## Lower bounds for the $L^{p}$ norms of some Fourier multipliers

Vjekoslav Kovač* (University of Zagreb)<br>joint work with Aleksandar Bulj, Andrea Carbonaro, and Oliver Dragičević

Extremal Problems in Harmonic Analysis, Convexity, and Bellman Functions ICERM, Providence
December 2, 2022

* Supported by the Croatian Science Foundation grant UIP-2017-05-4129 (MUNHANAP)


## Lower estimates

## UPPER vS. LOWER ESTIMATES

Upper estimates for operator norms

$$
\|T\|_{L^{p} \rightarrow L^{p}} \leqslant C(T, p)
$$

are only as good as we can match them with lower estimates

$$
\|T\|_{L^{p} \rightarrow L^{p}} \geqslant c(T, p) .
$$

The latter might amount to merely constructing an example of $f$ s.t.

$$
\|f\|_{L^{p}}=1 \quad \text { and } \quad\|T f\|_{L^{p}} \geqslant c(T, p),
$$

but concrete examples can be quite complicated.

## Sharp estimates

Let $\left(T^{k}\right)_{k \in \mathbb{Z}}$ or $\left(T^{\lambda}\right)_{\lambda \in \mathbb{R}}$ be a one-parameter group of bounded linear operators on every $\left\llcorner^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)\right.$.

- $T^{\lambda}$ are just integer or real powers of $T$.
- A typical situation with singular integrals.

In this talk the estimates are considered sharp if they are of the form

$$
\begin{gathered}
c(T) \kappa(\lambda, p) \leqslant\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \leqslant C(T) \kappa(\lambda, p), \\
\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \sim_{T} \kappa(\lambda, p),
\end{gathered}
$$

i.e., we insist on finding sharp asymptotics simultaneously in $\lambda$ and $p$.

Our techniques for lower bounds will occasionally give exact constants, but the exact upper bounds are rarely available.

## On UPPER EStIMATES

$$
\begin{array}{r}
\left(S_{\Omega} f\right)(x):=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y| n} \mathrm{~d} y \\
\left\|S_{\Omega}\right\|_{\mathrm{L}^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{L}^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim n\|\Omega\|_{\mathrm{L}^{2}\left(\mathbb{S}^{n-1}\right)} \\
\|\Omega\|_{\mathrm{L} \log \mathrm{~L}\left(\mathbb{S}^{n-1}\right)}
\end{array}
$$

Christ and Rubio de Francia (1988), Hofmann (1988), Seeger (1996), Tao (1999), etc.
In combination with the easy $L^{2}$ bound and the real interpolation this often gives sharp $L^{p}$ estimates.

In this talk we are only discussing the lower estimates.

## The complex Riesz transform

## Powers of the complex Riesz transform

$$
R=R_{2}+\mathrm{i} R_{1}, \quad R_{1}, R_{2}=2 \mathrm{D} \text { Riesz transforms }
$$

As Fourier multipliers:

$$
\left(\widehat{R^{k} f}\right)(\zeta)=\left(\frac{\bar{\zeta}}{|\zeta|}\right)^{k} \widehat{f}(\zeta) ; \quad \zeta \in \mathbb{C} .
$$

As singular integrals:

$$
\left(R^{k} f\right)(z)=\frac{\mathrm{i}^{|k|}|k|}{2 \pi} \text { p.v. } \int_{\mathbb{C}} f(z-w) \frac{(w /|w|)^{-k}}{|w|^{2}} \mathrm{~d} A(w) .
$$

$R^{2}$ is the Ahlfors-Beurling operator; its symbol is $\left(\frac{\bar{\zeta}}{|\zeta|}\right)^{2}=\frac{\bar{\zeta}}{\zeta}$.

## Problem by Iwaniec and Martin

Problem [Iwaniec and Martin (1996)].
What is the asymptotics of $\left\|R^{k}\right\|_{L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})}$ ?

$$
p \in(1, \infty), \quad \frac{1}{p}+\frac{1}{q}=1, \quad p^{*}:=\max \{p, q\}
$$

- Dragičević, Petermichl, and Volberg (2006) and Dragičević (2011) resolved the case of even $k \in \mathbb{Z} \backslash\{0\}$ :

$$
\left\|R^{k}\right\|_{L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})} \sim\left(p^{*}-1\right)|k|^{1-2 / p^{*}} .
$$

- Examples were certain truncations of $|z|^{-2 / p}$, which is not in $L^{p}(\mathbb{C})$.
- Even $k$ are easier because $\quad R^{2}: \partial_{z} f \mapsto \partial_{z} f$.
- Odd $k$ are harder as we only have $R:(-\Delta)^{1 / 2} f \mapsto-2 \mathrm{i} \partial_{z} f$.


## The asymptotics

Theorem [Carbonaro, Dragičević, and K. (2021)].

$$
\begin{aligned}
\left\|R^{k}\right\|_{\left.L^{\prime}(\mathrm{C}) \rightarrow L^{L^{( }(C)}\right)} & \sim\left(p^{*}-1\right)|k|^{21 / 2-1 / p \mid} \\
& \sim p^{*}|k|^{1-2 / p^{*}} \\
\left\|R^{k}\right\|_{L^{\prime}(\mathrm{C}) \rightarrow \mathrm{L}^{1}, \infty(\mathrm{C})} & \sim|k|
\end{aligned}
$$

for $p \in(1, \infty)$ and $k \in \mathbb{Z} \backslash\{0\}$.
In the paper we gave 3 different proofs of the lower estimate.
Theorem [Carbonaro, Dragičević, and K. (2021)].

$$
\left\|R^{k}\right\|_{L^{\nu}(\mathrm{C}) \rightarrow L^{p}(\mathrm{C})} \geqslant \frac{\Gamma(1 / p) \Gamma(1 / q+k / 2)}{\Gamma(1 / q) \Gamma(1 / p+k / 2)} \geqslant \frac{1}{2}(p-1) k^{1-2 / p}
$$

for $p \geqslant 2$ and $k \in \mathbb{N}$.

## Approximate extremizers

$$
\begin{gathered}
f=f_{k, p, \varepsilon,}, \quad g=g_{p, \varepsilon} \quad \text { for } \varepsilon \in(0,1] \\
R^{k} f=g
\end{gathered}
$$

$\widehat{g}$ is a truncation of $|\zeta|^{-2 / q} \quad=$ F.T. of $|z|^{-2 / p}$
$\hat{f}$ is a truncation of $\left(\frac{\zeta}{||\mid}\right)^{k}|\zeta|^{-2 / q}=$ F.T. of $\left(\frac{z}{|z|}\right)^{k}|z|^{-2 / p} \quad$ (up to multiplicative constants)
Decomposing into Gaussians (Stein's trick):

$$
\begin{aligned}
& \widehat{\mathcal{g}}(\zeta):=\int_{\varepsilon}^{1 / \varepsilon} e^{-\pi t^{2}|S|^{2}} t^{1-2 / p} \mathrm{~d} t ; \quad \zeta \in \mathbb{C} \\
& \hat{f}(\zeta):=\left(\frac{\zeta}{|\zeta|}\right)^{k} \int_{\varepsilon}^{1 / \varepsilon} e^{-\pi t^{2}|\zeta|^{2}} t^{1-2 / p} \mathrm{~d} t ; \quad \zeta \in \mathbb{C}
\end{aligned}
$$

## Approximate extremizers

$$
f(z)=\dot{\mathrm{i}}^{k} \pi^{-1 / p-1 / 2}\left(\frac{z}{|z|}\right)^{k}|z|^{-2 / p} \int_{0}^{\pi / 2}(\underbrace{\int_{\pi(\sin \vartheta)^{2} \varepsilon^{2}|z|^{2}}^{\pi(\sin \vartheta)^{2} \varepsilon^{-2}|z|^{2}} x^{1 / p-1 / 2} e^{-x} \mathrm{~d} x}_{\rightarrow \Gamma(1 / p+1 / 2) \text { as } \varepsilon \rightarrow 0+}) \frac{\sin k \vartheta \mathrm{~d} \vartheta}{(\sin \vartheta)^{2 / p}}
$$

( $k \in \mathbb{N}$ odd)

$$
\|f\|_{L^{p}(\mathbb{C})}=2^{2 / p} \pi^{-1 / 2} \Gamma\left(\frac{1}{p}+\frac{1}{2}\right) I_{k, 1 / p}\left(\log \frac{1}{\varepsilon}\right)^{1 / p}+O_{k, p}^{\varepsilon \rightarrow 0+}(1)
$$

where

$$
I_{k, \alpha}:=\int_{0}^{\pi / 2} \frac{\sin k \vartheta}{(\sin \vartheta)^{2 \alpha}} \mathrm{~d} \vartheta=\frac{\pi^{1 / 2}}{2} \cdot \frac{\Gamma(1-\alpha) \Gamma(\alpha+k / 2)}{\Gamma(\alpha+1 / 2) \Gamma(1-\alpha+k / 2)}
$$

## Approximate extremizers

$$
\begin{gathered}
g(z)=\frac{1}{2} \pi^{-1 / p}|z|^{-2 / p} \underbrace{\int_{\pi \varepsilon^{2}|z|^{2}}^{\pi \varepsilon^{-2}|z|^{2}} x^{1 / p-1} e^{-x} \mathrm{~d} x}_{\rightarrow \Gamma(1 / p) \text { as } \varepsilon \rightarrow 0+} \\
\|g\|_{L^{\prime}(\mathbb{C})}=2^{-(1-2 / p)} \Gamma\left(\frac{1}{p}\right)\left(\log \frac{1}{\varepsilon}\right)^{1 / p}+O_{p}^{\varepsilon \rightarrow 0+}(1)
\end{gathered}
$$

Finally,

$$
\left\|R^{k}\right\|_{L^{\nu}(\mathrm{C}) \rightarrow L^{L^{\prime}(\mathrm{C})}} \geqslant \lim _{\varepsilon \rightarrow 0+} \frac{\left\|g_{p, \varepsilon}\right\| \|_{L^{\prime}(\mathrm{C})}}{\left.\| \|_{k, p, k}, \|_{L^{(C)}}\right)}
$$

gives the desired constant.

## Generalization

## Spherical harmonics

Spherical harmonics of degree $j \geqslant 0$ are restrictions to $\mathbb{S}^{n-1}$ of harmonic homogeneous polynomials in $n$ variables of degree $j$.
An example in $n=2$ dimensions: $Y(x, y)=(x+i y)^{k}, Y(z)=z^{k}, Y\left(e^{\mathrm{i} \varphi}\right)=e^{\mathrm{i} k \varphi}$ for $k \in \mathbb{Z}$.
Why are they important for us?
Bochner (1951): $Y=$ a spherical harmonic of degree $j$.

$$
K(x)=\Upsilon\left(\frac{x}{|x|}\right)|x|^{-n / p} \Longrightarrow \widehat{\mathrm{~K}}(\xi)=\mathrm{i}^{-j} \gamma_{n, j, n / q} \Upsilon\left(\frac{\xi}{|\xi|}\right)|\xi|^{-n / q}
$$

Stein and Weiss (1971):

$$
\begin{gathered}
K(x)=\text { p. v. } \Upsilon\left(\frac{x}{|x|}\right)|x|^{-n} \Longrightarrow \widehat{K}(\xi)=\mathrm{i}^{-j} \gamma_{n, j, 0} \curlyvee\left(\frac{\xi}{|\xi|}\right) \\
\gamma_{n, j, \alpha}:=\pi^{n / 2-\alpha} \frac{\Gamma((j+\alpha) / 2)}{\Gamma((j+n-\alpha) / 2)}
\end{gathered}
$$

## A General lower bound for multipliers $T_{m}$

Theorem [Bulj and K. (2022)]. Take $p \in[1,2], m=$ a bounded homogeneous measurable symbol, $\left(Y_{j}\right)_{j=0}^{\infty}$ a sequence s.t.

- $Y_{j}$ is a spherical harmonic on $\mathbb{S}^{n-1}$ of degree $j$;
- $u:=\sum_{j=0}^{\infty} Y_{j}$ converges in $L^{q}\left(\mathbb{S}^{n-1}\right)$;
$\bullet v:=\sum_{j=0}^{\infty} \mathrm{i}^{-j} \gamma_{n, j, n / p} Y_{j}$ converges in $\mathrm{L}^{2}\left(\mathbb{S}^{n-1}\right)$.
For $p>1, q<\infty$ :

$$
\begin{aligned}
\left\|T_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} & \geqslant \frac{\gamma_{n, 0, n / q}}{\sigma\left(\mathbb{S}^{n-1}\right)^{1 / p}} \frac{\left|\langle m, v\rangle_{L^{2}\left(\mathbb{S}^{n}-1\right.}\right|}{\|u\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}} \\
& \geqslant c_{n}(q-1) \frac{\left|\langle m, v\rangle_{L^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\|u\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}} .
\end{aligned}
$$

For $p=1, q=\infty$ :

$$
\left\|T_{m}\right\|_{\mathrm{L}^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{L}^{1, \infty}\left(\mathbb{R}^{n}\right)} \geqslant \frac{c}{n} \frac{\left|\langle m, v\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\|u\|_{\mathrm{L}^{\infty}\left(\mathbb{S}^{n-1}\right)}} .
$$

## Smooth truncations

Here is a "quantification" of

$$
K(x)=Y\left(\frac{x}{|x|}\right)|x|^{n / p} \Longrightarrow \widehat{K}(\xi)=\mathrm{i}^{-j} \gamma_{\gamma_{n, j, n / q}} Y\left(\frac{\xi}{|\xi|}\right)|\xi|^{-n / q} .
$$

Lemma. Take $p \in(1, \infty), \varepsilon \in(0,1 / 2]$, and a spherical harmonic $Y$ of degree $j \geqslant 0$. One can find a Schwartz function $h=h_{n, p, p, \gamma}$ s.t.

$$
\begin{aligned}
& \left\|h(x)-\Upsilon\left(\frac{x}{|x|}\right)|x|^{-n / p_{1}} \mathbb{1}_{\{\varepsilon \leqslant|x| \leqslant 1 / \varepsilon\}}(x)\right\|_{L_{r}^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p, Y} 1, \\
& \left\|\hat{h}(\xi)-\mathrm{i}^{-j} \gamma_{n, j, n / q} \gamma\left(\frac{\xi}{|\xi|}\right)|\xi|^{-n / q} \mathbb{1}_{\{\varepsilon \leqslant \leqslant \xi \mid \leqslant 1 / \varepsilon\}}(\xi)\right\|_{L_{\xi}^{L}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p, Y} 1 .
\end{aligned}
$$

Idea of proof: use superpositions of Gaussians similarly as before.

## Proof of the theorem

Choose a Schwartz function $f$ that differs by $O_{n, p}^{\varepsilon \rightarrow 0+}(1)$ from

$$
x \mapsto|x|^{-n / p} \mathbb{1}_{\{\varepsilon \leqslant|x| \leqslant 1 / \varepsilon\}}(x) \quad \text { in } L^{p},
$$

while $\widehat{f}$ differs by $O_{n, p}^{\varepsilon \rightarrow 0+}(1)$ from

$$
\xi \mapsto \gamma_{n, 0, n / q}|\xi|^{-n / q} \mathbb{1}_{\{\varepsilon \leqslant|\xi| \leqslant 1 / \varepsilon\}}(\xi) \quad \text { in } L^{q} .
$$

Choose a Schwartz function $g$ that differs by $O_{n, p, m, J}^{\varepsilon \rightarrow 0+}(1)$ from

$$
x \mapsto\left(\sum_{j=0}^{J} Y_{j}\left(\frac{x}{|x|}\right)\right)|x|^{-n / q} \mathbb{1}_{\{\varepsilon \leqslant|x| \leqslant 1 / \varepsilon\}}(x) \quad \text { in } \mathrm{L}^{q},
$$

while $\widehat{g}$ differs by $O_{n, p, m, J}^{\varepsilon \rightarrow 0+}(1)$ from

$$
\xi \mapsto\left(\sum_{j=0}^{J} \mathrm{i}^{-j} \gamma_{n, j, n / p} Y_{j}\left(\frac{\xi}{|\xi|}\right)\right)|\xi|^{-n / p} \mathbb{1}_{\{\varepsilon \leqslant|\xi| \leqslant 1 / \varepsilon\}}(\xi) \quad \text { in } L^{p} .
$$

## Proof of the theorem

$$
\begin{aligned}
\left\|T_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} & \geqslant \frac{\left|\left\langle T_{m} f, g\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right.}\right|}{\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)}}=\frac{\left|\langle m f, \widehat{g}\rangle_{L^{2}\left(\mathbb{R}^{n}\right.}\right|}{\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)}} \\
& =\frac{\gamma_{n, 0, n / q}\left|\left\langle m, \sum_{j=0}^{J} i^{-j} \gamma_{n, j, n / p} Y_{j}\right\rangle_{L^{2}\left(\mathbb{S}^{n-1}\right)}\right|+o_{n, p, m, j}^{\varepsilon \rightarrow 0+}(1)}{\sigma\left(\mathbb{S}^{n-1}\right)^{1 / p}\left\|\sum_{j=0}^{J} Y_{j}\right\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}+o_{n, p, m, j}^{\varepsilon \rightarrow 0+}(1)}
\end{aligned}
$$

First take the limit as $\varepsilon \rightarrow 0+$; then take the limit as $J \rightarrow \infty$ :

$$
\left\|T_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{\nu}\left(\mathbb{R}^{n}\right)} \geqslant \frac{\gamma_{n, 0, n / q}}{\sigma\left(\mathbb{S}^{n-1}\right)^{1 / p}} \frac{\left|\langle m, v\rangle_{L^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\|u\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}} .
$$

The bound for $\left\|T_{m}\right\|_{L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}, \infty\left(\mathbb{R}^{n}\right)}$ is obtained by real interpolation in the limit as $p \rightarrow 1+$; a trick used by Dragičević, Petermichl, and Volberg (2006).

## Choosing $u$ AND $v$

How to choose $u \longleftrightarrow v$ in:

$$
\left\|T_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} \geqslant c_{n}(q-1) \frac{\left|\langle m, v\rangle_{L^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\|u\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}} ?
$$

- Perhaps $v$ should be "in the direction" of $m$.
- If we took $v=m$, then we would not always know how to estimate $\|u\|_{L^{\prime}\left(S^{n-1}\right)}$. Sogge's estimates for $Y_{j}$ are too weak here.
- Would this even be optimal?
- The beauty of sub-optimal choices.


## Smooth phases

## MAZ'YA'S PROBLEM

$$
\begin{gathered}
m_{\phi}^{\lambda}(\xi):=e^{\mathrm{i} \lambda \phi(\xi / \xi|\xi|)} ; \quad \xi \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} \\
\phi \in \mathrm{C}^{\infty}\left(\mathbb{S}^{n-1}\right) \text { real-valued, } \quad \lambda \in \mathbb{R},|\lambda| \geqslant 1 \\
\left(\widehat{T_{\phi}^{\lambda}} f\right)(\xi)=m_{\phi}^{\lambda}(\xi) \widehat{f}(\xi)
\end{gathered}
$$

Problem [Maz'ya (1970s, 2018)]. Prove or disprove for $p \in(1, \infty)$ :

$$
\left\|T_{\phi}^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} \lesssim n, p, \phi|\lambda|^{(n-1)|1 / p-1 / 2|} .
$$

The conjecture is reasonable:

- it holds for $n=1$;
- for $n \geqslant 2$ the Hörmander-Minlin theorem easily gives the bound with $(n+2)|1 / p-1 / 2|$ in the exponent;
- it fails for $n=2$; Dragičević, Petermichl, and Volberg (2006).


## A Sharp result

Theorem [Bulj and K. (2022)]. Take $n \geqslant 2, p \in(1, \infty), \lambda \in \mathbb{R},|\lambda| \geqslant 1$.

$$
\begin{aligned}
\left\|T_{\phi}^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{L}^{p}\left(\mathbb{R}^{n}\right)} & \lesssim n, \phi \\
\left\|T_{\phi}^{\lambda}\right\|_{\mathrm{L}^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{L}^{1, \infty}\left(\mathbb{R}^{n}\right)} & \lesssim n, \phi|\lambda|^{n / 2}|\lambda| 1 / p-1 / 2 \mid \\
&
\end{aligned}
$$

Take $n \geqslant 2$ even. There exists $\phi \in \mathbb{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ s.t. for $p \in(1, \infty)$ and $k \in \mathbb{Z} \backslash\{0\}$ :

$$
\begin{aligned}
&\left\|T_{\phi}^{k}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} \gtrsim n, \phi\left(p^{*}-1\right)|k|^{n|1 / p-1 / 2|} \\
&\left\|T_{\phi}^{k}\right\|_{L^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{L}^{1, \infty}\left(\mathbb{R}^{n}\right)} \gtrsim n, \phi \\
&|k|^{n / 2}
\end{aligned}
$$

In particular, Maz'ya's problem has a negative answer in all even dimensions $n$. (Seems to be the case in all dimensions $n \geqslant 2$.)

## Independent work

- Stolyarov (2022) independently showed upper estimates

$$
\left\|T_{\phi}^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, \phi, p}|\lambda|^{n|1 / p-1 / 2|} \quad \text { for } p \in(1, \infty)
$$

using a Hardy $\rightarrow$ Lorentz via Besov result of Seeger (1988) and an advanced interpolation argument.

- Stolyarov (2022) independently showed lower estimates

$$
\left\|T_{\phi}^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)} \gtrsim n, \phi, p|\lambda|^{n|1 / p-1 / 2|} \quad \text { for } p \in(1, \infty)
$$

and a particular choice of phase $\phi$ in every dimension $n \geqslant 2$.

- Recall that we also care about the sharp dependence on $p$.

Stolyarov's bounds $\lesssim_{n, \phi, p}$ and $\gtrsim_{n, \phi, p}$ above are not optimal in $p$.

## Proof of the lower bounds

Choose $\phi$ so that $m_{\phi}^{k}, k \in \mathbb{N}$, coincides with

$$
\tilde{m}^{k}(\xi)=\prod_{i=1}^{n / 2}\left(\frac{\xi_{2 i-1}+\mathrm{i} \xi_{2 i}}{\left|\xi_{2 i-1}+\mathrm{i} \xi_{2 i}\right|}\right)^{k}
$$

on "most" of the sphere $\mathbb{S}^{n-1}$; avoid singularities.

$$
\begin{aligned}
\widetilde{m}^{k} & =\sum_{j=n k / 2}^{\infty} \widetilde{Y}_{j}^{(k)} \\
u^{(k)} & :=\sum_{j=n k / 2}^{\infty} \dot{\mathrm{i}}^{j} \gamma_{n, j, 0} \widetilde{Y}_{j}^{(k)} \\
v^{(k)} & :=\sum_{j=n k / 2}^{\infty} \gamma_{n, j, n / p} \gamma_{n, j, 0} \widetilde{\Upsilon}_{j}^{(k)}
\end{aligned}
$$

## Proof of the lower bounds

The main difficulty is now in showing:

$$
\left\|u^{(k)}\right\|_{L^{q}\left(\mathbb{S}^{n-1}\right)} \sim_{n} k^{-n / 2}
$$

for $k \in \mathbb{N}, q \in[1, \infty]$.
In fact, we can compute:

$$
\begin{aligned}
u^{(k)}\left(\zeta_{1}, \ldots, \zeta_{n / 2}\right)= & \frac{2 \pi^{n / 2} \dot{\mathrm{i}}^{n k / 2}}{(n / 2-1)!} k^{-n / 2}\left(\prod_{i=1}^{n / 2}\left(\frac{\zeta_{i}}{\left|\zeta_{i}\right|}\right)^{k}\right) \\
& \int_{0}^{\infty}\left(\prod_{i=1}^{n / 2} \int_{0}^{\infty} J_{k}\left(2 \sqrt{k} \rho t\left|\zeta_{i}\right|\right) e^{-\rho^{2} / 2 k} \rho \mathrm{~d} \rho\right) \frac{\mathrm{d} t}{t}
\end{aligned}
$$

for every $\left(\zeta_{1}, \ldots, \zeta_{n / 2}\right) \in \mathbb{S}^{n-1}$, where $J_{k}$ are the Bessel functions.
$L^{q}$ is interpolated between $L^{1}$ and $L^{\infty}$.

## Proof of the lower bounds

Use our general theorem in combination with:

$$
\begin{aligned}
\frac{\left|\left\langle m_{\phi}^{k}, v^{(k)}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\left\|u^{(k)}\right\|_{L^{q}\left(\mathbb{S}^{n-1}\right)}} & \gtrsim n \frac{\left|\left\langle m^{k}, v^{(k)}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{n-1}\right)}\right|}{\left\|u^{(k)}\right\|_{\mathrm{L}^{\infty}\left(\mathbb{S}^{n-1}\right)}} \\
& \gtrsim n \frac{k^{n / p-n}}{k^{-n / 2}} \\
& =k^{n(1 / p-1 / 2)}
\end{aligned}
$$

for $k \in \mathbb{N}, p \in[1,2]$.

## The Riesz group

## The Riesz group

$$
\begin{gathered}
\phi(\xi):=\xi_{1} \\
\left(\widehat{T_{\phi}^{\lambda} f}\right)(\xi)=e^{\mathrm{i} \lambda \xi_{1} /|\xi|} \widehat{f}(\xi)
\end{gathered}
$$

$\left(T_{\phi}^{\lambda}\right)_{\lambda \in \mathbb{R}}$ is called the Riesz group since its infinitesimal generator is negative of the Riesz transform, i.e., $-R_{1}$, where $\left(\widehat{R_{1} f}\right)(\xi)=-\mathrm{i} \frac{\xi_{1}}{|\xi|} \widehat{f}(\xi)$.

For $n=2$ :

$$
\begin{aligned}
\phi\left(e^{\mathrm{i} \varphi}\right) & :=\cos \varphi \\
m_{\cos }^{\lambda}\left(r e^{\mathrm{i} \varphi}\right) & =e^{\mathrm{i} \lambda \cos \varphi} \\
\left(\widehat{T_{\cos }^{\lambda} f}\right)\left(r e^{\mathrm{i} \varphi}\right) & =e^{\mathrm{i} \lambda \cos \varphi} \widehat{f}\left(r e^{\mathrm{i} \varphi}\right)
\end{aligned}
$$

## Problem by Dragičević, Petermichl, and Volberg

Dragičević, Petermichl, and Volberg (2006):

$$
c_{\delta}\left(p^{*}-1\right)|k|^{2|1 / p-1 / 2|-\delta} \leqslant\left\|T_{\cos }^{k}\right\|_{L^{p}\left(\mathbb{R}^{2}\right) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\left(p^{*}-1\right)|k|^{2|1 / p-1 / 2|}
$$

for $\delta>0, p \in(1, \infty), k \in \mathbb{Z} \backslash\{0\}$.
The lower bound disproves Maz'ya's conjecture in $n=2$ dimensions.
Problem [Dragičević, Petermichl, and Volberg (2006)].
Can one remove the $\delta$ ?
Theorem [Bulj and K. (2022)]. Take $p \in(1, \infty), \lambda \in \mathbb{R},|\lambda| \geqslant 1$.

$$
\begin{aligned}
&\left\|T_{\cos }^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{2}\right) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)} \sim\left(p^{*}-1\right)|\lambda|^{2|1 / p-1 / 2|} \\
&\left\|T_{\cos }^{\lambda}\right\|_{L^{1}\left(\mathbb{R}^{2}\right) \rightarrow L^{1, \infty}\left(\mathbb{R}^{2}\right)} \sim|\lambda|
\end{aligned}
$$

## Proof of the lower bounds

The Fourier series expansion of the symbol:

$$
m_{\cos }^{\lambda}\left(e^{\mathrm{i} \varphi}\right)=e^{\mathrm{i} \lambda \cos \varphi}=J_{0}(\lambda)+2 \sum_{j=1}^{\infty} \mathrm{i}^{j} J_{j}(\lambda) \cos j \varphi,
$$

where $J_{j}$ are the Bessel functions.

$$
\begin{aligned}
\cos (\lambda \cos \varphi) & =J_{0}(\lambda)+2 \sum_{l=1}^{\infty}(-1)^{l} J_{2 l}(\lambda) \cos 2 l \varphi \\
\cos (\lambda \sin \varphi) & =J_{0}(\lambda)+2 \sum_{l=1}^{\infty} J_{2 l}(\lambda) \cos 2 l \varphi \\
u^{(\lambda)}\left(e^{\mathrm{i} \varphi}\right) & :=\cos (\lambda \sin \varphi)-J_{0}(\lambda) \\
v^{(\lambda)}\left(e^{\mathrm{i} \varphi}\right) & :=2 \sum_{l=1}^{\infty}(-1)^{l} \gamma_{2,2 l, 2 / p} J_{2 l}(\lambda) \cos 2 l \varphi
\end{aligned}
$$

## Proof of the lower bounds

Use our general theorem in combination with:

$$
\begin{aligned}
\frac{\left|\left\langle m_{\cos }^{\lambda}, v^{(\lambda)}\right\rangle_{L^{2}\left(\mathbb{S}^{1}\right)}\right|}{\left\|u^{(\lambda)}\right\|_{L^{q}\left(\mathbb{S}^{1}\right)}} & \gtrsim n \frac{\lambda^{2 / p-1}}{1} \\
& =\lambda^{2(1 / p-1 / 2)}
\end{aligned}
$$

for $\lambda \geqslant 1, p \in[1,2]$.
In the numerator we needed the inequality:

$$
\sum_{l=1}^{\infty} l^{2 / p-1} J_{2 l}(\lambda)^{2} \gtrsim \lambda^{2 / p-1}
$$

which is easy to show.

## The Riesz group for $n \geqslant 3$

$$
n=2
$$

$$
\left\|T_{\cos }^{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{2}\right) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)} \sim\left(p^{*}-1\right)|\lambda|^{2|1 / p-1 / 2|}
$$

$$
n \geqslant 3
$$

## Open problem.

What is the asymptotics for the Riesz group in $n \geqslant 3$ dimensions?
Is it again

$$
\left(p^{*}-1\right)|\lambda|^{n|1 / p-1 / 2|} ?
$$

The case $n=3$ has applications to the Navier-Stokes equations.

Thank you!

