combination with the easy L^2 bound and the real interpolation this often gives sharp L^p estimates.

In this talk we are only discussing the lower estimates.

The complex Riesz transform

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
	000000			

POWERS OF THE COMPLEX RIESZ TRANSFORM

 $R = R_2 + iR_1$, $R_1, R_2 = 2D$ Riesz transforms

As Fourier multipliers:

$$(\widehat{R^kf})(\zeta) = \left(\frac{\overline{\zeta}}{|\zeta|}\right)^k \widehat{f}(\zeta); \quad \zeta \in \mathbb{C}.$$

As singular integrals:

$$(R^{k}f)(z) = \frac{i^{|k|}|k|}{2\pi} \text{ p. v.} \int_{\mathbb{C}} f(z-w) \frac{(w/|w|)^{-k}}{|w|^{2}} \, \mathrm{d}A(w)$$

 R^2 is the Ahlfors–Beurling operator; its symbol is $\left(\frac{\overline{\zeta}}{|\zeta|}\right)^2 = \frac{\overline{\zeta}}{\zeta}$.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
	000000			
				1

PROBLEM BY IWANIEC AND MARTIN

Problem [Iwaniec and Martin (1996)]. What is the asymptotics of $||R^k||_{L^p(\mathbb{C})\to L^p(\mathbb{C})}$?

$$p \in (1,\infty), \qquad rac{1}{p} + rac{1}{q} = 1, \qquad p^* := \max\{p,q\}$$

 Dragičević, Petermichl, and Volberg (2006) and Dragičević (2011) resolved the case of even k ∈ Z \ {0}:

$$\|R^k\|_{\mathsf{L}^p(\mathbb{C})\to\mathsf{L}^p(\mathbb{C})}\sim (p^*-1)\,|k|^{1-2/p^*}.$$

- Examples were certain truncations of $|z|^{-2/p}$, which is **not** in $L^{p}(\mathbb{C})$.
- Even k are easier because $R^2 \colon \partial_{\overline{z}} f \mapsto \partial_z f.$
- Odd k are harder as we only have $R: (-\Delta)^{1/2} f \mapsto -2i\partial_z f.$

Lower estimates	The complex Riesz transform ○○○●○○○	Generalization	Smooth phases	The Riesz group
_				

THE ASYMPTOTICS

Theorem [Carbonaro, Dragičević, and K. (2021)].

$$\begin{split} \|R^{k}\|_{\mathsf{L}^{p}(\mathbb{C})\to\mathsf{L}^{p}(\mathbb{C})} &\sim (p^{*}-1) \, |k|^{2|1/2-1/p} \\ &\sim p^{*} \, |k|^{1-2/p^{*}} \\ \|R^{k}\|_{\mathsf{L}^{1}(\mathbb{C})\to\mathsf{L}^{1,\infty}(\mathbb{C})} &\sim |k| \end{split}$$

for $p \in (1, \infty)$ and $k \in \mathbb{Z} \setminus \{0\}$.

In the paper we gave 3 different proofs of the lower estimate.

Theorem [Carbonaro, Dragičević, and K. (2021)].

$$\|R^k\|_{\mathsf{L}^p(\mathbb{C})\to\mathsf{L}^p(\mathbb{C})} \ge \frac{\Gamma(1/p)\Gamma(1/q+k/2)}{\Gamma(1/q)\Gamma(1/p+k/2)} \ge \frac{1}{2}(p-1)\,k^{1-2/p}$$

for $p \ge 2$ and $k \in \mathbb{N}$.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
_				

APPROXIMATE EXTREMIZERS

$$f=f_{k,p,arepsilon}, \quad g=g_{p,arepsilon} \quad ext{ for } arepsilon\in(0,1] \ R^k\!f=g$$

 \widehat{g} is a truncation of $|\zeta|^{-2/q} = F.T.$ of $|z|^{-2/p}$ \widehat{f} is a truncation of $\left(\frac{\zeta}{|\zeta|}\right)^k |\zeta|^{-2/q} = F.T.$ of $\left(\frac{z}{|z|}\right)^k |z|^{-2/p}$ (up to multiplicative constants)

Decomposing into Gaussians (Stein's trick):

$$\widehat{g}(\zeta) := \int_{\varepsilon}^{1/\varepsilon} e^{-\pi t^2 |\zeta|^2} t^{1-2/p} \, \mathrm{d}t; \quad \zeta \in \mathbb{C}$$
$$\widehat{f}(\zeta) := \left(\frac{\zeta}{|\zeta|}\right)^k \int_{\varepsilon}^{1/\varepsilon} e^{-\pi t^2 |\zeta|^2} t^{1-2/p} \, \mathrm{d}t; \quad \zeta \in \mathbb{C}$$

Lower estimates	The complex Riesz transform ○○○○○●○	Generalization	Smooth phases	The Riesz group

APPROXIMATE EXTREMIZERS

$$f(z) = \mathbf{i}^{k} \pi^{-1/p-1/2} \left(\frac{z}{|z|}\right)^{k} |z|^{-2/p} \int_{0}^{\pi/2} \left(\underbrace{\int_{\pi(\sin\vartheta)^{2}\varepsilon^{-2}|z|^{2}}^{\pi(\sin\vartheta)^{2}\varepsilon^{-2}|z|^{2}} x^{1/p-1/2} e^{-x} \, \mathrm{d}x}_{\longrightarrow \Gamma(1/p+1/2) \operatorname{as} \varepsilon \to 0+}\right) \frac{\sin k\vartheta \, \mathrm{d}x}{(\sin\vartheta)^{2/p}}$$

($k \in \mathbb{N}$ odd)

$$\|f\|_{L^{p}(\mathbb{C})} = 2^{2/p} \pi^{-1/2} \Gamma\Big(\frac{1}{p} + \frac{1}{2}\Big) I_{k,1/p}\Big(\log\frac{1}{\varepsilon}\Big)^{1/p} + O_{k,p}^{\varepsilon \to 0+}(1)$$

where

$$I_{k,lpha} := \int_0^{\pi/2} \, rac{\sin k artheta}{(\sin artheta)^{2lpha}} \, \mathrm{d}artheta = rac{\pi^{1/2}}{2} \cdot rac{\Gamma(1-lpha)\Gamma(lpha+k/2)}{\Gamma(lpha+1/2)\Gamma(1-lpha+k/2)}$$

Lower estimates	The complex Riesz transform 000000●	Generalization	Smooth phases	The Riesz group
_				

APPROXIMATE EXTREMIZERS

$$g(z) = \frac{1}{2} \pi^{-1/p} |z|^{-2/p} \underbrace{\int_{\pi\varepsilon^2 |z|^2}^{\pi\varepsilon^{-2} |z|^2} x^{1/p-1} e^{-x} \, \mathrm{d}x}_{\longrightarrow \Gamma(1/p) \text{ as } \varepsilon \to 0+}$$

$$\|g\|_{L^p(\mathbb{C})} = 2^{-(1-2/p)} \Gamma\Big(rac{1}{p}\Big) \Big(\lograc{1}{arepsilon}\Big)^{1/p} + O_p^{arepsilon o 0+}(1)$$

Finally,

$$\|R^k\|_{\mathsf{L}^p(\mathbb{C})\to\mathsf{L}^p(\mathbb{C})} \ge \lim_{\varepsilon\to 0+} \frac{\|g_{p,\varepsilon}\|_{L^p(\mathbb{C})}}{\|f_{k,p,\varepsilon}\|_{L^p(\mathbb{C})}}$$

gives the desired constant.

Generalization

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
		000000		
				1

SPHERICAL HARMONICS

Spherical harmonics of degree $j \ge 0$ are restrictions to \mathbb{S}^{n-1} of harmonic homogeneous polynomials in *n* variables of degree *j*.

An example in n = 2 dimensions: $Y(x, y) = (x + iy)^k$, $Y(z) = z^k$, $Y(e^{i\varphi}) = e^{ik\varphi}$ for $k \in \mathbb{Z}$. Why are they important for us?

Bochner (1951): Y = a spherical harmonic of degree *j*.

$$K(x) = Y\left(\frac{x}{|x|}\right)|x|^{-n/p} \implies \widehat{K}(\xi) = i^{-j}\gamma_{n,j,n/q}Y\left(\frac{\xi}{|\xi|}\right)|\xi|^{-n/q}$$

Stein and Weiss (1971):

$$\begin{split} K(x) &= p. v. Y\left(\frac{x}{|x|}\right) |x|^{-n} \implies \widehat{K}(\xi) = i^{-j} \gamma_{n,j,0} Y\left(\frac{\xi}{|\xi|}\right) \\ \gamma_{n,j,\alpha} &:= \pi^{n/2-\alpha} \frac{\Gamma((j+\alpha)/2)}{\Gamma((j+n-\alpha)/2)} \end{split}$$

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
0000	000000	000000	0000000	000000

A GENERAL LOWER BOUND FOR MULTIPLIERS T_m

Theorem [Bulj and K. (2022)]. Take $p \in [1, 2]$, m = a bounded homogeneous measurable symbol, $(Y_i)_{i=0}^{\infty}$ a sequence s.t. • Y_i is a spherical harmonic on \mathbb{S}^{n-1} of degree *j*; • $u := \sum_{i=0}^{\infty} Y_i$ converges in $L^q(\mathbb{S}^{n-1})$; • $v := \sum_{i=0}^{\infty} i^{-j} \gamma_{n,j,n/p} Y_j$ converges in $L^2(\mathbb{S}^{n-1})$. For p > 1, $q < \infty$: $\|T_m\|_{\mathsf{L}^p(\mathbb{R}^n)\to\mathsf{L}^p(\mathbb{R}^n)} \ge \frac{\gamma_{n,0,n/q}}{\sigma(\mathbb{S}^{n-1})^{1/p}} \frac{|\langle m,v\rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}|}{\|u\|_{\mathsf{L}^q(\mathbb{S}^{n-1})}}$ $l \geq c_n (q-1) \frac{|\langle m, v \rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}|}{||u||_{\mathfrak{l}(\mathbb{S}^{n-1})}}.$ $\|T_m\|_{\mathsf{L}^1(\mathbb{R}^n)\to\mathsf{L}^{1,\infty}(\mathbb{R}^n)} \ge \frac{c}{n} \frac{|\langle m,v\rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}|}{\|u\|_{\mathsf{L}^\infty(\mathbb{S}^{n-1})}}.$ For p = 1, $q = \infty$:

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
		000000		

SMOOTH TRUNCATIONS

Here is a "quantification" of

$$K(x) = Y\left(\frac{x}{|x|}\right)|x|^{-n/p} \implies \widehat{K}(\xi) = i^{-j}\gamma_{n,j,n/q}Y\left(\frac{\xi}{|\xi|}\right)|\xi|^{-n/q}.$$

Lemma. Take $p \in (1, \infty)$, $\varepsilon \in (0, 1/2]$, and a spherical harmonic *Y* of degree $j \ge 0$. One can find a Schwartz function $h = h_{n,p,\varepsilon,Y}$ s.t.

$$\begin{split} \left\|h(x) - Y\Big(\frac{x}{|x|}\Big)|x|^{-n/p} \mathbb{1}_{\{\varepsilon \leqslant |x| \leqslant 1/\varepsilon\}}(x)\right\|_{\mathsf{L}^p_x(\mathbb{R}^n)} \lesssim_{n,p,Y} 1, \\ \left\|\widehat{h}(\xi) - \dot{\mathfrak{l}}^{-j}\gamma_{n,j,n/q}Y\Big(\frac{\xi}{|\xi|}\Big)|\xi|^{-n/q} \mathbb{1}_{\{\varepsilon \leqslant |\xi| \leqslant 1/\varepsilon\}}(\xi)\right\|_{\mathsf{L}^q_{\xi}(\mathbb{R}^n)} \lesssim_{n,p,Y} 1. \end{split}$$

Idea of proof: use superpositions of Gaussians similarly as before.

Lower estimates	The complex Riesz transform	Generalization ○○○○●○○	Smooth phases	The Riesz group

PROOF OF THE THEOREM

Choose a Schwartz function f that differs by $O_{n,p}^{\varepsilon \to 0+}(1)$ from

$$x \mapsto |x|^{-n/p} \mathbb{1}_{\{\varepsilon \leqslant |x| \leqslant 1/\varepsilon\}}(x) \qquad \text{in } \mathsf{L}^p,$$

while \widehat{f} differs by $O_{n,p}^{\varepsilon \to 0+}(1)$ from

 $\xi \mapsto \gamma_{n,0,n/q} |\xi|^{-n/q} \mathbb{1}_{\{\varepsilon \leqslant |\xi| \leqslant 1/\varepsilon\}}(\xi) \qquad \text{in } \mathsf{L}^q.$

Choose a Schwartz function g that differs by $O_{n,p,m,J}^{\varepsilon \to 0+}(1)$ from

$$x \mapsto \left(\sum_{j=0}^{l} Y_j\left(\frac{x}{|x|}\right)\right) |x|^{-n/q} \mathbb{1}_{\{\varepsilon \leqslant |x| \leqslant 1/\varepsilon\}}(x) \quad \text{in } \mathsf{L}^q,$$

while \widehat{g} differs by $O_{n,p,m,J}^{\varepsilon \to 0+}(1)$ from

$$\xi \mapsto \left(\sum_{j=0}^{J} i^{-j} \gamma_{n,j,n/p} Y_j\left(\frac{\xi}{|\xi|}\right)\right) |\xi|^{-n/p} \mathbb{1}_{\{\varepsilon \leqslant |\xi| \leqslant 1/\varepsilon\}}(\xi) \quad \text{in } \mathsf{L}^p.$$

Lower estimates	The complex Riesz transform	Generalization ○○○○○●○	Smooth phases	The Riesz group
PROOF OF THE T	HEOREM			

$$\begin{aligned} \|T_m\|_{\mathsf{L}^p(\mathbb{R}^n)\to\mathsf{L}^p(\mathbb{R}^n)} &\geqslant \frac{|\langle T_mf,g\rangle_{\mathsf{L}^2(\mathbb{R}^n)}|}{\|f\|_{\mathsf{L}^p(\mathbb{R}^n)}\|g\|_{\mathsf{L}^q(\mathbb{R}^n)}} = \frac{|\langle m\widehat{f},\widehat{g}\rangle_{\mathsf{L}^2(\mathbb{R}^n)}|}{\|f\|_{\mathsf{L}^p(\mathbb{R}^n)}\|g\|_{\mathsf{L}^q(\mathbb{R}^n)}} \\ &= \frac{\gamma_{n,0,n/q}|\langle m,\sum_{j=0}^J i^{-j}\gamma_{n,j,n/p}Y_j\rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}| + o_{n,p,m,J}^{\varepsilon\to 0+}(1)}{\sigma(\mathbb{S}^{n-1})^{1/p}\|\sum_{j=0}^J Y_j\|_{\mathsf{L}^q(\mathbb{S}^{n-1})} + o_{n,p,m,J}^{\varepsilon\to 0+}(1)} \end{aligned}$$

First take the limit as $\varepsilon \to 0+$; then take the limit as $J \to \infty$:

$$\|T_m\|_{\mathsf{L}^p(\mathbb{R}^n)\to\mathsf{L}^p(\mathbb{R}^n)} \geq \frac{\gamma_{n,0,n/q}}{\sigma(\mathbb{S}^{n-1})^{1/p}} \frac{|\langle m,v\rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}|}{\|u\|_{\mathsf{L}^q(\mathbb{S}^{n-1})}}.$$

The bound for $||T_m||_{L^1(\mathbb{R}^n)\to L^{1,\infty}(\mathbb{R}^n)}$ is obtained by real interpolation in the limit as $p \to 1+$; a trick used by Dragičević, Petermichl, and Volberg (2006).

Lower estimates	The complex Riesz transform	Generalization ○○○○○○●	Smooth phases	The Riesz group
0				

CHOOSING *u* AND *v*

How to choose $u \leftrightarrow v$ in:

$$\|T_m\|_{\mathsf{L}^p(\mathbb{R}^n)\to\mathsf{L}^p(\mathbb{R}^n)} \ge c_n (q-1) \frac{|\langle m,v\rangle_{\mathsf{L}^2(\mathbb{S}^{n-1})}|}{\|u\|_{\mathsf{L}^q(\mathbb{S}^{n-1})}}?$$

- Perhaps v should be "in the direction" of m.
- If we took v = m, then we would not always know how to estimate $||u||_{L^q(\mathbb{S}^{n-1})}$. Sogge's estimates for Y_j are too weak here.
- Would this even be optimal?
- The beauty of sub-optimal choices.

Smooth phases

Lower estimates	The complex Riesz transform	Generalization	Smooth phases ○●○○○○○	The Riesz group
MAZ'YA'S PROB	FM			

$$\begin{split} m_{\phi}^{\lambda}(\xi) &:= e^{i\lambda\phi(\xi/|\xi|)}; \quad \xi \in \mathbb{R}^{n} \setminus \{\mathbf{0}\}\\ \phi &\in \mathbf{C}^{\infty}(\mathbb{S}^{n-1}) \text{ real-valued}, \quad \lambda \in \mathbb{R}, \ |\lambda| \ge 1\\ (\widehat{T_{\phi}^{\lambda}f})(\xi) &= m_{\phi}^{\lambda}(\xi)\widehat{f}(\xi) \end{split}$$

Problem [Maz'ya (1970s, 2018)]. Prove or disprove for $p \in (1, \infty)$:

 $\|T^{\lambda}_{\phi}\|_{\mathsf{L}^{p}(\mathbb{R}^{n})\to\mathsf{L}^{p}(\mathbb{R}^{n})} \lesssim_{n,p,\phi} |\lambda|^{(n-1)|1/p-1/2|}.$

The conjecture is reasonable:

- it holds for n = 1;
- for n ≥ 2 the Hörmander–Mihlin theorem easily gives the bound with (n + 2)|1/p 1/2| in the exponent;
- it fails for n = 2; Dragičević, Petermichl, and Volberg (2006).

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
A SHARP RESUL	г			

Theorem [Bulj and K. (2022)]. Take $n \ge 2, p \in (1, \infty), \lambda \in \mathbb{R}, |\lambda| \ge 1$.

$$\begin{split} \|T^{\lambda}_{\phi}\|_{\mathsf{L}^{p}(\mathbb{R}^{n})\to\mathsf{L}^{p}(\mathbb{R}^{n})} \lesssim_{n,\phi} (p^{*}-1) |\lambda|^{n|1/p-1/2|} \\ \|T^{\lambda}_{\phi}\|_{\mathsf{L}^{1}(\mathbb{R}^{n})\to\mathsf{L}^{1,\infty}(\mathbb{R}^{n})} \lesssim_{n,\phi} |\lambda|^{n/2} \end{split}$$

Take $n \ge 2$ even. There exists $\phi \in \mathbf{C}^{\infty}(\mathbb{S}^{n-1})$ s.t. for $p \in (1, \infty)$ and $k \in \mathbb{Z} \setminus \{0\}$:

 $\begin{aligned} \|T_{\phi}^{k}\|_{\mathsf{L}^{p}(\mathbb{R}^{n})\to\mathsf{L}^{p}(\mathbb{R}^{n})} \gtrsim_{n,\phi} (p^{*}-1) |k|^{n|1/p-1/2|} \\ \|T_{\phi}^{k}\|_{\mathsf{L}^{1}(\mathbb{R}^{n})\to\mathsf{L}^{1,\infty}(\mathbb{R}^{n})} \gtrsim_{n,\phi} |k|^{n/2} \end{aligned}$

In particular, Maz'ya's problem has a negative answer in all even dimensions *n*. (Seems to be the case in **all** dimensions $n \ge 2$.)

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
	OPK			

• Stolyarov (2022) independently showed upper estimates

$$\|T^{\lambda}_{\phi}\|_{\mathsf{L}^{p}(\mathbb{R}^{n}) \to \mathsf{L}^{p}(\mathbb{R}^{n})} \lesssim_{n,\phi,p} |\lambda|^{n|1/p-1/2|} \quad ext{for } p \in (1,\infty)$$

using a Hardy \rightarrow Lorentz via Besov result of Seeger (1988) and an advanced interpolation argument.

• Stolyarov (2022) independently showed lower estimates

 $\|T^{\lambda}_{\phi}\|_{\mathsf{L}^{p}(\mathbb{R}^{n})\to\mathsf{L}^{p}(\mathbb{R}^{n})}\gtrsim_{n,\phi,p}|\lambda|^{n|1/p-1/2|}\quad\text{for }p\in(1,\infty)$

and a particular choice of phase ϕ in **every** dimension $n \ge 2$.

Recall that we also care about the sharp dependence on *p*.
 Stolyarov's bounds ≤_{n,φ,p} and ≥_{n,φ,p} above are **not** optimal in *p*.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
			0000000	

Choose ϕ so that $m_{\phi}^k, k \in \mathbb{N}$, coincides with

$$\widetilde{m}^{k}(\xi) = \prod_{i=1}^{n/2} \left(\frac{\xi_{2i-1} + i\xi_{2i}}{|\xi_{2i-1} + i\xi_{2i}|} \right)^{k}$$

on "most" of the sphere \mathbb{S}^{n-1} ; avoid singularities.

$$egin{aligned} \widetilde{m}^k &= \sum_{j=nk/2}^\infty \widetilde{Y}_j^{(k)} \ u^{(k)} &:= \sum_{j=nk/2}^\infty \mathrm{i}^j \gamma_{n,j,0} \widetilde{Y}_j^{(k)} \ v^{(k)} &:= \sum_{j=nk/2}^\infty \gamma_{n,j,n/p} \gamma_{n,j,0} \widetilde{Y}_j^{(k)} \end{aligned}$$

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
			0000000	

The main difficulty is now in showing:

$$\|u^{(k)}\|_{\mathsf{L}^q(\mathbb{S}^{n-1})} \sim_n k^{-n/2}$$

for $k \in \mathbb{N}$, $q \in [1, \infty]$.

In fact, we can compute:

$$u^{(k)}(\zeta_1, \dots, \zeta_{n/2}) = \frac{2\pi^{n/2} i n^{k/2}}{(n/2 - 1)!} k^{-n/2} \left(\prod_{i=1}^{n/2} \left(\frac{\zeta_i}{|\zeta_i|} \right)^k \right)$$
$$\int_0^\infty \left(\prod_{i=1}^{n/2} \int_0^\infty J_k (2\sqrt{k}\rho t |\zeta_i|) e^{-\rho^2/2k} \rho \, \mathrm{d}\rho \right) \frac{\mathrm{d}}{t}$$

for every $(\zeta_1, \ldots, \zeta_{n/2}) \in \mathbb{S}^{n-1}$, where J_k are the Bessel functions. L^{*q*} is interpolated between L¹ and L^{∞}.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
			000000	

Use our general theorem in combination with:

$$\frac{\langle m_{\phi}^{k}, v^{(k)} \rangle_{\mathsf{L}^{2}(\mathbb{S}^{n-1})}|}{\|u^{(k)}\|_{\mathsf{L}^{q}(\mathbb{S}^{n-1})}} \gtrsim_{n} \frac{|\langle m^{k}, v^{(k)} \rangle_{\mathsf{L}^{2}(\mathbb{S}^{n-1})}|}{\|u^{(k)}\|_{\mathsf{L}^{\infty}(\mathbb{S}^{n-1})}}$$
$$\gtrsim_{n} \frac{k^{n/p-n}}{k^{-n/2}}$$
$$= k^{n(1/p-1/2)}$$

for $k \in \mathbb{N}$, $p \in [1, 2]$.

The Riesz group

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group ○●○○○○
THE RIESZ GRO	UP			

$$\phi(\xi) := \xi_1$$

 $(\widehat{T^\lambda_\phi f})(\xi) = e^{\mathrm{i}\lambda\xi_1/|\xi|}\widehat{f}(\xi)$

 $(T_{\phi}^{\lambda})_{\lambda \in \mathbb{R}}$ is called the *Riesz group* since its infinitesimal generator is negative of the Riesz transform, i.e., $-R_1$, where $(\widehat{R_1f})(\xi) = -i\frac{\xi_1}{|\xi|}\widehat{f}(\xi)$.

For n = 2:

$$\begin{split} \phi(e^{\mathbf{i}\varphi}) &:= \cos\varphi \\ m_{\cos}^{\lambda}(re^{\mathbf{i}\varphi}) &= e^{\mathbf{i}\lambda\cos\varphi} \\ \widehat{T_{\cos}f}(re^{\mathbf{i}\varphi}) &= e^{\mathbf{i}\lambda\cos\varphi} \widehat{f}(re^{\mathbf{i}\varphi}) \end{split}$$

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
				000000

PROBLEM BY DRAGIČEVIĆ, PETERMICHL, AND VOLBERG

Dragičević, Petermichl, and Volberg (2006):

 $c_{\delta} \left(p^{*}-1\right) |k|^{2|1/p-1/2|-\delta} \leqslant \|T_{\cos}^{k}\|_{\mathsf{L}^{p}(\mathbb{R}^{2}) \to \mathsf{L}^{p}(\mathbb{R}^{2})} \leqslant C \left(p^{*}-1\right) |k|^{2|1/p-1/2|}$

for $\delta > 0, \ p \in (1,\infty), \ k \in \mathbb{Z} \setminus \{0\}.$

The lower bound disproves Maz'ya's conjecture in n = 2 dimensions.

Problem [Dragičević, Petermichl, and Volberg (2006)]. Can one remove the δ ?

Theorem [Bulj and K. (2022)]. Take $p \in (1, \infty)$, $\lambda \in \mathbb{R}$, $|\lambda| \ge 1$. $\|T_{\cos}^{\lambda}\|_{L^{p}(\mathbb{R}^{2}) \to L^{p}(\mathbb{R}^{2})} \sim (p^{*} - 1) |\lambda|^{2|1/p - 1/2|}$ $\|T_{\cos}^{\lambda}\|_{L^{1}(\mathbb{R}^{2}) \to L^{1,\infty}(\mathbb{R}^{2})} \sim |\lambda|$

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
				000000
				i

The Fourier series expansion of the symbol:

$$m_{\cos}^{\lambda}(e^{\mathrm{i}\varphi}) = e^{\mathrm{i}\lambda\cos\varphi} = J_0(\lambda) + 2\sum_{j=1}^{\infty} \mathrm{i}^j J_j(\lambda)\cos j\varphi,$$

where J_i are the Bessel functions.

$$\begin{split} \cos(\lambda\cos\varphi) &= J_0(\lambda) + 2\sum_{l=1}^{\infty} (-1)^l J_{2l}(\lambda)\cos 2l\varphi\\ \cos(\lambda\sin\varphi) &= J_0(\lambda) + 2\sum_{l=1}^{\infty} J_{2l}(\lambda)\cos 2l\varphi\\ u^{(\lambda)}(e^{i\varphi}) &:= \cos(\lambda\sin\varphi) - J_0(\lambda)\\ v^{(\lambda)}(e^{i\varphi}) &:= 2\sum_{l=1}^{\infty} (-1)^l \gamma_{2,2l,2/p} J_{2l}(\lambda)\cos 2l\varphi \end{split}$$

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group
				000000

Use our general theorem in combination with:

$$rac{\langle m_{\cos}^{\lambda}, v^{(\lambda)}
angle_{\mathsf{L}^2(\mathbb{S}^1)}|}{\|u^{(\lambda)}\|_{\mathsf{L}^q(\mathbb{S}^1)}} \gtrsim_n rac{\lambda^{2/p-1}}{1} = \lambda^{2(1/p-1/2)}$$

for $\lambda \ge 1$, $p \in [1, 2]$.

In the numerator we needed the inequality:

$$\sum_{l=1}^{\infty} l^{2/p-1} J_{2l}(\lambda)^2 \gtrsim \lambda^{2/p-1},$$

which is easy to show.

Lower estimates	The complex Riesz transform	Generalization	Smooth phases	The Riesz group 00000●

THE RIESZ GROUP FOR $n \ge 3$

n = 2

$$\|T_{\cos}^{\lambda}\|_{\mathsf{L}^{p}(\mathbb{R}^{2})\to\mathsf{L}^{p}(\mathbb{R}^{2})}\sim (p^{*}-1)\,|\lambda|^{2|1/p-1/2|}$$

$n \ge 3$

Open problem.

What is the asymptotics for the Riesz group in $n \ge 3$ dimensions?

Is it again

$$(p^*-1) |\lambda|^{n|1/p-1/2|}$$
?

The case n = 3 has applications to the Navier–Stokes equations.

Thank you!