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Euclidean density theorems (EDTs)

There are patterns in large but otherwise arbitrary structures!

The main idea behind Ramsey theory (⊆ combinatorics), but also
widespread in other areas of mathematics.



Euclidean density theorems (EDTs)

Euclidean density theorems are a mixture of

arithmetic combinatorics
e.g., Szemerédi (1975): a posi-
tive density set A ⊆ Z contains
arbitrarily long arithmetic pro-
gressions.
Kelley–Meka (2023): if a set
A ⊆ {1, . . . ,N} does not
contain a 3-term AP, then
|A|/N ≤ exp(−c(logN)c).

AND

geometric measure theory
e.g., Falconer (1985): if a set
A ⊆ Rd has Hausdorff dimen-
sion dimH (A) > (d + 1)/2,
then its distance set

{|x − y| : x, y ∈ A}
has positive measure.



Euclidean density theorems (EDTs) |

EDTs study large measurable sets.

A measurable set A ⊆ [0, 1]d is considered large if

|A| > 0;

its Lebesgue measure is positive.

A measurable set A ⊆ Rd is considered large if

δ(A) := limsp
R→∞

sp
x∈Rd

|A ∩ (x+ [0,R]d)|

Rd
> 0;

its upper Banach density (or some other density) is positive.



Euclidean density theorems (EDTs) ||

EDTs search inside A for congruent (i.e., isometric) copies of given
configurations (patterns):

P = {Pλ : λ ∈ (0,∞)}.

λ = a certain “size” parameter.

Typically: Pλ is the dilate of a fixed configuration P by a factor of λ.



Two types of desired results |||

“All large scales” formulation

For every measurable set A ⊆ Rd satisfying δ(A) > 0

∃λ0(P ,A) ∀λ ≥ λ0 A contains a congruent copy of Pλ.

A rather strong but only qualitative claim.

The number λ0 depends on more than just the density δ(A).



Two types of desired results ||||

“An interval of scales” formulation

Take 0 < δ≪ 1, A ⊆ [0, 1]d measurable, |A| ≥ δ.
Then the set of “scales”

{λ ∈ (0,∞) : A contains a congruent copy of Pλ}

contains an interval of length at least ϵ = FP ,d(δ) > 0.

A weaker but quantitative claim.

Initiates a race to find better dependencies of ϵ on δ.



Classical results — a pair of points ||||⧸

A question by Székely (1982). Popularized by Erdős.

Can one find all large dilates of P = {0, 1} ⊂ R in a large set
A ⊆ R2?

Answered affirmatively by:

• Furstenberg, Katznelson, and Weiss (1980s),

• Falconer and Marstrand (1986),

• Bourgain (1986).



Classical results

A question by Székely (1982)

For every measurable set A ⊆ R2 satisfying δ(A) > 0 is there a
number λ0 = λ0(A) such that for each λ ∈ [λ0,∞) there exist
points x, x′ ∈ A satisfying |x− x′| = λ?

6/63



Classical results — simplices

Δ = the set of vertices of a non-degenerate n-dimensional simplex

Theorem (Bourgain (1986))

For every measurable set A ⊆ Rn+1 satisfying δ(A) > 0 there is a
number λ0 = λ0(A,Δ) such that for each λ ∈ [λ0,∞) the set A
contains an isometric copy of λΔ.
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Classical results — simplices | ||||⧸
Δ = the set of vertices of a non-degenerate n-dimensional simplex.

Theorem (Bourgain (1986))

All large dilates of Δ ⊂ Rn exists in a large set A ⊆ Rn+1.
An interval of dilates of length

(︀
exp(δ−C(n,Δ))

)︀−1 exists in a large
set A ⊆ [0, 1]n+1.

C(n,Δ) = a constant depending on n and Δ.
Alternative proofs by Lyall and Magyar (2016, 2018, 2019), K. (2020).
Note the dimensional increase: Rn⇝ Rn+1.

Open question #1 (folklore from the 1980s, e.g., Furstenberg)

When n ≥ 2, does the same hold for A ⊆ Rn?



General point configurations || ||||⧸

Open question #2 (folklore from the 1990s, e.g., Graham)

Which point configurations P have all large dilates in large sets
A ⊆ Rd for some (sufficiently large) dimension d?

The most general known positive result:
holds for products of vertex-sets of nondegenerate simplices
P = Δ1 × · · · × Δm, Lyall and Magyar (2019).

The most general known negative result:
fails for configurations that cannot be inscribed in a sphere,

Graham (1993).



Newer results ||| ||||⧸
We “change the rules” in one of the following ways:

1. want better bounds in the “interval of scales” formulation;

2. consider “anisotropic” dilates of the configuration;

3. measure the configuration size in some ℓp for p ̸= 2;

4. consider “very dense” sets A ⊆ Rd.



General scheme of the approach

Abstracted from: Cook, Magyar, and Pramanik (2017)

N 0
λ

= configuration “counting” form, identifies the configuration
associated with the parameter λ > 0 (i.e., of “size” λ)

N ϵ
λ
= smoothened counting form; the picture is blurred up to scale

0 < ϵ ≤ 1

The largeness–smoothness multiscale approach:

• λ = scale of largeness

• ϵ = scale of smoothness
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General scheme of the approach (continued)

Decompose:

N 0
λ
= N 1

λ
+

(︀
N ϵ

λ
− N 1

λ

)︀
+

(︀
N 0

λ
− N ϵ

λ

)︀
.

N 1
λ
= structured part,

N ϵ
λ
− N 1

λ
= error part,

N 0
λ
− N ϵ

λ
= uniform part.
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General scheme of the approach (continued)

For the structured partN 1
λ
we need a lower bound

N 1
λ
≥ c(δ)

that is uniform in λ, but this should be a simpler/smoother problem.
For the uniform partN 0

λ
− N ϵ

λ
we want

lim
ϵ→0

⃒⃒
N 0

λ
− N ϵ

λ

⃒⃒
= 0

uniformly in λ; this usually leads to some oscillatory integrals.
For the error partN ϵ

λ
− N 1

λ
one tries to prove

J∑︁
j=1

⃒⃒
N ϵ

λj
− N 1

λj

⃒⃒
≤ C(ϵ)o(J)

for lacunary scales λ1 < · · · < λJ; this usually leads to some
multilinear singular integrals.
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General scheme of the approach (continued)

We argue by contradiction. Take sufficiently many lacunary scales
λ1 < · · · < λJ such thatN 0

λj
= 0 for each j.

The structured part
N 1

λj
≥ c(δ)

dominates the uniform part⃒⃒
N 0

λj
− N ϵ

λj

⃒⃒
� 1 (for sufficiently small ϵ)

and the error part⃒⃒
N ϵ

λj
− N 1

λj

⃒⃒
� C(ϵ) (for some j by pigeonholing)

for at least one index j. This contradictsN 0
λj
= 0.
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1. Rectangular boxes

Newer results. . . a warm-up example

� = the set of vertices of an n-dimensional rectangular box

Theorem (Lyall and Magyar (2019))

For every measurable set A ⊆ R2 × · · · × R2 = (R2)n satisfying
δ(A) > 0 there is a number λ0 = λ0(A,�) such that for each
λ ∈ [λ0,∞) the set A contains an isometric copy of λ� with sides
parallel to the distinguished 2-dimensional coordinate planes.

Previous particular cases by:
Lyall and Magyar (2016), for n = 2;
Durcik and K. (2018), general n, but in (R5)n.
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1. Rectangular boxes — quantitative strengthening

Fix b1, . . . , bn > 0 (box sidelengths).

Theorem (Durcik and K. (2020))

For 0 < δ ≤ 1/2 and measurable A ⊆ ([0, 1]2)n with |A| ≥ δ there
exists an interval I = I(A, b1, . . . , bn) ⊆ (0, 1] of length at least(︀

exp(δ−C(n))
)︀−1

s. t. for every λ ∈ I one can find x1, . . . , xn, y1, . . . , yn ∈ R2 satisfying

(x1 + r1y1, x2 + r2y2, . . . , xn + rnyn) ∈ A for (r1, . . . , rn) ∈ {0, 1}n;

|yi| = λbi for i = 1, . . . , n.

This improves the bound of Lyall and Magyar (2019) of the form(︀
exp(exp(· · ·exp(C(n)δ−3·2n) · · · ))

)︀−1 (a tower of height n).
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1. Rectangular boxes

σ = circle measure in R2, f = 1A
Configuration counting form:

N 0
λ
(f) :=

ˆ
(R2)2n

(︁ ∏︁
(r1 ,...,rn)∈{0,1}n

f(x1+r1y1, . . . , xn+rnyn)
)︁(︁ n∏︁

k=1

dxk dσλbk(yk)
)︁

N ϵ
λ
can be obtained by “heating up”N 0

λ
.

g = standard Gaussian, k = Δg.

The approach benefits from the heat equation

∂

∂t

(︀
gt(x)

)︀
=

1

2πt
kt(x).
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1. Rectangular boxes

Smoothened counting form:

N ϵ

λ
(f) :=

ˆ
(R2)2n

(︁
· · ·

)︁(︁ n∏︁
k=1

(σ∗ gϵ)λbk(yk) dxk dyk
)︁

=
ˆ
(R2)2n

F (x)
(︁ n∏︁

k=1

(σ∗ gϵ)λbk(x
0
k − x1k)

)︁
dx

F (x) :=
∏︁

(r1 ,...,rn)∈{0,1}n

f(xr11 , . . . , x
rn
n ), dx := dx01 dx

1
1 dx

0
2 dx

1
2 · · · dx

0
n dx

1
n
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1. Rectangular boxes — error part (continued)

From
∑︀J

j=1

⃒⃒
N ϵ

λj
(1B) − N 1

λj
(1B)

⃒⃒
we are lead to study

ΘK((fr1,...,rn)(r1,...,rn)∈{0,1}n)

:=
ˆ
(Rd)2n

∏︁
(r1,...,rn)∈{0,1}n

fr1,...,rn(x1 + r1y1, . . . , xn + rnyn)
)︁

K(y1, . . . , yn)
(︁ n∏︁

k=1

dxk dyk
)︁

Entangled multilinear singular integral forms with cubical structure:
Durcik (2014); K. (2010); Durcik and Thiele (2018: entangled
Brascamp–Lieb).
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2. Anisotropic configurations

Polynomial generalizations?

• There are no triangles with sides λ, λ2, and λ3 for large λ

• One can look for triangles with sides λ, λ2 and a fixed angle θ
between them.
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2. Anisotropic configurations

We will be working with anisotropic power-type scalings

(x1, . . . , xn) 7→ (λa1b1x1, . . . , λanbnxn).

Here a1, a2, . . . , an, b1, b2, . . . , bn > 0 are fixed parameters.
Crucial observation: the heat equation is unaffected by a power-type
change of the time variable

∂

∂t

(︀
gtab(x)

)︀
=

a

2πt
ktab(x).
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2.1 Anisotropic right-angled simplices

Theorem (K. (2020))

For every measurable set A ⊆ Rn+1 satisfying δ(A) > 0 there is a
number λ0 = λ0(A, a1, . . . , an, b1, . . . , bn) such that for each
λ ∈ [λ0,∞) one can find a point x ∈ Rn+1 and mutually orthogonal
vectors y1, y2, . . . , yn ∈ Rn+1 satisfying

{x, x+ y1, x+ y2, . . . , x+ yn} ⊆ A

and
|yi| = λaibi; i = 1, 2, . . . , n.
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2.1 Anisotropic simplices

Pattern counting form:

N 0
λ
(f) :=

ˆ
Rn+1

ˆ
SO(n+1,R)

f(x)
(︁ n∏︁

k=1

f(x+ λakbkUek)
)︁
dμ(U) dx

Smoothened counting form:

N ϵ

λ
(f) :=

ˆ
Rn+1

ˆ
SO(n+1,R)

f(x)
(︁ n∏︁

k=1

(f∗g(ϵλ)akbk)(x+λ
akbkUek)

)︁
dμ(U) dx
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2.1 Anisotropic simplices — error part (continued)

From
∑︀J

j=1

⃒⃒
N ϵ

λj
(1B) − N 1

λj
(1B)

⃒⃒
we are lead to study

ΛK(f0, . . . , fn) :=
ˆ
(Rd)n+1

K(x1 − x0, . . . , xn − x0)
(︁ n∏︁

k=0

fk(xk) dxk
)︁

Multilinear C–Z operators: Coifman and Meyer (1970s); Grafakos and
Torres (2002).
Here K is a C–Z kernel, but with respect to the quasinorm associated
with our anisotropic dilation structure.
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2.2 Anisotropic boxes

Theorem (K. (2020))

For every measurable set A ⊆ (R2)n satisfying δ(A) > 0 there is a
number λ0 = λ0(A, a1, . . . , an, b1, . . . , bn) such that for each
λ ∈ [λ0,∞) one can find points x1, . . . , xn, y1, . . . , yn ∈ R2 satisfying{︀
(x1 + r1y1, x2 + r2y2, . . . , xn + rnyn) : (r1, . . . , rn) ∈ {0, 1}n}︀ ⊆ A

and
|yi| = λaibi; i = 1, 2, . . . , n.
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2.3 Anisotropic trees

T = (V, E) be a finite tree with vertices V and edges E

Theorem (K. (2020))

For every measurable set A ⊆ R2 satisfying δ(A) > 0 there is a
number λ0 = λ0(A,T , a1, . . . , an, b1, . . . , bn) such that for each
λ ∈ [λ0,∞) one can find a set of points

{xv : v ∈ V} ⊆ A
satisfying

|xu − xv| = λakbk for each edge k ∈ E joining vertices u, v ∈ V.

This is an anisotropic variant of the result by Lyall and Magyar (2018)
on certain distance graphs.
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2.3 Anisotropic configurations — error part

One would like to handle more general distance graphs (generalizing
simplices, boxes, and trees).
For the error part there is a lot of potential in applying entangled
multilinear singular integrals associated with bipartite graphs or
r-partite r-regular hypergraphs.
The only cases studied so far are:
the so-called “twisted paraproduct operator,”

K. (2010.); Durcik and Roos (2018);
the operators with cubical structure,

Durcik (2014, 2015); Durcik and Thiele (2018).
Dyadic models of these operators are significantly easier:

K. (2011); Stipčić (2019).
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3. Arithmetic progressions

Reformulation of Szemerédi’s theorem

For n ≥ 3 and d ≥ 1 there exists a constant C(n, d) such that for
0 < δ ≤ 1/2 and a measurable set A ⊆ [0, 1]d with |A| ≥ δ one has

ˆ
[0,1]d

ˆ
[0,1]d

n−1∏︁
k=0

1A(x+ ky) dy dx

≥

⎧⎨⎩
(︀
exp(δ−C(n,d))

)︀−1 when 3 ≤ n ≤ 4,(︀
exp(exp(δ−C(n,d)))

)︀−1 when n ≥ 5.

Follows from the best known type of bounds in Szemerédi’s theorem:
n = 3, log by Heath-Brown (1987)
n = 4, log by Green and Tao (2017)
n ≥ 5, log log by Gowers (2001)
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3. Arithmetic progressions in other ℓp-norms

Bourgain’s counterexample applies.
Cook, Magyar, and Pramanik (2015) decided to measure gap lengths
in the ℓp-norm for p 6= 1, 2,∞.

Theorem (Cook, Magyar, and Pramanik (2015))

If p 6= 1, 2,∞, d sufficiently large, A ⊆ Rd measurable, δ(A) > 0,
then ∃λ0 = λ0(p, d,A) ∈ (0,∞) such that for every λ ≥ λ0 one
can find x, y ∈ Rd satisfying x, x+ y, x+ 2y ∈ A and ‖y‖ℓp = λ.

Open question #3 (Cook, Magyar, and Pramanik (2015))

Is it possible to lower the dimensional threshold all the way to d = 2
or d = 3?
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3. Arithmetic progressions

Open question #4 (Durcik, K., and Rimanić)

Prove or disprove: if n ≥ 4, p 6= 1, 2, . . . , n− 1,∞, d sufficiently
large, A ⊆ Rd measurable, δ(A) > 0, then
∃λ0 = λ0(n, p, d,A) ∈ (0,∞) such that for every λ ≥ λ0 one can
find x, y ∈ Rd satisfying x, x+ y, . . . , x+ (n− 1)y ∈ A and ‖y‖ℓp = λ.

It is necessary to assume p 6= 1, 2, . . . , n− 1,∞.
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3. Arithmetic progressions — compact formulation

Theorem (Durcik and K. (2020))

Take n ≥ 3, p 6= 1, 2, . . . , n− 1,∞, d ≥ D(n, p), δ ∈ (0, 1/2],
A ⊆ [0, 1]d measurable, |A| ≥ δ. Then the set of ℓp-norms of the
gaps of n-term APs in the set A contains an interval of length at least⎧⎨⎩

(︀
exp(exp(δ−C(n,p,d)))

)︀−1 when 3 ≤ n ≤ 4,(︀
exp(exp(exp(δ−C(n,p,d))))

)︀−1 when n ≥ 5.

Modifying Bourgain’s example → sharp regarding the values of p

One can take D(n, p) = 2n+3(n+ p) → certainly not sharp
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3. Arithmetic progressions

σ(x) = δ(‖x‖p
ℓp
− 1) = a measure supported on the unit sphere in

the ℓp-norm

N 0
λ
(A) :=

ˆ
Rd

ˆ
Rd

n−1∏︁
k=0

1A(x+ ky) dσλ(y) dx

N 0
λ
(A) > 0 =⇒ (∃x, y)

(︀
x, x+y, . . . , x+(n− 1)y ∈ A, ‖y‖ℓp = λ

)︀
N ϵ

λ
(A) :=

ˆ
Rd

ˆ
Rd

n−1∏︁
k=0

1A(x+ ky)(σλ ∗ φϵλ)(y) dy dx

for a smooth φ ≥ 0 with
´
Rd φ = 1
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3. Arithmetic progressions — back to the error part

The most interesting part for us is the error part.
We need to estimate

J∑︁
j=1

κj
(︀
N ϵ

λj
(A) − N 1

λj
(A)

)︀
for arbitrary scales λj ∈ (2−j, 2−j+1] and arbitrary complex signs κj,
with a bound that is sub-linear in J.
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3. Arithmetic progressions — error part

It can be expanded as

ˆ
Rd

ˆ
Rd

n−1∏︁
k=0

1A(x+ ky)K(y) dy dx,

where

K(y) :=
J∑︁

j=1

κj
(︀
(σλj ∗ φϵλj)(y) − (σλj ∗ φλj)(y)

)︀
is a translation-invariant Calderón–Zygmund kernel.
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3. Arithmetic progressions — error part

If d = 1 and K(y) is a truncation of 1/y, then this becomes the
(dualized and truncated) multilinear Hilbert transform,

ˆ
R

ˆ
[−R,−r]∪[r,R]

n−1∏︁
k=0

fk(x+ ky)
dy

y
dx.

• When n ≥ 4, no Lp-bounds uniform in r,R are known.

• Tao (2016) showed a bound of the form o(J), where
J ∼ log(R/r) is the “number of scales” involved.

• Reproved and generalized by Zorin-Kranich (2016).

• Durcik, K., and Thiele (2016) showed a bound O(J1−ϵ).
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4. Some other arithmetic configurations

Allowed symmetries play a major role.

Note a difference between:

the so-called corners: (x, y), (x+ s, y), (x, y + s) (harder),

isosceles right triangles: (x, y), (x+ s, y), (x, y + t)
with ‖s‖ℓ2 = ‖t‖ℓ2 (easier).
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4.1 Corners

Theorem (Durcik, K., and Rimanić (2016))

If p 6= 1, 2,∞, d sufficiently large, A ⊆ Rd × Rd measurable,
δ(A) > 0, then ∃λ0 = λ0(p, d,A) ∈ (0,∞) such that for every
λ ≥ λ0 one can find x, y, s ∈ Rd satisfying
(x, y), (x+ s, y), (x, y + s) ∈ A and ‖s‖ℓp = λ.

Generalizes the result of Cook, Magyar, and Pramanik (2015) via the
skew projection (x, y) 7→ y − x.
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4.2 AP-extended boxes

Consider the configuration in Rd1 × · · · × Rdn consisting of:

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn), k1, k2, . . . , kn ∈ {0, 1},

(x1+2s1, x2, . . . , xn), (x1, x2+2s2, . . . , xn), . . . , (x1, x2, . . . , xn+2sn).
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4.2 AP-extended boxes

Consider the configuration in Rd1 × · · · × Rdn consisting of:

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn), k1, k2, . . . , kn ∈ {0, 1},

(x1+2s1, x2, . . . , xn), (x1, x2+2s2, . . . , xn), . . . , (x1, x2, . . . , xn+2sn).

Fix b1, . . . , bn > 0 and p 6= 1, 2,∞.

Theorem (Durcik and K. (2018))

There exists a dimensional threshold dmin such that for any d1, d2, . . . ,
dn ≥ dmin and any measurable set A with δ(A) > 0 one can find
λ0 > 0 with the property that for any λ ≥ λ0 the set A contains the
above 3AP-extended box with ‖si‖ℓp = λbi, i = 1, 2, . . . , n.
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4.3 Corner-extended boxes

Consider the config. in Rd1 × Rd1 × · · · × Rdn × Rdn consisting of:

(x1 + k1s1, . . . , xn + knsn, y1, y2, . . . , yn), k1, k2, . . . , kn ∈ {0, 1},

(x1, x2, . . . , xn, y1+s1, y2, . . . , yn), . . . , (x1, x2, . . . , xn, y1, y2, . . . , yn+sn).

Fix b1, . . . , bn > 0 and p 6= 1, 2,∞.

Theorem (Durcik and K. (2018))

There exists a dimensional threshold dmin such that for any d1, . . . ,
dn ≥ dmin and any measurable set A with δ(A) > 0 one can find
λ0 > 0 with the property that for any λ ≥ λ0 the set A contains the
above corner-extended box with ‖si‖ℓp = λbi, i = 1, 2, . . . , n.
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5. Very dense sets

Theorem (Falconer, K., and Yavicoli (2020))

If d ≥ 2 and A ⊆ Rd is measurable with δ(A) > 1− 1
n−1 , then for

every n-point configuration P there exists λ0 > 0 s. t. for every
λ ≥ λ0 the set A contains an isometric copy of λP.

The result would be trivial for δ(A) > 1− 1
n and rotations would not

even be needed there.
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5. Very dense sets — lower bound

What can one say about the lower bound for such density threshold
(depending on n)?
Let us return to arithmetic progressions!

Theorem (Falconer, K., and Yavicoli (2020))

For all n, d ≥ 2 there exists a measurable set A ⊆ Rd of density at
least

1−
10 log n

n1/5

s.t. there are arbitrarily large values of λ for which A contains no
congruent copy of λ{0, 1, . . . , n− 1}.
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5. Very dense sets

Open question #5 (Falconer, K., and Yavicoli)

What is the smallest 0 ≤ δmin(d, n) < 1 such that every measurable
set A ∈ Rd of upper density > δmin(d, n) contains all sufficiently
large scale similar copies of all n-point configurations?

Previous results give

1−
10 log n

n1/5
≤ δmin(d, n) ≤ 1−

1

n− 1
.

Is it possible to improve either one of the two asymptotic bounds
1− O(n−1/5 log n) and 1− O(n−1) as n→∞?
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6. A strong-type Furstenberg–Sárközy theorem

Theorem (Kuca, Orponen, and Sahlsten (2021))

There exists ϵ > 0 s.t. every compact set K ⊆ R2 of dimension
dimH (A) > 2− ϵ contains a pair of points of the form (x, y),
(x, y) + (u, u2).



6. A strong-type Furstenberg–Sárközy theorem

Theorem (Durcik, K., and Stipčić (2023))

A positive measure set A ⊆ [0, 1]2 contains a point (x0, y0) ∈ A s.t. A
nontrivially intersects parabolas y − y0 = a(x− x0)2 for a whole interval
I ⊆ (0,∞) of parameters a ∈ I. For a positive (upper Banach) density set
A ⊆ R2 the interval I can be arbitrarily large on the logarithmic scale.



6. A strong-type Furstenberg–Sárközy theorem

Open question #6 (Durcik, K., and Stipčić)

For a positive (upper Banach) density set A ⊆ R2, can one find a
point (x0, y0) ∈ A s.t. A nontrivially intersects all parabolas
y − y0 = a(x− x0)2?



Future work

What else is there to do?



Thank you!

HW: Try one of the open problems.


